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Abstract 
The blastocyst forms during the first days of mammalian development. The structure of the 
blastocyst is conserved among placental mammals and is paramount to the establishment of the 
first mammalian lineages. The blastocyst is composed of an extraembryonic epithelium, the 
trophectoderm (TE), that envelopes a fluid-filled lumen and the inner cell mass (ICM). To shape 
the blastocyst, embryos transit through three stages driven by forces that have been characterized 
in the mouse embryo over the past decade. The morphogenetically quiescent cleavage stages 
mask dynamic cytoskeletal remodeling. Then, during the formation of the morula, cells pull 
themselves together and the strongest ones internalize. Finally, the blastocyst forms after the 
pressurized lumen breaks the radial symmetry of the embryo before expanding in cycles of 
collapses and regrowth. In this review, we delineate the force patterns sculpting the blastocyst, 
based on our knowledge on the mouse and, to some extent, human embryos. 
 
Introduction 
During the first days of mammalian development, 
the embryo relies mostly on resources contained 
within the oocyte. With its limited supplies, the 
mammalian oocyte undergoes a transformation 
into a structure called the blastocyst, whose 
purpose is, in eutherians (also called placental 
mammals) and in some marsupials, to implant the 
embryo into the maternal uterus. The eutherian 
blastocyst consists of a squamous epithelium, 
called trophectoderm (TE), that envelopes a fluid-
filled lumen (the blastocoel) and a cluster of 
pluripotent stem cells named the inner cell mass 
(ICM, Figure 1). The TE is an extraembryonic 
tissue, which separates into polar and mural TEs 
(pTE and mTE) after the formation of the lumen, 
with the pTE near the ICM and the mTE lining the 
lumen. The TEs mediate the implantation of the 
blastocyst and are thought to contribute to 
shaping the neighboring embryonic tissues. The 
ICM is the origin of all embryonic tissues of the 
mammalian body, as well as some 
extraembryonic tissues. After the formation of the 
lumen, the ICM differentiates into epiblast (Epi) 
and primitive endoderm (PrE) cells, with the PrE 
lining the lumen and the Epi sandwiched between 
the TE and PrE (Figure 1). The Epi further 
differentiates into the definitive germ layers while 
the PrE contributes to extraembryonic tissues of 
the yolk sac. The signaling pathways and gene 
regulatory networks controlling the TE/ICM and 
PrE/Epi lineages have been dissected and 
discussed in several excellent reviews, while the 
pTE/mTE is comparably less well understood 
(Chazaud and Yamanaka 2016; Płusa and 
Piliszek 2020; Wamaitha and Niakan 2018; Posfai 

et al. 2019). Studying the first lineage 
specifications of the mammalian embryos 
revealed the essential roles played by the shape 
of the blastocyst in their establishment and 
maintenance. In this review, we delineate the 
force patterns sculpting the preimplantation 
embryo, from the cleavage stages to the 
blastocyst stage. The forces shaping the 
blastocyst are generated by the cytoskeleton, as 
well as luminal fluid. To resist and transmit these 
mechanical forces, cells rely on adherens and 
tight junctions. Both the force generators and 
force transmitters are patterned by apicobasal 
polarity, which is instrumental to organize most 
preimplantation morphogenesis. This review will 
describe our current understanding of the shape 
changes in the eutherian blastocyst, a 
phenomenon mostly informed by research on 
mouse embryos. For a review on marsupial and 
monotreme blastocysts, see the excellent work 
from Frankenberg and colleagues (Frankenberg 
et al. 2016). 
To form the eutherian blastocyst, three distinct 
phases were initially described during 
preimplantation development: cleavage stages, 
the formation of the morula and finally of the 
blastocyst (Figure 1). During cleavage stages, 
there is no shape change of the embryo besides 
the increase in cell number by cleavage divisions, 
i.e. without cell growth during the interphase. 
Unlike the cleavage stage embryo, the morula 
appears as a round ball of cells. To form the 
morula, the embryo undergoes compaction, 
apicobasal polarization and initiates TE/ICM 
differentiation by positioning cells internally while 
others remain at the embryo surface. The   



Figure 1: Preimplantation development 
During preimplantation development, the zygote, encapsulated in its zona pellucida (ZP, grey), undergoes 
cleavage divisions without any shape change before the 8-cell stage. The morula begins to form at the 8-cell 
stage with compaction, bringing cells in close contact and forcing out any extracellular fluid (light blue) between 
cells. At the 16-cell stage, the compacted morula has inner (orange) and outer (purple) cells, which begin to 
differentiate into inner cell mass (ICM) and trophectoderm (TE) fates, respectively. The blastocyst begins to 
form at the 32-cell stage with the formation of a fluid-filled lumen (lilac). The lumen physically separates some 
of the TE cells from some of the ICM cells: the TE cells remaining in contact with the ICM initiate their 
differentiation into polar TE (pTE, dark blue), whereas those in contact with the lumen become mural TE (mTE, 
red); meanwhile, the ICM progressively differentiates into primitive endoderm (PrE, yellow) and epiblast cells 
(Epi, green), which eventually segregate in space after maturing their fate (orange cells) and repositioning 
themselves. 



blastocyst features a large fluid-filled lumen, 
which occupies most of its volume. To form the 
blastocyst, surface cells become epithelial by 
further maturing their apicobasal polarization with 
the sealing of tight junctions (TJs), along with 
initiation of polarized transport leading to the 
accumulation of luminal fluid. During the 
maturation of the blastocyst, the lumen continues 
expanding as the second lineage segregations 
occur within the PrE/Epi and pTE/mTE. 
Remarkably, the formation of the blastocyst 
breaks the radial symmetry of the morula with the 
ICM and lumen establishing the first axis of 
symmetry of the mammalian embryo. The side of 
the blastocyst containing the ICM is referred to as 
the embryonic pole, and the opposite side as the 
abembryonic pole. 
As the preimplantation embryo undergoes 
blastocyst morphogenesis, its cells continue their 
initially rhythmic cleavage divisions. In the mouse, 
key steps take place within a specific cellular 
stage: with the 8-cell stage dedicated to 
compaction and apicobasal polarization; the 16-
cell stage experiences the first wave of cell 
internalization and the sealing of TJs; the 32-cell 
stage is devoted the final wave of cell 
internalization resulting in TE/ICM differentiation 
and to lumen opening and positioning; the 64-cell 
stage dedicated to lumen expansion and the 
priming of Epi/PrE progenitors; the 128-cell stage 
committing Epi/PrE, and presumably pTE/mTE, 
positions and lineages. This view is simplified 
since, in fact, cell divisions become more and 
more asynchronous with time: at the 2-cell stage, 
sister cells divide within ~1 h from one another 
and within ~3 h at the 8-cell stage. Therefore, 
morulae are only briefly composed of precisely 8 
or 16 cells but rather of a mixture of 8- and 16-cell 
stage blastomeres. This implies that while some 
8-cell stage blastomeres are still maturing their 
apicobasal polarity, other blastomeres of the 
same embryo are already at the 16-cell stage and 
can be positioned inside the morula to initiate their 
ICM differentiation. Although the sequence of 
morphogenetic steps described above seems 
conserved among eutherian mammals, cell cycle 
durations can vary between species and this 
fluctuation can be uncoupled from the timing of 
morphogenesis. For example, compaction takes 
longer in human or cow embryos than in mouse 
and typically continues during the 16-cell stage 
(Gerri et al. 2020). Therefore, the synchrony 
between cleavage divisions and blastocyst 
morphogenesis can be complex. 
Importantly, cleavage divisions and the increase 
in cell number are not strictly essential for 
blastocyst morphogenesis (Tarkowski 1959). 
Physically removing cells from the embryo does 

not stop blastocyst formation. For example, single 
blastomeres isolated as late as at the 8-cell stage 
can continue cleavage divisions as normal and 
form a mini-blastocyst, composed of a small 
lumen and inner and outer cells (Tarkowski and 
Wróblewska 1967) expressing markers of ICM 
and TE differentiation, respectively (Dietrich and 
Hiiragi 2007). This is not exclusive to physical 
removal of cells, as multiple rounds of cytokinesis 
can fail and blastocyst formation still occur in a 
timely fashion (Schliffka et al. 2021). In one of the 
most extreme examples, in which all successive 
cytokinesis fail, the embryo will reach the 
blastocyst stage with a single blastomere. This 
single-celled embryo will have succeeded in 
acquiring some form of apicobasal polarity, 
differentiation into TE and even some aspect of 
lumen formation (Schliffka et al. 2021). Therefore, 
blastocyst morphogenesis is running on a 
developmental clock that is to some extent 
synchronized but not firmly coupled with the 
rhythms of cleavage divisions. This spectacular 
adaptive capability of the preimplantation embryo 
is possible thanks to the morphogenetic program 
that relies on cell autonomous processes 
including, cell polarization and luminal fluid 
accumulation, as we will see in greater details in 
the following sections. 
 
Cleavage stages: the mechanical maternal-
zygotic transition 
From the zygote to the 8-cell stage, the shape of 
the embryo is only affected by cleavage divisions, 
with the exception of a transient deformation 
during the 2-cell stage by the zona pellucida (ZP), 
an elastic glycoprotein shell surrounding embryo 
that gently squeezes cells together. Although 
mammalian morphogenesis has not started yet, 
internal remodeling of the actin and microtubule 
cytoskeletons lead to mechanical changes of the 
cells without affecting the shape of the cells and 
embryo.  
Immediately after fertilization, the paternal 
genome enters the cytoplasm of the oocyte, 
which completes its second meiotic division 
expelling half of the maternal genome into the 
polar body (Mori et al. 2021). Polar body extrusion 
is mediated by a contractile cytokinetic ring 
assembled at the periphery of an actin cap to 
encapsulate the expelled maternal genome (Clift 
and Schuh 2013). To coordinate the formation 
and contraction of the actin cap, molecular signals 
emanate from both chromatin and the central-
spindle complex, located at the periphery of the 
oocyte (Dehapiot et al. 2021). Chromatin triggers 
actin polymerization in a distance dependent 
manner (~20 µm) via Ran and Cdc42 small 
GTPases (Deng et al. 2007). Paternal 



chromosomes can also trigger the formation of 
actin caps when in close proximity to the cell 
cortex but interestingly, these events do not lead 
to extrusion into polar bodies (Mori et al. 2021). 
This is because actin caps induced by paternal 
chromosomes do not form a contractile ring, 
which is organized by signals from the central-
spindle complex involving the small GTPase Rho 
(Dehapiot et al. 2021). Interestingly, interfering 
with the anchoring of the spindle or with Rho 
effectors can lead to the formation of polar body-
like structures during cleavage divisions of mouse 
embryos (Pelzer et al. 2023). These structures 
resemble cellular fragments formed by human 
and macaque embryos, which sometimes contain 
chromosomes and negatively affect the outcome 
of assisted reproductive technologies (ART) 
procedures (Daughtry et al. 2019; Alikani et al. 
2005; Alikani 1999). In cleavage stage mouse 
embryos, chromatin induces the activation of 
Cdc42 and the formation of an actin cap when it 
comes within 20 µm, indicating that the same 
signals used during meiosis remain active long 
after meiosis is complete (Pelzer et al. 2023). In 
somatic cells, signals from chromatin typically 
relax the cortex instead of stimulating it 
(Rodrigues et al. 2015; Sedzinski et al. 2011), yet 
actin cap formation near the chromatin can still be 
observed during the 8- to 16-cell stage division 
(Pomp et al. 2022; Pelzer et al. 2023). However, 
it is not yet clear at what point in preimplantation 
development this meiosis-like control of the 
actomyosin cortex stops. 
During cleavage stage mitoses, the microtubule 
cytoskeleton also shows peculiar behaviors. In 
mouse embryos, there is no centrosome and the 
mitotic spindle assembles from multiple 
microtubule organizing centers (MTOCs), as 
observed during meiosis (Courtois et al. 2012), 
before forming a functional barrel-shaped mitotic 
spindle. During the first division, the local 
organization of MTs around parental pronuclei 
can lead to the formation of overlapping “maternal 
and paternal spindles” that maintain the parental 
chromosomes in distinct regions of the mitotic 
plate (Reichmann et al. 2018). The progressive 
de novo synthesis of centrosomes allows the 
spindle to gradually transition from a meiosis-like 
construction to a classical mitotic assembly by the 
8- to 16-cell stage (Courtois et al. 2012). The 
asynchrony in centrosome assembly among 
blastomeres could therefore affect how the 8- to 
16- and 16- to 32-cell stage divisions take place, 
with potentially important consequences on 
TE/ICM cell allocations. How relevant this 
behavior is to other mammals remains unclear. 
Indeed, in human and cow embryos, the sperm 
brings the centrosome and, during the first 

mitosis, centrosomes position themselves around 
the parental pronuclei before nuclear envelope 
breakdown (NEBD) (Cavazza et al. 2021). This 
helps clustering the centromeres of parental 
chromosomes near one another and speeds up 
chromosome clustering upon NEBD. 
Chromosome mis-segregation is more frequent 
when pre-NEBD clustering does not occur and is 
particularly prominent in human embryos, leading 
to the formation of micronuclei and aneuploidy 
(Cavazza et al. 2021; Currie et al. 2022). 
The egg-like behavior of the cytoskeleton of 
cleavage stage embryos is not restricted to 
mitosis but also affects the interphase. Oocytes 
are cells with high surface tensions compared to 
typically softer, embryonic cells (Krieg et al. 2008; 
Godard et al. 2020; Bischof et al. 2017; 
Yamamoto et al. 2023). Mouse germinal vesicle-
intact and germinal vesicle breakdown stage 
oocytes have tensions of several nN/µm for 
oocytes in metaphase I and II, whereas 8-cell 
stage blastomeres at the onset of morphogenesis 
are much softer at 0.2 nN/µm (Larson et al. 2010; 
Chaigne et al. 2013; Maître et al. 2015). This 
embryonic softening is gradual over the zygote to 
8-cell stages and is associated with noticeable 
changes in the contractile behaviors of cells 
(Özgüç et al. 2022). On the timescale of tens of 
seconds, preimplantation blastomeres show 
rhythmic deformations, similar to those initially 
described in fly embryos and as observed in a 
variety of developing animals (Solon et al. 2009; 
Martin 2010; Kim and Davidson 2011; Roh-
Johnson et al. 2012; Bement et al. 2015; Maître 
et al. 2015). The softening of cells during 
cleavage stages is associated with a gradual 
decrease in the period of contractions from ~150 
to 80 s (Özgüç et al. 2022). Periodic contractions 
also increase in amplitude, can be detected in 
most mouse embryos by the 4-cell stage, and are 
likely the result of cortical remodeling by actin 
regulators rather than simply the gradual 
reduction in cell size. The microtubule 
cytoskeleton also adopts an unusual organization 
during the interphase due to the absence of 
centrosomes. Most of the microtubule network is 
poorly organized due to the absence of a strong 
microtubule organizing center (MTOC). Weak 
MTOCs can be found in undefined locations 
within the cytoplasm but stronger MTOCs 
consistently originate from cytokinetic bridges that 
persist after incomplete abscissions (Zenker et al. 
2017; Courtois et al. 2012). 
Taken together, these recent findings reveal that 
during cleavage stages, cytoskeletal remodeling 
leads to a mechanical maternal-zygotic transition 
(MZT) at the onset of blastocyst morphogenesis. 
In the mouse, zygotic gene expression begins as 



early as the late zygote stage with the minor 
zygotic genome activation (ZGA) and grows 
stronger at the 2-cell stage with the major ZGA 
(Abe et al. 2018). Blocking gene expression 
during the ZGA strongly affects the initiation of 
compaction, suggesting that zygotic gene 
expression may be needed to prepare the 
embryonic cytoskeleton and mechanics for 
blastocyst morphogenesis (Levy et al. 1986; 
Kidder and McLachlin 1985). In other mammals 
such as humans or cows, ZGA occurs at the 8-
cell stage (Zou et al. 2022) and, based on 
biochemical and biophysical studies of human 
embryos, cytoskeletal defects are suspected to 
be responsible for arrested or abnormal 
development (Firmin et al. 2022; Wang et al. 
2024). Since relatively little is known of the 
cytoskeletal and mechanical changes during the 
cleavage stages of mammalian species other 
than the mouse, it remains unclear how much 
ZGA timing would influence a potential 
mechanical MZT. 
 
Morula: from a cluster of individual cells to an 
embryo 
At the beginning of the 8-cell stage, cells do not 
have any particular spatial arrangement, are 
almost completely spherical, and can contribute 
to all tissues of the mammalian embryo. After the 
formation of the morula, cells are polarized, 
squashed together and the developmental 
potential of individual cells is reduced, with some 
of them being committed to extraembryonic 
tissues. The formation of the morula is the critical 
time when cells cease to be individual “totipotent” 
cells and start to become part of an embryo. 
 
Compaction, the first morphogenetic 
movement, what is it for? 
Cleavage stage embryos have small cell-cell 
contacts. During compaction, blastomeres come 
closer to one another and spread their contacts 
until the embryo forms a compact mass (Figure 
1). Since their discovery in the compacting mouse 
embryo (Hyafil et al. 1980), it is well established 
that, to hold onto one another, preimplantation 
blastomeres rely on cadherin-mediated adhesion 
(Larue et al. 1994; Stephenson et al. 2010). This 
led to the proposal that compaction would be 
mediated by adhesion molecules zipping up cell-
cell contacts, a theory still prominent in the 
biomedical field (Coticchio et al. 2019). Although 
cadherin adhesion molecules are essential to 
mechanically couple cells and to signal the 
cytoskeleton (Maître and Heisenberg 2013), 
adhesion molecules may not be able to provide 

much energy to reshape contacts compared to 
other morphogenetic engines (Maitre et al. 2012; 
Stirbat et al. 2013; Chan et al. 2017). Instead, cell-
cell contact rearrangements typically rely on 
actomyosin contractility, which pulls at the surface 
of cells and onto the edges of cell-cell contacts 
(Lecuit and Yap 2015). Blocking actomyosin, 
using inhibitors such as blebbistatin or ML7, or by 
knocking out non-muscle myosin IIA, has been 
shown to prevent compaction (Maître et al. 2015, 
2016; Zhu et al. 2017; Schliffka et al. 2021). Thus, 
both contractility and adhesion need to be 
functional for compaction. To increase cell-cell 
contact size, cells can pull stronger onto the 
contact (by contracting their cell-medium 
interface) and/or relax their cell-cell contacts (by 
contracting them less or by providing more 
adhesion energy) (Maître and Heisenberg 2011; 
Winklbauer 2015). This physical phenomenon is 
formally captured by the Young-Dupré equation 
(Figure 2) and thus one can determine the relative 
contributions of contractility and adhesion to 
compaction by measuring the surface tensions at 
the cell-medium and cell-cell interfaces (Turlier 
and Maître 2015). The tension at the surface of 
cells increases by a factor 2 in mouse embryos 
and by a factor 4 in human embryos throughout 
compaction in a contractility-dependent and 
adhesion-independent manner (Maître et al. 
2015; Firmin et al. 2022). In mouse embryos, 
increased contractility is associated with 
prominent periodic contractions that propagate 
around the cell surface, termed periodic 
contractile  waves of contraction (PeCoWaCo) 
(Maître et al. 2015; Özgüç et al. 2022). As an 
alternative to contractility, it was proposed that 
surface protrusions could increase tension at the 
cell-medium interface in non-cell autonomous and 
Myo10-dependent manner (Fierro-González et al. 
2013). This is ruled out by the facts that the 
surface tension increase is cell-autonomous and 
that Myo10 mutants do not seem to have 
compaction problems (Maître et al. 2015; Crozet 
et al. 2023). Concerning tensions at cell-cell 
contacts, they do not change in human embryos 
and decrease by one-third in mouse embryos, 
playing at most a minor contribution to 
compaction (Maître et al. 2015; Firmin et al. 
2022). Therefore, compaction for both mouse and 
human embryos results from an increase in 
contractility at the cell-medium interface. 
Importantly, high tensions a the cell-medium 
interface are ineffective if tensions are also high 
at cell-cell contacts (Figure 2), as inferred from 
tension measurements during cleavage stages 
(Özgüç et al. 2022).



Figure 2: Cell surface tensions throughout mouse preimplantation development and comparative 
analyzes of mouse and human embryo compaction 
Taking measurements from multiple studies (Özgüç et al. 2022; Maître et al. 2015, 2016; Chan et al. 2019; 
Yanagida et al. 2022), the dynamic changes in cell surface tensions can be plotted over the entirety of 
preimplantation development. All values are normalized to the surface tension at the cell-medium interface γcm 
of compacted 8-cell stage embryos. Solid lines show measurements directly taken from the studies while 
dashed lines indicate that values were inferred from the provided measurements. Values of surface tensions at 
the cell-medium interface are plotted in pink from the zygote to the 8-cell stage (Özgüç et al. 2022; Maître et al. 
2015), in orange for the ICM and in purple for the TE (Maître et al. 2016), in red for the mTE and in dark blue 
for the pTE (Chan et al. 2019), in green for the Epi and in yellow for the PrE (Yanagida et al. 2022). Values of 
surface tensions at the cell-cell interface are plotted in grey. The right-hand side axis indicates the scale for the 
compaction parameter (light blue), which describes the shape of the contact and corresponds to the ratio of 
surface tensions at the cell-cell contact and at the cell-medium interface. 
Schematics of the compaction of a cell doublet based on the surface tensions measured in mouse and human 
embryos (Maître et al. 2015; Firmin et al. 2022). The shape of a cell doublet is characterized by its external 
contact angle θ, which results from the balance of the tensions at the cell-medium γcm (red) and cell-cell 
interfaces γcc (green) (Turlier and Maître 2015). This is formally characterized by a simplified form of the Young-
Dupré equation where the compaction parameter α = cos (θ/2) = γcc/2γcm. Both mouse and human embryos 
compact by reducing their compaction parameter from ~0.7 to 0.25. While this results from increasing γcm by a 
factor 4 without changing γcc in human embryos, mouse embryos compact by doubling γcm and by reducing γcc 
by 1/3. 



During cleavage stages, the actomyosin cortex is 
rather homogeneous around the cells and 
becomes preferentially localized at the cell-
medium interface in mouse and human embryos 
as compaction progresses (Maître et al. 2015; 
Firmin et al. 2022; Zhu et al. 2017). Actomyosin 
reduction at cell-cell contacts depends on 
cadherin adhesion molecules, which remodel the 
cytoskeleton locally via small GTPases (Yamada 
and Nelson 2007; Wildenberg et al. 2006). 
However, the specific molecules that control the 
increase in contractility and the signals from 
cadherins that occur specifically at the 8-cell 
stage, remain unknown. It has previously been 
hypothesized that this could involve phospholipid 
signaling, since interfering with protein kinase C 
and phospholipases can induce transient 
premature compaction at the 4-cell stage (Winkel 
et al. 1990; Zhu et al. 2017). 
Finally, although compaction defects are 
associated with poor outcome in human embryos 
(Mizobe et al. 2017; Lagalla et al. 2017), the 
necessity of compaction is unclear. Indeed, 
mutants lacking maternal adhesion molecules or 
non-muscle myosin II fail to compact but form 
viable blastocysts (Stephenson et al. 2010; Maître 
et al. 2016; Dumortier et al. 2019; Schliffka et al. 
2021, 2023). Therefore, while compaction 
constitutes the first sign that blastomeres are part 
of a single embryo, its function is nebulous. 
 
Formation of the apical domain, master 
organizer of preimplantation development 
As compaction proceeds a parallel event occurs: 
the establishment of bona fide apicobasal 
polarity. From the 2-cell stage, cells have cell-cell 
contacts where the cell-cell adhesion molecule 
Cdh1 shows some enrichment. While cell-cell 
contacts may constitute a basolateral interface, it 
is only at the 8-cell stage that cells form an actual 
apical interface. Initially, the apical membrane 
does not occupy the entire cell-cell contact-free 
interface and instead concentrates into a small 
cap or domain (Figure 3). The formation of the 
apical domain is critical for continued 
development as it provides instructions for cells 
inner and outer positioning (Korotkevich et al. 
2017; Maître et al. 2016), ensuing ICM and TE 
differentiation (Hirate et al. 2013), and for 
polarized transport during lumen formation 
(Dumortier et al. 2019). Therefore, the apical 
domain constitutes a master organizer of 
preimplantation development. 
Like for other epithelia, apicobasal polarity of the 
mouse preimplantation embryo relies on the Par 
complex to determine the molecular specificity of 
the contact and non-contact interfaces 
(Campanale et al. 2017). The mouse Par 

homologs, Pard3 and Pard6b, are scaffolding 
proteins that localize to the apical domain at the 
onset of polarization and are required for the 
apical recruitment of atypical protein kinase C 
(aPKC) (Plusa et al. 2005; Vinot et al. 2005; 
Alarcon 2010). Concomitant to the recruitment of 
apical determinants, previously existing 
structures start to be reorganized (Figure 3). For 
example, the surface of the embryo is covered in 
microvilli throughout cleavage stages (Ducibella 
et al. 1977). During apical domain formation, 
microvilli concentrate at the apical pole of the 
blastomere, which is how the apical domain was 
initially identified (Ducibella et al. 1977; Ziomek 
and Johnson 1980; Johnson and Ziomek 1981b). 
The role of microvilli in the mouse embryo has not 
been explored, but they could act as membrane 
reservoirs to facilitate growth as observed in other 
systems (Figard et al. 2013, 2016; LaFoya and 
Prehoda 2023). Formation and maintenance of 
microvilli depends on the action of Ezrin-Radexin-
Moesin (ERM) proteins, an actin-plasma 
membrane linker (Sauvanet et al. 2015). ERM 
proteins must be phosphorylated and bound to 
phosphatidyl inositol biphosphate (PIP2) to relieve 
their autoinhibitory folding (Sauvanet et al. 2015). 
During the 8-cell stage, PIP3 becomes enriched at 
basolateral interfaces (Halet et al. 2008), 
suggesting that PIP2 could localize at the apical 
domain and promote ezrin recruitment. Ezrin is 
phosphorylated by aPKC and its activation has 
been linked to microvilli clustering (Louvet et al. 
1996; Dard et al. 2004; Liu et al. 2013). Although 
ezrin is not part of the apical machinery, its role in 
structuring the membrane of the apical domain 
makes it the focus of several studies on apical 
domain formation and maturation. 
The precise mechanisms responsible for 
organization of the apical domain have yet to be 
elucidated. Apicobasal polarization has been 
shown to depend on feedback between proteins 
specifically enriched at cell-cell junctions and the 
nascent apical domain in other model systems 
(Morais-de-SA et al. 2010; Klompstra et al. 2015; 
Campanale et al. 2017). In mouse 
preimplantation embryos, cell-cell contacts are 
dispensable for de novo polarization. Isolated 8-
cell stage blastomeres are capable of 
polarization, albeit with a delay of ~3 hours 
compared to doublets (Ziomek and Johnson 
1980). This delay may suggest that cell-cell 
contacts expedite polarization, however, placing 
the cell in contact with a bead is enough to trigger 
polarization at a similar speed to doublets 
(Ziomek and Johnson 1980; Korotkevich et al. 
2017). Importantly, the molecular specificity of the 
adhesive contact is not imp ortant since beads 
coated with or without Cdh1 have the same effect, 



which is also supported by the fact that Cdh1 
mutants polarize normally (Korotkevich et al. 
2017; Stephenson et al. 2010). Further, as 
observed in doublets and more complicated cell 
assemblies (Ziomek and Johnson 1980; Johnson 
and Ziomek 1981a), physical contact with a bead 
causes the apical domain to form opposite to the 
contact, indicating that physical contact is enough 
to bias the axis of polarization (Korotkevich et al. 

2017). The ability of isolated 8-cell stage 
blastomeres to polarize implies that formation of 
the apical domain is under tight temporal control. 
This has recently been suggested to depend on a 
wave of transcription at the early 8-cell stage, as 
inhibition of transcription at this stage delayed 
polarization (Zhu et al. 2020). This model would 
suggest that the machinery required to form the 
apical domain is newly synthesized upon 

Figure 3: Surface rearrangement during apical domain formation and expansion 
During the formation of the morula, surface cells reorganize their cell-medium interface into an apical surface, 
as found in epithelia (Campanale et al. 2017). Left shows, from top to bottom, a 4-cell stage embryo, an 
uncompacted 8-cell stage embryo, a compacted 8-cell stage embryo and a 16-cell stage morula with inner 
(orange) and outer (purple) cells. On the right, the cell surface shows surface protrusions, called microvilli, that 
become clustered into the apical domain (Ducibella et al. 1977), harboring a distinct curvature and progressively 
expands (Korotkevich et al. 2017; Zenker et al. 2018). Cytoskeletal elements associated with the cell surface 
are shown with the actin filaments in red (Maître et al. 2016), microtubules in blue (Zenker et al. 2018) and 
keratin filaments in green (Lim et al. 2020). Line thickness indicating how and where these elements are 
enriched. The cytoskeletal elements present in the cytoplasm are not depicted. 



reaching the 8-cell stage. This comes in 
contradiction with previous observations showing 
that inhibition of translation at the early 4-cell 
stage leads to premature compaction and 
polarization as early as the late 4-cell stage, 
thereby suggesting that compaction and 
polarization need the removal from an inhibitor 
rather than de novo synthesis (Levy et al. 1986; 
Kidder and McLachlin 1985).  
The formation of the apical domain is concomitant 
with compaction and the two processes are often 
presented as being coupled. Since actomyosin 
drives compaction of mouse and human embryos 
(Maître et al. 2015; Firmin et al. 2022) and 
apicobasal polarization relies heavily on 
actomyosin in other settings such as the c. 
elegans zygote (Munro et al. 2004), it was 
proposed that actomyosin may also be important 
for apical domain formation in the mouse. This 
was concluded after contradicting results with 
treatments of embryos with blebbistatin and ML7, 
which, respectively, did and did not form apical 
domains (Zhu et al. 2017). Clarification came from 
mutant embryos lacking both homologues of non-
muscle myosin II, that were able to polarize 
despite chronically defective contractility 
(Schliffka et al. 2021). Thus, demonstrating that 
actomyosin contractility is not required for 
apicobasal polarization of preimplantation 
embryos. On the other hand, it has been 
previously shown that apicobasal polarity does in 
fact control actomyosin activity (Blankenship et al. 
2006; Padmanabhan and Zaidel-Bar 2017; 
Campanale et al. 2017). In the mouse embryo, 
this is clearly visible by the decreased periodic 
contractions at the apical domain (Maître et al. 
2016). This could result from the reduced levels 
of actomyosin at the apical domain as a 
consequence of aPKC signaling. Additionally, 
Cdh1-mediated signaling reduces actomyosin 
levels at cell-cell contacts in mice embryos 
(Maître et al. 2015) and in other systems 
(Wildenberg et al. 2006; Yamada and Nelson 
2007; David et al. 2014; Padmanabhan and 
Zaidel-Bar 2017; Chan et al. 2017). Importantly, 
the reduced actomyosin levels at cell-cell 
contacts are independent of the formation of the 
apical domain, since actomyosin is also reduced 
at cell-cell contacts of double knockout of zeta 
and iota aPKC paralogs (Maître et al. 2016), or 
after knockdown of Pard6b (Alarcon 2010). 
Inversely, blocking cell adhesion through 
incubation in Ca2+-free media or knockout of Cdh1 
prevents compaction and homogenizes actin 
across each blastomere without preventing the 
formation of the apical domain (Stephenson et al. 
2010; Anani et al. 2014). Therefore, while 
concomitant and partially relying on common 

molecular components, compaction and 
apicobasal polarization can occur independently 
from one another. 
While what initiates apical domain formation 
remains unclear, its maturation is better 
understood. Upon formation of the apical domain, 
the cytoskeleton is extensively remodeled. Both 
microtubules (Zenker et al. 2018; Houliston et al. 
1987) and keratin intermediate filaments (Lim et 
al. 2020; Chisholm and Houliston 1987; Schwarz 
et al. 2015) are enriched at the apical domain 
(Figure 3). On the other hand, actomyosin is 
excluded from the apical pole due to the action of 
aPKC and microtubules (Maître et al. 2016; 
Zenker et al. 2018). Instead, actin forms a ring 
around the recruited apical components (Anani et 
al. 2014; Korotkevich et al. 2017; Zenker et al. 
2018). The ring expands throughout the 8- and 
16-cell stages until it eventually reaches cell-cell 
junctions where it is stabilized by adherens and 
tight junction proteins, at which point the apical 
domain occupies the entirety of the contact free 
surface (Korotkevich et al. 2017; Zenker et al. 
2018). Apical cytoskeletal remodeling is 
sometimes associated with the apical domain 
giving the appearance of ‘bulging out’ from the cell 
surface (Ducibella et al. 1977), where the 
adoption of this distinct curvature could result 
from the line tension of the actin ring. However, 
laser ablation experiments suggest that the ring 
may not be contractile (Zenker et al. 2018). 
Therefore, apical domain curvature is most likely 
the result of a lower surface tension from the non-
apical part of the contact-free surface, which 
contains more actomyosin (Maître et al. 2016) 
and could drive apical domain expansion. 
 
Inner-outer cell positioning, a movement of a 
lifetime 
The presence of the apical domain at the 8-cell 
stage introduces the possibility that the following 
cell divisions may be asymmetric, with one 
daughter cell inheriting more apical material than 
the other. In some cases, one daughter cell 
inherits all of the apical material and its sister cell 
receives none. These cells are often referred to 
as polar and apolar, respectively, while noting that 
the apolar cell conserves some polarity provided 
by its cell-cell contacts and contact-free 
interfaces. 
Early observations found that 80% of isolated 8-
cell blastomeres would divide asymmetrically 
(Johnson and Ziomek 1981b), with similar rates 
later being observed in embryos (Anani et al. 
2014; Watanabe et al. 2014; Korotkevich et al. 
2017). Further, following asymmetric divisions, 
which tend to occur perpendicular to the embryo 
surface (Figure 4), the polar cell could remain at   



Figure 4: Cell inner and outer positioning from the 8- to the 32-cell stage 
Schematics of cellular events leading to the formation of the ICM (orange) and TE (purple). 8-cell stage 
blastomeres divide with 3 distinct outcomes: left, the mitotic spindle (light blue) is perpendicular to the embryo 
surface, which asymmetrically divides the apical domain (black bump) among sister cells and pushes the apolar 
cell inside the embryo; middle, the mitotic spindle is obliquely oriented relative to the embryo surface, which 
asymmetrically divides the apical domain among sister cells and leaves both the polar and apolar cell at the 
surface; right, the mitotic spindle is parallel to the embryo surface, which symmetrically divides the apical domain 
among sister cells and leaves two polar cells at the surface. In the case of oblique asymmetric divisions, the 
apolar cell displays a stronger actomyosin cortex (red) at its cell-medium interface than neighboring polar cells 
and are subsequently internalized. Thus, at the 16-cell stage, asymmetric divisions lead to cell internalization 
as a result of division orientation relative to the surface of the embryo (Dard et al. 2009; Watanabe et al. 2014; 
Korotkevich et al. 2017) or as result of contractility-mediated cell sorting (Maître et al. 2016). 16-cell stage 
surface blastomeres divide with 2 distinct outcomes: top, the mitotic spindle, oriented by the apical domain, is 
perpendicular to the embryo surface, which asymmetrically divides the apical domain among sister cells and 
pushes the apolar cell inside the embryo; bottom, the mitotic spindle, oriented by the longest axis of the cell, is 
parallel to the embryo surface, which symmetrically divides the apical domain among sister cells and leaves two 
polar cells at the surface (Niwayama et al. 2019). Competition between both modes of orientation ensures a 
consistent number of inner cells: consecutive symmetric divisions will crowd the outer layer leading to a less 
elongated morphology, allowing the next cell division to be oriented by the apical domain and thus produce an 
outer an inner cell. 
 



the surface while the apolar cell becomes 
internalized as a direct result of the division 
orientation. Alternatively, symmetric divisions 
tend to produce two outer cells due to their 
orientation parallel to the embryo surface. Hence, 
symmetric and asymmetric divisions tend to have 
distinct orientations relative to the surface of the 
embryo and this mostly explains how cells 
internalize during the 8- to 16- and 16- to 32-cell 
stage divisions. 
Though this could suffice to explain how all cells 
adopt inner and outer positions, it was noted that 
during the 8- to 16-cell stage transition some 
asymmetric divisions leave some apolar cells at 
the surface of the embryo, which subsequently 
internalize (Anani et al. 2014; Watanabe et al. 
2014; Samarage et al. 2015). Interestingly, this 
also occurs in isolated 8-cell stage blastomeres 
after their division to 16-cell stage doublets as 
apolar cells are engulfed by polar cells (Johnson 
and Ziomek 1983; Korotkevich et al. 2017; Maître 
et al. 2016). Differences in contractility can drive 
engulfment of a tenser tissue by a less tensed one 
(Krieg et al. 2008) and similar engulfment can 
result at the level of a cell doublet by a process 
called entosis (Overholtzer et al. 2007). It was 
experimentally validated that symmetric divisions 
produce cells with similar surface tension 
whereas asymmetric divisions generate polar 
cells with reduced tension compared to apolar 
ones (Maître et al. 2016). This results from the 
asymmetric inheritance of aPKC that negatively 
regulates actomyosin activity and is clearly visible 
with apolar cells showing prominent periodic 
contractions while polar cells do not. Importantly, 
the process of cell internalization is distinct from 
apical constriction, as proposed initially 
(Samarage et al. 2015), since the cells which 
internalize do not have an apical domain and the 
surrounding cells expand rather than constrict 
their apical domain (Zenker et al. 2018). Instead, 
differences in contractility between polar and 
apolar cells results in their sorting (Krieg et al. 
2008; Maitre et al. 2012), as shown by mosaic 
embryos made of WT and non-muscle myosin II 
KO cells in which WT cells sort in to form the ICM 
(Maître et al. 2016; Dumortier et al. 2019). Most 
inner cells internalize during the 8- to 16- and 16- 
to 32-cell stage divisions as a result of oriented 
cell divisions, and while cell sorting may only have 
a minor contribution to the allocation of inner cells, 
this backup mechanism ensures the correct 
positioning of apolar cells. Therefore, cell 
positioning and cell fates are coupled by the 
apical domain, which signals to regulate both cell 
mechanics and gene expression (Maître et al. 
2016). 

The mechanism of asymmetric inheritance of 
apical material has recently been questioned, with 
claims that the apical domain would disassemble 
prior to division (Zenker et al. 2018; Lim et al. 
2020; Pomp et al. 2022). Multiple lines of 
evidence refute this claim. First of all, while 
proposing that the apical domain would 
disassemble before division (Pomp et al. 2022), 
the same study proposes that the apical  domain 
would somehow persist to control mitotic spindle 
orientation. Second, several studies have 
observed that, despite weakening of the actin ring 
structure, both Pard6b (Vinot et al. 2005; Anani et 
al. 2014; Niwayama et al. 2019) and ezrin (Louvet 
et al. 1996; Anani et al. 2014; Korotkevich et al. 
2017) remain apically enriched throughout cell 
division in both fixed and live embryos. Another 
recent study found that the apical domain regulate 
the rate of cleavage furrow progression during 
symmetric divisions and measured that the 
apically localized furrow progressed significantly 
slower than the basal one (Paim and FitzHarris 
2022). This further demonstrates that the apical 
domain is able to influence actomyosin driven 
processes throughout mitosis and can thus be 
symmetrically or asymmetrically divided, as 
initially proposed (Johnson and Ziomek 1981b). 
Further attesting of its persistence throughout 
division is discussed below with the direct 
influence of the apical domain on the mitotic 
spindle. 
During the 8- to 16-cell stage divisions, the mitotic 
spindle can be oriented by the apical domain, 
biasing it along the apical-basal axis and 
accounting for the high proportion of asymmetric 
divisions (Korotkevich et al. 2017). However, it 
has consistently been observed that there are 0-
6 inner cells at the 16-cell stage (Dietrich and 
Hiiragi 2007; Morris et al. 2010; Yamanaka et al. 
2010; McDole et al. 2011; Anani et al. 2014; 
Watanabe et al. 2014; Samarage et al. 2015), 
which is fewer than expected if 80% of divisions 
were asymmetric. Two models have been 
proposed to explain this discrepancy: subclasses 
of asymmetric divisions and repolarization of 
apolar cells. The first is based on the observation 
that a subset of blastomeres at the 8-cell stage 
from a specialized ‘monoastral’ spindle that would 
lead to a stronger apicobasal bias in division than 
those with anastral spindles (Pomp et al. 2022). 
This could result in the inheritance of different 
amounts of apical domain, as measured 
previously (Korotkevich et al. 2017), which could 
influence cell mechanics and cell sorting (Maître 
et al. 2016). Alternatively, apolar cells who would 
be slow to internalize could instead be forced to 
remain at the surface for long enough to form an 
apical domain and become TE (Korotkevich et al. 



2017). Indeed, after removal of the TE, ICM cells 
can polarize and redirect into a TE fate (Hogan 
and Tilly 1978; Korotkevich et al. 2017). To 
visualize the apical domain, many studies relied 
on the overexpression of ezrin (Korotkevich et al. 
2017; Zhu et al. 2020; Zenker et al. 2018; Pomp 
et al. 2022), which is known to influence the size 
of the apical domain (Zenker et al. 2018). 
Therefore, physiological approaches may be 
required to distinguish the relative contributions of 
these scenarios. 
Divisions from the 16-32 cell stage are mostly 
symmetric but can still occur asymmetrically and 
with an orientation that ensures that the cell 
without apical domain is pushed inside 
(Watanabe et al. 2014; Niwayama et al. 2019). 
Manipulation of embryo geometry revealed that 
the apical domain and cell shape compete to bias 
the orientation of cell division (Niwayama et al. 
2019), as observed in other species (Minc et al. 
2011; Pierre et al. 2016; Tanimoto et al. 2018; 
Sallé et al. 2019; Godard et al. 2021). While cell 
shape is homogenous at the 8-cell stage, at the 
16-cell stage the TE are stretched as they cover 
the ICM leading to oriented symmetric division 
along the long axis of the cell to give rise to two 
TE cells. Interestingly, this competition reinforces 
the robustness of cell positioning. When several 
sequential TE divisions are asymmetric, the TE 
will be less stretched thus allowing the apical 
domain to orient division and produce a TE and 
ICM cell (Figure 4). This could contribute to the 
consistent allocation of about ten cells to the ICM 
of 32-cell stage embryos. 
As cells adopt an outer or inner position, they 
begin to differentiate into either TE or ICM fate 
(reviewed in (Chazaud and Yamanaka 2016; 
Posfai et al. 2019; Firmin and Maître 2021)). 
Briefly, in polar outer cells, the Hippo signaling 
component AMOT is sequestered at the apical 
domain preventing phosphorylation by the 
junction localized LATS1/2 (Hirate et al. 2013). 
This prevents phosphorylation of the co-
transcriptional activator YAP, leaving it to enter 
the nucleus and initiate the TE transcription 
program (Hirate et al. 2012). In apolar inner cells 
AMOT is free to localize to cell-cell junctions 
where it is phosphorylated by LATS1/2 (Cockburn 
et al. 2013). This in turn leads to the 
phosphorylation of YAP which blocks its nuclear 
translocation, leaving the inner cell fate to be 
influenced by Sox2 (Wicklow et al. 2014). 
Therefore, this bifurcation is tightly coupled to 
each blastomeres apicobasal polarity, shape and 
position in the embryo (Royer et al. 2020; Otsuka 
et al. 2023). 
 
 

Blastocyst: prepare for landing 
Implantation into the maternal uterus is critical for 
the continued development of eutherian 
mammals. This is ensured by the TE, which 
attaches to the luminal epithelial cells of the 
uterus. Whether it is on the mural or polar side of 
the TE, the specific site of attachment is dictated 
by the position of the lumen, which defines the 
first axis of symmetry of the mammalian embryo. 
Like preparing the landing of a rocket, the 
implantation of the blastocyst requires exquisite 
control over its assembly. 
  
Lumen formation 
The most striking shape change of 
preimplantation development is the formation of 
the blastocoel, often referred to as cavitation. 
Within a day, the formation of the first mammalian 
lumen inflates the embryo by several times its 
original volume and disrupts its radial symmetry. 
Lumen formation leaves the ICM positioned at 
one pole of the embryo thus establishing the first 
anatomical axis in the embryo: the embryonic and 
abembryonic, marked by the ICM and blastocoel, 
respectively (Figure 1). This axis determines the 
site of implantation, on the side of the lumen for 
the mouse embryo and of the ICM in humans 
(Siriwardena and Boroviak 2022). In the mouse, 
this axis will later on coincide with the 
dorsoventral axis (Rossant and Tam 2009). In 
order for lumen formation to proceed, two key 
steps must first occur: sealing of intercellular 
space by TJs and polarized transport of 
osmolytes to draw water into the intercellular 
space (Figure 5). First, cell-cell junctions at the 
surface of the embryo must be sealed in order to 
prevent uncontrolled diffusion between cells. This 
requires the formation of TJs, the principal 
components of which are the transmembrane 
adhesive proteins occludin and claudin, and 
adaptor protein Tjp1 (previously called ZO1) that 
links TJs to the actin cytoskeleton (Zihni and 
Matter 2016). Interference with TJ components 
impairs blastocyst formation (Sheth et al. 2000; 
Thomas et al. 2004; Kim et al. 2004; Moriwaki et 
al. 2007; Xu et al. 2008; Sheth et al. 2008). TJ 
formation starts as Tjp1 is recruited to the junction 
after the actin ring of the apical domain is fully 
expanded to the cell-cell junctions at the 16-cell 
stage (Zenker et al. 2018), and therefore requires 
intact apicobasal polarity (Alarcon 2010; Kono et 
al. 2014; Hirate et al. 2013). Second, the embryo 
must generate an osmotic gradient between the 
intercellular space and its external environment. 
The osmotic gradient is built by the accumulation 
of osmolytes such as sodium ions and glucose. 
This is thought to be driven by the polarized 



Figure 5: Formation and positioning of the blastocoel 
During the 32-cell stage, cell-cell contacts are transiently fractured by luminal fluid accumulating into pockets, 
which exchange their fluid until they coarsen into a single large lumen (lilac), called blastocoel. At the start of 
the 32-cell stage (left), the TE (purple) is a functional epithelium with polarized transport (purple) and sealed 
tight junctions (green) (Schliffka et al. 2021; Zenker et al. 2018), until TE cells start to divide to the 64-cell stage 
(interruptions in the sealing) (Leonavicius et al. 2018; Chan et al. 2019). As seen in the bottom inset, cell-cell 
contacts among and between TE and ICM (orange) cells are kept shut by cadherin adhesion molecules (pink 
rods) until fluid accumulates throughout the contacts of the embryo. Osmolytes (pink dots) are transported via 
pumps and exchangers (red and yellow channels), which creates an osmotic gradient across the epithelium 
and draws water into the embryo via aquaporins (light blue and orange pores)  (Barcroft et al. 2003; Manejwala 
et al. 1989),. Osmolytes and water cannot flow back out of the embryo due to the presence of functional tight 
junctions (TJ, green square) found at the apical portion of the cell (Chan et al. 2019). In the fractured embryo 
(middle), fluid fills up microlumens and later inverse blebs, which persist only for a few tens of seconds. In the 
bottom inset, fluid flows from small microlumens to larger ones, which act as pressure sinks (Dumortier et al. 
2019). In the bottom right inset, fluid movement is facilitated when fluid inflate large asymmetric intrusions into 
the cell, which are retracted by actomyosin contraction (red line), effectively pumping fluid back into the 
intercellular network (Schliffka et al. 2023). In the expanded blastocyst, microlumens have coarsened into a 
single lumen, the blastocoel, which sets the conditions for the TE to differentiates into pTE (dark blue) and mTE 
(red) and for the PrE (yellow) and Epi (green) cells to position themselves. The boxes on top represent a relative 
timeline of the cellular processes required blastocyst formation, and the gradient of colour represents each 
processes ‘peak’ activity. 
 



localization of Na+/K+-ATPase and Na+/H+ 
exchanger at basolateral and apical membranes, 
respectively (Vorbrodt et al. 1977; Watson and 
Kidder 1988; Barr et al. 1998; MacPhee et al. 
2000; Kawagishi et al. 2004). Chloride anions are 
also imported but since they have a lower osmotic 
power than sodium cations, this import seems to 
serve mostly to neutralize electric charges 
(Manejwala et al. 1989). As a consequence of the 
accumulation of osmolytes in the intercellular 
space, water flows into the intercellular space via 
aquaporins, three of which are expressed in the 
blastocyst with specific apicobasal localizations 
(Barcroft et al. 2003; Bell et al. 2009). Like for the 
establishment of TJs, apicobasal polarity is 
required for polarized transport (Tao et al. 2012). 
Chemical inhibition of osmolyte transporters or of 
aquaporins interferes with blastocoel formation 
(Wiley 1984; Kawagishi et al. 2004; Barcroft et al. 
2003). Interestingly, the route taken by osmolytes 
and water is mostly through the cells rather than 
cell-cell contacts. Indeed, fluid accumulation rate 
does not depend on the number of contacts and 
even single-celled embryos inflate at a similar rate 
to whole embryos (Schliffka et al. 2021). Fluid can 
accumulate in a cell-autonomous manner into 
cytoplasmic vacuoles as observed in non-muscle 
myosin II or Cdh1 mutants (Schliffka et al. 2021; 
Stephenson et al. 2010). Notably, while both 
polarized transport and a sealed intercellular 
space are required for fluid to accumulate, it is not 
clear which one of the two is first to become 
functional. If polarized transport becomes 
functional in the absence of a sealed space, 
transport is not effective, while if TJs seal the 
embryo but it does not pump fluid, no lumen 
forms. 
Barring any perturbations, these conditions are 
typically met by the 32-cell stage and fluid starts 
to accumulate in the intercellular space (Figure 5). 
This inundation of fluid is opposed by adhesion 
molecules of the adherens junction. This builds up 
hydrostatic pressure, which hydraulically 
fractures cell-cell contacts, leading to the 
formation of hundreds of micron-sized lumens 
distributed across all contacts of the embryo 
(Dumortier et al. 2019). Initially described in vitro 
(Casares et al. 2015), hydraulic fracturing of 
tissues was also observed in zebrafish (Munjal et 
al. 2021; Kennard et al. 2023). Adhesion strength 
influences lumen positioning: less adhesive 
contacts are easier to fracture biasing the lumen 
position to less adhesive cells. This was recently 
investigated in more detailed using a 
reconstituted in vitro system, in which the density 
and the length of adhesive bonds was found to 
play a critical role (Dinet et al. 2023). After 
fracturing, microlumens begin to coarsen into 

larger lumens until the primary lumen invariably 
forms at the interface between the TE and ICM. 
Theoretically, coarsening is driven by differences 
in pressure between microlumens, with higher 
pressure microlumens emptying into their lower 
pressure neighbors (Le Verge-Serandour and 
Turlier 2021). Both osmotic and hydrostatic 
pressures could in theory affect microlumen 
coarsening, but only hydrostatic effects were 
investigated experimentally. Microlumen 
hydrostatic pressure is influenced by microlumen 
size (larger being lower pressure) and the tension 
of the cells surrounding them (i.e., microlumens 
between higher tension ICM cells have higher 
pressure). This phenomenon contributes to the 
robustness of lumen positioning, as the final 
lumen will always form between lower tension 
cells (Dumortier et al. 2019). The movement of 
fluid between microlumens can rely on 
specialized protrusions known as inverse blebs 
(Schliffka et al. 2023). Like outward blebs, inverse 
blebs inflate as a result of differences in 
hydrostatic pressure between the cell and its 
surrounding fluid, which in the case of inverse 
blebs drives inflation into the cell (Tinevez et al. 
2009; Gebala et al. 2016). Inverse blebs inflate 
into the cells with interstitial fluid and within tens 
of seconds contract with actomyosin to empty 
their contents into neighboring microlumens that 
persists for tens of minutes. Therefore, inverse 
blebs act as fast hydraulic pumps to flush 
interstitial fluid and coarsen the blastocoel 
(Schliffka et al. 2023). 
After the position of the main lumen is set, it 
continues to inflate as the blastocyst matures 
increasing the total volume of the mouse embryo 
by a factor of 5. This growth is punctuated by 
cycles of fast collapses (few minutes) followed by 
slower regrowth (few hours) (Cole 1967). 
Collapses coincide with cell divisions in the TE 
lining the blastocoel (Leonavicius et al. 2018; 
Chan et al. 2019). In agreement with this, a recent 
study following divisions in a single human 
embryo found that collapses systematically occur 
in the presence of mitosis (Domingo-Muelas et al. 
2023). Continued inflation increases the 
hydrostatic pressure in the lumen (Leonavicius et 
al. 2018), which is thought to be important for 
maintaining TJ integrity (Chan et al. 2019; 
Kinoshita et al. 2022) and setting the average size 
of the embryo (Ruiz-Herrero et al. 2017). This 
building pressure ultimately contributes to 
hatching of the embryo from its ZP (Leonavicius 
et al. 2018). The ZP is an elastic glycoprotein 
shell, which, with elastic moduli ranging from 0.2 
to 40 kPa depending on the species and 
technique used, is much more rigid than cells 
(Andolfi et al. 2016; Khalilian et al. 2010, 2013; Yu 



Sun et al. 2003) but eventually yields with 
sufficient pressure from the lumen (~1.5 kPa 
(Leonavicius et al. 2018)). The ZP can be 
degraded by enzymes produced by the TE 
(Perona and Wassarman 1986; Sawada et al. 
1992; O’Sullivan et al. 2001) and uterus 
(O’Sullivan et al. 2002), which makes it unclear 
whether pressure driven hatching would actually 
occur in vivo. Nevertheless, the presence of an 
elastic shell is essential to buildup pressure 
(Leonavicius et al. 2018) and this may be key in 
other species such as rabbits, which inflate their 
lumen up to 5000 times their initial volume 
(Gamow and Daniel 1970). Such increased 
elasticity in the ZP of rabbit embryos could be 
conferred by the presence of the protein, ZP4, 
which is also present in humans but absent in 
mice (Lamas-Toranzo et al. 2019). However, 
much remains to be understood when it comes to 
the regulation of the size of the lumen in 
blastocysts from different species.  
 
Sorting of the primitive endoderm from the 
epiblast 
As the lumen forms, the cells of the ICM bifurcate 
towards different fates: the Epi which will form the 
embryo proper, and the PrE that contributes to the 
extra-embryonic yolk sac. The relative levels of 
the transcription factors Gata6 and Nanog are 
commonly used to mark the differentiation of PrE 
and Epi (Plusa et al. 2008; Guo et al. 2010). 
Though both TFs can simultaneously be 
expressed by ICM cells, as the two populations 
diverge, PrE progenitors lose Nanog and the Epi 

progenitors lose Gata6, thought to be driven by 
the secretion of Fgf4 by Epi progenitors (Chazaud 
et al. 2006; Guo et al. 2010; Yamanaka et al. 
2010; Frankenberg et al. 2011; Ohnishi et al. 
2014). Fgf4 promotes ERK activity, which is 
consistently higher in PrE progenitors while only 
sporadically activated in Epi progenitors (Pokrass 
et al. 2020; Simon). This occurs asynchronously 
among blastomeres transiently leaving the once 
homogenous ICM as a mix of cell types in a ‘salt 
and pepper’ pattern (Gerbe et al. 2008; Plusa et 
al. 2008; Saiz et al. 2013; Bessonnard et al. 
2014). Given that Fgf4 is secreted in the luminal 
fluid (Ryan et al. 2019) and that multiple 
microlumens persist for hours before the 
dominant lumen is established (Dumortier et al. 
2019), fate heterogeneity within the ICM may 
result from the variations in exposure of cells to 
microlumens. This mixed pattern is resolved 
when all PrE cells line the blastocoel while the Epi 
is apposed between the pTE and PrE (Bassalert 
et al. 2018). This is achieved by the commitment 
of cells to one lineage and to some extent by the 
relocation of cells within the ICM (Figure 6). 
Tracking of cells within live embryos revealed that 
the majority of PrE cells already lined the lumen 
before their commitment, a quarter of PrE cells 
come into contact with the lumen due to its 
expansion and the remaining quarter of PrE cells 
changes neighbor or undergoes apoptosis (Plusa 
et al. 2008). Therefore, only a couple of PrE cells 
may sort within developing embryos. However, 
the exact mechanism driving cell sorting has not 
yet been elucidated. 

Figure 6: Maturation and positioning of the Epi and PrE 
As the lumen expands (lilac), some ICM (orange) cells secrete Fgf4 in the microlumen network (Ryan et al. 
2019). This induces PrE (yellow) fate while Epi (green) cells will continue secreting Fgf4. Cells leaning 
towards PrE and/or Epi fates are initially mixed within the ICM. Eventually, all cells facing the lumen are PrE 
and those away from the lumen are EPI. In the bottom inset, uncommitted cells (asterisk) adopt the fate 
corresponding to their position or change their position (arrows) in a cell sorting process (Plusa et al. 2008; 
Yanagida et al. 2022). The position of PrE and Epi cells is then secured by the apicobasal polarization of PrE 
cells and the deposition of extracellular matrix (purple) (Kim et al. 2022). 



Several potential sorting mechanisms have been 
proposed. Based on Steinberg’s differential 
adhesion hypothesis (Steinberg 1962), it was 
suggested that the relative adhesiveness of the 
Epi and PrE cells may drive their segregation. 
Although, it has been measured that levels of E-, 
N-, and P-cadherin are similar in both cell types 
(Yanagida et al. 2022; Filimonow et al. 2019). 
Unlike for the sorting of TE and ICM progenitors 
by contractility differences (Maître et al. 2016), 
AFM measurements of isolated PrE and Epi 
progenitor cells revealed identical surface 
tensions, potentially ruling out this mechanism 
(Yanagida et al. 2022). As an alternative, it was 
proposed that different levels of surface 
fluctuations can drive Epi and PrE sorting. PrE 
cells display dynamic surface fluctuations, which 
manifest as blebs in isolated cells or cell shape 
fluctuations within explants (Yanagida et al. 
2022). Altering the levels of surface fluctuations in 
ES cells could affect their sorting when injected 
into host embryos (Yanagida et al. 2022). 
Additional fluctuations may arise from the cycles 
of lumen inflation and collapse that were 
proposed to promote Epi and PrE sorting (Guo et 
al. 2021).  Alternatively, in silico modelling 
indicated a potential role for the Eph-ephrin 
receptor-ligand pairs based on a multiscale three-
dimensional model informed by transcriptomics 
data (Cang et al. 2021). Eph-ephrin pairs can 
drive rapid and robust cell sorting even in the 
absence of differences in the mechanical 
properties between cell types (Canty et al. 2017), 
and are involved in cell sorting and boundary 
formation in several contexts (Xu et al. 1999; 
Rohani et al. 2011). It remains to be 
experimentally tested whether they may play a 
role in PrE/Epi sorting. 
As they mature, PrE cells acquire apicobasal 
polarity and become a proper epithelium with 
extracellular matrix at its basal interface 
(Bassalert et al. 2018). Initially displaying 
enrichment of DAB2 and LRP2 at their future 
apical surface (Gerbe et al. 2008), this is later 
reinforced as aPKC is recruited to the apical 
surface and prevents remixing with Epi (Saiz et al. 
2013). Interestingly, when the ICM is isolated and 
cultured in suspension, the PrE is able to polarize 
and coat Epi cells (Kim et al. 2022). This is akin to 
internalized apolar 16-cell stage blastomeres, 
which can polarize if forced to be exposed to 
culture medium (Korotkevich et al. 2017), 
indicating a general ability of preimplantation 
blastomeres to epithelialize once exposed to 
liquid medium. However, if these isolated ICMs 
are cultured in matrigel containing laminin this 
pattern is disrupted. Though the PrE and Epi cells 
still segregate, the PrE does not polarize and is 

not able to coat the Epi cells (Kim et al. 2022). 
Furthermore, Integrin b1 mutants fail to form a 
single-layered PrE, indicating that contacts to the 
extracellular matrix are required to orient the 
epithelium correctly (Kim et al. 2022). 
 
Formation of the polar and mural 
trophectoderm 
As the lumen forms, the TE effectively becomes 
separated into two distinct populations: TE cells 
contacting the ICM and TE cells lining the lumen. 
Progressively, these two types of TE cells will 
differentiate into the pTE that coats the ICM and 
the mTE which lines the lumen. In the mouse, the 
mTE will attach to and invade the uterus, notably 
by entosis of luminal cells (Li et al. 2015). 
Meanwhile, the pTE will contribute to sculpt the 
Epi during implantation (Ichikawa et al. 2022). 
Compared to the PrE/Epi differentiation process, 
characterization and direct comparisons of the 
pTE and mTE are sparse, though in recent years 
these tissues have started to receive more 
attention (Posfai et al. 2019). Single cell RNAseq 
revealed that the gene expression profiles of the 
two tissues diverge at the time of implantation 
(Nakamura et al. 2015). With over 128 cells, this 
is also the time when the transcription factor 
Cdx2, a general mark for TE, becomes visibly 
restricted to pTE while it is downregulated in mTE 
(Saiz et al. 2016).  
The physical segregation of pTE and mTE by the 
lumen imposes at least two principal differences 
in their environments that could contribute to the 
divergence in cell fate: first, Epi cells secrete Fgf4 
to which the pTE is likely more exposed due to its 
proximity; second, lumen expansion is associated 
with growing hydrostatic pressure (Leonavicius et 
al. 2018) to which the mTE is fully exposed while 
the pTE may be cushioned by ICM. Addition of 
Fgf4 to blastocysts reduced the phagocytic 
activity of their TE cells (Rassoulzadegan 2000), 
a feature of the mTE that is conserved in other 
extraembryonic epithelia (Hoijman et al. 2021), 
supporting the idea that Fgf4 is involved in 
pTE/mTE specification. Although this was not 
investigated in details, addition of Fgf4 or 
inhibition of its signaling cascade through ERK 
seemed to homogenize the expression of Cdx2 
throughout the TE (Saiz et al. 2016). Consistent 
with the action of Fgf4 on the TE, ERK activity is 
higher in pTE than in mTE cells (Simon et al. 
2020). Together, these observations support the 
idea that distancing TE cells from the source of 
Fgf4 will lead to their differentiation into mTE. 
However, studies in different systems also linked 
ERK signaling to mechanical stretch (Aoki et al. 
2017; Hino et al. 2020; Boocock et al. 2020), 
including by regulating endocytosis and thus Fgf4 



responsiveness (De Belly et al. 2021). Since mTE 
cells seem to be under a higher tension than pTE 
cells (Chan et al. 2019), an effect of TE stretching 
by the lumen on pTE/mTE differentiation remains 
a possibility. 
 
Concluding remarks 
In the past ten years, the mouse preimplantation 
embryo has become one of the best mechanically 
characterized model system to study 
morphogenesis. This has answered outstanding 
questions about how the ICM and TE cells are 
positioned, how the first axis of symmetry is set, 
or how the size of the blastocyst is regulated. We 
now understand some of these mechanisms so 
well that we can engineer embryos to direct cells 
to the TE/ICM or set the axis of symmetry by 
tuning mechanical properties (Maître et al. 2016; 
Dumortier et al. 2019). With a nearly complete 
spatiotemporal map of surface tensions 
throughout mouse preimplantation development 
(Özgüç et al. 2022; Maître et al. 2015, 2016; Chan 
et al. 2019; Yanagida et al. 2022), we can start to 
compare mechanical strategies between species 
and gain unique insights into the evolution of 
morphogenesis (Firmin et al. 2022). However, 
other physical properties will need to be 
considered in the future to understand what 
shapes the blastocyst. In the morula, the 
formation of the apical domain remains unclear 
and looking into the mechanical changes of the 
plasma membrane may reveal some clues 
(Yanagida et al. 2022; De Belly et al. 2021), or 
how much adhesive coupling changes throughout 
compaction will require testing cells’ mechanical 
resistance to separation (De Plater et al. 2023). 
During the formation of the lumen, we will need 
better tools to measure and/or control osmolarity 
(Vian et al. 2023), estimate the electric effects of 
ion charges on lumen opening (Shim et al. 2022), 
or the effects of the extensive stretching of the TE 
(Latorre et al. 2018). 
Beyond preimplantation development, 
technological advances now allow to study 
mammalian development ex vivo over longer 
period. Peri-implantation, post-implantation and 
gastrulation are becoming accessible to high 
resolution live imaging (McDole et al. 2018; 
Ichikawa et al. 2022; Francou et al. 2023; Mathiah 
et al. 2020; Bondarenko et al. 2023). This will 
reveal the dynamic shape changes transforming 
the blastocyst into the gastrula and will raise new 
questions about the forces shaping the 
mammalian embryo. 
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