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Abstract 9 

LAS glass-ceramics stimulate considerable attention in academic and industrial fields due to exceptional 10 

properties, such as low thermal expansion coefficient, transparency or superior mechanical strength. We report 11 

here an experimental investigation of LAS structure and microstructure using conventional techniques as XRD 12 

or S/TEM, but also an innovative technique based on electron diffraction mapping. The later gives a topography 13 

of the sample and a clear picture of the distribution between the glass and the spodumene particles. All the data 14 

converge towards a model of hard spheres where 75% of the volume is composed of spheroid particles and 15 

25% of the remaining volume is composed of glass, which is present in the inter-particle interstices. These 16 

findings provide a new knowledge about the LAS system and may offer useful guidance for other researchers 17 

in ceramic community. 18 

Keywords 19 
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Introduction 21 

Glass-ceramics (GC) are composite materials that combine in once a crystalline and a glassy phase [1,2]. The 22 

great advantage of such materials compared to glasses or ceramics taken separately is their ability to combine 23 

the desirable properties of both components. Hence, the amorphous part of GC allows for the ease of fabrication 24 

and processing, while the synergy between the glass and crystalline components may confer to the composite 25 

mailto:*stephane.jobic@cnrs-imn.fr
mailto:philippe.deniard@cnrs-imn.fr


2 
 

high mechanical strength (high fracture strength and toughness), thermal stability, and chemical durability in 26 

comparison to glass. Glass-ceramics can also exhibit transparency or translucency, as well as opacity. 27 

During the last five decades, GC materials have been the subject of intense researches due to their unique 28 

properties and applications in various domains [3–5]. In optics (e.g., telescope mirror substrate blanks [6]), 29 

cooking (e.g., cook top panel, cookware [7]), electronic packaging [8], dentistry [9] and transparent heat 30 

protection (e.g., oven window [10]), Li2O-Al2O3-SiO2 glass-ceramics (hereafter labelled LAS) specifically 31 

received much attention [11].  32 

Namely, the LAS GC system is considered so far as one of the most important GC materials due to several 33 

outstanding properties, such as very low thermal expansion coefficient (near 10-7 K-1  in the 0-300°C range), 34 

high transparency when desired, excellent chemical resistance, high mechanical strength, versatility in 35 

composition to access specific characteristics, and the ability to be polished [2,5,6,11–18]. The main reported 36 

crystalline phases observed in LAS GC vs. synthesis conditions are γ-LiAlSi2O6 and β-LiAlSi2O6 spodumene, 37 

β-LiAlSiO4 eucryptite, SiO2 keatite (an isomorphous form of β-spodumene), and a series of species belonging 38 

to the so called β-quartz solid solution (also named stuffed high-quartz solid solution) that correspond to Al-39 

substituted β-SiO2 compounds isomorphous with β-LiAlSiO4 (let us notice that the labeling may be different 40 

for identical phases in the literature) [11].  41 

As the demand for tailored materials with precise microstructural control continues to rise, it becomes 42 

increasingly imperative to delve deeper the LAS GC (micro)structure using Scanning / Transmission Electron 43 

Microscopy (S/TEM) that combines imaging, diffraction and spectroscopies at high spatial resolution. Hence, 44 

LAS glass-ceramics were examined for different thermal treatments or chemical compositions rate of major 45 

(Si, Al, Li) or minor (Zn, Na, Ca) common or exotic (B, La, Er, Y, La) constituents with ZrO2, TiO2 or ZrTiO4 46 

as nucleating agents [19–34].  47 

In most of the work carried out on LAS, the structure is dominated by the presence of nanosized, more or less 48 

spherical, particles of spodumene [11,26,33]. Depending on the heat treatment used or the Li concentration, 49 

these particles are well separated from each other or in contact. To date, only S/TEM images have been 50 

proposed to picture the structure of crystalline phases of LAS GC. Nevertheless, it is very difficult to observe 51 

directly the distribution of glass and crystals only with imaging. This article looks at LAS glass-ceramic 52 



3 
 

structures using a state-of-the-art microscopy technique rarely employed so far in the GC community, i.e. the 53 

electron diffraction phase mapping of the crystals in the GC with a resolution down to 2 nm.  54 

 55 

Material and method 56 

Glass raw materials were prepared with a 66SiO2-22Al2O3-4Li2O-1ZrO2-3TiO2-1.5BaO-1.4ZnO 57 

nominal composition (major elements expressed as weight percent oxides) from the respective binary 58 

oxides (except for Li) and lithium carbonate. Precursors were mixed and heated at 1500°C for 48 hours in 59 

air. The so-formed glass was then annealed at 550°C for 4 hours to relax internal stresses. To form GC, 60 

LAS parent glasses were heated up to 900°C for 15 min with a 3°C/min rate and quenched in air.  61 

The thermal analysis curves of the glass-ceramics were measured at a constant heating rate of 10°C/min 62 

between 500 and 1000°C (ATG/DSC 3+, Mettler Toledo). Crystalline phases (structure and microstructure) 63 

and purity of the prepared samples were determined by X-ray powder diffraction (XRD). Patterns were 64 

collected at room temperature on a Bruker D8 Advance instrument (monochromatic Cu K‑L3 (λ = 1.540598 65 

Å) X-ray radiation and LynxEye detector) in the 15°-85° 2θ range with a 0.0078° step and 0.97s/step. The 66 

quantification of amorphous part was carried out using MgO as standard [35,36]. 67 

Scanning / Transmission Electron Microscopy (S/TEM) characterization was performed on a Cs-probe 68 

corrected Themis Z G3 (Thermo Fisher Scientific). To limit sample degradation under electron irradiation 69 

(see S.I.1), first images were acquired at 80 kV and low temperature (~-178 °C) with a low probe current 70 

(~15 pA) and a small convergence angle (4.1 mrad). Second, in order to get image contrasts relative either 71 

to atomic number (i.e. proportional to Z²) or to diffraction patterns (i.e. linked to the orientation of crystals), 72 

S/TEM Annular Dark Field (ADF) images of the same area were collected at two different camera lengths 73 

(CL) to have different collection angles (5-32 mrad at 1.15 m CL, and 41-200 mrad at 0.145 m CL, 74 

respectively). The sample was crushed in ethanol in an agate mortar to obtain ca. 100 nm thick grains. A 75 

drop of this solution was then deposited on a gold grid covered with a thin amorphous lacey carbon film. 76 

Phase mapping was performed using the ASTAR tool (Automated Crystal Orientation Mapping technique, 77 

ACOM-TEM Nanomegas), at low temperature (103K) with a 2 nm step size.  78 

Results 79 
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Figure 1 displays the differential scanning calorimetry (DSC) curve for a LAS glass in the 500-1000°C 80 

domain and STEM-ADF images of the LAS GC. The glass transition temperature (Tg) collected on a 81 

monolithic sample occurs at 676°C (Fig 1a). Two exothermic peaks appear at ca. 814°C and 855°C. They 82 

are associated respectively with the nucleation and crystallization of a Li aluminosilicate [37], that turns to 83 

be spodumene (vide infra). After a monitored heat treatment up to 900°C, the resulting glass-ceramic is 84 

brown-yellowish and transparent (see inset in Fig. 1a). Let us notice here that prior to this 85 

germination/crystallization step, on the basis of in situ TEM micrographs collected between 25°C and 86 

600°C (i.e., before Tg in ambient atmosphere and before degradation of the sample under the electron beam 87 

in high vacuum conditions), the LAS glassy phase seems to be formed of two distinguishable amorphous 88 

components (no diffraction spot), a bright and a dark one, the contrast and the reticulation between the two 89 

interpenetrated subnetworks being strengthened with temperature (see S.I.2).   90 

STEM micrographs of LAS-GC (Fig. 1.b-d) show two different structural features. First, 30-50 nm diameter 91 

crystallised particles with a roughly round shape are detected (crystals appear in grey or white depending 92 

on their orientation relative to the electron beam, Fig. 1.c.). They are assigned to a γ-spodumene phase (vide 93 

infra). Second, 2-5 nm large dots homogeneously distributed are observed (Fig.1.d.). These particles are 94 

allocated by EDX-STEM and EELS mapping to a "ZrTiO4" phase with a Ti:Zr ratio not defined with 95 

accuracy (see S.I.3, S.I.4). No amorphous phase was highlighted at this stage between the grains. Although 96 

conventional microscopy techniques provide a wealth of information, further analyses are needed to find 97 

out more about the structure of the GC. In that context, a Rietveld refinement on the collected X-ray pattern 98 

of LAS GC was carried out (Fig. 2a).  99 

The diffraction pattern indicates undoubtedly the presence of γ-spodumene phase, i.e. γ-LiAlSi2O6, as the 100 

major phase. This is the thermodynamically metastable polymorph of the mineral. The observed refined 101 

cell parameters are lower than those expected in the literature (i.e., a = 5.184 (1) Å and c = 5.440(2) Å vs. 102 

a = 5.217(1) Å and c= 5.451(2) Å [38]). This observation was already reported in the literature [39] and the 103 

aforementioned discrepancy was explained either by a Li+/M2+ (e.g. M= Mg or Zn) substitution process 104 

taking place along with the presence of Li vacancies or by a Si4+/Al3+ substitution balanced by Li 105 

interstitials. Based on a Rietveld refinement with a fundamental parameter approach, the calculated mean 106 

size of the spodumene crystallites is estimated around 38 ± 2 nm (in full agreement with STEM analyses). 107 
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No size anisotropy was detected. The low intensity very broad peak at 30.5° in 2θ is only present when 108 

both TiO2 and ZrO2 nucleating agents are used [28]. This unique peak is commonly associated to the (111) 109 

Bragg reflection of ZrTiO4 [40,41]. Unfortunately, due to the sole presence of one low intense peak, no 110 

additional information could be obtained. Quantification of crystalline phases (γ-spodumene and "ZrTiO4") 111 

and glass lead to 72.7 and 27.3 ± 3 wt%, respectively, i.e. ca. 75.2 and 24.8 vol% after conversion taken 112 

into account the densities of crystalline phases. Although these values are tainted by errors due the 113 

inaccuracy of the exact "ZrTiO4" chemical composition (vide supra), they strongly remind us the hard-114 

sphere close-packing model (see Fig. 2b) in hexagonal compact structures with the ideal 74/26 vol% of 115 

sphere/void ratio. 116 

As well known, XRD gives an averaged representation of the real structural morphology of GC. However, 117 

it is difficult at this stage to gain more information on the amorphous part of the glass ceramic. Indeed, in 118 

contrast, ACOM-TEM phase mapping can locally probe the glass-crystallized distribution in GC. Formally, 119 

electron diffraction is the technique of choice for the study of glass-ceramics, as its beam size of around 10 120 

pm (vs. ~150 pm for X-rays) enables to probe the material very precisely and locally. This is particularly 121 

useful for investigating heterogeneities or interfaces within glass-ceramic samples. What's more, by 122 

coupling this technique with common microscopy techniques, the overall structure of GC, i.e. crystallized 123 

and amorphous parts, can be imaged at the local scale. A correlation coefficient map can be deduced of this 124 

set of diffraction patterns (DP). The intensities of the DP of each pixels are compared to the neighbour 125 

diffraction patterns. This technique highlights the grain boundaries, permitting to visualize the crystallites 126 

and thus the amorphous zone of the sample [42,43]. The TEM and the associated correlation coefficient 127 

map are presented in Fig. 3.  128 

The correlation coefficient map shows numerous spodumene crystallites of the order of 40 nm. Clearly, 129 

this technique makes possible to distinguish crystallites from particles, i.e. agglomerates of single crystals. 130 

Moreover, based on the examination of Fig. 3, γ-LiAlSi2O6 crystals turn to be in contact with each other 131 

with a spheroid shape. Thanks to these results, it is possible to describe the distribution of different objects 132 

in space with a high degree of accuracy combining the convergent results of XRD and ACOM-STEM 133 

techniques. There are many "voids" between crystallites that show no diffraction signal. This result clearly 134 
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indicates the presence of non-diffracting phase, i.e. an amorphous phase, in interstices defined by crystalline 135 

spheres.   136 

 137 

Conclusion 138 

The present investigation reports on the microstructure of the Li2O-Al2O3-SiO2 glass-ceramic nucleated 139 

with "ZrTiO4". Analyses carried out using XRD and STEM, and more specifically, phase mapping based 140 

on an automated crystal orientation technique, clearly validate a hard sphere close-packing model for the 141 

LAS GC. Indeed, this latter is made up of ca. 75%vol crystals composed mainly of nanosized γ-spodumene 142 

with "ZrTiO4" as trace, and ca. 25% of glass located in the interstices of the crystalline spheres  143 

In this way, we have been able to highlight a new characterization technique that is still rarely used, if at 144 

all, in the field of glass ceramics. Thanks to electron diffraction, "topographic" map of glass-ceramic 145 

samples could be achieved. Thus, from these results, crystalline parts can be identified and information 146 

obtained on their size and arrangement. 147 

 148 
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Figure captions 278 

Fig. 1. Differential scanning calorimetry curve for a LAS glass heated at 10°C/min (a) and STEM-ADF of 279 

the LAS GC (b) with a zoom-in of the red square zone at two different camera lengths (L = 1.150 (c) and 280 

0.145 m (d)). For low L, the contrast observed is proportional to Z², i.e. the square of the atomic number. 281 

Conversely, for larger L, the contrast is linked to diffraction conditions.  282 

 283 

Fig. 2. a) Rietveld refinement of a LAS-GC X-ray pattern (Cu K‑L3 - λ = 1.540598 Å). b) Sketch-up of the 284 

LAS-GC with ca. 74 vol% of γ-LiAlSi2O6, ca. 25 vol% of glass and ca. 1 vol% of ZrTiO4. 285 
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 286 

Fig. 3. a) TEM micrograph of GC sample at 1 µm scale. Correlation coefficient map of the highlighted area 287 

at 500 nm (b)), and 50 nm (c)) scale.  288 

 289 
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