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Abstract

The design and implementation of algorithms for increasingly large and complex mod-
ern supercomputers requires the definition of data structures and workload distribution
mechanisms in a productive and scalable way. In this paper, we propose a PGAS data
structure along with a Work-Stealing mechanism for the class of parallel tree-based
algorithms that explore unbalanced trees using the depth-first search strategy. The con-
tribution has been implemented and packaged as an open-source module in the Chapel
PGAS language. The experimentation of the contribution in a single-node setting us-
ing backtracking applied to fine-grained Unbalanced Tree-Search benchmark shows
that 68% of the linear speed-up can be achieved. In addition, the scalability of the
contribution has been evaluated using the Branch-and-Bound algorithm to solve big
instances of the Flowshop Scheduling problem on a large cluster. The reported re-
sults reveal that 50% of strong scaling efficiency is achieved using 400 computer nodes
(51,200 processing cores).
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1. Introduction

In the landscape of modern programming environments, the definition of efficient
and versatile data structures is a fundamental requirement. This need becomes even
more pronounced in Partitioned Global Address Space (PGAS) environments that are
inherently tailored for distributed computing, where the ability to effectively manage
data structures across clusters is pivotal. In this work, the focus is on tree-based algo-
rithms that explore unbalanced solution spaces. This class of algorithms has garnered
significant attention due to their capacity to offer viable solutions to problems in dif-
ferent areas, such as Operations Research, Artificial Intelligence, Bio-informatics, and
Machine Learning [1; 2].

These algorithms, such as backtracking and Branch-and-Bound (B&B), are able to
efficiently explore solution spaces. However, they exhibit large irregular trees making
their design in a parallel distributed context raising multiple challenges. The major of
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them is the design of efficient and scalable data structures and dynamic adaptive load
balancing mechanisms.

To raise that challenge, we introduced a PGAS data structure, called DistBag DFS,
along with a Work Stealing (WS) mechanism for the design and implementation of un-
balanced Depth-First (DFS) tree-search at scale [3]. The implementation is based on
the Chapel programming language [4] and packaged in the open-source DistributedBag DFS

module [5].
In this paper, we extend this previous work addressing its limitations. First, we

provide a comprehensive description of DistBag DFS and associated WS, along with
a performance evaluation of this latter mechanism on the backtracking fine-grained
Unbalanced Tree-Search (UTS) benchmark. Then, we investigate its performance in
a large-scale distributed-memory setting using B&B applied to the Permutation Flow-
shop Scheduling problem. Up to 400 computer nodes (51,200 processing cores) are
used to evaluate the scalability of the WS mechanism in solving large instances. The
results demonstrate the high performance of the PGAS data structure and WS, even in
highly-demanding scenarios.

In the following, we first give a short background and some related work. Then, we
present DistBag DFS and associated WS. After a performance evaluation, we outline
some conclusions and future directions.

2. Background and related work

Tree-based search algorithms are powerful techniques that have the ability to ef-
ficiently explore solution spaces. The exploration is often guided by the principles
of backtracking and B&B involving a systematic search through the decision tree, in-
crementally building and evaluating potential solutions. Those algorithms generally
involve highly irregular and unpredictable search trees, and explore the tree in a DFS
manner. Implemented using a last-in, first-out (LIFO) stack to store generated but not
yet visited nodes, DFS is favored in combinatorial algorithms due to its memory effi-
ciency, especially when compared to memory-intensive strategies such as breadth-first.

Tree-search algorithms are inherently recursive, making them well-suited for par-
allelization. The most general and frequently used approach is the parallel tree explo-
ration, which consists in exploring several disjoint subspaces in parallel [6]. In asyn-
chronous mode, adopted in this paper, the search processes communicate in an unpre-
dictable way making non trivial the sharing of knowledge among workers. Therefore,
defining an efficient data structure, to store the workload, and its associated manage-
ment policy is highly crucial for performance.

In this work, the multi-pool strategy is used. Each worker manages its own pool of
generated, but not yet evaluated, nodes and maintains them in a DFS order. This strat-
egy requires a sophisticated communication model since it raises the issue of balancing
the workload between multiple pools. A popular and provably efficient dynamic load
balancing approach is the WS paradigm [7]. Under WS, each process usually main-
tains a double-ended queue (deque) of nodes. Each worker processes nodes from the
tail of the deque and steals work items from the head of another deque when its pool is
empty.
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(a) Bag instances. (b) Multi-pool.

(c) Pool.

Figure 1: Illustration of the DistBag DFS components: (a) bag instances, (b) multi-pool, and (c) pool based
on non-blocking split deque.

In this context, some data structures based on traditional programming environ-
ments have been proposed [8; 9]. The latter allow high-performance and often benefit
from problem-specific optimizations. In contrast, several papers discuss scalable dy-
namic load balancing techniques for unbalanced tree-search using PGAS-based envi-
ronments [10; 11; 12; 13]. Similarly, we introduced in [3] the DistBag DFS distributed
data structure designed for unbalanced tree-search at scale. The latter is implemented
using Chapel and has been exploited for a generic parallel distributed tree-search. We
demonstrated the competitiveness of our approach compared to OpenMP and MPI+X
baselines, considering both intra- and inter-node performance, and productivity-awareness.
This work extends [3] with a comprehensive description of the data structure and its
WS mechanism while investigating its performance at scale.

3. The DistBag DFS data structure and work stealing

3.1. Design.

Figure 1 illustrates the hierarchical structure of the data structure. First of all,
DistBag DFS maintains one bag instance (multi-pool) per locale, as shown in Fig-
ure 1a. In Chapel, a locale is a subset of the target architecture that can be used to
control and reason about affinity for the sake of performance and scalability. For most
target architectures, a locale is equivalent to a computer node. In that sense, this com-
ponent of the data structure handles the inter-node level of parallelism. While the data
structure is safe to use in a distributed manner, it provides a mean to obtain a priva-
tized instance of it for maximized performance, and each locale always operates on its
privatized instance.

As shown in Figure 1b, each bag instance contains multiple pools, called segments.
More precisely, one segment is maintained per parallel task (T in the figure). Each task
has a unique identifier 1, . . . ,T , used to map it to a segment. The latter is used in the
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DistBag DFS’s insertion (resp. retrieval) procedure to specify the segment into (resp.
from) which an element node gets inserted (resp. retrieved). This is required by the
DFS, because when a node is evaluated, the entire subtree below it must be explored
before another sibling node is processed. However, when children nodes are inserted
into a different segment than the one from which the parent was taken, that necessary
condition cannot be ensured. In addition, it is worth to mention that while each segment
locally guarantees a DFS order, the multi-pool do not.

The implementation of segments is based on non-blocking split deques [14]. Under
this scheme, each segment is logically split into a “shared” and “private” region using
an atomic split pointer, as shown in Figure 1c. This scheme allows lock-free local
access to the private portion of the deque and copy-free transfer of work between the
shared and private portions. Work transfer is done by moving the split pointer in either
directions using appropriate operators. The other tasks access the shared region for load
balancing, and synchronize themselves using an atomic lock. Segments are dynamic-
sized and have an initial capacity of 1,024 elements. When a segment is full, we extend
its capacity by a power of two.

Finally, DistBag DFS is equipped with a WS mechanism, as shown in Figure 1 by
the red arrows. This mechanism intervenes at the levels of both segments (intra-node)
and bag instances (inter-node). The latter is locality-aware and, depending on the state
of the data structure, different scenarios may occur:

• When the private region of a segment is empty, the associated task will first try
to steal a work item locally. It iterates randomly over all the eligible segments
from the same bag instance, and only one node is stolen, if applicable. Indeed,
the WS is performed at the head of the deque and thanks to DFS the stolen node
is the shallowest one in the search tree. Thus, it is expected to generate a large
number of children nodes.

• When the local WS attempts fail, a global WS is triggered. Similarly, it iterates
over all the eligible bag instances, and then over all the eligible segments on
it. Since remote accesses generate high overheads, multiple nodes are stolen
at once. In addition, only one global steal attempt is allowed per bag instance,
meaning that when a task is performing a global WS, the other tasks can not.

• When all the local and global WS attempts fail, nothing is returned and one can
be sure that the whole DistBag DFS is either empty or few elements remain
inside.

3.2. Implementation aspects.
DistBag DFS is designed to be as simple as possible for the user. It implements

a multi-pool and encapsulates a load balancing mechanism transparently to the user,
thanks to the PGAS paradigm. Indeed, the latter includes a unified global address
space, implicit communications, better data locality, and expressive memory models.
Furthermore, the data structure is generic and can contain any types, even user-defined
or external ones.

Regarding the user’s interface, the data structure is composed of a set of two initial-
ization variables (eltType and targetLocales) and seven methods. The operators
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add, addBulk, and remove allow the user to insert an element, insert elements in bulk,
and remove an element from a given segment, respectively. Each of these procedures
applies to the bag instance of the locale it is called from. In addition, the data structure
contains four global methods that apply to the whole DistBag DFS. To avoid holding
onto locks, we take a snapshot approach, increasing memory consumption but also in-
creasing parallelism. This allows other concurrent, even mutating, operations while it-
erating, but opens the possibility to iterating over duplicated or missing elements from
concurrent operations. These methods are clear, these, contains, and getSize,
and allow the user to clear DistBag DFS, iterate over it, search for a specific element
in it, and get its global size, respectively. Finally, the data structure owns some configu-
ration parameters that can be used to fine-tune its capacity and WS. The latter allow the
user to set the initial and maximum capacities of the segments and also the minimum
number of elements a segment must have to become eligible to be stolen from. This
may be useful if some segments contain less elements than others and should not be
stolen from.

One aspect that requires further investigation is the required “task id” in the inser-
tion/retrieval operations of the data structure. In the current version of DistBag DFS,
it is required to ensure the local DFS ordering. We could implement an automated way
to deal with this index, but a priori Chapel’s design intentionally avoids supporting
a standard language-level way to query a task’s id. One can still exploit the internal
chpl task ID t opaque type, that refers to the task id that the runtime uses, but this
could raise portability issues since Chapel includes different runtime tasking options,
and the support is not guaranteed to continue across future versions of the language.

4. Performance evaluation

4.1. Experimental protocol.
We first evaluate the performance of the WS mechanism in a shared-memory set-

ting on the UTS benchmark [15]. The latter is widely used to evaluate dynamic load
balancing of fine-grained applications and is solved using backtracking. Moreover, we
assess the scalability of our implementation in a large scale distributed-memory set-
ting. As test-cases, large Permutation Flowshop Scheduling Problem (PFSP) instances
proposed by E. Taillard in [16] are solved using the B&B technique. They consist in
finding an optimal processing order for n jobs on m machines, such that the completion
time of the last job on the last machine (makespan) is minimized. The so-called two-
machine bound [17] and the dynamic minBranch branching technique [18] are used.

The Luxembourg national petascale MeluXina - Cluster module is used for the
experiments. Each computer node has 2 AMD EPYC Rome 7H12 64 cores @ 2.6
GHz CPUs and 512 GB of RAM. In addition, the nodes are interconnected via the
InfiniBand HDR high-speed fabric and operate under Rocky Linux 8.7. Chapel 1.31.0
is used in a fine-tuned configuration environment, along with the gcc 11.3.0 back-end
compiler.

4.2. Evaluation of work-stealing.
In this section, two synthetic UTS trees with different types, binomial and geomet-

ric, are solved. A binomial tree is an optimal adversary for load balancing strategies,
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Figure 2: Speed-up achieved solving geometrical
and binomial synthetic UTS trees, compared to a
sequential version.
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Figure 3: Percentage of explored nodes per processing
cores solving the UTS-bin instance. The grey lines
represent the ideal percentage, i.e., 100/NProc.

Table 1: Summary of the instances used, along with some execution statistics.

Inst. Nb. of nodes (106) Time (s) nodes/s (103) WS attempts (% success)
UTS-geo 171.1 37.38 4,577 48,433 (99.0%)
UTS-bin 131.7 37.11 3,548 1,473,048 (96.8%)

since there is no advantage to be gained by choosing to move one node over another
for WS: the expected work at all nodes is identical (i.e., at most two children nodes). In
contrast, in a geometric tree the expected size of the subtree rooted at a node increases
with proximity to the root. One can see on Figure 2 that for the best results, 68% of
the ideal speed-up is achieved using 128 processing cores and solving the UTS-geo in-
stance. This represents 40% more than the UTS-bin instance, which is directly related
to the branching factor, as explained above.

Table 1 provides some execution statistics of the solved instances. In order to al-
low a fair comparison between instances, we make sure that the sequential times are
approximately the same. One can see that for each instance, the percentage of WS
attempts failed is less than 9%, which demonstrate the relevance of the WS. More-
over, Figure 3 shows the percentage of explored nodes per processing cores, solving
the UTS-bin instance. One can see that for each experiment the total workload is al-
most evenly balanced among all the processing units, meaning that all the allocated
resources are fully exploited.

These experiments show that our WS mechanism is able to achieve good perfor-
mance, as well as a good workload distribution between all the allocated resources,
even at low-granularity. The latter takes advantage of the fact that the shallowest nodes
are stolen first, and that those nodes generally have a higher branching factor than the
others. Nevertheless, it was observed that the performance may be impacted when it is
not the case, like solving UTS-bin.

4.3. Performance at scale.

Figure 4 shows the speed-up reached solving the ta056 PFSP instance up to 400
nodes, compared to a multi-core version. The latter exhibits 173 × 109 nodes and
requires 1.26 node-hour. The experimental results revealed that up to 70% of the ideal
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Figure 4: Speed-up achieved solving ta056, com-
pared to a multi-core version.
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Figure 5: Relative speed-up achieved solving
ta057.

speed-up can be achieved using up to 128 computer nodes, and around 50% using 400
nodes. In the latter experiment, 51,200 processing cores are used, and therefore as
many segments are maintained in parallel. This leads to a large number of potentially
remote communications, which can explain this limit in performance.

As a preliminary experiment towards the resolution of open instances, ta057 is
also solved. The latter exhibits a tree composed of 28,340 × 109 nodes, requires on
average 220 node-hour, and was first solved to the optimality in 2022 [19], exploiting
on average 384 GPUs during 1h11. For time limitation reasons, we consider the pro-
cessing time on 8 nodes as the reference time for the speed-up computation. Figure 5
shows a high relative scalability, with 98% of the ideal speed-up reached using 400
nodes.

5. Conclusions and future works

We investigated a PGAS data structure and WS for the class of unbalanced tree-
based algorithms, focusing on DFS. According to the experimental results, it is shown
that the data structure and WS allow to achieve 68% of the linear speed-up on a fine-
grain backtracking application in single-node setting. Furthermore, large scale exper-
iments revealed that 50% of strong scaling efficiency is achieved using 400 computer
nodes (51,200 processing cores) solving large PFSP instances using the B&B tech-
nique.

This work opens the road toward the resolution of open combinatorial optimization
problems instances. To that end, we plan to extend our approach with a fault-tolerance
mechanism in order to face Mean-Time-Between-Failure that are ever smaller.
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