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Abstract

Dealing with missing modalities is critical for many real-
life applications. In this work, we propose a scalable frame-
work for detecting stress induced by specific triggers in mul-
timodal data with missing modalities. Our method has two
key components: (i) aligning all modalities in the space of
the strongest modality (the video) for learning a joint em-
bedding space and (ii) a Masked Multimodal Transformer,
leveraging inter- and intra-modality correlations while han-
dling missing modalities. We validate our method through
experiments on the StressID dataset, where we set the
new state of the art while demonstrating its robustness
across various modality scenarios and its high potential for
real-life applications.

1. Introduction
Monitoring physiological changes is crucial for assessing
individuals’ well-being, especially in safety-critical con-
texts. Examples include stress, a response to emotional
and physical challenges [14], and a triggering or aggravat-
ing factor for various pathological conditions [4]. Physio-
logical changes may be detected visually (videos), acous-
tically (audio), or via biomedical signals (e.g., electrocar-
diograms). Yet, specific modalities may be unavailable dur-
ing testing and sporadically absent during training. Thus, a
method that can handle missing modalities during training
and testing while balancing modalities’ contributions for ro-
bustness is pivotal. A few existing methods address the
challenge of handling missing modalities. However, they
may suffer from notable limitations, including (a) requiring
all modalities during training [10], (b) not being easily gen-
eralizable to more than two modalities [8, 9], or (c) consid-
ering the same input dimension for all modalities [17, 19].
In this work, we propose (i) a framework that aligns multi-
modal representations to a common rich feature space, (ii)
a fusion strategy to handle missing modalities during train-
ing and inference, (iii) we set the new state of the art on
StressID [1] in various modality settings.

Figure 1. Overview of our method. (i) Contrastive learning aligns
unimodal representations to the video. (ii) Fusion models multi-
modal interactions and handles missing modalities.

2. Anchored Multimodal Transformer
This study addresses stress detection using multimodal data,
including video, audio, and biomedical signals. Real-world
scenarios often involve missing modalities, motivating our
goal to develop a modality-agnostic representation. Let
D = {(xi

m)Mm=1, y
i}Ni=1 be our dataset, with M modalities

and N labeled observations, where xi = (xi
m)Mm=1 is the

i-th observation (i.e., a family of m modality values) and
yi ∈ Y = {0, 1} the corresponding label (i.e., stressed or
not). An overview is presented in Figure 1.

Anchoring. We train modality-specific encoders with a
contrastive learning objective to align their representations
to the one of the video (the strongest modality). Let
us consider a pair of modalities with aligned observation
(V,Mm), where V the video, and Mm another modal-
ity. The video xi

v and its corresponding observation xi
m

are encoded using ziv=Ev(x
i
v) and zim=Em(xi

m), respec-
tively, where Ev is a pre-trained and frozen video encoder
and Em a DNN. Projection heads map the embeddings
to f i

a, f
i
m∈Rd. The loss is computed on f i

a and f i
m [5]:

LV,Mm = −
∑B

i=1 log
exp(cos(fi

v,f
i
m)/τ)∑B

k=1 exp(cos(fi
v,f

k
m)/τ)

, τ ∈ R+ the
temperature parameter, cos(., .) the cosine similarity, and



B the batch size. In practice, we use a symmetric loss:
LV,Mm + LMm,V . We define the anchoring loss for M

modalities: Lanchoring =
∑M

m=1,Mm ̸=A(LV,Mm
+LMm,V).

Masked Multimodal Transformer. To effectively build
modality-agnostic representations, we resort to the trans-
former architecture [16]. For each sample, we stack the
modality-specific representations, f i

m ∈ Rd,∀m ∈ [1,M ],
into a single matrix and prepend a special token [CLS],
yielding a matrix F ∈ R(M+1)×d. Similarly to Liu
et al. [7], the query, key and value are derived from F
via: Q = WQF , K = WKF and V = WV F where
Q,K ∈ R(M+1)×dk and V ∈ R(M+1)×dv . Our mod-
elization of inter-modal interactions differs from the usual
cross-attention [2, 6], which asymmetrically combines two
separate embedding sequences of same dimension. Using
stacked features F allows to generalize to any number of
modalities, with linear scalability in the number of modali-
ties instead of quadratic.
Handling missing modalities. Inspired by Milecki et al.
[11], we apply our strategy to the scaled dot-product, core of
each multi-head self-attention sub-layer. We use a masking
binary matrix Z that specifies which modalities are missing:
zij = 1 if i and j are available, else zij = 0. The output O
of the attention mechanism, for Oi each line of O is :

Oi =
∑
j

zij
exp(QT

i Kj/
√
dk)∑

{j′,zij′=1} exp(Q
T
i Kj′/

√
dk)

Vj .

We train the Masked Multimodal Transformer with a multi-
view contrastive objective [3]. Inspired by Shi et al. [15],
we mitigate the model’s over-reliance on a single modality
while enhancing its robustness in the absence of modalities
through the modality dropout augmentation technique.

3. Results & Discussion
Dataset. StressID [1] for stress identification contains
physiological responses via electrocardiogram, electroder-
mal activity, respiration, audio, and videos. We denote
Xtrain, Xtest the entire train and test set (considering sam-
ples with and without missing modalities), and X∗

train, X
∗
test

for the train and test sets where all modalities are avail-
able. We follow the train, validation, and test splits pro-
vided in [1] and report the same metrics: balanced accuracy
(ACC), weighted F1-Score (F1) in format mean(std).
Implementation details. The Anchoring and Masked Mul-
timodal Transformer steps are trained separately on X∗

train
and Xtrain, respectively. A linear classifier is trained using
the [CLS] token output for the final task. At each step, we
train for 70 epochs using AdamW optimizer, with a learning
rate of 1e-4 and a batch size of 128. For the Video modal-
ity, we use the Hiera [13] pre-trained encoder. For audio,
each sample is encoded into a mel-spectrogram and fed to

ACC F1

Video 62(4)‡ 67(3)‡

Biomedical signals 58(4)‡ 66(5)‡

Audio 62(4)‡ 67(4)‡

Feature Fusion [1] 61(3)‡ 66(4)‡

Decision Fusion† [1] 65(5)‡ 72(5)‡

Ours 69.5(3.7) 75.9(4.3)

Table 1. Comparison to SOTA
on X∗

test. Bold, underlined in-
dicate the top 1, 2 performing,
respectively. ‡Results from [1].
For decision fusion†, we report the
best out of all 4 decision rules.

ACC F1

69.5(2.9) 69.6(3.1)
no video 61.2(4.6) 63.0(4.2)
no audio 68.3(2.9) 68.4(3.0)

Table 2. Evaluation on
two modality scenarios on
Xtest. For each scenario, we
systematically remove one
modality from the test set.

BYOL-A [12]. Biomedical signals are processed using 1D
CNNs as suggested by [18]. Projection heads encode each
representation as a d = 64 dimensional vector.

Comparison to SOTA. Table 1 presents the comparison
to the SOTA in the presence of all modalities. We compare
against ‘feature fusion’ and ‘decision fusion’ [1] (rows 4 &
5) and unimodal baselines for Video, audio, and the stacked
biomedical signals (rows 1, 2 & 3). Our method outper-
forms all other methods by a notable margin. For instance, it
outperforms ‘decision fusion’ by 4% in ACC and 6% in F1.

Figure 2. Robustness to
missing modality on Xtest.

Robustness to missing
modalities. Table 2 reports
the performances under
missing modalities during
inference. We remove
audio or Video, the most
cumbersome modalities
to acquire, from Xtest and
compare the results and
differences (∆) to the ones
obtained on Xtest, the default
set (row 1). The results
remain competitive for both
no-audio and no-video: |∆|<8.6%, even-though these
modalities individually perform the best on X∗

test (Table 1).
Additionally, Figure 2 shows ACC and F1 under different
missing modality ratios η among M ∗ N with M the
number of modalities and N the number of observations
for training and inference. Our approach can successfully
handle high ratios of missing modalities. More precisely,
we report a delta of 2% between η = 12.5% (i.e., η inherent
to the dataset) and η = 30% for ACC and F1.

Conclusion. We propose a modality-agnostic representa-
tion learning framework tailored to operate under missing
modalities during training and testing. Applied to stress de-
tection, our approach outperforms current SOTA and show-
cases robustness to missing modalities.
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