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L Univ. Bordeaur, CNRS, Bordeaur INP, IMB, UMR 5251, Talence, F-33400, France
July 4, 2024

Abstract

We propose a new simple construction of a coupling at a fixed time of two
sub-Riemannian Brownian motions on the Heisenberg group and on the free step 2
Carnot groups. The construction is based on a Legendre expansion of the standard
Brownian motion and of the Lévy area. We deduce sharp estimates for the decay
in total variation distance between the laws of the Brownian motions. Using a
change of probability method, we also obtain the log-Harnack inequality, a Bismut
type integration by part formula and reverse Poincaré inequalities for the associated
semi-group.

1 Introduction

Recently, the study of successful couplings for Brownian motion on sub-Riemannian man-
ifolds has received a lot of attention. In the case of the examples discussed below, the
sub-Riemannian Brownian motion consists in a Riemannian Brownian motion on a base
manifold together with its swept area. The construction of successful couplings is thus a
challenging question since one has to couple the Riemannian Brownian motions on the
base manifold in such a way that also their swept area meet. The first construction of
successful couplings on the Heisenberg group or on the free step 2 Carnot groups were
obtained by Ben Arous, Cranston and Kendall [9] and Kendall [15] [16].

These first couplings were Markovian couplings or at least co-adapted couplings. A
main progress was made by Banerjee, Gordina and Mariano in [3] where they constructed
a non co-adapted successful coupling on the Heisenberg group H. Their coupling is
sometimes called a finite look-ahead coupling since they repeat some Brownian bridges
couplings with the use of the future values of one stochastic process. This kind of finite
look-ahead coupling was already proposed by Banerjee and Kendall [4] in some different
hypoelliptic context: the Kolmogorov diffusion; i.e., a Brownian motion on R and its
(iterated) time integral.



The second named author Bénéfice extended the co-adapted Kendall’s coupling to
the case of the curved sub-Riemannian manifold SU(2) in [12] and the non co-adapted
coupling of Banerjee, Gordina and Mariano to the cases of SU(2) and SL(2,R) in [13]
and of higher dimensional Carnot groups in [II]. Another interesting non co-adapted
coupling on H, SU(2) and the universal covering of SL(2,R) was given recently by Luo
and Neel in [18].

Successful couplings are interesting in themselves but have also a lot of analytical
consequences for the regularization of the associated semi-group and for the study of the
associated harmonic functions.

The construction of the finite look ahead coupling in [3] is not so easy. The main
contribution of the present work is to propose a simpler construction for the coupling of
two sub-Riemannian Brownian motions starting from different points but only at a fixed
time. We will consider the case of the Heisenberg group and its extension to the Carnot
group case. Our construction is based on a Legendre expansion of the standard Brownian
motion which, as it was noticed by Kuznetsov [17], is well adapted to the computation
of the Lévy area, see Lemmas 2.1l and We will see that even if the coupling is only
given for a fixed time and thus is not really a successful coupling, we can still deduce
some important regularization properties for the associated semi-group.

A first direct application of successful couplings is total variation distance estimates
between the laws of two Markov processes. This comes from the Aldous inequality which
writes

drv (u7,17) < PIXY # X7) (1.1)
for any coupling (X7, X;) and with uf = L(X}) and pf = L(X]).
For example, in the case of the standard Brownian motion on R"™, contrary to p-

Wasserstein distances with p € [1,00], it permits to describe the regularization of the
standard heat semi-group with a (polynomial) decay. For ¢t > 0, x,Z € R™

|7 — x|
V27t

where pf = N(z,t) is the law of the standard Brownian motion starting in z on R™.
In fact, considering the reflection coupling on R", there is an equality in the Aldous
inequality (L)) and we also have:

dpv (pf, 1f) < (1.2)

dTV (Mfa ”tx) =P (Té\i—ﬂ > t)
with 71z, the hitting time of $|@ — x| for a standard Brownian motion on R starting in

Below, let us denote ;"> to be the law of the sub-elliptic Brownian motion on the

Heisenberg group starting from (xy, x5, z). The first main result of the present paper is
the extension of the total variation estimate (L2]) to the case of the Heisenberg group
and to the case of the free step 2 Carnot groups. We state it below in Theorem [L1] for
the Heisenberg group. The generalization to the case of the Carnot groups is given in
Theorem B2l The case of the Heisenberg group result already appears in [3]. Another
improvement here is that we obtain explicit constants.



Theorem 1.1. There exist two constants Cy,Cy > 0 such that for all t > 0 and all
(21, 22,2) and (T1,Ts, 2) in H,
~ ~ ~ 1 ~ ~
— — Z—z— 5(11%9 — T2T
e () e < M= namlle 3(is = BB)] ) 4

:ut s it — \/I_f t

Moreover:
5v21 5V
Co= M= r Vo < Wf>

As noticed in [3], Theorem [[T] provides the sharp order of decay. In this sense, the
associated coupling is called efficient. It is also noted in [3] that any Markovian or co-
adapted coupling can not reach the sharp estimate when the initial point are in the same
fiber, i.e., when (21, Z2) = (21, x2). The coupling proposed in [1§] is even actually mazimal
when the initial points are in the same fiber; i.e., similarly to the reflection coupling in
R™, it produces an equality in the Aldous inequality (LTI).

The second main type of application of successful couplings are gradient estimates for
the associated semi-group and for harmonic functions. A direct application of the total
variation estimates first leads to the following L*° gradient bounds. It is stated here for
the Heisenberg group. The case of the free step 2 Carnot groups will be given in Corollary

41l
Corollary 1.2. For any bounded measurable function f on H, and anyt > 0:

2C,

IVoPiflloo < i

1l (1.4)

and

2{ 20,

1ZPflloe < [ 1o (1.5)

In order to obtain stronger gradient inequalities, we may use a change of probability
technique. The idea is to construct couplings with probability one at a given fixed time of
the two processes. The price to pay will be to make changes of probabilities for one of the
process. The distance between semigroups will be measured by this change of probability.
We first derive a log-Harnack inequality for the semi-group, see Theorem (4.6l We then
establish in Theorem .7 a Bismut type formula; i.e., an integration by parts formula
for the derivative of the semi-group. We deduce some reverse Poincaré inequalities for
p > 1, see Theorem [L.8 and a weak reverse log-Sobolev inequality, see Corollary 4.9 In a
different hypoelliptic setting, this change of probability method was investigated at least
by Guillin and Wang [14] and by Baudoin, Gordina and Mariano [8] to study some kinetic
Fokker-Planck equation.

Another approach to obtain these gradient estimates is through the generalized curvature-
dimension criterion developped by Baudoin and Garofalo [7]. Step 2 Carnot groups are
examples of non-negatively curved sub-Riemannians manifolds with transverse symme-
tries and thus a reverse log-Sobolev is known to hold, see Proposition 3.1 in [5]. See also



[6] where the reverse Poincaré inequality and its constant is studied on general Carnot
groups by analytic methods. A general stochastic method which also provides local esti-
mates can be found in [I], but the constants are not explicit.

In order to enlighten the simplicity of the method, we chose to present first the con-
struction of the coupling and the total distance variation estimate in the case of the
Heisenberg group and to investigate only in a second time the case of the higher dimen-
sional step 2 Carnot groups on R”, n > 3. The reason is that some small complication
arises for the Carnot groups. The sub-Riemannian Brownian motion consists of n inde-
pendent 1-dimensional standard Brownian motions together with all their @ Lévy
areas. The main difference is that in this situation the vertical space is not anymore
1-dimensional. It is identified with so(n) and we have used some Wishart matrices to get

a solution of Equation (B.5); see Proposition B.11

The outline of the paper is the following. In Section 2, we quickly describe the
Heisenberg group and its sub-Riemannian Brownian motion. We then describe their nice
expansion with the use of the orthogonal Legendre polynomials. Finally, we provide the
proof of Theorem [L. 1] for the total variation distance on the Heisenberg group. The aim of
Section 3 is to extend the result to the case of the higher dimensional free step 2 Carnot
groups. This is done in Theorem Section 4 is devoted to the gradient estimates. We
first prove the L™ gradient estimates of Corollary and of Corollary [4.Il We then turn
to the change of probability method. We first obtain a log-Harnack inequality for the
semi-group in Theorem Finally, we provide the Bismut type formula in Theorem [4.7]
its application in term of reverse Poincaré inequalities in Theorem .8 and reverse weak
log-Sobolev inequality in Corollary [£.9. We finally deduce estimates of the gradient on
the heat kernel in Corollary .10

2 Description of the Brownian motion on H

2.1 The Heisenberg group

The Heisenberg group can be identified with R? equipped with the law:

1
(1,19, 2) % (2, 25, 2') = (:cl + @i,z +ah, 2+ 2 + 5(3:1:6'2 — 552371)) .

For our purpose, it will be convenient to identify sometimes R* with R? x R and to write
the law as

1
(x,2) % (z,2') = (:p+x',z+z'+§x-x'),

where for z = (z1,x2), 2’ = (21, x2),

r- 2 = xrh — xoxl.

The left invariant vector fields are given by
X1<f)($1,x2, Z) = %‘tzof«xlvx?v Z) * (t,0,0)) = (8331 - 362_28'2) f(xlux% Z)
XQ(f)(xlax% Z) = %‘tzof((l‘lal‘% Z) * (O,t,O)) = (8962 + %82) f($17x272)
Z(f)(l’l,l‘g, Z) = %‘tzof((l‘lax%z) * (anvt)) = azf(l’l,l‘g, Z)

4



Note that [X;, Xs] = Z and that Z commutes with X; and X,. The vectors fields
X1, X5 are called the horizontal vector field whereas Z is called the vertical vector field.

2.2 The subRiemannian Brownian motion on Heisenberg

The standard (half) sub-Laplacian on the Heisenberg group is given by L = (X7 + X3).
This is a diffusion operator and it satisfies the Hérmander bracket condition and thus the
associated heat semigroup P, = e’ admits a C* positive kernel p;.

From a probabilistic point of view, L is the generator of the following stochastic
process starting in (z1, xe, 2):

1/ [t !
s e e (B g () pras - [ i) )
0 0

1 1 t t
— (:cl+Bg,x2+B§,z+§(xlB§—xQB§)+§</ B;ng—/ BgdB;»
0 0

where (B}, B?);>o is a standard Brownian motion on R

It is easily seen that (B;);>o is a continuous process with independent and stationary
increments on H. We simply call it the Heisenberg Brownian motion.

1 t t
A== (/ BldB? —/ deB;) (2.1)
2 0 0

is called the Lévy area of the 2-dimensional Brownian motion.

The quantity

Identifying R? with R? x R again, we will write lng’Z) = (X4, ).

2.3 The Carnot-Carathéodory distance

The sub-Laplacian L is strongly related to the following subRiemmanian distance (also
called Carnot-Carathéodory) on H:

1
deaa') = int [ 3(0lt
7 Jo

where v ranges over the horizontal curves connecting v(0) = a and v(1) = @’. We remind
the reader of the fact that a curve is said horizontal if it is absolutely continuous and
F(t) € Span(X;(y(t)), Xa2(v(t))) almost surely holds. The horizontal norm | - |, is an
Euclidean norm on Span(Xi, X») obtained by asserting that (X, Xs) is an orthonormal
basis of Span(Xj(a), X2(a)) at each point @ € H. Finally the horizontal gradient Vy f is
(X1 )Xy + (Xaof) Xo.

The Heisenberg group admits homogeneous dilations adapted both to the distance
and the group structure. They are given by

dily (21, 29, 2) = (Az1, Awg, A22)



for A > 0. They satisfy dy(dily(a),dil\(a")) = Ady(a,d’) and, in law:

1 t t aw 1 1 1
dil, (x0,x2, 1 / X1dx? - / xzax!) ) e (x0 x2, L / Xlax? - / x2ax!)) .
Vi 2 \Jo 0 2 \Jo 0

The distance is clearly left-invariant so that trans, : ¢ € H +— p % ¢ is an isometry for
every p € H. In particular
di(a,d’) = dy(e,a % a')

with e = (0,0,0). Another isometry is the rotation roty : (x1 + ixe,2) € CXx R=H —
(e(z1 + ix9), 2), for every 6 € R. Since the explicit expression of dy is not so easy, it is
often simpler to work with a homogeneous quasinorm (still in the sense that the triangle
inequality only holds up to a multiplicative constant). We will use

H:a=(z1,29,2) EH> (/22 + 23+ 2| € R,

and the attached homogeneous quasidistance dy(a,a’) = H(a'a’). It satisfies

c tdy(a,d) < du(a,d) < cdy(a,d’) (2.2)

for some constant ¢ > 1. We finally mention dy((0,0,0), (z1,72,0)) = /22 + 23 and
dp((w1, 29, 2), (21, 02,2 + h)) = 24/7|h|.

2.4 The description of the Brownian motion on H with Legendre
polynomials

Let T > 0 and consider the scalar product defined for f, g € C([0,T],R) by

(fig)= /0 f(t)g(t)dt.

Take Qy to be the associated normalized orthogonal polynomials; i.e., such that ||Q]|* =

1. By dilation and translation, one sees that

Qulz) = \/ng <_1+2%)

where (Py); are the standard (normalized) Legendre polynomials, which are orthogonal
for the Lebesgue measure on [—1, 1].

We first consider the following representation of a standard one-dimensional Brownian
motion (By)o<i<r starting in 0. This representation is somehow close to the standard
Karhunen-Loéve decomposition of the Brownian motion but as noticed in [17], it is well
adapted to the computation of the Lévy area.



Lemma 2.1. Let ()r>1 be a sequence of independent and identically distributed random
variables of law N'(0,1). Define

B, = ng/O Qr(s)ds, 0 <t <T. (2.3)

k>0

Then the process (By)o<i<t 1S a standard Brownian motion on [0,T].

The proof is done in [I7], but let us recall the main ideas for the reader’s convenience.

Proof. Let T' > 0 and let (B;)o<i<r be defined by (2.3)). The process (B;)o<i<r is clearly
a centered Gaussian process. To prove it is a standard Brownian motion, compute its
covariance: for 0 < s,t < T

E[B,B] = ( /0 t Qk(u)du) ( /O S Qk(u)du)

k>0

= Z(ﬂ[&t]’ Qr) (Ljo,s), Q)
k>0

= (Lo, Lo,s) = S AL

where (-, -) denotes the usual scalar product on L?([0,7]). The result follows. O

We turn to the computation of the Lévy area.

Lemma 2.2. Let (§)r>0 be a sequence of independent and identically distributed random
vectors with common law N (0, I5). Write & = (§,&2) and for 0 < ¢t < T andi = 1,2
let

Bi=Y ¢ /0 Quls)ds. (2.4)

k>0
Then (B}, B))o<i<r is a standard two-dimensional Brownian motion and its associated
ts Pt J0<t<

Lévy area A; := %(fot BlB? - [} BgdB;) at the given time T may be written as

Ar =T o &en (2.5)

k>0

with ] ]
= = . k>o. (2.6)
2v/4(k+1)2—1  2y/(2k + 1)(2k + 3)

As before the proof is done in [I7], but we shall recall the main ideas for the reader’s
convenience.

Proof. With the notation of Lemma 2:2]

T T t
/0 lede = Z fiﬁfck,l with C,l = /(; <A Qk(S)d8> Ql(t)dt

>0



Now by integration by parts, for k,1 > 0,

e ([ o) ([ o) -

Since Q)i is a family of orthogonal polynomials, one infers that for (k,l) # (0,0), cx; =
—cy, and thus
cpy=0if [k —Il|>20r k=1>1.

Therefore

T
/ BlAB? = coofd&+ 3 chni1(§h€hr — EniD).

0 k>0

and thus the Lévy area at the final time T writes:

Ar = Z Ck,kJrl(fl};gngrl - fliJrlflz)'

k>0

The result follows by an explicit computation of the constant cj j1. O

We recall that here in the case of the Heisenberg group:
&+ Gt = Giipr — &b (2.7)

As a direct application of Lemma[22] the Brownian motion on H starting in (x1, z, 2)
at time 7" may be represented by

1+ \/Tfé
By = zg + VTE
2 YL (0162 — 2260) + T o (616201 — E41ED)

or equivalently with x = (1, z2),

x—i-\/Tfo
[BT — \/T .
Z+7$'§0+T2k20akfk'§k+1

2.5 Proof of Theorem 1.1

Before we turn to the proof of Theorem [I.1], we recall the standard estimate for Gaussian
vectors on R, d > 1 (with the same identity covariance matrix).

Lemma 2.3. Let d > 1 an integer, m,m’ € R%, there ewists a random couple (X,Y)
whose marginals are Gaussian random variables N'(m, I3) and N'(m/, 1;) and such that

P(X £Y) < <%) AL

We provide just below a proof of Theorem [LT] with slightly weaker explicit constants
C} and Cs. The slightly improved constants will be obtained in Remark

8



Proof of Theorem[L1. For any choice of two Heisenberg valued subRiemannian Brownian
motions ((X¢, 2¢))e>0 and ((X3, 2))e>0 started respectively at (z,z) and (Z, Z), we have

dry (45 157) < P ((Xr.20) # (K. 21). (28)

Consequently, to establish the estimate (L3) it is sufficient, for each T' > 0, to find
(X%, 2t))i=0 and ((Xy, 2t))e>0 started respectively at (z, z) and (Z, 2), satisfying

o= ol , ,[E= 4o &

P ((XT,ZT) £ (XTV%T)) <C T h

(2.9)

for C'y,Cy > 0 not depending on 7.

To perform the construction of the coupling, we construct the Brownian motions
(Xt)eeo,r) and (Xi)sepo,r] With Legendre polynomials as in Lemma 2.1

So let us fix T > 0. We write

00 t
VO<t<T, X,=xz+ B, with Bt:Z§k/ Qr(s) ds, (2.10)
k=0 0

1
where (fk = ( g’; )) is a sequence of independent R2-valued random vectors with
k k>0

law N(0,15). We do the same with (Xt)ogth, using independent R2-valued random

variables (ék> with law N (0, I). Equation (Z3) will be obtained thanks to a well-
k>0

chosen coupling of (&), and (ék) .

= k>0

At time T, using Lemma 2.2] we get

1

Xr =z + VT&, ZT=Z+§\/T$'50+TZ%&'&+1, (2.11)
k>0

- - 1 - -

Xr =i+ VTé&, zT:z+§ﬁ:z~§0+TZak§k.ng, (2.12)
k>0

where for k£ > 0, ay, is given by (2.0]).

From (ZII) and ([ZI2), we find that the coupling equation (X7,zr) = (X7, 27) is
equivalent to

50—~§o =222 o )13
z—%—i—?(z-&]—i’fo) :Tk>0ak<§k'§k+1—fk'§k+1>- (2.13)

T—I

Replacing éo by & + v in the second equation we get

—(C+(z—1)- (@fe - \/Tao&) =Tagg - (G- &) +TY (gk o1 — & - §k+1> :
k>1

(2.14)



where ( = Z—z — 1(2- %) is the last coordinate in the Heisenberg group of (z, 2) ! - (%, 2)
We are in position to start the coupling. We take

& =& forall k¢{0,3}. (2.15)

so that we are left to couple

(%0.%0).  (£3.83). (2.16)
If (2.15)) is satisfied we have the simplification

Taglo - (& — &) + TZ ay, (ék 1 — &k fkﬂ)

E>1
=Ty (& & —&- &) +Tas (& &= & &)
=T\/a3+ o3 (53 —§3> : Lﬁ-
Define

SR _ ol
W=—-(+ (ZL‘ l‘) ( 2 &o ﬁa0§1> eER, V= \/m € R (217)

With these definitions, Equation (214 becomes

T\Jo3+a3 (&-&) V=W, (2.18)

where the random vector V' is of law N (0, I5) and is independent of W. Counsider (E1, E»)
to be a direct orthonormal basis of R?> and such that F; is proportional to V. Writing
U=U'E, +U?E,, and since E, - £, =0 and E; - E5 = 1, the solutions of equation

U. V=W (2.19)
are precisely the vectors U € R? such that
2 _ _ w .
V12

Note that nothing is imposed on the coordinate U'. A solution of (2.14)) is thus obtained
if
w

1
— Es.
T3 + a2 [Vl

We also denote (F, Fy) to be the direct orthonormal basis of R? and such that F} is
proportional to & — z. We emphasize that W depends only on (£, F2) (and on (£, F5))
and thus we will also take (&, Fa) = (&, F2).

Now by Lemma 2.3 given the values of & for £ € N\ {0, 3} and the value of (&, F3),
it is possible to construct a coupling of the three dimensional Gaussian random vectors

({€o, F1), &) and ((&y, Fy), &) such that

& — &=

(2.20)

o 1 ()7 -z 1 Wi
P ((XT,zT) # (X1, 20)[ (k) rern 0,31 <f07F2>> < o ( JT * T\/agTagHVIb)

10



and thus since V and W are independent

P((XT,ZT)#(XTJT)) < 1 <HSL’—3~7H2 . 1 [E{ 1 ][EHWH)

V2m VT T2+ a2 LIV,

Now since V' is a random vector with law N(0, I5):

I AREES

Denoting & = —= . (@ge — \/Taofl) ~ N(0,1;) and with the same orthonormal

T
77745

basis (Fy, Fy) of R?:

W) < I+ VT 5+ od E |- 2) &

= ¢+ VT 5 + 0 [~ 2l E[I(, o))

T /2
SR ERVEAVENE

since (Fy, &) ~ N(0,1). Thus the conclusion (I3) holds with

1 1 T 1 2 1
Cy = T /225 and O = — + —C:—(1+\/30).
2 \/27T\/04§+oz§\/g ! V2o 3 ° Vor
The constants given in Theorem [T will be obtained in Remark 2L O

Remark 1. The above explicit constant Cy and Cy are not optimal. In some sense, we
try to use the less noise possible in the coupling. It should be possible to decrease their
values by allowing more random Gaussian vectors to be different in (2.15).

Remark 2. Using the left invariance and the rotational invariance of the Heisenberg

group, it 1s enough to consider the total variation between the measures Mgfl’o’z) and Mgg,o,o)_

In this case, we can take
E=e=06,=¢6 and& =& fork=1and k > 4.
so that we are left to couple
(6,665, (£.6.8).
By rewriting carefully the above proof, one can then replace the constant

1 1 1
7 ZI}: by E 2 N2 2 N2
V0 + g V]l \/<041 + a3) 27 + (a5 + a3)Z3

where Zy and Zy are two independent N'(0,1) random variables. In fact, in view of
Remark[d, if one allows to couple,

(6.(6.6). (&6, &.6).-) . (6.8, @8.@&&)...),

11



the previous constant may even be replaced by

1

\/ Zk21 Cizi

where (Z,)n>1 is an independent sequence of N'(0,1) random variables and where ¢* is
the sequence:

E

02:(a%+a§,a§+a§,ai+a§,a§+a§,a?+a§,a§+ag,...)
_ 1 1 1 1 1 1
S \2x3xT'2x5x9°2x9x13"2x11x152x15x19"2x 17x21"" "
111 1 1
>y, = = =, =, =
SRS I TAESE A
with 1
WZE

and since one has for k >0

1
(2k +1)(2k +5)°

of +ady, =5 (2.21)

This gives

E ! < ﬁm[sl”z}<i:5m

\/ > k1 7 ™7 : ™7 T

where % ko1 =7 has the same law as S% defined in Lemma [{.4) and using [@3T) in
this lemma.

The announced slitghly better constants ensue:

21 1 [ 2 1 2
Y

- omyT V21 Vor /T

3 Distance in total variation of subelliptic Brownian
motions in Carnot groups

The aim of this section is to extend Theorem [I.1] to free step 2 Carnot groups. We start
with several definitions and lemmas.

12



3.1 Some preliminaries

For n, m positive integers, denote by M,, ,,(R) the set of matrices with real entries, n lines
and m columns. Also denote by so(n) the set of skew-symmetric matrices of size n. If
u,v € Mp1(R), let u® v :=wv' — vu' € so(n), where v* € M ,,(R) denotes the transpose
of v.

In the sequel we will identify M, ;(R) with R™.

Remark 3. In the special case n = 3, 50(3) is usually identified with R® via the linear
map

Y R® — 50(3)
b —> c 0 -—a '
-b a 0

On the other hand, R? is endowed with the usual vectorial product A. In this situation, it
can be checked that for u,v € R?

Plunv) =[(u), )] = —uow. (3.2)

In other words, the map v is an isomorphism between the two Lie algebras (R*, \) and
(50<3)7 ['7 ])

Definition 3.1. Forn > 2, the free step 2 Carnot group G,, is the vector space
G, :=R" x s0(n) (3.3)

endowed with the group operation
1
(u, A) x (v, B) := (u+v,A+B+§u®v>. (3.4)
Remark 4. The Carnot group Gy is isomorphic to the Heisenberg group H.

Consider an integrable random variable W taking its values in s0(n), and for m > n+2,
Vi,..., Vi, m independent random vectors taking their values in R", with law N(0, I,,)
and independent of W. Our next aim is to solve in Uy,..., U, random variables with
values in R", the equation

d UoVi=W. (3.5)
k=1

Clearly the solution is not unique. We will make a specific choice which will together give
uniqueness and allow explicit computations. Letting (eq,...,e,) be the canonical basis
of R* = M,,1(R), we have the canonical decomposition

W = Z Whleel = 3 Z Whe, ®e;, since W= —-W". (3.6)

1,7=1 1,j=1
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We will denote

Ue=)Y Ule;,  k=1....m, (3.7)
j=1
VkZZV}gej, k=1,...,m, (3.8)
j=1
Ut Ul Uk
Uz U2 U2 |
% = : : - (Ulg)gjgm 1<k<m ’ (3.9)
up Uy Un,
ViV Vo,
Ve ovE e V2 i
V= : : - (Vk)lgz‘gn, 1<k<m (3.10)
vy Vo
and
0 WLz oWl ... e
—W1’2 0 e . W2,n
V= : : = (W) icn 1ejen (311)
: : - - Wrn-bn
_len ... P _anlvn 0
Equation (B.5) rewrites as
UV —VU =W (3.12)

Equation (3.12)) is sometimes called a T-Sylvester equation in the literature. The next
proposition provides a particular solution and gives some estimates when m > n + 2.

Proposition 3.1. A solution to Equation (3.1) is given by

U' = _%W (v (3.13)
For 0 < q < 2, it satisfies:
1 g
1 < t\—1)2 q
2|17 < 5 [t (/7)) Ell 1, (3.14)

where ||% || and ||#|| denote Hilbert-Schmidt norms.

In particular, it satisfies

(121 < grm—rmgyE U7 (3.15)
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Proof. We first note that we have a particular solution of Equation (8.12) if
1
VU = —57/. (3.16)

We easily check that % given by (3.13)) is a solution of (B.16]) and thus also of (B.5).
From (B.13) we get

1

U = iw (rv) . (3.17)

This yields

2| = o @UD) = %\/tr (W (v W), (3.18)

On the other hand, ¥ is independent of % and ¥ ¥#"' is a standard Wishart matrix
W(n,m) of size n x n and with m degree of freedom and thus can be written in singular
value decomposition as

VYV = SDP S (3.19)

where . and Z are two independent random variables taking their values respectively in
O(n) and M,, ,(R), . having uniform law and 2 being diagonal with positive eigenvalues
0<d; <...<d,. From this and with the conditional Jensen inequality since ¢ < 2, we
get:

W) = £ (00 )| < [w st ]

g

2

= E [tr (ywwtyt@”)%} =E (i d eIV Wﬂsﬂei>
1=1

N

- E|E (Zdﬁegywwtytei) Y
1=1

< E (E [Z A2t S WW S e W, @D
i=1

Now for all 1 <i <n,
Ele;s W' S e| W, D] = %tr(V/Wt)
since . is uniformly distributed and independent of #" and 2. We get from this
PE (|7 17) < 7 [ur e (772

and Inequality (3.14)) follows since tr (272) = tr <(7/ v t)fl) is independent of #.
By [19] Ezample 3.1 we have

Ele (1)) = (3.20)

m—-—n-—1

and Inequality (B.15]) directly follows. O
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3.2 Distance in total variation of two Brownian motions in Carnot
groups

Theorem [[.1] yields an upper bound for the total variation distances between the laws of
two subRiemannian Brownian motions in H = G, at time 7' started at different points.
The aim of this section is to extend the result to G,-valued subRiemannian Brownian
motions for all n > 3.

Definition 3.2. A subRiemannian Brownian motion in G, started at (x,z) is a process
(X%, 2t))i>0 such that (Xi)i>o0 is a R™-valued Brownian motion started at x and (2;)i>o is
the so(n)-valued process satisfying

1 t
Vit>0, zt:eré/XS@dXs. (3.21)
0

Theorem 3.2. ForT >0 and (z,z) € G, let ugiv’z) be the law at T' of the subRiemannian
Brownian motion started at (x,z). We have for all T > 0 and all ((z, 2),(2,2)) € G2,

12—z -1z 01
T

Zi‘—l‘”g

dTV (Mg,z)’ ug’g)) < Cl (n) || \/T + CQ (n) (322)

where

Co(n) = iﬁ (wm in) and Ci(n) 20=D o). (3.29)

1
= ——+\ =
Remark 5. Theorem [3.2 also applies when n = 2, i.e., in the case of the Heisenberg

group. In order to compare the constants in Theorems 1.1 and [32, note that ||Z — z —

Proof. For any choice of two G,-valued subRiemannian Brownian motions ((X, 2¢))i>0
and ((Xi, 2t))i>0 started respectively at (x, z) and (Z, 2), we have

dry (45,157 < P ((Xr20) # (K. 21). (3.24)

Consequently, to establish the estimate [B22)) it is sufficient, for each T" > 0, to find
(X%, 2¢))i>0 and ((Xy, 2t))e>0 started respectively at (z, z) and (Z, 2), satisfying

12— 2z— 1z 07|
T

|7 — [l

JT + Cs(n)

P ((XT,ZT) ” (XT,zT)) < Ci(n) (3.25)

Adopting the same strategy as in Section 2] we construct the Brownian motions

(X;)»0 and (X;)i=o with Legendre polynomials.

Fix T' > 0. Similarly to Equation (2.4]) but now in dimension n, we write
o0 t
VO<t<T, X,=x+B, with B, = ng/ Qi(s) ds, (3.26)
k=0 V0

16



3
where | & = : is a sequence of independent R™-valued random vectors with
law N(0,1,). We do the same with (X;)o<;<7, using independent R"-valued random
variables <Ek> with law N (0, I,,). Equation (8.25) will be obtained thanks to a well-
k>0

chosen coupling of (&), and (Ek)k .
> >0

At time T we get

1

XT=$+\/T§07 ZT:Z+§\/T37@§0+TZ%@@&+1, (3.27)
k>0

~ - 1 - - -

X = &+ VTé, 2T:2+§ﬁi®§o+TZak§k®§k+1, (3.28)
k>0

where (ay)r>o is defined in (2.6]).
From (327) and (328), we find that the coupling equation (X7,z2r) = (X7, r) is
equivalent to
fo—& = et

z—Z+ g <37 ©&H—TO éo) Z Qy, <ék ® &1 — & @ fkﬂ) . (3.29)

Replacing & by & + “’“—\/_:Tf in the second equation we get

—(+(@—-1)O (750 —VTapés | = Tagg® (& —&)+T Y o (€k © &1 =&k O §k+1>
k>1
(3.30)
where ( =2 — 2z — %x ® . We are in position to start the coupling. As in the previous
section we let m > n + 2, that we will choose at the end. We take

& =& forall k¢{0,3,6,...3m}, (3.31)

so that we are left to couple

(§07 50)7 (637 63)7 cee (€3m7 53771) (332)
If (B.31)) is satisfied we have the simplification

Tapd © (& — &) + TZ Qg <ék @& — &, O 5k+1)

k>1

=T zm: (a?,k—l (fsk—l © & — &1 @ §3k> + ay, (g{%k © &E3pr1 — 31 O §3k+1>>
k=1

hE

(g?,k - §3k> O T (ovgk€srr1 — @sk—1E36-1)

i

1

NE

T

1

x g€kt — Qsp—1&3K—1
2 2
Ty agy, +agp_y (fsk - fsk) ® = - .
\/ Q3+ 3
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Define
W=—-(+@-2)© (gfo - ﬁao&) ; (3.33)

o3kE3k4+1 — 3k—183k—1

)
2 2
\/ Qs+ Q3

With these definitions, Equation (3.30) becomes

ZT\/ gy + ag (éﬂk - fsk) OVe=W, (3.35)
K1

and the random vectors Vi, 1 < k < m are independent with the same law N (0, I,).

Vi =

k=1,...,m. (3.34)

Let (Ui, ..., U,) be the solution given by ([B.I3]) to Equation (B.5) Z U @V =W.

k=1
Using (B.35) we see that a solution to (3.30) is given by
5 U, R
€3 — Eap = i = U, k=1,...,m. (3.36)
T\fag, + a3,
Define B R
&1 &1 Uy
. . U.
£ = £.2 ;&= 5.2 LU= 7 (3.37)

with the U, defined in (330). The random vectors &, é and U take their values in Mym1(R)
and &, ¢ have law N(0, I,,,,). Recalling the system (B.29), we obtain with (3.36]) that

x—7 ~ -

)P (E-c£0). 3.38
) rp(E-ez (339

Observing that the random vector U is independent of &, and using Lemma 2.3] we get

the estimate

P <(XT,ZT) + (XT,fT)) <P (éo — &0 #

Iz~ 3l , LT

o ordl (3.39)

P <(XT, 2r) # (XTJT)> <

1

/.2 2
Qg + g,
3k 3k=1/ 450

. On the other hand using (2.6]) or (2.21)),

By (2.6]) the sequence () x>0 is decreasing, consequently the sequence

Efl[U1]

2 2
T/ oz, + a3, 4

is increasing and E[||U]|] <
we have for k > 1,

1

—————— = 2(6k — 1)(6k + 3) < 8(3k + 1)*. (3.40)
ag, + a3,
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Recalling that by Proposition 3.1 and working for simplicity with ¢ = 2,

EUIF] = EN2 ] < s E (W]
we get )
EI017] < ot 7] (341)

On the other hand, writing from (3.33])

W=-(+(@x-2)0 <§fo— ﬁao&) )

we get
2
8 vT -
[E[HWHQ] =KIP+E|||(z—2) o (750 — VT,
We will do the computation in an orthonormal basis (£, ..., F,) of R” such that t — % =
|z — Z||2F:. Since oy = ﬁ we have gﬁo — VTaé, = \/géo where éo is a R™-valued

Gaussian random variable with law N(0, I,). Writing & = . & E; we obtain
i=1

(z—2)© (@fe - \/T%gl) = \/§||$ — 7|2 ;&Z)El © E;.

The matrices Ey ® E; = ) E! — E;E! being orthogonal each with norm /2 we obtain

VT ’ 2T (n — 1)
- z _ n—
Elll(x—2)©® <7§0—\/Toz0§1> = ||:E—x||§T
We get
2T (n — 1) _
EQWIE] = ¢l + =—5—ll= = &[5 (3.42)
Using this estimate in (3.41]) yields
~ 2(3m + 1)? s 2T(n—1) .
E[|U|1%) < — |z -z ) . 3.43
101] < s (el + 2= - i (3.43)
We can easily prove that the best choice for an integer m is
2
2(3 1) 44/2
m =2n+1 implying % = (6\/ 2n + T\/”_> . (3.44)

So together with (3.39),

P <(XT7 zr) # (XT,fT)) <

lz =22 | 1 4 2T(n — 1) i (3.45)
ey L (ovie ) (Hcrm/—3 Hsc—rclb)-

19




We obtain the wanted inequality (3.22]) with

Ch(n) = % (6\/ﬁ + %) and  Cy(n) = # + @@(n). (3.46)

4 Application to gradients inequalities

4.1 Direct estimates for the horizontal and vertical gradient

Similarly to the case of the Heisenberg group, it is possible to define the left-invariant
vector fields on G,. The horizontal vector fields are defined for 1 < ¢ < n by

d "l
= E”:Of((l‘, Z) * (t@i,O)) = (6% — Z 51‘]63”> f(x’ z)

J=Lj#

Xi(f)(z, 2)
and the vertical vector fields for 1 <7 < j < n by

Zis(P) ) = G J2) 5 0160 ) = 0. (2, 2)

with 2 = >, i, zi;6; © ¢; and where in the definition of X;, if i > j, we set 0,,; =
=0,
It is also possible to define the Carnot-Carathéodory subRiemmanian distance on G,

by : X
do(9.9) =t | (Ol
0

where ~ ranges over the horizontal curves connecting v(0) = ¢ and (1) = ¢; ie.,
absolutely continuous curves such that §(t) € Span{X;(y(¢)),1 < i < n} almost surely
and where | - |y is a Euclidean norm on Span{X;(y(¢)),1 <1 < n} obtained by asserting
that (X31,...,X,) is an orthonormal basis in each point. As for the Heisenberg group,
these Carnot groups admits homogeneous dilations adapted both to the distance and the
group structure given by

dily(z, 2) = (A\z, A\%2).

Finally the horizontal gradient Vyf is > " | X;(f)X; whereas the vertical gradient is
defined by V[,f = Zl§i<j§n Zi,j(f)Zi,j-

The total variation estimate implies the following L*° gradient bounds.

Corollary 4.1. Let G,, be the free step 2 Carnot group of of rankn > 2. For any bounded
measurable function f on G,, for any g € G, and t > 0,

IV,B (9] < 2(“};”)||f||oo (4.1)
and
IVopi (o)l < 220 gy (12

where C1(n) and Cy(n) are the constant appearing in Theorem[32 (or[11).
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Proof. The proof is standard. Let f be a bounded measurable function on G, and let
9,9 € G,.

IP.f(9) — Puf(3)] = |E |£(B) - (B
= [E[£(BY) = B g |
<21/l P (Bf # B7). (4.3)
Now since there exists a constant C' > 0 such that

. . . 1 . .
1T — || < doc(g,g) and ||C]| = |2 — 2 — 2% © 7| < Cdee(g,9)?,

by Theorem (or Theorem [L.T)), one can construct a coupling of BY and BY such that

O dectsnd) + S oo, 57

P (&1 ) <

Dividing by doc(g, ) and letting § — ¢ gives the horizontal gradient inequality (4]).
When = = z, the above estimate writes:

(B £8) < 2z
and the vertical gradient inequality (LH) follows in a similar way. O

4.2 Coupling with change of probability: application to reverse
Sobolev inequalities

In this section we will construct couplings at time T" with probability one, but the price
to pay will be to make changes of probabilities for the second process. The distance
between semigroups will be measured by the change of probability. The main results are
a log Harnack inequality (Theorem [.0]), an integration by parts formula (Theorem (.7
for the spatial derivative dPrf of the semigroup Prf of the Brownian motion and reverse
Poincaré or Sobolev inequalities (Theorem (.8 and Corollary [4.9) and some estimates of

the gradient of the heat kernel (Corollary [£.10]).

The notations are the same as in the previous section. The processes (BY); := (X, 2¢)¢
and (BY), := ((Xy, %)): started respectively at g = (,2) and § = (&, 2) are defined with
Equations (8:26), (3:21) and (3:27). The sequence (&x)r>0 will be identically distributed
will law A(0, I,,) under the probability P. The difference will be that we will look for
a sequence (& )x>o which is independent and identically distributed with law A(0, I,,)
under another probability P(g), and so that at time T, a.s. B} = B.

Fix K€ {n+1,...} U{oo} and let
Jg={leN, <K} if K<oo, Jyo:=N and Jj:=Jg\{0}V K.  (4.4)

We will take )
& =& forall k¢&3Jk (4.5)
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so that we are left to couple 3
(& &), L€ 3Jk. (4.6)

Now we consider the sequence (Vi)ress defined in (3.34), of independent random vectors
taking their values in R", with the same law N (0, I,,). We solve in (Uy)ress the equation

Z U, 0oV,=W (4.7)
keJs

with W given by Equation (3:33). Then we will choose (£;)=0 such that almost surely

¢ — = = U 48
&0 — &o T 0 (4.8)
and
* i Uk 2
VkeJg, §p—Ex= =: Ug. (4.9)
T\/ag), +ag,_y
We denote
Yk € Jk, kaez, Uy = Z Ule;, (4.10)
1
B = (4.11)
Ty g, + g
(Y s
V="k=|% U = Uk = (BrUp)1<j<n, ke (4.12)
B 1<i<n, keJ

the upper index representing the lines and the lower index representing the columns.
With these notations and similarly as before, Equation (4.1 is equivalent to

UV — VU =W (4.13)

with # defined by (B.1I). In particular, we have a solution of Equation (4.7) if

~

VU = —%7/. (4.14)

The n X n matrix

Z Vka (4.15)

is a.s. well-defined since E [Z 7 r(Vi, V)| < oo (the computation ([B.40) proves that
k

By is of order k). It is a.s. symmetric positive since K > n. Consequently it is invertible,
and a solution to (AI4) is given by

Ut = -~V YY) W, (4.16)



Let us make a specific choice of probability space, which will be very convenient for
our computations. This probability space is (€2, ., P), where Q := (*(R") is the Hilbert
space of square integrable R"-valued sequences, 7 is the smallest o-field for which the
projections are measurable, completed with respect to the probability measure P for
which the canonical projections

ng_>an

W= (Wo, W1y .+, Wiy --.) = W =: E(w)

are i.i.d. and N'(0, I,,). We will need to split € into two supplementary orthogonal spaces:
Q =, @ Q. Let us now describe these spaces. For k > 1 and 1 < i < n, we denote by
ei the element of Q which satisfies & (el) = 0 if ¢ # k and &(e}) = e;, the i-th element of
the canonical basis of R”. Letting (fi,..., f,) be an orthonormal basis of R” such that
|z — Z||2f1 =z — &, for 1 <7 < n we denote by f{ the element of Q such that & (fi) =0
if £ # 0 and &(fi) = fi. Notice that the (el), k¥ > 1, 1 < i < n together with the
(f§), 1 < i < n form an Hilbertian basis of  and that the random variables (e}, w),
(f§ w) are i.i.d and A7(0,1). Define

Q, =Span{f;, €, ke€3Jy, 1<i<n}, (4.17)
Q= Qy =Span{fi, 2<i<n}@Span{ ¢}, k¢ 3Jx, 1 <i<n}. (4.18)

For the sequel, we will denote w, (resp. wp) the projection of w on €, (resp. ).
Let 7, and %, be the canonical o-fields and P, (resp. Pj) be such that the (w,,€}),
k€3J1<i<n, (Wa, f) (vesp. {(wy,e)), (wy, f2) € ¢ 3,1 < j <n,2<i<n)are
independent .4#°(0, 1) random variables. Then

(Qa XQba%x%a[Pax [Pb) _)(dea[P)

4.19
(Wa, Wp) > Wy + Wp ( )

is an isometry.

Recall that &, = &, if k & 3Jx and &y = &y + Uy if k € Jx. Let P(g) be the
probability on € such that all & are i.i.d. and N (0,1).

Lemma 4.2. The probability P(g) is equivalent to P, and

dP(g L1112
Ru)(w) = T () ~twar-tlul (4.20)
dP
where u = u(g)(w) € Q is defined by
u, =0V k&3Jx and us, = Up(w) Vk € Jk, (4.21)
and (w,u) = Z(wk,uk)m.
k=0

In particular,

AR(()lmg = = D (kA0 limg ) (4.22)

k=0
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Moreover, for all measurable F' : Q0 — R, we have that F is P-integrable if and only if
w— F(w+u(w)) is R(u) - P-integrable, and in this case

E[F ()] = E[F(w + u(@)) R(u(w)))]. (4.23)

We also have
E[F(w—u(w))] = E[F(w)R(u(w))(w)]. (4.24)

Proof. First observe that for a fixed deterministic nonzero vector u € €),, we can make
the orthogonal decomposition

B u u 0
Wq = <wa, m> m + P(u)l ((,da) (425)
where <wa, Hu—H> is an A(0,1) real-valued random variable independent of P(%)l L (wa)-
u

Now remark that the random vector u(w) satisfies u(w) = u(w,) in the decomposition
w = wg+wyp of [@I9)). This is due to the fact that the Uy do not change when one replaces

& by & — (&0, f1) f1 in the expression of
W=—(+|lz - 2|2/ ® (gfo — \/Tao&) .

In other words, u is measurable with respect to o-field 4 = o (&, k & 3JK)\/0'( (fo))

(P([i—;c)l denoting the projection in R orthogonal to x — ).

A second important fact is that w — wu(w) takes its values in €,. In other words
ug = 0 if ¢ ¢ 3J} and wug is collinear to z — Z. Consequently, conditioned to ¢, u is a
,-valued constant. So we can make the same decomposition as in (4.25]):

) )\ uw)
‘ < Hu<w>H>Hu( T Lt (0]

where conditioned to ¥, <wa, %> is an .47(0,1) random variable independent of
P

() 1 (wq). Adding w;, which is ¥-measurable and orthogonal to €, we get

W= < T > 4 Py (w) (4.26)

[l

where conditioned to ¥, <w
of P(U)L (CU)

Let F': Q2 = R a bounded measurable function.

Elr)] =€ |E |7 (o) 1o + o)) | P, 9]
_r [ /R F <x”—z” + P(U)L(w)) () d:c}
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where ¢ is the density of A/(0,1). But

[ (e @) wtads = [ F (@ )y + R @) oo + fulhda

yielding

Pl ) ) ¢l + 1l
# Pusle)) 2D )

I
/™
=

F (<x+ HuH)H ||

] p(x)

b ¢(£<’<:7>u+>>u)F((< )+ 1) o+ P 1)

recalling that conditioned to ¥, <w

| [F (@

,HU—H> is an A (0,1) real-valued random variable
u

independent of P, (w). So

?<i>u+>)u>p<(< 1) 1) g Fo-)

:[E_(p<

Observing that

e ((wr ) + lul)
o ((«7in))

yields (£20) via (£23). Equation (£22) is a direct consequence. Finally, observe that
u(w — u(w)) = u(w) since u(w) = u(wp) and u(w) € Q,. Equation (£.24) is then obtained

from (4.23)). O

Corollary 4.3. Take K = 2n+ 1. Let R = R(u) be as in Lemma[{.4 Then RInR is
integrable and

1
_ o) djul?

E[RIn K] = L ([l
S M+ (6\/ﬁ+ i)2 (i

2T vn) \1?

1 o7
2—Z2—=x0OZI
2

2 n_ (4.27)
P20, a"fné) .

Proof. Recall that ||ul|?> = ||U2]|, + ||U||* = ”m}i“% , U being defined as in (337)
with m = K. First observe that the inequality in (£.27) comes from (B.41]) and (3.42)).
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Using (4.24) with F(w) := In(R(u(w)))(w),

E[R(u(w))(w) In R(u(w))(w)]

= E[In R(u(w — u(w)))(w — u(w))]

=[F [111 R(u(w))(w — u(w))]
)

— & [ utoh )~ Huel]

1
=FE |-E[{w,u(w))|¥] + §||u(w)||2] with ¢ defined in the proof of Lemma [4.2]

1
= |5 lu())?

since E[{w, u(w))|¥4] = 0: u(w) is ¥-measurable and conditioned to ¢ (w, u(w)) is Gaus-
sian and centered. O]

In the sequel, we will need the solution % defined by (£I6) to have moments of any
order. To get this integrability condition, we will have to consider the case K = +oo.

We first set two preparatory lemmas.

Lemma 4.4. Let h > 0. Let (Y;),>1 be a sequence of independent gamma distributed
real-valued random variables with the same parameter h and define

2 Y,
Sni= 5D 4.28
P2 — (2 ( )
For a >0, one has
_ _TQ2a+h) X=T(n+h) 1

E al _ 21+h a . 499
] I'(h)I'(a) HZ:O [(n+ 1) (2n + h)2eth (4.29)

In particular, we have

da+ 1)I'(2a + 1

E [5;e) < Yot Ul2a ) (4.30)

2¢T'(a+ 1)

and
E [Sﬂ <22+ g (4.31)

2

Proof. The Laplace transform of S}, is given by

_— 4.32
sinh v/2\ ( )

see [10]. On the other hand, making the change of variable u = S\ in the following
integral gives

E { / AT d)\} =E lSh“ / u e d)\} =E[5;,*] ().
0 0

VA >0, [E[ﬁ%:( v2A )
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From this we obtain
1 > a—1 —AS
AT E [e h} dA

E[S,] = ﬁm UOOO XA d)\} :hm i
oo a—1 \/_A (\/_)h - a+l—1 1
3l (m@ﬁ) =5 ) i (1= )

/ >\a+%7167(2n+h)\/ﬁ d)\,

~ I(a)

2\/_ i (n+h)

n+1

n=

by Fubini theorem and since for h > 0 and |z| < 1

1 1 I'(n+h) ,
1—a)r r(h);0 Tn+1)"

Making the change of variable u = (2n + h)v/2\ yields
I'(2a + h)

/Oo )\a—i—%—le—(Zn-‘,—h)\/ﬁ d\ = .
0 20+51(20 4 p)2ath

and (£.29) follows.

In particular for h = 1 we have
(4.33)

E[S;¢] =22 oL
[ 1 ] n:O 2n+1 2a+1"
Now
i <1+ /oo gL
—~ ( 2n+ 1)2a+1 = o (2z+1)2+l " " 4q
and (4.30) follows. For h = 1/2 and a = 1/2, one have
E[ ‘é] 'G) ! (4.34)
MR i et '
Since for n > 1
Fin+s) TG _TGE) _vr TG 11 1
= = — al = — —
Tntl) —T(2) 2 2 T2 2r@) 27

which ends the proof of Lemma [£4]
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Lemma 4.5. Let (Vj)g>1 be a sequence of R"-valued independent random variables with
law N(0,1,,). Then for any a > 0,

a

ol <§: vw,;f)l _ (Cs(n)" (4a+ DT (2a+1) .

—~ B A m2l(a+1)

with C3(n) = 8n?(3n + 4)%. Moreover, for any p € (0,1) and all A > 0,we have

1\ P
SN AT (4pg + 1)I(2pg + 1)
E |exp | Atr <; 5]3) 1+Z( T7T2p ) JT(pg + 1) < 00
(4.36)

Note that here, in Lemma [4.5] the estimates do not seem optimal in term of the
dimension n.

Proof of Lemmal[4.5. We have

Vi Vi 0o 1 £(n+1)
Z b k Z My with A, = Z VeV
k= Bf(nﬂ O=(—1)(n+1)+1

The matrices .#, are Wishart # (n,n + 1) with smallest eigenvalue A\yin(-#;) having an
exponential law with parameter n/2, or equivalently a law 1y?(2). Consequently, by

independence, we have
)\min Z (437)
(; B ;”@iw)

2v/2(3k+1)
T

with Y, independent x?(2) random variables. Then using 3, < we can write

=WV,
Amin <Z ;2k> Z 03 )2 Yy (4.38)

k=1

with Cs(n) = n? (2v/2(3n +4))°. We have

—1 -1
[e'¢) t 0 t
o((S8E) ) men(5F)
k k=1 k

k=1

Consequently, for a > 0,

a

(4.39)

28



The estimate (4.35]) thus directly follows from Lemmal.4l We now turn to the exponential

moments. Let 0 < p <1 and A > 0, we have
0 P\ T
Cg(n) P n
A -t
exp (( T2 £ 2

1\ P
00 t
E|exp | A tr(zvg‘;}“) <Lk
k
0 —pq]
03 pq)\q Y,

k=1
<14 Z (C3(n))PIN ( 4pq + 1)F(2pq +1)
lT2pq 7T2qu(pq + 1)

where we used Lemma .4 with @ = pq. This is exactly the first inequality in (£36]). We
are left to prove that the right hand side in (436]) is finite. Using InI'(a) ~ aln(a) as
a — 00 we get

In ((4pq + 1)I'(2pg + 1)
q'T(pg + 1)

p
with ¢ = %. Letting o = <Ci’r—(2")) A we have
P o\
Cs(m)\"\ ) Wpa+ DI2pa+1) _ g
2 ¢'TI'(pg + 1) -
and ) 7, a%q*" < oo, proving the finiteness of the right hand side of (A.30). O]

) ~ (2pq — ¢ —pq)In(q) = q(p — 1)In(q) < —eqIn(q)

for ¢ sufficiently large

After these preliminary results, we now turn to the analytic consequence for the semi-
group of this change of probability method. Let f : G, — R a bounded measurable
function. We recall that

Prf(g) = E[f(B})] together with Prf(3) = E[f(B})R(w)]; (4.40)

g and u being related as in Lemma 2l But with our construction, we have a.s B, = B,
yielding

Prf(g) = E[f(B7)R(u)]. (4.41)
From this and Corollary we get the following log Harnack inequality.

Theorem 4.6. Let f be a positive function in G,, T >0 and g = (x,2),§ = (Z,2) € G,.
Then

Pr(In f)(9) < In(Prf(g))

|z — 5 4\ (1
t o 6v/n + 7 7z ||?
Proof. Again take K = 2n+ 1. By Equation (4.40]) applied to In f and Young inequality,
Pr(In f)(9) = Elln f(B7) R(u)]
< E[R(u)In R(u)] + InE [expIn f(B7)]
= E[R(u) In R(u)] + In(Prf(g))-
We conclude with (£27). O

+3T

2 2(n—1) o :E”§> - (442)
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The next theorem aims at establishing an integration by parts formula for the deriva-
tive of the semi-group.

Theorem 4.7. Fix K > n+ 2 (and possibly infinite). Let f : G, — R be a bounded
continuous function, g = (x, z),h = (hy, h.) € G,. Denote § = g+ h we have

4,Prf(h) = E [f([B%) <— > (6 m})

keJk

, (4.43)

where (Uy)rso is given by ([E9).

We then deduce reverse Poincaré inequalities.

Theorem 4.8. With the same notation as in Theorem[{.]. For any p € (1, 00|, denoting
1 1

q € [1,00) satisfying — + — = 1, we have
p q

A~

) q/2 1/q
Us ) : (4.44)

2

|dg Prf(h)| < (Pr|f[P)" mq E <Z

keJk

with md = E[|Z]7] the q-th moment of a A(0,1)-variable Z. The right hand side is finite
for all ¢ > 1 when K = co.

In the special case p = q = 2, we get the reverse Poincaré inequality

|dyPrf(h)|*

2
hy 2 44/2 1 1 2(n—1
< (Prlf?) w+<6f2n+_f> (7alln = goo ml+ 25 Dyg)

ﬁ” 2

T vn 3r
(4.45)
Proof of Theorem[4.7. Considering a vector h = (h,, h,) € G,,, we will compute
o1
lim — (Pr f(g + ah) — Prf(g)). (4.46)

a—0

Denote g(a) = (Z(a), 2(a)) = g + ah. The matrix W (g(a)) defined in (3:33) rewrites as
W(g(a) = 2 — 2a) ~ 37, O + (&~ 3(a)) © <§s - ﬁao&) (1.47)

and since z ® x = 0,

d . 1 VT ~
VaER,  dyW(h) = -W(j(a)) = —h: = Shy © 5 = hy © (7&] - ﬁa0§1>
= W(g(1)) not depending on a. (4.48)
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Consequently, with the notation of (4.12),
. 1 o 1 ~ .
do W' (h) = =5V (VP gy W (h) = =571 (V7)1 (5(1)) (4.49)

does not depend on a.

A~ A~

Letting %' = %1(§(1)), # = #*(§(1)) and (ug, us, ug, ...) = (Uo(g(l)), U1(3(1)), Ua(g(1)), )

W' (G(a)) = oW = —g”f?t(f”/?t)*lwt. (4.50)

also, Uy(g(a)) = aj/hj—i‘ yielding d%f]o(g(a)) = ug. Then using (£20) and the fact that

U = (us, ug, . ..) we get

"(Prf(g +ah) — Prf(9)) = —E [F(B4) (Rau) — 1)

a

By definition of R(a’u) we have as soon as w +— F'(w) is P-integrable, that w — F(w-+a'u)
is R(a'u)P-integrable and

E[R(a'u)F(w + a'u)] = E[F(w)]. (4.51)
In our situation f is bounded and (w,u) = <w, Hu—H> ||u|| is P-integrable since, condi-
u
Tl

% = \ux (22+) = %\/tr (w779 < %Hy//” (tr ((7?7%)_1))1/2,

W is Gaussian and independent of ¥ and

. u hazllo 9
tioned to ¥ <w > has law A(0,1), [Juf| < Pel= 127,

LI\ 12
e if K = oo then by Equation (4.30) <tr ((7/ v t) )) has exponential moments,

AN 1/2
e if K < oo then (tr <<”//“I/t> )) < Bk (tr ((”//”//t)_1>> which is integrable
by ([3:20), since we choose K > n + 2.

So we can apply equality (£5]]) after exchanging the orders of integration (which is
allowed here for the same integrability reasons), and we get

L (Prflg+a) = Prf(9) = —7 [ EL/EH) (Rl) o + )] de
1

a

— e |(5 [ 1E1e - dwyar ) o).
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Since f is bounded and continuous, and a.s. Bj.(w — a’'u) — B7.(w) as ' — 0 we can use
the dominated convergence theorem to obtain

tim © (Prf(g +ah) — Prf(g)) = ~E [f(B}()) {w, )] (4.52)

which yields (Z£.43]). O
Proof of Theorem[4.8 To establish (£.44)) we first use Holder inequality which yields

[do Prf ()] < E[LFI7(B3)]77 E[|—(w, ). (4.53)

As in the proof of Corollary 3] conditioning with respect to & we get

dl

with m? = [E[|Z]%] the g-th moment of a .47(0,1)-variable Z. In particular |lul[* =

Ell—(w,w)l] =E [[E [\—(w7u>\q

= E [[Jull"mg]

H Uk H which proves (£44]). Notice that when K = oo the last term is finite thanks to
keJk

Lemma BL5 which implies that all moments of (¥ #*)~! are finite. Finally, to prove (Z.45)
we apply (£.44)) with K = 2n+1 which allows to use (8.43)) and (8.44) with g = g+h. O

The next corollary completes Theorem with a kind of weak inverse log-Sobolev
inequality:.

Corollary 4.9. With the same notation as in Theorem [{.7], we have for all § > 0 and
nonnegative continuous function f,

dPref] < 07r (fin (5t ) ) )+ 58 [f([B%) (Z Ui ) (4.5
In particular,
el < | 200 (1 (52 ) ) e [f(B%) (Z e ) (4.59

Proof. Again we start with Equation ([£.43]). As already seen in Equation (£.49), the
random vectors Uy, = Uk(h) k € Jk, depend linearly on h. Moreover the right-hand-side
of (A.54) and (A.55) is the same for h and —h. Consequently, possibly changing h into —h,
it is enough to establish (£54]) and (£55]) for h satisfying d,Prf(h) > 0, or equivalently
to replace |d,Prf(h)| by dyPrf(h) in the left-hand-side.
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Conditioning the right-hand-side of Equation (A.43]) with respect to ¢ and using the
Young inequality from e.g. Lemma 2.4. in 2], we obtain

e~ € | (62) <— > <§3k,0k>>

keJk
= |E [f([B%) <— 2. <§3k,Uk>> &
L keJgk
<E _5{ [f([B;) In (%ﬁ;m) ‘g} +0F [ £(B3)|9] InE o7 uZ o) g” .

Now since conditioning with respect to ¢ transforms — > <§3k, Uk> into a centered
keJg
Gaussian variable we get

1 ~ 2
g] _ a5

which yields

-3 > <§3k70k>

e kek

OF | (B)

%] InE

g] _ 2%{ [f(ung) Q;JKHURHZ) ’g] (4.56)

is ¥-measurable. Also letting Y = E[f(B})|¢] and using by Jensen’s

since

U
keJk

inequality E[Y InY] > E[Y]InE[Y] we get

epon () ] s (o

From (4.56) and ({.57) we get (4.54). Finally, (4.53)) is obtained with

f(B) (z Hm]f)

2Pp <fln (#(g))) (9) .

E

O

As a final corollary we provide estimates of the horizontal and vertical differential of
the heat kernel (g, h) — pi(g, h) on G,.

Corollary 4.10. There exist three positive constants K(n), Ki(n) and Ks(n) only de-
pending on n such that:

h,—Yroh,
+ Ky(n) 2; © ”) . (4.58)

K(n)

n2 h;):
|dgpt<07 ~)<h)| S t77€7 t dcc(O,Q)2 <K1<n) ” H2

Vit
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Proof. From [20], see also [6], there exist some positive constants K (n) and K;(n) de-
pending on n such that:

Kan) - aiony (4.59)

t
pt(0,-))(g). Using the reverse Poincaré inequality from

20018, (5554 W2 (1 Loony s 0=

We now examine E [p (0, [Bg)Q]. Using (4.59):

t
2

E[py0.897] = [ p300.07p, (0.0

n2
= Ki(n)® (%)T e~ 2 (2dec (0 +dec(90)?) g
n2
= Ki(n)® (% T D (20 (00 (decl0.0) - dec 0)?) g
_aw?
< Ki(n)® (%) | / e dec 002 g o= dec(09)° (4.61)

where the last expression is obtained by using the inequality:

2

2a2+(a—b)2:3a2+b2—2ab23a2+b2—%—)\b2

b2
=a®+ o) with A = 1/2.

Using the property of the dilation on (G, d..), %d (0,1) = d..(0, dil%[(l)), and since

2

the homogeneous dimension of G,, is n*, we have:

2

2 . Gn

which is finite and does not depend on ¢. The expected result follows. O

Remark 6. If in the above proof, one uses the reverse Poincaré inequality (@A) with
p=1+4¢ fore >0 (and with K = +00), it is possible to obtain (L5E8) with some
constants K (n,¢), Ki(n,e) and Ky(n,e) depending only on n and on £ with

K(n)

1+e

and where Ki(n,e) and Ky(n,¢) tend to infinity as € — 0.

K(n,e) =
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