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Abstract. The physical proximity of genomic sites to each other, within
the 3D structure of a chromosome, can be experimentally measured in
living cells and represented in the form of a matrix, called a contact map.
These maps are very similar to recurrence plots of dynamical systems.
Consequently, the same methods can be used for reconstructing the un-
derlying spatial structure, either the chromosome 3D spatial structure or
the attractor in the phase space. These methods involve two steps: (1) de-
riving a complete distance matrix of the structure using graph distances
on a contact network associated with the contact map; (2) reconstructing
the structure from this distance matrix, using well-established methods
from distance geometry or multidimensional scaling. We here review the
different options for implementing the first step, according to the binary,
graded or weighted nature of the contact map. We illustrate on three
benchmarks (Lorenz model, white noise and EEG data) a novel spectral
criterion reflecting the spatial dimension relevant in the second step.

Keywords: High-throughput chromosome conformation capture (Hi-
C); Gram matrix; Graph distance; Distance geometry; Multidimensional
scaling (MDS); Recurrence plot (RP); Spectral analysis.

1 Introduction

As seen from the other contributions in this volume, recurrence plots are an
ubiquitous tool for quantitative analysis of time series. Starting from a time
recording (xt)t, the methodology is to first derive m-dimensional delay vectors
Xm,τ

t = [xt, xt−τ , . . . , xt−(m−1)τ ] where m is called the embedding dimension
and τ is a tunable time delay [8, 20]. The Euclidean distances between each
pair of delay vectors yield a square distance matrix, termed an unthresholded
recurrence plot. A binary recurrence plot (RP) is obtained by replacing with 1
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Fig. 1. Recurrence plots and contact maps. (Left) Recurrence plot of the x-
component of the Lorenz attractor, drawn from a simulated trajectory (below, standard
parameters σ = 10 , r = 28 and b = 8/3, N = 2000 time points) using the RP
toolbox developed by N. Marwan [18] with an embedding dimension m = 3, a time
delay τ = 8 and a threshold ϵ = 6. (Right) High-throughput contact map (Hi-C
map) of human chromosome 1 in B-lymphoblastoid GM12878 cells, experimental data
from [25], representing the frequency of pairwise spatial contacts between chromosomal
sites, with color-coded contact frequency values (log10-scale color bar on the right side).
For a clearer analogy, the origin has been located top left, as in a matrix, for both the
recurrence plot and the Hi-C map.

the components smaller than a given radius ϵ, and the larger ones with 0. Such
a construction accommodates both time-continuous or time-discrete dynamics,
and both continuous-valued or symbolic signals [9]. An ever-increasing number
of methods and measures, gathered in the toolbox of recurrence quantification
analysis, known as RQA, have been developed for extracting knowledge about
the underlying dynamics directly from the RP [18, 19, 31].

The notion of recurrence, corresponding to pairs of points sufficiently close in
the m-dimensional embedding phase space, can be straightforwardly extended
from time series and trajectories of dynamical systems, to spatial conformations
of linear polymer chains such as DNA and proteins. The time variable is replaced
with the linear coordinate along the polymer, and phase space with real space.

Based on this analogy, application of recurrence quantification analysis to
proteins offers a novel way to identify their local secondary structures from
X-ray-resolved molecular structures, using the range of Van der Waals forces
between amino-acids as a natural radius in constructing the recurrence plot [30].
As an exemple, diagonal lines in the contact map correspond to secondary struc-
tures known as α helices, while lines orthogonal to the main diagonal reflect the
presence of other typical secondary structures termed β sheets. In this context,
protein contact networks are the counterpart of recurrence networks [6].
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The situation for chromosomes is different, as contact maps are the only piece
of high-throughput structural information experimentally accessible. Indeed, the
scale of the chromosomes prevents a direct imaging of their 3D structure, and ap-
proaches based on the observation of fluorescent tags provide only low-resolution
information about a limited number of sites. The development of chromosome
conformation capture techniques [5] up to their high-throughput high-resolution
whole-genome versions (Hi-C) has initiated a wide range of research about the
biological functions of the chromosome spatial structure. The core technique in-
volves a chemical crosslinking of close genome sites, digestion of the crosslinked
pairs, re-ligation of the cross-linked fragments, and sequencing in order to iden-
tify pairs of genomic sites that were originally in close 3D proximity in the living
cells. When the experimental process is performed on a population of cells, the
result is a matrix of contact frequencies, known as a Hi-C map. Nowadays, it
becomes possible to carry out the experiment in single cells, in which case the
result is a binary presence/absence matrix (highly variable from cell to cell) [13].
In both cases, the analogy with recurrence plots is obvious (see Fig. 1), where the
cross-linking range in 3D space (tuned by the concentration of cross-linking agent
and the duration of its action) corresponds to the recurrence radius ϵ. Chromo-
somal recurrences thus correspond to an experimentally determined proximity
of genomic sites in 3D space (not to be confused with the recurrence of the A,
T, G or C nucleotides along the 1D genomic sequence).

Reconstructing the spatial structure from a contact map could thus provide
a visualization of an otherwise out-of-reach object. Another general outcome of
the reconstruction is to assess the preservation of information when passing from
a structure to a contact map, or from a signal to a recurrence plot [21, 29]. We
will here review and revisit this dual issue, and present the benefits of combining
methods developed for chaotic attractors and 3D chromosome structure.

2 Reconstructing a structure from a distance matrix

2.1 Using Gram matrices

A mathematically well-posed problem, solved long ago, is the reconstruction of
a global structure from the knowledge of all pairwise distances Dij between its
N points. This domain is known a distance geometry. The first operation is to
express the distance D0i between the barycenter O and the point Pi, for any
i = 1, . . . , N , as a function of the elements of the distance matrix D:

D2
0i =

1

N

N∑
j=1

D2
ij −

1

N2

N∑
j=1

N∑
k>j

D2
jk (1)

An auxiliary N × N matrix, the metric matrix M , is then constructed with
elements:

Mij =
1

2
[D2

0i +D2
0j −D2

ij ] (2)



4 Lesne, Mozziconacci & Ramdani

Fig. 2. Reconstruction of Lorenz attractor from unthresholded RP using dis-
tance geometry. (a) x-component of the simulated Lorenz dynamics (N = 1000 time
points). (b) Corresponding unthresholded RP (i.e. Euclidean distance matrix), with
embedding dimension m = 8 and time delay τ = 3. Darker pixels correspond to smaller
distances. (c) Principal eigenvector and (d) spectrum of the Gram matrix computed
from the Euclidean distance matrix. Note the three markedly positive eigenvalues. (e)
Original Lorenz attractor, simulated with N = 3600 time points after discarding the
initial 700 steps (parameters σ = 10 , r = 28 and b = 8/3 with the notations of the
original paper [17]). (f) Attractor reconstructed using distance geometry.

In the case of a single noiseless structure in an Euclidean space of dimension d,
a theorem [10] states that the metric matrix M has a rank d and coincides with
the Gram matrix G of the N -point structure, whose element Gij is defined as
the inner product between the vectors OPi and OPj .

The central theorem of distance geometry [10] shows that, provided the Gram
matrix G is positive semi-definite, the coordinates of the points Pi (i = 1, . . . , N)
in the d-dimensional Euclidean space can be recovered from the d first eigenvec-
tors Va (a = 1, . . . , d) of the Gram matrix, normalized to 1 then rescaled by the
square root of their associated eigenvalue λa, namely:

Pi(a) = Va(i)×
√
λa with

N∑
i=1

Va(i)
2 = 1 (3)

where Va(i) is the i-th component of the N -dimensional eigenvector Va and Pi(a)
is the a-coordinate of the point Pi. A key point of this theorem is the result
that the rank d of the Gram matrix G determines the minimum dimension
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d of an embedding Euclidean space (not to be confused with the embedding
dimensionm involved in the definition of recurrence plots or in Takens’ theorem).
Geometrically, the d first eigenvectors of G are the principal axes of the N -point
structure, and the eigenvalues are the corresponding moments. The structure is
reconstructed up to an isometry (e.g. rotation or dilation).

This geometrical reconstruction has been successfully applied to unthresh-
olded RP [21, 26, 29]. We illustrate this approach for Lorenz attractor in Fig. 2.
In the context of genomics, it is a basic ingredient of ShRec3D algorithm for
reconstructing a consensus 3D structure from chrosomosomal contact maps and
visualizing the average 3D shape of a chromosome ([4, 16] and figures therein).

2.2 Using multidimensional scaling (MDS)

In most practical situations, data are noisy and may come from the recording
of several superimposed structures (several trajectories for a dynamical system,
chromosomes of many cells for chromosome contact maps). As a signature of
such a situation, the spectrum of the reconstructed Gram matrix G displays
more than d non-vanishing eigenvalues, and even negative ones. Several statis-
tical methods, introduced in various fields such as taxonomy [27], ecology [2] or
psychological science [15] and now grouped under the name of multidimensional
scaling (MDS), have been developed to derive the optimally matching structure,
best corresponding to the available distance matrix affected by uncertainties.
Several variants of MDS are besides possible (e.g. classical or metric) according
to the optimization criteria chosen [4, 11, 23], and currently available in libraries.

Using MDS requires to know the dimension d of the Euclidean space, in order
to reconstruct the structure and not a projected version (supervised methodol-
ogy). As evidenced in [16], a useful guideline is the presence of d markedly
positive eigenvalues in the spectrum of the Gram matrix G. However, in the
case of chromosomes, the spatial dimension d = 3 is expected; the spectral gap
between 3 positive eigenvalues and a cluster around 0 then shows the relevance
of reconstructing a 3D consensus structure.

3 Reconstructing a distance matrix from a contact map

Starting from a contact map, the remaining issue for reconstructing the under-
lying structure is to determine a complete distance matrix, that is, a distance
matrix with no undefined or infinite elements. The basic idea is to consider the
contact map as the adjacency matrix of a network: the corresponding contact
network [23]. This relationship between contact maps and contact networks has
been successfully exploited with recurrence plots and the associated recurrence
networks, offering a new direction for recurrence quantification analysis using
tools from network science [7]. Here, the challenge is to derive a distance matrix
from the contact network, which can be done using graph distance. Basically
three cases can be considered: (1) a plain contact network derived from a binary
contact map or a recurrence plot; (2) a topology-weighted contact network; (3)
a frequency-weighted contact network.
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Fig. 3. Reconstruction of Lorenz attractor from binary RP using ShRec3D.
(a) x-component of the simulated Lorenz dynamics (N = 1000 time points). (b) Cor-
responding binary RP, with embedding dimension m = 8, time delay τ = 3, and dark
pixels representing distances smaller than ϵ = 2. (c) Principal eigenvector and (d)
spectrum of the Gram matrix derived from the graph-distance matrix. Note the three
markedly positive eigenvalues, consistent with an underlying spatial dimension d = 3.
(e) Original Lorenz attractor, as in Fig. 2. (f) Attractor reconstructed by applying MDS
(for a spatial dimension d = 3) to the graph-distance matrix (ShRec3D algorithm [16]).

3.1 Contact networks and graph distances

In the simplest instance, only the presence or absence of network edges is taken
into account. The components of the adjacency matrix are Aij = 1 if there is a
contact between sites i and j (a recurrence between times i and j), else Aij = 0.
The distance between any pair of nodes i and j is then defined as their graph
distance, that is, the number of steps in the shortest path(s) relating them. This
number can be computed using Floyd-Warshall algorithm. In the reconstruction
of a trajectory or a chromosome, it is essential to add the two diagonals (i, i+1)
and (i, i − 1), i.e. to add edges (if missing) between adjacent points along time
or along the linear polymer chain, respectively. This ensures the connectedness
of the resulting structure, and relatedly, of the contact network, which has been
shown to be a condition of reconstructibility [29]. In this case, there is no loss of
information between contact maps and the underlying (dynamical or molecular)
structure. The result is illustrated in Fig. 3 on the exemple of Lorenz attractor.
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3.2 Topology-weighted contact networks

A refined procedure is to first endow the edges with a length before computing
shortest-path distances. An intrinsic choice is to choose an edge length equal to
1 minus the normalized number of common neighbors [11], i.e. the Jaccard dis-
tance between the two nodes. This Jaccard distance has been shown to be equiv-
alent to Euclidean distance in the phase space [12]. The approach is particularly
well suited to single-cell Hi-C [13], where the reinforcement of the topological
information compensates for the noise and sparsity of experimental data.

3.3 Frequency-weighted contact networks

Another procedure has been developed in an algorithm, ShRec3D, for 3D visu-
alization of chromosomes from cell population data [16]. For such experiments,
not only the presence or absence of a contact between sites i and j, but also
a continuous-valued contact frequency fij is available. The length of an edge is
taken to be an inverse power 1/fα

ij of the contact frequency. This raw length, pos-
sibly infinite if no contact has been recorded, is then replaced with the shortest-
path distance. A detailed implementation of this algorithm, either in MatLab or
Python, can be found in [4]. The exponent α can be tuned using local pairwise ex-
periments, for instance the direct observation in a fixed cell of the spatial distance
between two sites after attaching a fluorescent probe to them (FISH, fluorescence
in situ hybridization), which yields α = 0.227. Alternatively, a self-consistent cri-
terion, based on optimizing the number of edges for which the graph distance is
smaller than the raw value, has been developed [3]. It is to note that the choice
of α depends on the objectives of the reconstruction: α = 0.2 (in agreement
with local data) ensures local accuracy, while α = 1 ensures a consistent global
shape [23]. ShRec3D achieves a fast reconstruction of the consensus chromosome
structure from population Hi-C data, with tunable resolution (from megabases
down to a few kilobases) and no need of implementing a polymer model of DNA.
It provides a substrate for 3D genome browsers. Its application, for example to
the visualization of chromosomal compartments, is illustrated in [4].

4 Benchmarks: Lorenz model, white noise and EEG

4.1 Lorenz attractor

Back to the context of dynamical systems, we compared the efficiency of the re-
construction methods on a standard benchmark, the Lorenz model [17], as done
in [21] and [11]. The attractor is obtained by numerically integrating the three
coupled differential equations and discarding a transient. Non linear couplings
inherent to the chaotic dynamics ensure that observing only one component gives
sufficient information to reconstruct the topology of the whole trajectory in the
3-dimensional phase space. According to Takens’ theorem [28], the embedding
dimension m has to be large enough, strictly larger than twice the fractal dimen-
sion of the attractor. The reconstruction from the unthresholded RP and m = 8
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is shown in Fig. 2, while Fig. 3 displays the results obtained using the simplest
method of reconstruction (plain graph distance and MDS) applied to binary RP.

Due to the fractal structure of the Lorenz attractor, the RP is sensitive to the
choice of the recurrence threshold ϵ, which has to be carefully chosen, e.g. using
the method developed in [22]. In contrast, our observations meet the statement
done in [11] that the size N does not drastically matter. As seen on Fig. 2c
and Fig. 3c, the principal eigenvector of the Gram matrix already displays the
most significant features of the dynamics. Another remarkable characteristic
of the Gram matrix is the spectral signature of the dimension d = 3 of the
phase space, reflecting in the presence of three markedly positive eigenvalues
separated from a cluster of almost vanishing (and irrelevant) values (Fig. 2d and
Fig. 3d). These two spectral characteristics of the Gram matrix are observed
for both reconstruction methods, and for any large enough value of m among
those investigated (up to m = 20). As a side remark, complex (though very
small) eigenvalues sometimes appear whenm is too small, a spurious fact already
noticed in [21].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 m = 2

m = 3

m = 4

m = 5

m = 6

m = 7

m = 8

m = 9

m=10

0 100 200 300 400 500 600 700 800 900 1000

-20

-10

0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 m = 2

m = 3

m = 4

m = 5

m = 6

m = 7

m = 8

m = 9

m=10

0 100 200 300 400 500 600 700 800 900 1000

-4

-2

0

2

4

Fig. 4. Spectral signature of space dimension: Lorenz model and white noise.
Plot of the 15 largest eigenvalues of the Gram matrix derived from the unthresholded
RP, ranked in descending order along the horizontal axis, for different values of the
embedding dimension m: (Left) starting from the x-component of the Lorenz attractor,
see Fig. 2 and (Right) for Gaussian white noise using a time delay τ = 1. The signal
used (N = 1000 time points) is presented below each plot. For easier comparison,
eigenvalues have been normalized by the largest observed one, and the values for a
given dimension m are connected by dashed lines as a guide for the eye.
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4.2 White noise

We also investigated the behavior of a white noise, as it has been shown that
recurrence plots are also relevant for stochastic processes [24]. We simulated
N = 1000 independent values of a Gaussian white noise and computed the un-
thresholded RP. As we do not expect any remarkable feature in the reconstructed
structure, we rather focused on the spectrum of the Gram matrix. A striking
observation is the ever-increasing number of strictly positive Gram eigenvalues
when m increases. We devised a reliable counting representation by plotting
the 15 largest eigenvalues, ordered in descending order, for each value of m.
For easier comparison, the values have been normalized by the largest observed
value (principal eigenvalue for m = 10). This analysis applied to the Lorenz
model (Fig. 4, left) recovers a fixed number of three positive eigenvalues, equal
to the phase space dimension d = 3, provided m is large enough (strictly larger
than 6). In contrast, the behavior observed for the white noise displays an in-
creasing number, equal to m, of positive eigenvalues (Fig. 4, right). Relatedly,
the 3D visualization (not shown) is highly variable and displays a gradual shift
from a roughly directed motion at small values of τ and large values of m to a
homogenous spreading at large values of τ and m = 3.

4.3 Electroencephalographic (EEG) data

We finally benchmarked the spatial reconstruction and Gram spectrum method-
ology on real electroencephalographic (EEG) data available from [1]. We used a
single-electrode recording, i.e. a local recording of an extended spatio-temporal
dynamics, in open-eyes condition, applying a bandpass filter from 1 Hz to 40 Hz
to eliminate low-frequency trend and experimental noise. We reconstructed the
Gram matrix from the unthresholded RP, using a time delay τ = 4 determined
using either auto-correlation or AMI (average mutual information) criteria [14].
We observe that the number of positive eigenvalues of the Gram matrix increases
with m (Fig. 5, left) This is not unexpected as in most cases, a stochastic nature
of the single-electrode EEG recording cannot be discarded using the method of
surrogate data [1].We also considered the same data restricted to the α band (i.e.
between 8 Hz and 13 Hz). As expected, the filtered data display a more regular
structure. A striking observation is the lower number of positive eigenvalues in
the Gram matrix (Fig. 5, right), which saturates in a way resembling the be-
havior observed for Lorenz attractor, although with a larger number (equal to
5). This behavior depends slightly on the electrode considered, with a number
of positive eigenvalues that could reach 5 or 6 for m = 10.

4.4 Discussion: spectral signature of the spatial dimension d

Our study introduces a novel criterion for assessing the dimension d of the phase
space, i.e. the number of coupled variables involved in a dynamics generally
recorded on a single observable, or the dimension of the underlying real space in
the case of linear polymer chains such as proteins or chromosomes. This criterion
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Fig. 5. Spectral signature of space dimension: single-electrode EEG data.
Same as Fig. 4 (Left) for EEG recording from a single electrode located above the
visual cortex, applying a bandpass filter from 1 Hz to 40 Hz to eliminate low-frequency
trend and experimental noise; (Right) for α-band-filtered signal. Time delay τ = 4.

is based on the spectrum of the Gram matrix computed from the unthresholded
RP (when available), or from the graph-distance matrix computed from the con-
tact network. Although the Gram matrix is a N×N square matrix, we observed
in the different benchmarks that it has a limited number of markedly positive
eigenvalues. This number is independent of N but may depend on the embed-
ding dimension m. The remaining part of the spectrum consists in a cluster of
eigenvalues around 0, related to observational and numerical noise. The number
of positive eigenvalues saturates at d for nonlinear deterministic dynamics (e.g.
chaotic dynamics), provided the time delay has been properly chosen. In con-
trast, this number is equal to m for white noise. A similar spectral behavior, with
a number of positive eigenvalues increasing with m, is observed for the Gram
matrix of a high-dimensional dynamics, e.g. a spatially extended dynamics as
the brain dynamics underlying EEG data. However, the increase with m may be
slower than m or even saturating when the dynamics displays some level of reg-
ularity, here after filtering to a limited number of periodic components (α-band
filtered single-electrode EEG signal). The extreme case is a number of eigenval-
ues saturating at d in the case of Lorenz model capturing the three dominant
modes of spatially extended atmospheric dynamics. The examples presented here
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emphasize the critical choice of the embedding dimension m, the radius ϵ and
the time delay τ . How these choices affect the spectral signature would deserve a
systematic exploration. These preliminaries results will prompt further research,
to assess the variation with m of the number of positive Gram eigenvalues and
the presence of a spectral gap for different model systems. A key question is
whether this dependence on m of the Gram spectrum could quantitatively re-
flect a stochastic or high-dimensional nature of the dynamics. In the case of the
spatially folded structure of a linear polymer chain, the dimension is generally
known, equal to d = 3. The benefit of the Gram matrix spectral analysis is then
to assess the strength of noise and variability, in particular when the record-
ing of spatial contacts merges data from a sample of similar structures as in
cell-population chromosome conformation capture [16].

5 Conclusion

We have presented an insightful analogy between recurrence plots and chro-
mosome Hi-C maps, sharing the notion of contact map and associated contact
network. We exploited this analogy to gather, within a unified methodology,
several reconstructions methods from 1D series to a higher-dimensional spatial
structure. This methodology demonstrates the possibility of obtaining global
information about the (dynamical or molecular) structure from the local record-
ing of contacts, i.e. the invertibility of contact maps. The reconstruction is first
based on computing a graph-distance matrix from the contact network, except
in the case of unthresholded RP which are already in the form of a distance ma-
trix. The spatial structure is then obtained from the distance matrix using the
toolbox of distance geometry or multidimensional scaling. This reconstruction
methodology offers fast and tunable way to directly visualize the phase-space
trajectory underlying a single-component time series, e.g. for comparison pur-
poses between different conditions, or the spatially folded structure of a polymer
chain. Its computational speed makes possible real-time visualization.

We introduced a related spectral signature of the dynamics, defined as the
number of markedly positive eigenvalues of the Gram matrix derived from either
the unthresholded RP or the graph-distance matrix. Its ability to quantitatively
discriminate low-dimensional deterministic dynamics and high-dimensional or
stochastic dynamics now deserves further exploration.

The analogy between RP and HiC maps also opens research directions at
the crossroads between signal analysis and genomics, exploiting advances in HiC
analysis for RP analysis (e.g. applying to unthresholded RP an algorithm, Boost-
HiC [3], devised to enhance undersampled Hi-C maps), or conversely, exploiting
recurrence quantification analysis to Hi-C maps.
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