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Abstract— AI-ML suffers from a reliability glass-ceiling 

phenomenon (e.g.  ~10-3 error/inference), making it 

incompatible with safety-criticality. Several orders of 

magnitude are missing. We explain why, we point to the 

characteristics of ML that conflict with the assurance objectives 

assigned to safety-critical developments. Could encapsulation of 

ML constituents into fault-tolerant architectures, ML 

development assurance, and software/hardware development 

assurance, altogether mitigate the gap? We argue that in spite 

of impressive progress of ML state-of-the-art, the answer is 

negative. Drawing from Topological Data Analysis (TDA) and 

set-based non-linear control, we propose to supplement ML 

point-based specification and verification with volume-based 

specification and verification to meet 10-5 err./ inf. levels, as a 

minimum. We outline the rationale of a new research field we 

name (Ultra) Reliable Machine Learning, at the confluence of 

TDA, statistics on manifolds, and ML safety assurance. Some 

cross-domain safety regulation principles guide the underlying 

rationale. We illustrate the methodology on image classification. 

Keywords— Machine Learning, ML reliability, Safety 

assurance, ML assurance, latent manifold, Topological Data 

Analysis, persistence homology, extensional coverage analysis. 

I. INTRODUCTION 

Data analysis and statistics have first developed to extract 
synthetic information from population data as insights on 
complex phenomena (descriptive statistics). Inferential 
statistics then focused on explanatory models of past 
observations, to get predictors on some limited aspects of 
complex phenomena. Never until recently, had statistical 
estimation to address safety-critical ‘control’. We use 
‘control’ in the broad sense of OODA loops (Observation, 
Orientation, Decision, Action), where control of physics is 
involved and life, goods or environment is at risk. 

Machine Learning, especially Deep Learning (DL), 
opened a new era: unprecedented performance in machine 
vision and problem solving in high dimension. However, 
chaotic behavior exemplified by adversarial examples limited 
DL applicability [39], and is still a matter of concern. Could 
DL-based components, developed with extreme rigor and 
encapsulated in fault-tolerant architectures, deliver services 
that meet the reliability requirements specific to safety-critical 
‘control’? This type of requirements is new to Machine 
Learning and data science. 

                                                           
1 Development Assurance Level 

The co-authors of this paper are members of the 
Embedded France association’s working group dedicated to 
analysis of safety assurance standards in safety-related 
industrial domains, to contribute their evolution [24]. We 
investigate the case of Machine Learning in this paper since 
ML-dependent safety-criticality is now on the agenda of 
aeronautics [2] and of automotive industry. Our focus is 
limited to ML reliability, ML verification, and to safety 
assurance of ML-dependent systems. 

To our knowledge, current best accuracy scores on the 
easiest of image classification benchmarks (MNIST) are about 
2.10-3 error/inference [40]. From a system safety perspective, 
this reliability level is poor: one error every seven lines 
containing 80 digits each. To make the gap more explicit, let 
us assume a 50Hz input stream of digits processed by an AI-
ML-dependent safety-critical vision-based controller. It 
would make ~360 generalization errors per hour, when 
reliability target in the most critical case discussed in this 
paper would be one every billion of hours.  

To address this gap, [1] screened the techniques amenable 
to improve ML reliability. They questioned the feasibility of 
reaching the reliability levels required by highest DAL1s and 
concluded negatively. After some scoping and terminological 
preliminaries, we summarize this survey of reliability 
augmentation methods. We propose a conjectural explanation 
why the reliability enhancement attempts uniformly failed 
(sections II, III, IV).  

Then, we discuss why software assurance will have no 
impact on this reliability gap (section V), and why fault-
tolerant architectures will solve only the easy cases (section 
VI). At this stage, we conclude that for true ML-dependent 
safety-criticality, there is no escape from improving ML 
reliability by several orders of magnitude.  

From a geometric and topological perspective on 
approximant adjustment, we convey intuition on how great the 
challenge is.  Thanks to recent advances in Topological Data 
Analysis (TDA), we propose a research path that would 
control ODD 2  modeling, data sampling, generalization 
domain definition, and approximant adjustment more tightly 
than achieved today. We review some recent papers that 
suggest relevance of such an attempt. We compare the 
rationale of safety-critical software verification, with our 
TDA-enabled (U)R-ML verification proposal (section VIII). 

2 Operational Design Domain, see Road vehicles — Safety of the Intended 

Functionality ISO 21448 standard. 
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Finally, we discuss whether ML-dependent safety-critical 
‘control’ could reach the ultimate reliability level of 1, i.e. 
correctness. Software engineering and assurance managed to 
ensure extremely high levels of quality. We compare the two 
domains on specification and verification. 

Contribution: We propose a diagnosis on the ML-
reliability plateau. We propose orientations to overcome the 
reliability gap by supplementing current point-based approach 
of data science with a TDA-enabled volume-based approach. 

Disclaimer: The views expressed in this paper are those of 
the authors as members of the Embedded France Working 
Group on safety assurance standards. They may not reflect the 
opinion of their affiliations. 

II. SCOPING AI-ML-DEPENDENT SAFETY 

A. Systems perimeter 

We address ML-dependent safety-critical systems. Since 
our group is cross-domain, for the rest of the paper we use the 
following convention: DAL A is an abbreviation of all the 
corresponding assurance levels in the other industrial 
domains. DAL A stands for DAL A (aeronautic), ASIL D 
(automotive), SIL 4 (railway, process industry and many 
domains) and class 1 (nuclear).  

In this paper, an ML-component is classified as safety-
critical if, and only if, it is a “Single Point of Catastrophic 
Failure” (SPCF). In other words, some error, in adverse 
foreseeable conditions, could lead to a catastrophic accident. 
DAL A is mandatory for SPCF components: no mitigation 
mechanism in the system architecture to prevent some failure 
causality chain originating from the ML-component to evolve 
into a catastrophic accidental scenario. We abbreviate “SPCF-
ML” such situations. 

Our prototypical SPCF-ML example in automotive is 
pedestrian detection systems coupled to automatic-braking 
systems. See [29] for state of the art on DL-dependent 
pedestrian detection performance: robustness and accuracy 
are still a major concern. In aeronautics, inhabited 
autonomous urban air mobility is the example we have in 
mind. More generally, we consider ML-dependent vehicle 
control, safety-critical healthcare devices, and all kinds of 
safety-critical operational technologies (OTs). 

B. ML perimeter 

We consider off-line supervised learning in high to very 
high input-space dimension (e.g. 104 to 106 and beyond). We 
exclude continuous learning and recent ML developments like 
transformers and LLMs. Regarding the ML-safety survey [5], 
we address Robustness and Monitoring. Ethics and Alignment 
are out of the scope of this paper. 

C. Machine-vision perimeter 

Open world semantic scene segmentation is the natural 
long-term goal. However, we do not claim supplementing 
such complex ML developments with TDA at first. In this 
paper, we limit ourselves to development and assurance 
rationale of a proof of concept based on MNIST3. 10-5 err./inf. 
is our first milestone to fill the reliability gap. We present it as 
an illustrative example of a generic methodology expected to 

                                                           
3  MNIST is a prominent entry point benchmark in image classification 
community. It consists of 70000 handwritten digits elaborated by NIST in 

the USA. 

be progressively scaled up to ML processing pipe-lines as 
complex as 3D scene segmentation. After MNIST [35], the 
planned next step is LARD (Landing Approach Runwaw 
Detection) [25]. Only then, could one conclude on (U)R-ML 
practical viability. MNIST and LARD have in common 
existence of strong knowledge on the data generation process 
that enable structured data interpretation. 

III. TERMINOLOGICAL PRELIMINARIES 

We need to avoid misinterpretation on terms like 
‘dimension’, ‘dimension reduction’, ‘latent’ and a few more. 

A. Machine learning 

 Approximant, any function ℝn → ℝp, estimator of an 
underlying function specified by textual requirements 
and labeled datasets. We use ‘ML-model’, after 
adjustment, as synonymous of fitted approximant. 

 Inference, and generalization, are used as 
synonymous: approximant activation on some input 
vector not seen during the training, calibration, and 
testing phases. 

 Ambient space, also named embedding space: space 
where the vectors (or points) of the datasets spread. 
Depending on the context, we use “ambient space” for 

input only (nD)4 , output only (pD), or input-output 

((n+p)D) space. For greyscale image classifiers, n is the 
number of pixels and p that of classes (e.g. MNIST: 
n=28x28=784, p=10). 

 Latent space or latent manifold, the regions of the 
ambient space where the dataset points concentrate, i.e. 
cluster. Latent space has its own dimension named 
latent dimension, or intrinsic dimension. 

 Dimension reduction. The classical interpretation of 
this term is identification of the input space features 
that prominently condition the form of the output latent 
manifold (projection on a lower dimensional space 
keeping most of the information, like PCA5). We never 
use this meaning. We consider ambient to latent 
dimensionality collapse by shifting from an external 
view to an internal view of the point cloud. When 
continuous natural processes generate data, 
dimensionality collapse occurs. Physical, operational, 
and control laws constrain input, state and output data 
to concentrate in low-dimensional regions that unfold, 
split, curl, merge etc. in ambient space. (Manifold 
Hypothesis (MH) on point clouds [11]). 

B. Logics 

 Extensional refers to extension as defined in 
“Extension Theory” [6], i.e. vector encoding of 
magnitudes for geometric and algebraic calculation. 
In the sequel, we regard geometric and topological 
analysis of point clouds in vector spaces as 
synonymous with “extensional approach”. 

 Intensional qualifies definitions of sets or objects by 
symbol sequences (logical formulas, analytical 
expressions, characteristic predicates etc.). For 

4 nD stands for n Dimensions (1D curves, 2D surfaces, etc.) 
5 Principal Component Analysis 



 

 

example, first-principle models are intensional 
characterizations of process behaviors. Structural 
coverage in software testing is intensional. It is 
hooked to programs’ source or binary code symbols. 
Ontologies of ODDs and analytic formulation of data-
augmentation processes are on the intensional side as 
well.  

IV. ML-RELIABILITY GLASS CEILING 

A. Reliability augmentation techniques 

In [1], a group of researchers investigated the means to 
improve ML reliability. Though ML made major progress on 
accuracy over the last two decades (1 to 2 orders of 
magnitude), 10-3/inf. is still too poor from a safety engineering 
viewpoint. [1] reviews quantitative reliability results obtained 
by model diversification, by monitoring (ODD, robustness, 
I/O consistency), by robustness enhancement techniques 
(model stability and training stability), by selective 
classification, by conformal prediction, and by temporal 
redundancy on sequences.  

Their main conclusion is the following: all the methods 
that tried to increase reliability by redundancy of independent 
models, i.e., models resorting to independent approximant 
spaces, independent datasets and independent optimization 
processes, succeeded only marginally. Reliability stayed stuck 
in the range of 10-2 / inference instead of the expected 10-4 = 
10-2 * 10-2 or even 10-6 = 10-2 * 10-2 * 10-2. Moreover, these 
techniques improved reliability at the expense of significant 
availability losses. 

B. Common Cause Analysis 

Strong correlation of inference errors between 
independently developed ML-models, i.e. lack of 
independence between redundancies, is an experimental fact 
evidenced by [1]. It is consistent with [39] where evidence is 
given that an adversarial example designed for model1 trained 
and tested on dataset1 still fools model2 specifically 
developed to be independent of model1 (datasets, 
approximant space, and optimization process). Similarly, [38] 
demonstrated a limited 13% reliability progress. It is 
negligible from a safety engineering perspective given the 
reliability targets mentioned previously.  

Since in this paper we are going to compare ML and 
software engineering in the safety-critical case, we recall that 
in the 1980s [37] evidenced experimental reject of the 
independence hypothesis on N-version programming.  

What could be an explanation? Our working hypothesis 
that motivates our interest for TDA-augmented ML is that 
complexity of the latent manifold’s shape could be the 
common mode that correlates error occurrences between the 
so-called “independent” redundancies6. 

Fig. 1. Model adjustment to a point cloud (green shape adjusted to the red spots). The 

dashed ellipses delineate topologically complex regions that are hard to fit correctly.  
 

                                                           
6 In section X, another potential cause is considered on MNIST: labeling 

errors [41]. 

State space complexity of non-linear dynamical systems 
(attractors, curvature, holes, cavities, etc.), compelled control 
engineers to start by splitting it into covering subspaces where 
dynamics regime has some homogeneity and regularity 
amenable to a local linear approach. Then, they aggregate 
these local controllers into a unique global controller by mode 
switching and scheduling logics, up to complete coverage of 
the topologically complex reachable input/state/output space. 
The ML components we consider in this paper address the 
same type of continuous data manifolds. By contrast, standard 
data science addresses training datasets all at once, straight 
away at global scale. 

Possibly, the ML model redundancies used in [1] failed to 
adjust reliably on the same topologically complex regions. 
Hard-to-fit regions of input space are problem dependent. In 
other words, they are ML-model independent, so they can 
correlate any pair of redundancies. The shape of training 
datasets is a potential common cause in ensemble learning. 

C. Plateauing performance 

When the approximant space is defined by the solutions to 
(n – 1) polynomial equations over n variables, the ambient 
space is nD and the latent space is 1D algebraic curves. Given 
k points in nD Euclidian space, finding a polynomial curve 
that links the k points is still an open mathematical problem 
[9]. By 2022, a proof of existence was published on the Web. 
It is under peer-review. In case of confirmation, more than a 
century will have been necessary to solve the (n-ambient, 1-
latent) case for an intensively investigated class of functions. 

Fig. 2. The picture is courtesy of [8]. 1D latent manifolds in 3D ambient space. 

Limiting generalization errors to very small number of occurrences requires controlling 

adjustment with extreme precision. Impact of “fitting” variability on the 3 projected 

curves  when “adjustment” varies slightly (difference between the dashed and non-

dashed curves). 

Admittedly, equation solving (i.e. ‘exact adjustment’) is of 
different nature than ML-model fitting. It is harder because of 
equation solving exactness. However, precision-controlled 
fitting in high dimension is a very difficult problem as well, 
even if a “flexible” one7. We advocate that high reliability of 
generalization will necessitate sophisticated mathematical 
tools to control where and why generalization errors occur. 
The ability to explain why a generalization error occurred in 
order to fix it will be mandatory for DAL A ML. Any known 
error that could potentially be a single cause of catastrophic 
failure, should be eliminated to comply with regulation. 

D. Zero-measure verification 

Any behavioral specification defined by a cloud of points 
is extremely poor with respect to: 

- The immensity of the high dimensional ambient space, 
- The shape complexity of the input and input-output latent 

manifolds. 

7 Because the inverse problem is ill-posed.  



 

 

 Meeting inference failure rates as low as 10-k err./inf. ,        
k ≥ 5, is highly demanding. Sample-oriented by nature, 
statistical functional estimation naturally relies on point-based 
verification. Extensional verification coverage by the end of 
cross-validation, i.e. the covered volume of behavior, by 
means of some N-point testing dataset is N*0=0. In other 
words, the coverage is null because each point has no 
extension. At the opposite, the nD volume of the latent input 
manifold over which the estimated function should generalize 
reliably is gigantic and nearly devoid of specification 
information. We illustrate the specification miss on the 
MNIST classification problem, and how TDA could help 
(section X). Worse, the generalization domain over which one 
should estimate probabilities of misclassification events is 
undefined. No integration, i.e. error counting, without 
specified integration domain, i.e. defined inference domain, 
and without error-oracle covering it exhaustively. Such error-
oracle is named actionable specification in [30].  

From safety engineering and assurance points of view, 
there is a discrepancy between on one hand the absence of 
explicit input-domain definition, the gigantic space where 
specification misses, the limited control of adjustment, and on 
the other hand the extremely demanding reliability levels 
required to get certification approval on ML-dependent 
safety-critical systems. 

V. FILLING THE GAP WITH SOFTWARE ASSURANCE 

Could the reliability plateauing problem (~10-3 err./inf.) be 
mitigated by implementation of ML-models with extreme 
rigor, i.e. with DAL A assurance level? The reason would be, 
following some misconceptions about development 
assurance, that DAL A developments deliver high integrity 
software, and accordingly that high integrity software would 
ensure 10-k failure/h reliability levels, for values of k ranging 
from 5 to 9, depending on industrial domains. 

The goal of software assurance is to ensure fidelity of the 
transformation process that converts system functional 
specifications like ML-models (e.g. TensorFlow 
mathematical equations) into binary code instructions. 
Fidelity, also named implementation correctness, or 
compliance or semantic invariance, means ensuring 
extensional behavioral equivalence between some ML-model 
and its executable object code counterpart. On the intensional 
side, the transformation of symbol sequences is complex. 
Preservation of the defined behavior is at risk. Regarding 
reliability of inference, DAL A ensures high trust on 
reliability invariance from model to executable object code, 
i.e. “garbage in, garbage out”. It does not ensure reliability 
augmentation (e.g. up to 10-9 err./inf.) during the 
transformation process. 

Explaining why there is no reliability augmentation 
provided by assured software is not discrediting the value of 
software assurance. Software assurance prevents introduction 
of flaws in the behavior-preserving symbolic transformation. 
One may found more information on the link between 
qualitative and quantitative aspects of development assurance 
in [10]. In particular, the domain-dependent relationships 
between reliability levels k and assurance levels (A, B, C, D) 
are conventions that associate qualitative leveling of rigor with 
expected reliability in case of residual faults. Assurance splits 
trustworthiness construction in two policy regimes (cf. section 
VII). It needs some correspondence between the two for 
global consistency. This correspondence is not a convertibility 

rule between fault-prevention rigor levels, i.e. DALs, and 
reliability levels. However, return of experience over ~50 
years demonstrated validity of these conventions. 

VI. FILLING THE  GAP WITH SYSTEM                 

FAULT-TOLERANT ARCHITECTURES 

We consider the case of catastrophic failure dependent on 
the performance premium uniquely delivered by Deep 
Learning. For pedestrian collision avoidance systems or 
autonomous air taxis, Deep Learning has by far outperformed 
the classical and certifiable algorithms of computer vision. If 
some classical underperforming algorithm is sufficient as 
safety monitor to keep controllability in fault detection-
isolation-recovery phases, then the DL-dependent channel 
provides only performance bonus. Form safety architecture 
point of view there is no true criticality assigned to AI-ML. 

We extensively discussed in the group whether software 
engineering and assurance managed over time to prove 
sufficient effectiveness so that SPCF software was introduced 
in safety-critical architectures. Answer was yes, for 
aeronautics, space, automotive and railway. Nuclear is the 
exception (DAL B at most). We have no representative of 
medical device industry in the group.  

In aeronautics for instance, in flight control systems in 
particular, there are architectures, functions, and limited 
regions of the flight domain where a specification flaw or an 
implementation error may constitute a single point of 
catastrophic failure. DL-dependent vision-based control for 
air taxis or pedestrian collision avoidance will lead to true 
SPCF-ML constituents as surely as it was the case for 
software. In the “no-backup” situations that define DAL A, 
extreme reliability is required and even perfect reliability 
named correctness. This is the motivation of our research 
program proposal on TDA-enabled (U)R-ML.    

VII. ELEMENTS OF ASSURANCE PRINCIPLES 

We review the foundational aspects of development 
assurance that interact with ML characteristics in the safety-
critical case. We start with the rationale that splits assurance 
in two policies: correctness and rareness. In the sequel, we use 
‘quantitative’ objectives exclusively for probabilistic 
quantification of event occurrences. As an example, 100% DC 
coverage, though 100% is a quantity, is not a quantitative 
assurance objective, in our sense at least. It is a software 
testing termination criterion dependent on a numerical value 
that conditions intensional cover. 

A. Correctness .vs. rareness policies  

Historical perspective helps understanding the split 
between fault prevention/elimination on one side, and 
probabilistic quantification of feared failure events on the 
other side. The former is applied to software and hardware 
development. The latter is applied to physical failure modes 
and their cascading effects. We quote the following text from 
aeronautical regulation to prove that probabilistic quantitative 
arguments were not primal in trustworthiness demonstrations. 
Logical, argument-based demonstrations of safety, even when 
software was absent (i.e. electromechanical systems), 
preceded probability-based evidences. 

Design and implementation correctness of fail-safe 
mechanisms in charge of passivating the single points of 
catastrophic failures was the first and primary safety assurance 



 

 

objective in aeronautics. It was the origin of the fault 
prevention process-based assurance methods. 

Probabilistic assurance goals were introduced for the 

reasons explained in the verbatim, but the first accepted means 

of compliance were qualitative. Arguments of assurance cases 

were similar to that of qualitative physics applied to 

conservative approximations of failure propagation through 

system architectures. Orders of magnitudes were enough, and 

(causal) independence hypothesis between component and 

function redundancies were the primary concerns. Then, came 

computer-intensive probabilistic calculations and their 

acceptance as means of compliance (e.g. fault-tree analysis 

and Markov chain models).  

Over a few decades, some  unconscious cognitive bias 
spread in the safety engineering community. It consisted in 
reducing safety assurance goals to probabilistic ones, and 
probabilistic arguments to quantitative ones.  

As software or hardware items, ML implemented models 
are deterministic artefacts. Nonetheless, as result of an 
engineering process they are realization of a random variable, 
valued by a mathematical function. The seeds of randomness 
are data sampling and stochastic features in adjustment 
algorithms. By extension, one could add as seeds of 
randomness, the model instability sources related to ill-
posedness of the inverse problem, and addressed by the 
stability assurance objectives. 

Fig. 3. Contrasting the two assurance policies. ML is amenable of both (overlay of 

green and amber). Preliminary to fig. 4 on status of SPCF generalisation errors.  

Quantified sufficient rareness of ML-component failure 
modes would be the natural choice as assurance objective. We 
discuss this option in F. We tried to map the contrastive 
characteristics of the two assurance policies and their intricate 
relations with ML assurance in the following figure. 

B. Actionable specifications 

We support the analysis in [30] that singles out point-
based specification as the prominent difficulty for ML safety 
engineering. We reuse the term “actionable”. We interpret it 
as “amenable to computational evaluation” and consider it as 

equivalent to the ‘perfect oracle’ notion of [32]. Software 
(resp. hardware) testing of the implemented ML model, 
formal verification, and probabilistic quantification of error 
events, all need a computable oracle to decide whether 
model’s response on input vector deviates from the intended, 
as specified.  

 

The specified may diverge from the intended if needs 
capture is not correct and complete. The specified is pivotal 
for the following assurance objectives: 

1. derivation of implementation from specification, 

2. correctness of implementation w.r.t. specification, 

3. quantification of failure modes. 

Computer-decidability (test oracles, failure-mode oracles) 
of the specified is necessary for both assurance regimes. There 
are ambiguity cases in image classification where even 
human-decidability is not ensured. Another source of oracle 
miss is lack of ground-truth, quite common in ML application 
to perception systems. Safety engineering and assurance are 
severely hampered by miss of deviation oracles. ML 
assurance should exclude SPCF-ML in such development 
conditions. 

C. Implementation derived from specification  

Mitigation of complexity-induced risks by decomposition 
of the specified, by piecewise refinement, and by progressive 
and traceable derivation of implementation constructs from 
specification traits, constitutes a cornerstone of assurance. It is 
a “divide & conquer” error-prevention strategy to cope with 
error-friendly complexity.  

A second cornerstone of assurance is assessment of the 
small derivation steps by independent verifiers, possibly with 
variability and redundancy in verification methods. 
Traceability is the practical means to manage complexity 
along hierarchical decomposition paths. A by-product is 
diagnosability. In case of behavior deviation w.r.t. the 
specified, traceability-enabled  backward dependence analysis 
enables precise localization of faults and errors. In turn, it 
enables fault elimination. Elimination of the known faults is 
characteristic of the correctness assurance regime. There 
would be no alternative to 100% accuracy in DAL A ML. 
Embedded known SPCF errors are ethically unacceptable. 

ML violates the derivability and diagnosability assurance 
objectives of correctness policy. Approximant structure and 
parameter adjustment cannot be stepwise derived from 
training datasets. Consequently, when 100% accuracy is not 
reached, the root cause of fail-cases cannot be localized to 
enforce the error elimination policy. Correctness regime is 
intractable for ML, as of writing this paper. 

D. No single point of failure 

Regulation considers as unacceptable severe damage 
originating from a single specification, design, 
implementation, or operation error. Fault tolerant 
architectures are required. Since fault tolerance starts with 
fault detectors, on-line deviation oracles, in other words 
actionable specifications, are required. For ML, such 
actionable specifications are inaccessible on high-dimensional 
unstructured data like text, audio, and video signals. 



 

 

E. Correctness policy 

Software was regarded as a logical artefact that, in theory, 
could be developed without faults. By nature, it cannot 
spontaneously lose capabilities contrary to physical 
equipment. For these two reasons, standard committees 
applied fault prevention policy, i.e. correctness assurance to 
software. Safety standard committees regarded quantification 
of software reliability as ethically unacceptable for any safety-
related development. In addition, it was deemed technically 
intractable in valid manner. 

Like software, and contrary to physical equipment, ML 
model cannot spontaneously lose some capability as cause of 
a failure mode. They are deterministic, designed, time-
invariant logical artefacts that make errors. Correctness 
regime should apply. However, miss of diagnosability 
prevents application of the “no-known-fault-left” policy.  

F. Rareness policy 

As seen previously, it could be an option for ML, 
considering the randomness sources in its elaboration process. 
However, it would be a paradigm shift to assimilate 
generalization errors to classical safety failure modes (i.e. 
random capacity losses). One would declare activation of 
preexisting flaws that are consequence of deliberate 
engineering choices, as equivalent to random physics-caused 
failures. 

G. Perspectives on SPCF-ML assurance 

The intent of the preceding review is to argue that there is 
no compelling choice of assurance policy for safety-critical 
machine learning. In addition, the application spectrum of ML 
is so large that a unique “one-size-fits-all” policy choice 
would be vain. Therefore, we reached consensus in our group 
on the following most flexible but principled rationale. 

Fig. 4. Both options are sensible to some extent and missing means of compliance.  

Since there is no compelling default option, our pragmatic 
stance is to leave the choice to the applicant, property-wise. 
For a given ML component, some failure modes could be 
assured by correctness means while others could be assured 
by probabilistic calculations. In our discussions, we even 
envisioned the case where a property could be partly 
demonstrated in correctness regime, and partly in rareness 
regime. Complexity of provably correct or ultra-reliable 
approximation in high dimension needs availability of any 
kind of well-founded verification technique.  

                                                           
8 Kilo-lines of code. 
9 As Low As Reasonable in Practice (risk) 

VIII. COMPARING SW/1980S TO ML/2020S 

Nearly half a century ago, software soared in embedded 
systems, while appearing brittle and raising concern about 
safety of software-intensive aircraft. In the early 80s, 
software-induced complexity ballooned as fast as grew the 
number of bugs per Kloc8. The foreseen “software crisis” for 
civil aviation lead to convention of assurance standard 
committees. First release of ED-12A/DO-178A was by 1982. 
About 40 years later, return on experience demonstrated that 
applying these assurance standards was effective. 

ML and especially DL are following a similar trajectory: 
fast massive adoption by industry in spite of instable behavior 
(e.g. adversarial examples). Like for software, there are 
concerns about safety of ML-dependent aircraft or car. 
Automotive has been the leading industrial sector in the late 
2010s. DL opened industrial viability of open- world 
computer vision. It made self-driving cars appear as a mid-
term market opportunity. Consequently, development of ML-
assurance standards started early, following ideas similar to 
that of proven-in-use software assurance standards. To what 
extent are these two histories comparable? Should we expect 
for ML assurance the success of software assurance? 

A. Similarities 

Foundations: a few decades before their respective booming 

industrial acceptance, both software and ML benefited from 

mathematical background: on computability and correctness 

for software (e.g. Turing, Floyd, Hoare); on statistical 

estimation, information and learnability for ML (e.g. Fisher, 

Shannon, Vapnik). 

 

Engineering: in both cases these theoretical foundations had 

no immediate impact on tooling and industrial best practices.  

  

High-dimensionality: software and machine learning share 

this characteristic. Curse of dimensionality to verify 

behavioral spaces is a common difficulty to meet the 

assurance requirements of the safety-critical. Safety-related 

embedded software has nowadays D10k input (resp. state, 

output) space dimensionality, with k possibly ranging from 2 

to 7, and even beyond (e.g ATM/ATC ground segment 

software). It is the same dimensionality order of magnitude 

as that of DL-based HD video streaming processes. 

 

Extensional verification cover: it was a deep problem for 

software assurance. One needed a sufficiency criterion to stop 

IVVQ activities with DAL-dependent appropriate 

confidence. Structural coverage, amenable to DAL 

modulation, was the solution. Committees were aware that 

even with MC/DC coverage, extensionally speaking, 

behavioral space cover was near zero. It was the best 

ALARP9 cost/benefice trade-off at state of the art. Why then 

did software assurance succeed? Has near-zero extensional 

verification coverage the same significance for software as 

for machine learning?  

B. Disimilarities 

Point-based specification in high dimension and 
diagnostic inability seem to us the differentiating factors of 



 

 

ML w.r.t. software. Textual software specification are often 
example-based, i.e. scenario-based or use-case based. 
However, contrary to ML, all the examples are intended to be 
generalization seeds for human. Software developers 
generalize the examples when they formalize specifications 
and algorithms. Doing so, they implicitly create behavioral 
cells in their minds, named equivalence classes at testing 
stage. On the extensional side, these equivalence classes 
create volume-units of validity in the neighborhood of the 0-
measure test cases. There is implicit augmentation of 
extensional coverage by principled code derivation and 
associated testing practice (i.e. requirement-based testing). Is 
there extensional coverage augmentation for ML, be it explicit 
or implicit? 

IX. TDA-ENABLED (U)R-ML 

We have justified why ML reliability must drastically 
improve to meet DAL A assurance objectives in the SPCF 
case. We have underlined a major difference between ML and 
software regarding verification cover: implicit volume-based 
cover for software, without any equivalent for ML. 
Foreseeable efficacy of ML assurance for the safety-related is 
likely to be far under the levels reached in the case of software. 

We propose research orientations based on Computational 
Geometry (CG) and Topological Data Analysis (TDA) in 
higher dimensions [11], [28] to overcome these problems. It 
consists in supplementing classical statistical data science 
with awareness of topological complexity of datasets to 
support ML engineering activities like sampling, definition of 
In-Distribution oracles, diagnostic of inference errors, 
volume-based verification coverage analysis, empirical 
probability computation, etc. 

In this section, we focus on sampling and explicit 
definition of the generalization domain (ID oracle). In the next 
and last section dedicated to the MNIST proof of concept, we 
adopt a broader view on use of topology. 

A. Semantics of emptiness 

High dimensional void is the ambient space around 
training and test point clouds. Emptiness around points may 
result either from principled choices, or from loopholes. 
Emptiness may be full of missing information that prevents 
from meeting correctness and/or reliability targets. We 
distinguish four types of voids: 

1) Causal impossibility 

Physics, scene or environment evolution laws, operational 
concepts or ODD constraints may prevent the generation of 
samples in definite regions of the input space. It leads to valid 
distant clusters or samples. 

2) Sampling incompleteness 

The sampling plan, compliant with the ODD and with the 
ML-model’s textual specification, may overlook some input 
space regions. Depending on local regularity and approximant 
characteristics, these sampling lacunas may or may not 
constitute potential risk of inference errors. 

3) Designed parcimony 

When variability of data is under control, sampling may 
be appropriately parsimonious. Energy saving, or footprint 
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constraints on embedded targets may also lead to local 
decimation of samples. In these cases, some extensive void 
regions are not risky. 

For sampling coverage analysis, TDA should enable 
exploration of dataset shape to identify existence of 
unintended void regions (see fig. 5 and 10). It would consist 
in detection of non-interpreted large holes or cavities as 
potential sources of adjustment complexity and potential 
common modes for ensemble learning. This activity would be 
ML-model independent since it would only consider input 
spaces and ODDs as guide for data shape interpretation. 

TDA offers a portfolio of algorithms to analyze point 
clouds in 2D, 3D, and in higher dimensions. We focus on 
persistence homology (PH) which plays a central role in TDA. 
It is used in ML for clustering, denoising, feature engineering 
(e.g. [12], [15]), and neural networks weight space or 
activation space analysis. We propose a new family of PH 
applications to machine learning whose overall goal is to 
overcome the reliability gap. 

Roughly, PH computes a growing sequence of balls 
centered on each point of the dataset. For each ball radius of 
the sequential process named filtration, it computes the ball 
intersections and creates edges between the vertices that are 
centers of intersecting balls (see the four filtration steps of fig. 
5). These edges constitute a nested mesh (simplicial 
complexes) that enables rigorous geometric and topological 
reasoning in higher dimension. They performs multi-scale 
modeling of point clouds. PH detects birth and death of kD-
cycles, cavities and holes, as ball radius grows by discrete 
steps. It ends when the radius is so large that all balls intersect. 
Figure 5 illustrates some steps of 2D point cloud filtration. 

Fig. 5. Designing the inference domain, the “meaning” of the input part of training 

datasets. Four steps of persitence homology filtration are represented. In the upper part 

of the figure are examples of typical questions to interpret the filtration steps. At bottom 

we wrote examples of interpration decisions that could lead to selection of a given 

filtration parameter. 

We propose to use PH filtration as (U)HR-ML data 
engineering practice to design some ODD-compliant 
interpretation of the training and testing datasets. Output of 
this task would be the ID-OoD10 oracle of the approximant. 
For computational tractability, latent dimension must be far 
lower than ambient dimension. 

B. Formal definition of inference domains 

To our opinion, high reliability of approximants will 
require formal and executable definition of their domain (i.e. 
of their precondition from a formal method perspective). PH 
should offer means to define ID-OoD oracles in a way that 
does not depend on distributional assumptions or ML 
techniques [22]. 



 

 

C. Extensional verification coverage analysis 

We envision PH-based construction of a latent space 
simplicial complex as a means to guide scrutiny of 
generalization reliability. Triangulated training input spaces 
could support tight verification coverage criteria, simplex 
after simplex, used as generalization cells and as candidate 
counterpart of equivalence classes in software engineering. 
We name extensional coverage analysis this volume-based 
verification activity. It would be the extensional counterpart 
of structural coverage analysis in software. Such latent-space 
oriented verification coverage ideas are being explored for 
instance in [23]. 

D. Contribution to ML safety assurance 

We first review four applications that are independent of 
any ML technique. This is a distinctive advantage since 
assurance values independence between design and 
verification methods. 

1) Model-independent applications 

1. Explicit generalization domains: using data 

augmentation, tuned filtration parameters, and PH 

simplices, design of a simplicial complex of operationally 

explainable generalization cells. The aim is an ID-oracle.  

2. Designed separability: using persistence diagrams, 

homology groups, and homotopy classes as topological 

alerts of potential hard to fit regions for classifiers (cf. 

illustration on MNIST). 

3. Extensional verification coverage analysis: using PH- 

complexes as covers of generalization domains, with 

multi-scale resolution. 

Fig. 6 Filling the ML reliability gap by enhanced verification coverage techniques. 

Extensional verification would ensure non-zero measure coverage, explicitly 

contrary to software where extension of equivalence classes remains  implicit. 

 

4. Novelty detection: non-stationarity tests in ML-Ops 

processes. TDA and Information Geometry could be used 

jointly to monitor datasets’ shape trajectories and 

thoroughly diagnose risks of adjustment obsolescence. 

 

2) Model-dependent 

Research on how PH enables shape analysis of neural 

network activation spaces is undergoing. It has interesting 

potential for safety assurance as it could become in (U)R-

ML engineering the extensional counterpart of structural 

coverage analysis and dead code elimination in safety 

critical software engineering.  
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X.  PROOF OF CONCEPT ON MNIST 

Last section is an outline of a proof of concept we are 
developing to support our discussions. It is also intended to 
support future (U)R-ML data-science challenges. The figures 
in this section do not result from TDA computation results, 
yet. They aim at presenting some (U)R-ML goals and 
activities, and at conveying intuition on a method whose 
engineering is still to develop. Preliminary results on digits {6, 
0, 9} are documented in [33], to be made public after 
completion on the ten digits. 

A. Related work and discussion 

[31] is a systematic literature review devoted to 
certification of Machine Learning. Comparison with software 
is developed. There is no mention of the N-model non-
independence problem. Topological data analysis is not 
mentioned either. [30] is another review of the main 
certification challenges for safety-critical ML. TDA is 
addressed and advocated as a promising approach. [28] is a 
survey of TDA applications to AI-ML, with focus on bio-
molecular engineering. In image classification, all uses of PH 
reported in this survey are at image level, for dimensionality 
reduction, denoising, feature extraction, etc. In this PoC, we 
use PH at dataset level, to analyze the shape of the training and 
testing image databases.  

In [26], PH applied to MNIST is reported. It enabled 
reducing 784D to 28D at iso-accuracy (96.3%). On our side, 
we want to augment accuracy (drastically), not to save 
computation time and energy without accuracy penalty. In 
[27], a table reviewing the performance scores of top10 
MNIST classifiers is given. It provides evidence that 
reliability is plateauing at (1 - 3.10-3) on MNIST. We 
identified significant labelling errors in MNIST (~10-3 as 
well). It is a serious issue for (U)R-ML [41]. An ultra-reliable 
e-MNIST 107-sample dataset is needed (see fig. 8 for 
ambiguity cases of digits with letters). 

In [34], persistence homology filtration of the testing 
dataset, and abstract interpretation of the neural network are 
combined. Goal is verification coverage analysis and global 
robustness verification. They adjust the filtration parameter to 
the ball radius used by the abstract interpreter. This work is 
the closest to ours in these last two sections. They use 
simplices for robustness cover only. We propose to use them 
also for explicit inference domains definition, and for 
functional property verification. 

B. Rationale of the Proof of Concept 

Our group is qualified to discuss safety assurance 
rationales. In the MNIST PoC, we adopt a safety assessment 
standpoint. As SPCF-ML is our focus, we consider the 
assurance objectives and activities of a team whose methods 
and tools should be independent of that in action by system 
and AI-ML development teams. TDA on raw datasets ensures 
independence w.r.t. statistical estimation.  

TDA-enabled (U)R-ML is a sample-dependent method11. 
In this PoC, beyond independence w.r.t. statistical estimation, 
we also have independence w.r.t to ML-models. We 
concentrate on complexity of the problem to solve and regard 
topological complexity as a major risk of inference reliability. 



 

 

Topological Data Analysis on MNIST is applied to 
functional hazard analysis. Verifying stability of approximant 
behavior w.r.t dataset variability and optimization variability 
are non-functional risks. These assurance objectives address 
the engineering risks inherent to ill-posed inverse problems 
AI-ML is part of. They are of fundamental importance for ML 
life-cycle (e.g. MLOps), but they do not address correctness 
or rareness on functional failure modes. 

Our PoC explores TDA support for verification of 
verification 12 : sampling coverage analysis and cross-
validation coverage analysis.  

C. Functional Hazard Analysis 

Fig. 7. Didactic eveocation of {6,0,9} homotopy equivalence, and of {rotation, 

translation, homotety} symetries. They create input-space hazardous regions (amber) 

subject to unreliable class separation by any ML-model. See fig. 10 for MNIST images 

belonging to hazardous regions (amber anulus). 

 

LARD [25] is our planned next step in case of success on 
MNIST. We motivate our assurance activities by some 
fictitious aircraft landing narrative: we assume that some 
digits are painted on runways, and that their accurate 
recognition conditions safety-critical13 operations. 

1) Ambiguity 

Fig 8.The ambiguity cases (and their cardinality) in MNIST\{6,0,9} 

ODD of SPCF-ML MNIST classifiers should specify the 
image domain boundaries where even humans cannot decide. 
It should also identify where context-sensitive image 
interpretation occurs. For interpretation of distorted digits, 
knowing whether alphabetic characters may be present 
matters. (see ‘a’,’le’,’co’, etc. in fig. 8). 

We follow and extend the perturbation taxonomy of [6]. 
We assume ‘0’ has a distinctive operational role, and false 
positives on ‘0’ are classified catastrophic by safety 
assessment, in the “no back-up” case. We assume false 
positives on ‘6’ and ‘9’ are hazardous. Detected false 
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remote. 

negatives on the three digits have no safety effect. Undetected 
false negatives are classified minor for safety, major for 
airport performance. 

2) Perturbations 

Light green background of the digits means that a single 
distortion (order 1) is regarded as common. Ultra-high 
reliability inference domains of {6, 0, 9}-classifiers  should 
contain order 1 perturbed digits.  

Fig. 9 Seven examples of “pure” perturbations (unitary, order 1), grouped by causal 

sources that are partially independent. Most of them combine freely up to high orders 

(e.g. a clipped+noisy+thickened+slanted digit is regarded as perturbed at order 4). 

D. Safety objectives 

We must ensure impossibility or extreme remoteness of 
False Positives on ‘0’ (‘0’-FPs). Choice of the assurance 
policy proposed to Authority is a critical issue. In both cases, 
0-FP failure mode is an excluded event since we are in the 
SPCF case. If rareness assurance policy is chosen, probability 
of this failure mode should be demonstrated at one or two 
orders of magnitude below 10-9/h. TDA in this PoC will be 
explored to support both policies. 

E. Correctness policy 

Current intermediary goal is a provably correct {6, 0, 9}-
classifier on a restricted part of the inference domain (fig 
11.left). Stratified persistence homology will be used to 
develop simplicial complex modeling of the inference domain 
over digits ‘0’, ‘6’ and ‘9’ distorted by unitary perturbations. 
Unitary perturbations are the counterpart of component failure 
modes in classical safety (e.g. fault tree analysis). Their 
independence is an issue under rareness assurance policy. 

A progressive data-integration process, counter-part of 
progressive code-integration process in software assurance, is 
enforced. PH is applied after every data integration step, to 
interpret growth of topological complexity, to locally augment 
data and to tune a subset of filtration parameters as multi-scale 
inference domain design decisions. Intuition of the data 
augmentation process is conveyed in figure 10. Separability 
on the ambiguity regions will be designed by simplicial 
engineering. Order 1 involves 3x7 local boundary designs (cf. 
fig 9), and 16 separability designs14. The resulting simplicial 
complex’ actionable boundary will play the role of model-
independent safety net.  

14 “Separation” is somehow a misnomer. Most of the light green sub-clusters 
of fig. 11 share intersections. See the tessellation of sub-clusters as evocative 

of designed separation, or designed entanglement (e.g. fig1 like).  



 

 

If not geometrically and combinatorically too complex, 
Order 2 will also be addressed under correctness policy (i.e. 
geometric models of decision boundaries and proofs by 
simplicial set inclusions or null intersections). Order 3 and 
beyond will be addressed only under rareness policy. 

PH is necessary, but not sufficient for the envisioned 
(U)R-ML engineering. Implicit augmentation of the complex 
to address local and global symmetries is one of the needed 
additional ingredients. 

Fig. 10 Conceptual didactic figure derived from fig. 5. Left: a group of ambiguous 

distorted images. Right: for the selected radius of balls (filtration parameter – scale unit 

measure), PH seems to indicate the 12  images could be on a risky cycle like that of 

fig.7. Data augmentation (sampling or generation) is needed along the four newly 

created 1D simplices to confirm their relevance as new extensions of the inference 

domain.. 

Fig. 11 Notional didactic figure sugesting the data-integration process. PH is a applied 

after every sub-cluster data increment, to assess the incrment of  topological complexity. 

F. Rareness policy 

As order of perturbation increases, latent dimensionality 
and entanglement of shapes grow. Complexity of the 
ambiguity regions computed by PH become intractable for 
correctness policy. Conservative over-approximation of 
amber regions and probability estimation over triangulated 
manifolds will be the explored path. Its potential acceptance 
by certification bodies will be discussed in the group. Fault 
Tree Analysis should not be accepted as means of compliance 
to quantify failure modes in this context. 

G. Current status and future work 

MNIST restricted to {0, 6, 9} was sub-labeled to isolate 
54 unitary perturbations (see 21/54 in fig. 9) and 16 ambiguity 
cases (fig. 8), as part of an independent safety assessment 
(U)R-ML process (Functional Hazard Analysis activity and 
safety requirements on cluster separability). PH was computed 
within 1 hour (~16500 images), and within 5 hours on whole 
MNIST (60000 images) on standard computing platform15. 
Interpretation of the persistence diagrams and design of the 
green and light-green ID16-boundary oracles are in progress. 

Fig. 12 is the computed equivalent of fig. 11.left, limited 
to the three dense green regions (canonical ‘0’, ‘6’, ‘9’). 
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Persistence. Three filtration steps (out of 50), growing from 
left to right like in fig. 5, are presented. 

Fig. 12. Filtration step values are noted “time” (upper middle). The contacts (dashed red 

lines) appear at 4.59 between ‘0’ and ‘6’, and at 5.3 between ‘0’ and ‘9’ (ball radii). 

Fig. 13. Interpretation of ambiguity regions (contacts), when candidate connectivity for 
inference breaks class separation. PH with perturbated subclusters (fig 9). 

XI. CONCLUSION 

Starting from a reliability issue related to error correlation 
between AI-ML-model redundancies, we proposed a 
geometrical and topological explanation, not confirmed yet. 
We discussed the role of software development assurance and 
that of fault tolerant architectures to circumvent the problem. 
We argued that for ML components to be accepted as single 
points of catastrophic failure, like safety-critical software 
engineering and assurance managed to do, additional efforts 
and drastic progress on reliability are required.  

We discussed the assurance regimes applicable to 
generalization errors in the most demanding case. We 
promoted a flexible approach and gave its underlying 
rationale. We proposed TDA as a candidate means of 
compliance to supplement statistical estimation theoretical 
guarantees. We limited ourselves to a safety assessment and 
ML-model independent perspective. We illustrated the 
envisioned methodology on a fictitious airborne SPCF 
MNIST classifier. 

ML state of the art is progressing impressively fast. 
However, fundamental problems remain unsolved. We made 
explicit our top3 showstoppers: actionable specification, 
diagnostic inability, 0-measure specification and verification 
cover. We are confident that mathematics, algorithms and 
tooling maturation can fill the gap, as it was the case for 
software. We gave a first glimpse on TDA as a promising asset 
to substantiate this optimism. It will take time, as it was the 
case for software. New engineering has to emerge and mature, 
leaving many opportunities for applicants and Authorities to 
resist race to market expediencies. 
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