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Level of uncertainty of the prediction is computed as the difference between 
the upper minus the lower bounds of the 95% credible interval. This score 
stands between 0 and 1, where 0 (white) represents a high degree of 
certainty while 1 (purple) is highly uncertain. Compared with the graphic 
above, we see that the transition from high to low survival probability (the 
inflexion region) is the most uncertain to predict, which was expected as it’s 
the region with the most of variation.
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Plant protection products are formulated to control target pest species, 
including mixtures of active ingredients. Being able to predict joint effects of 
formulation agents and active ingredients is of great importance for both risk 
assessment and pest control.

Time variable effects can be assessed with toxicokinetic (TK) and 
toxicodynamic (TD) models. The mixture toxicity have recently been 
implemented (Bart et al., 2021) with linear interactions (Concentration 
Addition and Independent Action) and so missing potential synergism and 
antagonism effects (Cedergreen, 2014).

In this regard, we provide a standalone pipeline coupling TKTD mechanistic 
models based on Ordinary Differential Equation with Neural Network (NN), 
called Neural ODEs (Chen et al., 2018), benefiting from both worlds: (1) the 
TKTD approach to fit experimental data (under a Bayesian framework) on 
active substances alone and in combination with other active substances or 
additives; (2) using the NN to map potential interactions between active 
substances in combinations or in formulations.

Here, we introduce a first analysis demonstrating the robustness of the 
Neural ODEs, together with preliminary results on the type of interactions.
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The model is made up of three parts:
1. the toxicokinetics (TK) defined by Ordinary Differential Equation (ODEs) to account for time-variable exposure profile. 

The reduced version of the General unified threshold model of survival (GUTS) (Jager et al., 2011). For each compound 
with exposure profil Xi(t), the scaled internal concentration is Ci(t) including kd named the dominant toxicokinetic rate 
constant.

2. the toxicodynamics (TD) takes the damage as a single input variable resulting from the combination of TK output 
variables according to the chosen weights, either by linear function or through neural network. Then the Individual 
Tolerance model of survival is applied, including the background mortality and the additional mortality due to toxicant 
respectively named Sb(t) and Sx(t) hereafter.

3. the bridge between TK and TD, with 2 variants: (1) a linear matrix consisting only in matrix W2 of layer 2 (by-passing 
layer 1) without activation function, or (2) a simple neural network (NN) consisting of 2 layers, a first layer defined by 
matrix W1 + b1 of size n x n (with n the number of compound) and an ReLu activation function, and a second layer 
defined by a matrix W2 reducing the number of variables from n to 1 (the damage) with an exponential activation 
function (which ensures positivity of the damage variable).
We considered two options: either one parameter, ɑ, a common individual median threshold for all compounds, or one 
parameter splitted into singular {ɑ1, …, ɑn} associated to each compound and computed using the TK-TD bridge. These 
models are named Linear split and NN split respectively.
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The inference process has been tested on 99 acute toxicity (survival) studies with fish (OECD 203 standard), grouped into 
4 datasets (resp. 38, 19, 21, 21 studies). Each of the 4 datasets allowed studying the interactions between 5 to 6 different 
active substances. Three artificial data sets were also created to test the possibility for the algorithm to capture 
interaction pattern of additivity, synergism and antagonism. Mortalities and visible abnormalities related to appearance 
and behaviour are recorded in order to determine, where possible, the concentrations to kill 50% of the fish (LC50).
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Conclusion
1. This study introduces the combination of Neural Network (NN) with ODEs (named Neural ODEs) in order to explore the 

interaction between active ingredient of mixtures. 
2. This hypothesis is to benefit from the both worlds: the mechanistic description to control well-known mechanism (TK 

and TD) and free-constraint model for the ‘damage part’ where assumptions of interaction are not availables. 
3. Within this modelling framework, the use of the Bayesian approach for calibration, validation and prediction provides a 

measure of uncertainty. The uncertainty can be propagated in predictions to give a measure of their reliabilities.
4. On itself, this approach of Bayesian Neural ODEs is new, and it also reveals to be very efficient and promising in the 

exploration of non-linear interactions between active ingredients. 
5. We found a generic NN tuning (layers structures and activations functions) for every data set (and its subsets) based on 

the number of active ingredient in the mixture, so which can be automatically set. 
6. While NN is very efficient for the calibration task, the validation process is better with linear models. Understanding 

how to deal with the strengths and weaknesses of Neural ODEs deserves further exploration.
7. This scope, which focuses only on concentration, is very narrow for the potential of this framework. Coupling NNs to 

classical TKTD models offers the possibility to include, without any mechanistic a priori, any other variables that may 
influence the effects of mixtures (such as temperature, organism age, chemical properties of active ingredients, etc.).

Calibration was made with Bayesian 
inference for all datasets, the NRMSE 
(Normalized Root Mean Square Error) 
suggests that the Neural Network (NN, NN 
split) are always better than Linear models. 
Using the WAIC, (adding a cost on the 
parameter number), Linear models appears 
slightly better for 2 datasets and similars for 
the others.
The cost of Neural Networks models 
(number of parameters, time of inference) is 
all the more compensated as non-linearities 
are present in the interactions.
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Based on survival data on A, B, AB and BC, the heatmap represent 
estimation of survival probability at different time points (hours) and with 
different proportions of A and C. The dots represent data, so only single 
compounds data are available. Blue curves are isolines linking pixels with the 
same level of survival probability.
The NN models predicts a synergistic effect of A and C since the effect is 
more than the sum of the marginal effects of each compounds. The Linear 
models were not able to account for this pattern.
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Theory of interaction
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A physiological response, r, may 
exhibit several patterns when 
exposed to mixtures of A and B. A 
simple and classical classification is:
● Additive: r(A+B) = r(A) + r(B)
● Antagonism: r(A+B) < r(A) + r(B)
● Synergism: r(A+B) > r(A) + r(B)

Also, an additivity for A-B and B-C might not results in additivity for A-C.

WAIC is a generalization of the Akaike Information 
Criterion (AIC) (the lower is the better) defined by: 
WAIC = -2 ∑log p(x|θ)-∑var(p(x|θ)). 

Split version of ɑ:

Split version of ɑ:

For each dataset, validation was done by calibrating the models on a subset of data (training data) and then tested on 
another subset (test data) symbolized by letters. NRMSE and Posterior Predictive Check (PPC) were computed based on 
the prediction on the test data only. The validation of exogenous mixture is complex and pretty low for all models. From 
PPC, the uncertainty of Neural Network is greater leading to a larger coverage of data, while from NRMSE, the linear 
model suggest a better fit of 3 datasets and equivalent for the fourth one. 
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