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Abstract: This paper focuses on the output feedback stabilization of a chain of integrators
using delay-difference operators to approximate derivative actions. The primary contribution of
this study is the explicit computation of an upper bound for the time-delay, guaranteeing that
the closed-loop system, employing the delay-difference approximation of the derivative action,
maintains (exponential) stability. Illustrative numerical examples complete the presentation to
demonstrate the efficiency of the proposed methodology. ©IFAC, all rights reserved.
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1. INTRODUCTION

The chain of integrators represents one of the simplest
applications of delay-based controllers with the delay as
a control parameter. Such a problem received a construc-
tive solution 20 years ago, and necessary and sufficient
conditions linking the number of delays and the chain
length exist. More precisely, it was first shown (see, e.g.,
Niculescu and Michiels (2004)) that n ∈ N∗ delay blocks
can control a chain of n integrators, and later (see, for
instance, Kharitonov et al. (2005)) that this condition
is also necessary. For other approaches to this problem,
we also refer to Mazenc (1997) for a Lyapunov functions
approach, Mazenc et al. (2003) for an approach considering
stabilizing bounded feedback, and Choi and Lim (2006)
for a case considering the presence of unknown delays, as
well as Chitour et al. (2020) for the perturbed case. For a
deeper discussion on the idea of using delay as a control
parameter as well as a guided tour of existing results in
the literature, we refer to Michiels (2013).

This short note addresses one of the ideas proposed in
Niculescu and Michiels (2004) using a different argument.
On the one hand, we assume that the delays are com-
mensurate, that is, of the form τ2 = ℓτ1, where ℓ ∈ N∗.
This simple consideration reduces the number of control
parameters from 2n − 1 to n + 1, since there is only
one delay to choose, making the process of tuning the
controller simpler. On the other hand, the proposed con-
struction leads to a closed-loop system that includes delay-
dependent coefficients in the characteristic function.

⋆ This work is partially funded by CONACyT, under the grant
CONACyT-929482.

The presence of delay-dependent coefficients poses a chal-
lenge in the analysis. While there is an extensive body of
research on the stability analysis of time-delay systems
(see, for example, Bellman and Cooke (1963), Michiels
et al. (2002), Gu et al. (2003), and Diekmann et al. (2012)),
studies incorporating delay-dependent coefficients are less
prevalent (see, for instance, Beretta and Kuang (2002)
and Jin et al. (2018) for some analytical results, as well
as Wang (2012) and Lai et al. (2021) for some numerical
results).

Additionally, through the arguments presented in Méndez-
Barrios et al. (2024), and Méndez-Barrios et al. (2022),
we conclude that the approximation of the derivative
operator by delay-difference operator leads to a properly-
posed closed-loop system for ”small delays”, and present
a relatively simple methodology to explicitly compute
the delay margin τr (see, for instance, Ma and Chen
(2018)), which is an upper limit such that the closed-loop
system remains stable for any τ ∈ (0, τr), opening some
perspectives in handling different system configurations.

Notations: Throughout this paper, the standard notations
are used and explained (if necessary) the first time they
are used.

2. PRELIMINARY RESULTS AND PROBLEM
FORMULATION

We consider a differential equation of the form:

y(n)(t) = u(t), (1)

which is a chain of integrators of length n, therefore it can
be stabilized by a control law of the form:



u(t) = −
n−1∑
j=0

kjy
(j)(t), (2)

by choosing the parameters k = [k0, k1, . . . , kn−1] such
that the characteristic polynomial F (λ), given by:

F (λ) = λn +

n−1∑
j=0

kjλ
j , (3)

is Hurwitz. Since we are interested in finding the delay
margin, such an assumption is natural. Next, we consider
the following approximation of the derivative in frequency-
domain:

λ ≈ 1− e−λτ

τ
, (4)

which corresponds to the following approximation:

y(n)(t) ≈ 1

τn

n∑
j=0

(−1)j
(
n

j

)
y(t− jτ).

In this case, the controller uτ (t) reads:

uτ (t) = −
n−1∑
j=0

j∑
m=0

(−1)m
kj
τ j

(
j

m

)
y(t−mτ), (5)

and includes past information over the interval [t− nτ, t),
for all t ≥ 0. The corresponding frequency-domain repre-
sentation writes as:

C(λ) =

n−1∑
j=0

j∑
m=0

(−1)m
kj
τ j

(
j

m

)
e−mτλ, (6)

and the characteristic polynomial (3) rewrites as the
following quasipolynomial :

Fn(λ) = λn +

n−1∑
j=0

j∑
m=0

(−1)m
kj
τ j

(
j

m

)
e−mτλ. (7)

Under the assumption that the chosen gains guarantee the
closed-loop stability of the delay-free closed-loop system,
our interest is to characterize the first (delay) interval
I := (0, τr) such that the quasipolynomial (7) preserves
stability for any τ ∈ I. The delay τr represents the so-
called delay margin.

With the remarks above, two issues must be addressed:
(i) the properly-posed character of the closed-loop system
for small delay values and (ii) an estimation of the delay
margin.

2.1 Motivating example

Consider the case n = 2, then the characteristic quasipoly-
nomial reads:

F2(λ) = λ2 +
k1
τ

+ k0 − k1
e−λτ

τ
. (8)

Next, allow us to define the parameter p such that pτ = 1,
and rewrite (8) as following:

F2(λ) = P0(λ; p) + e−λτP1(p).

It is clear that, for any iω with ω ∈ R such that F2(iω) =
0, the following must hold:

P0(iω; p)P0(−iω; p)− P 2
1 (p) = 0. (9)

Eq. (9) states that the magnitude of P0 and P1 must be the
same. From Eq. (9) the following polynomial is obtained:

ω4 − 2k0ω
2 + p(2k0k1 − 2k1ω

2) + k20 = 0,
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Fig. 1. Roots behavior as τ ∈ I := (0, 0.5153) increases.
The stars depict the crossing occurring at ω = 6.0966.

which implies:

p(ω) =
ω2 − k0
2k1

, (10)

therefore τ(ω) = p−1(ω). Finally, in order to identify the
value of ω ∈ R of interest, from Eq. (8) the following must
hold:

cos(ωτ(ω)) = −ℜ
{
P0(iω; p(ω))

P1(p(ω))

}
, (11)

sin(ωτ(ω)) = ℑ
{
P0(iω; p(ω))

P1(p(ω))

}
. (12)

Finally, the ω∗ of interest corresponds to one such that
p−1(ω∗) > 0 and Eq. (11) and Eq. (12) hold. To illustrate
this result, consider k = [10, 7] which places the roots
of the delay-free closed-loop characteristic polynomial at
s1,2 = {−2,−5}, therefore stabilizing the system. Replac-
ing the derivatives with the approximation and computing,
we obtain the following system of equations:

τ(ω) =
14

ω2 − 10
,

cos(ωτ(ω)) = −1,

sin(ωτ(ω)) = 0,

from where we obtain I = (0, 0.5153), with the crossing
occurring at ω = 6.0966. This result can be further val-
idated numerically, as depicted in Fig. 1. The presented
approach follows closely the method proposed by Walton
and Marshall (1987). However, in Walton and Marshall’s
work, the case where the coefficients of the quasipolyno-
mial explicitly depend on the delay parameter τ is not con-
sidered. To the best of the authors’ knowledge, although
some case studies exist, the first method leading to an
explicit algorithm for studying generic delay-dependent
coefficients under the assumption of analytic characteristic
functions including a single delay can be found in Beretta
and Kuang (2002). It should be mentioned that this result
cannot be extended straightforwardly for multiple delay
cases, even if the delays are commensurate.

2.2 Problem formulation

With the above discussion in mind, the problem we address
on this note is the following:



Problem 1. For a chain of integrators of length n ∈ N∗ and
an stabilizing controller u(t) of the form (2), determine:

• The properly-posedness of the closed-loop system
after approximating the derivatives on u(t) via a
delay-difference approximation.

• The first interval I := (0, τr) such that for any τ ∈ I
the closed-loop system preserves its stability proper-
ties after replacing the derivatives on the controller by
their corresponding delay-difference approximations.

3. MAIN RESULTS

In the following, we aim to analytically solve Problem 1.

3.1 Properly-posed closed-loop systems

Recent studies have focused on the improperly-posed na-
ture of the approximation of derivative action (see, for
example, Méndez-Barrios et al. (2024) and Michiels (2022).
For a more general discussion on improperly-posed opera-
tors, we refer to Georgiou and Smith (1989)). We have the
following definition, retrieved from Méndez-Barrios et al.
(2024):

Definition 3.1. (Improperly-posed system). Consider the
LTI SISO system (1). Suppose that u(t) of the form (2)
is a stabilizing controller and is replaced by uτ (t) given in
(5). If there exists a sequence of real numbers (τn)n∈N∗ ,
τn → 0+ when n → ∞ such that for all ϵ > 0, there exists
some positive integer nu, with τnu

< ϵ and uτ (t) non-
stabilizing controller, the controller is called an improperly-
posed controller for “small” delays. In this case, the closed-
loop system is improperly-posed for “small” delays.

In other words, “improperly-posed” systems correspond to
the situations when the closed-loop system is sensitive to
delay variations τ = ε, with ε > 0, but sufficiently “small”.

Remark 3.1. As one may expect from the definition above,
the ”properly-posed” for ”small” delays case refers to the
situation when the closed-loop system is robust against
small delay variations.

Bearing this definition and these remarks in mind, by
analogy to the discussion proposed in Méndez-Barrios
et al. (2024) and Méndez-Barrios et al. (2022), a sufficient
condition for guaranteeing that the closed-loop system
with a delay-difference approximation of the derivative
action is “properly-posed” is the relative degree of the
system being greater than one.

In this spirit, we have the following result:

Proposition 3.1. Consider the characteristic function F (λ),
given by (3). Then, if we replace the derivative in the
controller by its corresponding delay-difference approxi-
mation, the obtained characteristic function Fn(λ), given
by (7), preserves stability for sufficiently “small” delays.

Proof. First, consider the transfer function of the open-loop
system (see Fig. 2). It simply writes as:

G(λ) =

(
1

λn

)n−1∑
j=0

kjλ
j

 .

Next, we replace only one of the λ terms by:

Chain of integrators

Delay-less controller

Open-loop sytem

Chain of integrators

Delay-difference controller

Open-loop sytem

Rerlative degree equal one Rerlative degree equal two

Fig. 2. Open-loop system relative degree reduction.

λ ≈ 1− e−λτ

τ
,

therefore, as shown in Fig. 2, we obtain:

G1(λ) =

(
1

λn

)n−1∑
j=0

kjλ
j−1

(
1− e−λτ

τ

) .

Note that the transformed system now has only one delay,
and it can be interpreted as the interconnection between
a transfer function with the relative degree equal to two
and the corresponding transfer of the delay-difference ap-
proximation. Since the relative degree is two, the property
that the closed-loop system is properly-posed follows from
Theorem 1 in Méndez-Barrios et al. (2022).

By repeating the above procedure, replacing the terms λ
one by one, we get:

Gn−2(λ) =

(
1

λn

)n−1∑
j=0

j∑
m=0

(−1)m
kj
τ j

(
j

m

)
e−mτλ

 ,

which has a relative degree equal to n with an interconnec-
tion of the transfer function 1/λn with the corresponding
delay blocks, and, by using the same arguments, it follows
that the closed-loop scheme is also properly-posed. ■

3.2 Stabilizing delays computation

As already mentioned, the main objective of this note is
to find the first interval of stability I for given stabilizing
gains in the delay-free case. To this aim, we propose a
recursive procedure based on the one presented in Walton
and Marshall (1987). Such methodology allows to rewrite
the quasipolynomial (7) as a polynomial on p and ω,
where p ∈ R+ is a parameter such that pτ = 1 and
ω ∈ R+ is such that Fn(iω) = 0. Since the closed-
loop characteristic function is properly-posed, there is no
restriction in imposing the delay τ strictly positive, but
not too “small”. The methodology requires the n − 1
delays to be commensurate, that is, τℓ = ℓτ with ℓ ∈ N∗.
Therefore, the control design at the end requires only n+1
parameters, which are the n stabilizing gains, and only one
delay value τ .

First, we rewrite the characteristic quasipolynomial (7) as
a two-parameter problem:

Fn(λ) = P0(λ; p) +

n−1∑
j=1

Pj(p)e
−jτλ, (13)

where, as mentioned above, the parameters p and τ should
verify the equality pτ = 1. Note that, due to the structure
of the approximation, regardless of the value of n, the



polynomials Pj for j = {1, 2, . . . , n − 1} will always only
depend on the parameter p. Furthermore, each of the
polynomials (including P0) will always be of degree n− 1
in p. Now, since p is real, if λ = iω is a characteristic root,
λ = −iω is also a root, and we can write:

P0(iω; p)Fn(−iω)− eiωτ(n−1)Pn−1(p)Fn(iω) = 0.

Note that after this manipulation, there are no longer
terms in e−(n−1)λτ and we obtain:

F̂n−1(ω; p) = P̂0,1(ω; p) +

n−2∑
j=1

P̂j,1(ω; p)e
ijωτ ,

which will also include a term P 2
n−1(p). Note that the

process can be repeated for the obtained F̂n−1(ω; p) until

we obtain a polynomial in (ω, p). The term P̂j,k denotes
the polynomial Pj obtained after repeating the reduction
process above k-times. Moreover, since the product in
the last iteration will correspond to a product between
complex conjugates, the obtained polynomial will only
have real coefficients and will be of degree 2(n − 1) on
p.

Proposition 3.2. Consider the characteristic function Fn(ω)
given by (7) with n ∈ N∗. Then, the pairs (τ, ω) ∈ R2

+ for
which there exists a root of the form λ = iω of Fn(λ), with
n ∈ N∗, correspond to pairs for which the following holds:

P̂0,n−1(ω, p) + P̂1,n−1(ω, p) = 0, (14)

cos(ωp(ω)) = −ℜ

{
P̂0,n−2(ω; p(ω))

P̂1,n−2(ω; p(ω))

}
, (15)

sin(ωp(ω)) = ℑ

{
P̂0,n−2(ω; p(ω))

P̂1,n−2(ω; p(ω))

}
, (16)

where p(ω) is the solution of (14) in p, and τ(ω) = p−1(ω).

Sketch of proof. First, the need for Eq. (14) comes directly
from the reduction process employed. Next, Eq. (15) and
(16) can be obtained by noting that in the second to last
iterations, one always obtains an equation of the form P0+
e−iωp(ω)P1 = 0 and separating it on its real an imaginary
part. ■

Corollary 3.0.1. Consider the characteristic function Fn(ω)
given by (7) with n ∈ N∗. Assume that τ ∈ (0, τr) =: I,
where τr corresponds to the smallest positive value of τ
such that there exist ω ∈ R+ for which the following holds:

P̂0,n−1(ω, p) + P̂1,n−1(ω, p) = 0,

cos(ωp(ω)) = −ℜ

{
P̂0,n−2(ω; p(ω))

P̂1,n−2(ω; p(ω))

}
,

sin(ωp(ω)) = ℑ

{
P̂0,n−2(ω; p(ω))

P̂1,n−2(ω; p(ω))

}
,

where τ = p−1(ω). Then, all the characteristic roots of
Fn(ω) will be located at C−.

Remark 3.2. Note that Corollary 3.0.1 only tells us that as
long as τ ∈ I the system preserves its stability. However,
it does not tell anything about the uniqueness of such a
stable interval. That is, more intervals Ij = (τ−, τ+) with
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Fig. 3. Root behavior of the chain of three integrators in
closed-loop with the delay-difference based controller
as τ ∈ I := (0, 0.1154) increases.

0 < τ− < τ+ such that the system preserve stability may
exist.

4. ILLUSTRATIVE EXAMPLES

Example 1. (Triple integrator). Consider the case n = 3,
for which after replacing the derivatives in the controller,
we obtain:

P0(λ; p) = λ3 + k2p
2 + k1p+ k0,

P1(p) = −2k2p
2 − k1p,

P2(p) = k2p
2.

The proposed reduction process leads to the following:

F̂1(ω; p) =p4
(
4k0k

2
1k2 − 4k22ω

6
)
+ p3

(
8k20k1k2 + 2k0k

3
1

)
+ p2

(
4k30k2 + 5k20k

2
1 + 4k0k2ω

6 + k21ω
6
)

+ p
(
4k30k1 + 4k0k1ω

6
)
+ 2k20ω

6 + ω12 + k40 = 0.

After numerical computation, the obtained interval is
given by I = (0, 0.1154), with the crossing occurring at
ω = 11.58, as depicted in Fig. 3. Next, let the control
gains k = [40, 38, 11], such that the closed-loop charac-
teristic roots of the delay-free closed-loop system are real
and located at s1,2,3 = {−2,−4,−5}. The corresponding
frequency-domain control law reads:

C(λ) = k̂2e
−2λτ + k̂1e

−λτ + k̂0,

where k̂0 = k0 + k2/τ
2 + k1/τ , k̂1 = −2k2τ

2 − k1/τ

and k̂2 = k2/τ
2, and by choosing τ = 0.1 the spectral

abscissa 1 of the system is located at λ = −1.9± 0.4i.

It is worth mentioning that in Niculescu and Michiels
(2004), contrary to this approach, the control gains tend to
be ”small”. However, their proposed pole placement, while
successfully stabilizing the system, requires the placement
of a multiple root at a ”small” value ϵ → 0, that is, λ = −ϵ
is a root of multiplicity n, which has the drawback of
rendering slow the closed-loop dynamics.

Example 2. (High-order chain & closed-loop time response).
Consider the case n = 4, for which the closed-loop sys-
tem can be represented as in Fig. 4. Consider the gains
k = [24, 50, 35, 10], which will place the delay-free closed-
loop characteristic roots at s1,2,3,4 = {−1,−2,−3,−4},
and let τ = 0.01.
1 the right-most root



Chain of integrators

Delay-difference controller

Fig. 4. Chain of four integrators in closed-loop with the
delay-difference approximation based controller.

The closed-loop system’s time response is depicted in Fig.
5a, where we can observe that the proposed controller sta-
bilized the given chain. Moreover, one thing that is worth
noting is that, as depicted in Fig. 5b, despite the ”high
control gains” produced in the approximations process, the
”overshoot” of the control output stays ”small”.
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(a) Time response of the closed-loop system represented in Fig. 4
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(b) Control output of the system depicted in Fig. 4

Fig. 5. Time evolution of the system’s output (a) and
control’s output (b).

The corresponding polynomials Pj are given by:

P0(λ; p) = λ4 + k3p
3 + k2p

2 + k1p+ k0,

P1(p) = −3k3p
3 − 2k2p

2 − k1p,

P2(p) = 3k3p
3 + k2p

2,

P3(p) = −k3p
3,
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Fig. 6. Characteristic roots behavior for the closed-loop
system with n = 4 for τ → 0.08

leading to the delay interval I := (0, 0.08) with the
crossing at ω = 10.58, as illustrated in Fig. 6. The choice
of τ = 0.01 ∈ I and its temporal response are consistent
with these computations.

Example 3. (More than one stabilizing interval). While the
main objective of the note is to find a delay margin for the
approximation, the interval I = (0, τr) is not necessarily
the only stable interval that exists.

Consider the motivating example from Section 2, where for
n = 2 and k = [10, 7], we have I = (0, 0.5153). However,
further investigation shows that the system preserves
stability for I1 = (2, 2.36). Fig. 7 depicts the evolution
of the system roots, highlighting the existence of three
crossings. More precisely, the first one corresponds to the
first stability loss, namely τr = 0.5153, and the second one
defines the second stable interval, that is τ = 2, and finally
the last one corresponds to the upper bound of the second
interval, that is τ = 2.3636.

One advantage of this phenomenon is the possibility of
stabilizing the system using smaller gains. Nonetheless, it
should be mentioned that, on the one hand, the charac-
teristic roots will not be close to those of the delay-free
version of the system, and, on the other hand, to the best
of the author’s knowledge, there is no analytical result that
allows certifying whether or not a second stabilizing delay
interval exists in the general case.

5. CONCLUSIONS

In this paper, we proposed an effective methodology that
allows computing the delay margin of the delay-difference
approximation of the derivative action in the context of
a chain of integrators. The obtained results were further
verified via numerical examples. Future research efforts
will focus on finding whether or not conditions exist,
such as at least two different delay intervals guaranteeing
stability since, in general, larger delays also reduce the size
of the required gains.
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