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This paper analyzes the behavior of the well-known Spearman’s footrule distance (𝐹 -distance) 
to measure the distance between two rankings over the same set of objects. We show that 𝐹 -

distance is not invariant to labeling, and therefore, it suffers from a serious drawback for its use 
in applications. To circumvent this problem, we propose a new distance between rankings which 
is invariant under indexing (i.e., labeling) and appears as a good alternative to the direct use of 
𝐹 -distance between rankings, and also the invariant-under-indexing Kemeny’s distance as well. 
We also show how our new distance can work with importance weights. Some simple examples 
are given to show the interest of our method with respect to the classical one based on 𝐹 -distance 
and Kemeny’s distance.

1. Introduction

In many multi-criteria decision-making (MCDA) problems, it is required to compare several methods to obtain a more reliable 
solution [26,31]. The problem of comparison of different methods is connected with the problem of measuring the distance or the 
correlation between rankings obtained using different methods [19,33].

There are many different correlation coefficients proposed to measure the difference between the two rankings. Such coefficients 
as Kendall Tau [18,29], Spearman’s rank correlation coefficient [32], and weighted coefficients such as Weighted Spearman’s corre-

lation [6] and Weighted Similarity rank coefficient [28] are often used in the literature to compare the rankings [31,34]. However, 
those coefficients do not follow the properties of the distance definition: symmetry, separation, and triangular inequality.

In most cases, it is possible to use distance functions, such as Spearman’s footrule [2,5], Kemeny’s distance [13] or generalized 
Minkowski distance. However, they are not fulfilling invariance under the indexing principle (IUIP). It means that a calculation of 
the distance between two rankings could result in different values if a set of labels is changed. This behavior is not desired and not 
appropriate in most cases [16].

In some works, rankings are presented as an index of the labels set or as ordered labels set [8,25]. Researchers use this method 
to represent the rankings because it could be considered the most natural [10,21]. However, in this case, calculating the distance 
between rankings will result in violating invariance under the indexing principle. It is also possible to represent ranking by position 
[4,3]. Calculating the distance between such rankings will not violate IUIP, but creating ranking by position could be considered 
unnatural for some people. Therefore, we want to propose a new method for computation of the distances between ranking written 
by indexes, which will follow the properties of a true metric and satisfy IUIP, as well as axioms presented in [17].
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The need for such distance metric is underlined with recent works, such as a proposition of 𝑊𝑆𝑑𝑟𝑎 metric by [27], which also 
fulfills the properties of a true metric and utilizes ranking by index to satisfy invariance under indexing principle. However, this 
metric utilizes an entirely different approach and can not be applied to long ranking vectors. The usage of a new metric is not 
limited only to measurements between different rankings. Such distance can also power distance-based methods such as TOPSIS [24]

to potentially improve the decision-making quality. Additionally, it can be used in other domains besides MCDA, for example, in 
machine-learning-related algorithms that utilize distance functions, such as clustering [11,13], fuzzy clustering [12] or classification 
[30], where newly developed distances can greatly improve existing algorithms.

The main contribution of this paper is to propose a new effective method to calculate the distance between rankings, which 
will be invariant to the labeling of decision alternatives. The proposed approach fulfills IUIP and could be potentially extended and 
generalized to other distances. Additionally, it follows the properties of a true metric, i.e., symmetry, separation, and triangular 
inequality. We also prove that our proposed approach satisfies Kemeny’s axioms for rankings distance metric [16]. The useful and 
desired properties of the proposed distance will ensure its applicability not only in the MCDA domain but also for other distance-

related problems, such as distance-based machine-learning algorithms.

The rest of the paper is structured as follows. In Section 2, all necessary definitions and notations are provided. In Section 3, 
we describe the footrule distance proposed by Spearman and describe the problem of labeling invariance. Section 4 describes the 
invariance under the indexing principle and how it is violated when Spearman’s 𝐹 -distance is used. Next, in Section 5, we propose 
a new distance that overcomes the IUIP problem, and we compare it to Kemeny’s distance. We all discuss Kemeny’s axiomatic and 
extend our new distance for also working with importance weights. Finally, in Section 6, we draw conclusions and propose future 
work directions.

2. Definitions and notations

2.1. Distance

Let 𝑋 be a set. A function 𝑑 ∶𝑋 ×𝑋 →ℝ+ is called a distance (or dissimilarity, or metric) on 𝑋, if the properties (1) - (3) hold 
[7] (Chap. 1)

1. Symmetry:

∀𝑥, 𝑦 ∈𝑋,𝑑(𝑥, 𝑦) = 𝑑(𝑦,𝑥), (1)

2. Separation (identity of indiscernibles):

∀𝑥, 𝑦 ∈𝑋,𝑑(𝑥, 𝑦) = 0⇔ 𝑥 = 𝑦, (2)

3. Triangular inequality:

∀𝑥, 𝑦, 𝑧 ∈𝑋,𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). (3)

A set 𝑋 endowed with a distance is named a metric space, or a distance space.

There exist many distances proposed in the literature, see [7] for a good survey, but the most common ones are just specific cases 
of the Minkowski distance [20] of order 𝑝 (where 𝑝 ≥ 1 is an integer) between two points,1 𝒙 ≜ [𝑥1, 𝑥2, … , 𝑥𝑛] and 𝒚 ≜ [𝑦1, 𝑦2, … , 𝑦𝑛]
of the space ℝ𝑛 which is defined by (4)

𝑑𝑝(𝒙,𝒚) = ||𝒙− 𝒚||𝑝 ≜ [ 𝑛∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖|𝑝]1∕𝑝. (4)

In practice, the Minkowski distance is used with 𝑝 = 1 or 𝑝 = 2. For 𝑝 = 1 the Minkowski distance is known as the Manhattan 
distance, or the city-clock distance, which is equal to (5)

𝑑1(𝒙,𝒚) = ||𝒙− 𝒚||1 = 𝑛∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖|. (5)

For 𝑝 = 2 the Minkowski distance is called the Euclidean distance given by (6)

𝑑2(𝒙,𝒚) = ||𝒙− 𝒚||2 =
√√√√ 𝑛∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2. (6)

In the limiting case of 𝑝 reaching infinity, we obtain the Chebyshev distance (7)

𝑑∞(𝒙,𝒚) = ||𝒙− 𝒚||∞ = max
𝑖=1,…,𝑛

|𝑥𝑖 − 𝑦𝑖|. (7)
2

1 The symbol ≜ means equals by definition.
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2.2. Preference order

Let’s consider two objects denoted by 𝑥𝑖 and 𝑥𝑗 . If the object 𝑥𝑖 is more preferred than object 𝑥𝑗 , we denote this preference as 
𝑥𝑖 ≻ 𝑥𝑗 . If the object 𝑥𝑖 is less preferred than object 𝑥𝑗 , we denote this preference as 𝑥𝑖 ≺ 𝑥𝑗 . If objects 𝑥𝑖 and 𝑥𝑗 have no preference 
order, that is, neither preference 𝑥𝑖 ≻ 𝑥𝑗 or 𝑥𝑗 ≻ 𝑥𝑖 is valid, then we write 𝑥𝑖 = 𝑥𝑗 for characterizing the indifference (or ex aequo 
preferences, or tie) in the choice between 𝑥𝑖 and 𝑥𝑗 .

2.3. Reference set

Let 𝑋 = {𝑥1, … , 𝑥𝑛} be a set2 of items (or elements, or objects) to be ranked by an expert (either by a human expert opin-

ion or by an artificial expert system). The set 𝑋 is called the reference set of objects if each object is labeled with a distinct 
given integer index 𝑖 = 1, … , 𝑛. Because there are many ways to commit indexes to objects, the reference set is not unique. For 
instance, if we consider four objects 𝐴, 𝐵, 𝐶 and 𝐷 the reference set can be chosen either as 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶,𝑥4 =𝐷}, 
𝑌 = {𝑦1 =𝐷,𝑦2 = 𝐶,𝑦3 =𝐵,𝑦4 =𝐴}, or defined by any other choice of permutation of indexes 1, 2, 3 and 4. Note that a reference 
set is a non-ordered set of elements, which means that the way to list the elements of the reference set does not matter. Hence in this 
example, the sets with all permutations of indexes 𝑖 = 1, 2, 3, 4 like {𝑥1, 𝑥2, 𝑥3, 𝑥4}, {𝑥2, 𝑥1, 𝑥3, 𝑥4}, {𝑥3, 𝑥2, 𝑥1, 𝑥4}, {𝑥4, 𝑥1, 𝑥2, 𝑥3}, etc 
represent all the same reference set 𝑋.

2.4. Ranking-index and ranking

A ranking-index is an ordered 𝑛-uple associated to a reference set 𝑋. We denote it 𝑟𝑋 = (𝑟𝑋 (1),… , 𝑟𝑋 (𝑛)), where 𝑟𝑋 (𝑖) is the rank 
(or preference order) associated with the element 𝑥𝑖 of 𝑋. 𝑟𝑋 is a total (i.e., strict) ranking index if there is no equality of preference 
between some elements of 𝑋, which means that there is no tie in the preferences among some objects of the reference set. The 
sum of values of a total ranking index of size 𝑛 is the sum of the first 𝑛 natural numbers, which is equal to 𝑛(𝑛 + 1)∕2. A ranking 
𝑅𝑟𝑋

(𝑋) is a permutation of objects of the set 𝑋, which is determined by a preference ordering specified by a ranking-index 𝑛-uple 
𝑟𝑋 . Therefore, a ranking 𝑅𝑟𝑋

(𝑋) associated with total ranking-index 𝑟𝑋 a is a perfectly ordered set of objects. Each ranking of a set 
𝑋 given by an expert 𝑠 (a source of information) is denoted by 𝑅𝑟𝑋,𝑠

(𝑋), and its ranking-index by 𝑟𝑋,𝑠 = (𝑟𝑋,𝑠(1),… , 𝑟𝑋,𝑠(𝑛)), where 
𝑟𝑋,𝑠(𝑖) is the rank associated with the element 𝑥𝑖 by the 𝑠-th source of information (for 𝑠 = 1, 2, … , 𝑆). Without loss of generality and 
by convention, the first element of this ordered set 𝑅𝑟𝑋,𝑠

(𝑋) will be considered as the most preferred object by the 𝑠-th expert, the 
second element will be considered as the second best-preferred object by this expert, etc.

2.5. Example 1

Consider the reference set 𝑋 = {𝑥1, 𝑥2, 𝑥3}, and suppose an expert3 commits to the element 𝑥2 his best preference, to the element 
𝑥3 his second best preference, and to 𝑥1 his last preference. This expert’s preference order is denoted as 𝑥2 ≻ 𝑥3 ≻ 𝑥1. His correspond-

ing ranking-index is thus written as 𝑟𝑋 = (𝑟𝑋 (1), 𝑟𝑋 (2), 𝑟𝑋 (3)) = (2,3,1), where 𝑟𝑋 (1) = 2 means that the 1st preferred object is 𝑥2, 
𝑟𝑋 (2) = 3 means that the 2nd preferred object is 𝑥3, and 𝑟𝑋 (3) = 1 means that the 3rd preferred object is 𝑥1. Because 𝑟𝑋 = (2,3,1), 
the ranking of 𝑋 for this expert is thus the ordered set 𝑅𝑟𝑋

(𝑋) = {𝑥2, 𝑥3, 𝑥1}.

2.6. Ranking-index including some ties

When two (or more) objects have the same preference order (i.e., their ranks are ex aequo) we write them as a non-ordered 
list of their indexes between inner left and right parentheses. For instance, if we consider four objects 𝐴, 𝐵, 𝐶 and 𝐷 and we 
define the reference set as 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶,𝑥4 =𝐷}, then the preference order with one tie between two objects like 
𝐴≻ (𝐵 =𝐷) ≻ 𝐶 corresponds to the tied ranking-index 𝑟𝑋 = (1, (2,4),3) which can also be written equivalently as 𝑟𝑋 = (1, (4,2),3). 
This notation means that object 𝑥1 =𝐴 is the most preferred object, the objects 𝑥2 =𝐵 and 𝑥4 =𝐷 have ex aequo second-best 
preference, and 𝑥3 = 𝐶 is the least preferred object. In our interpretation and with our notation, the rank of the object 𝑥1 = 𝐴 is 1, 
the rank of objects 𝑥2 = 𝐵 and 𝑥4 =𝐷 are both equal to 2 because of the tie they both appear in the second component of the (tied) 
ranking-index 𝑟𝑋 = (1, (4,2),3), and the rank of the least preferred object 𝑥3 = 𝐶 is 3. Note that the sum of rank values of all objects 
is then 1 + 2 + 2 + 3 = 9, whereas it would be 1 + 2 + 3 + 4 = 10 if no tie occurs. The corresponding tied ranking set for this tied 
preference order 𝐴≻ (𝐵 =𝐷) ≻ 𝐶 is denoted by 𝑅𝑟𝑋

(𝑋) = {𝑥1, (𝑥2, 𝑥4), 𝑥3}, and it is worth noting that in this case 𝑅𝑟𝑋
(𝑋) is only a 

partially ordered because of the preference tie between objects 𝑥2 and 𝑥4.

If we consider another type of tie in preference, say 𝐴≻ (𝐵 = 𝐶 =𝐷) (one tie with three objects), we write 𝑟𝑋 = (1, (2,3,4)). If 
one considers the other tied preference order (𝐴 =𝐵) ≻ (𝐶 =𝐷) (two ties with two objects) we write 𝑟𝑋 = ((1,2), (3,4)). In the whole 
indifference case where the (degenerate, or fully tied) preference order is 𝐴 = 𝐵 = 𝐶 =𝐷 (one tie with all the four objects), we write 
𝑟𝑋 = ((1,2,3,4)). Note that the double parentheses notation is very important in order to identify the ties (if any) in the ranking 
index.

2 Where referring to a set we implicitly refer to a non-ordered set of the naive set theory [15], otherwise we will specify ordered set whenever necessary.
3

3 We omit here the index 𝑠 of the expert for the simplicity of notation because we consider only one expert in this example.
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Instead of using our previous interpretation and notations, some users working on ranking problems prefer to commit average rank 
to objects involved in a tie, for instance if we consider the reference set 𝑋 = {𝑥1 = 𝐴, 𝑥2 = 𝐵, 𝑥3 = 𝐶, 𝑥4 =𝐷} and a tied preference 
like 𝐴≻ (𝐵 =𝐷) ≻ 𝐶 , they actually consider that both orders 𝐴≻𝐵 ≻𝐷 ≻ 𝐶 and 𝐴≻𝐷 ≻𝐵 ≻ 𝐶 are valid simultaneously. In this 
case, they consider that object 𝑥1 = 𝐴 has rank 1 being the first/most preferred object, the rank of the object 𝑥2 = 𝐵 is both 2 and 
3 (so they take its middle-rank value 2.5), the rank of the object 𝑥4 =𝐷 is also both 2 and 3 (so they take it also its middle value 
2.5), and the rank of least preferred object 𝑥3 = 𝐶 is 4. With this classical method, the sum of ranks of objects is, for this example 
1 + 2.5 + 2.5 + 4 = 10, which is the same as the sum of rank values 1 + 2 + 3 + 4 = 10 if no tie occurs in the preference order. This 
second method for dealing with ties is commonly used in practice, but the interpretation of non-integer values for ranks is difficult 
and questionable because it is clear that based on the sum of these rank values, we cannot discriminate if a preference order is 
strict/total (i.e., having no tie), or only partial (including ties) contrary to the previous method which is, we think, disputable.

3. Spearman 𝑳𝟏-distance between rankings

Spearman [32] proposed to use the 𝐿1 distance to measure the distance between two ranking indexes. This distance is referred 
to as Spearman’s footrule distance in [9]. It is also known as 𝐹 -distance in the literature.

3.1. Definition

The 𝐹 -distance (i.e., Spearman 𝐿1-distance) is the sum of the absolute differences between the components of the ranking indexes 
(i.e., 𝑛-uples). Suppose we have two experts providing two ranking-index 𝑛-uples 𝑟𝑋,1 and 𝑟𝑋,2 defined over the same reference set 
of objects 𝑋 = {𝑥1, … , 𝑥𝑛}, then the Spearman’s footrule distance between 𝑟𝑋,1 and 𝑟𝑋,2 is defined as follows (8):

𝐹 (𝑟𝑋,1, 𝑟𝑋,2) ≜
𝑛∑
𝑖=1

|𝑟𝑋,1(𝑖) − 𝑟𝑋,2(𝑖)|, (8)

where 𝑟𝑋,1 and 𝑟𝑋,2 are total ranking-indexes over the reference set of objects 𝑋.

The 𝐹 -distance is nothing but an 𝐿1-distance and a metric, and it is possible to compute it in linear time.

3.2. Normalization of the 𝐹 -distance

The 𝐹 -distance can be normalized in [0, 1] by dividing 𝐹 (𝑟𝑋,1, 𝑟𝑋,2) by its maximum value 𝐹max(𝑛) which is obtained by calcu-

lating the 𝐹 -distance between the two fully contradictory ranking-indexes 𝑟𝑋,1 = (1, 2, 3, … , 𝑛− 1, 𝑛) and 𝑟𝑋,2 = (𝑛, 𝑛− 1, … , 3, 2, 1).
The maximum of 𝐹 -distance is expressed as (9)

𝐹max(𝑛) =
𝑛∑
𝑖=1

|𝑖− (𝑛+ 1 − 𝑖)| = 𝑛∑
𝑖=1

|2𝑖− (𝑛+ 1)|. (9)

Two cases must be analyzed to calculate 𝐹max(𝑛):

• Case 1: 𝑛 is an even number

If 𝑛 is an even number then 𝑛 = 2𝑚, and in this case we have 𝑚 = 𝑛∕2 and 𝐹max(𝑛) can be decomposed as (10)

𝐹max(𝑛) =
𝑚∑
𝑖=1

|2𝑖− (2𝑚+ 1)|+ 2𝑚∑
𝑖=𝑚+1

|2𝑖− (2𝑚+ 1)| (10)

We note that the sums 𝑆1 =
∑𝑚

𝑖=1 |2𝑖 − (2𝑚 + 1)| and 𝑆2 =
∑2𝑚

𝑖=𝑚+1 |2𝑖 − (2𝑚 + 1)| are actually equal because the terms are equal 
when index increases in 𝑆1 and decreases 𝑆2. For instance for the first term (for 𝑖 = 1) of 𝑆1 we get |2 − (2𝑚 + 1)| = | − 2𝑚 + 1|
and for the last term (for 𝑖 = 2𝑚) of 𝑆2 we get |2(2𝑚) − (2𝑚 + 1)| = |2𝑚 − 1| and these two terms | − 2𝑚 + 1| and |2𝑚 − 1| are 
equal. For the second term (for 𝑖 = 2) of 𝑆1 we get |4 − (2𝑚 + 1)| = |3 − 2𝑚| and for the penultimate term (for 𝑖 = 2𝑚 − 1) of 𝑆2
we get |2(2𝑚 − 1) − (2𝑚 + 1)| = |2𝑚 − 3| and these two terms |3 − 2𝑚| and |2𝑚 − 3| are equal, etc. For the last term (for 𝑖 = 𝑚) 
of 𝑆1 we get |2𝑚 − (2𝑚 + 1)| = | − 1| = 1 and for the first term of 𝑆2 we get |2(𝑚 + 1) − (2𝑚 + 1)| = |1| = 1. Therefore, if 𝑛 is an 
even number, we have (11)

𝐹max(𝑛) = 2 ⋅
𝑚∑
𝑖=1

|2𝑖− (2𝑚+ 1)| = 2 ⋅ 𝑆1. (11)

Because |2𝑖 − (2𝑚 +1)| is always an odd number the sum 𝑆1 =
∑𝑚

𝑖=1 |2𝑖 − (2𝑚 +1)| is equal to the sum of the 𝑚 first odd positive 
numbers, and it is given by 𝑆1 =𝑚2 = ( 𝑛2 )

2 = 𝑛2

4 . Therefore, we finally get for 𝑛 = 2𝑚 (the even number case) (12)

𝐹max(𝑛) = 2 ⋅ 𝑛
2

4
= 𝑛2

2
. (12)
4

• Case 2: 𝑛 is an odd number
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If 𝑛 is an odd number then 𝑛 = 2𝑚 + 1, and 𝐹max(𝑛) can always be decomposed as (13)

𝐹max(𝑛) =
𝑚∑
𝑖=1

|2𝑖− (2𝑚+ 2)|+ 2𝑚+1∑
𝑖=𝑚+2

|2𝑖− (2𝑚+ 2)|. (13)

Similarly to the previous case when 𝑛 = 2𝑚, one can also verify that the sum 𝑆3 =
∑𝑚

𝑖=1 |2𝑖 − (2𝑚 + 2)| and 𝑆4 =
∑2𝑚+1

𝑖=𝑚+2 |2𝑖 −
(2𝑚 + 2)| are equal, and therefore we have (14)

𝐹max(𝑛) = 2 ⋅
𝑚∑
𝑖=1

|2𝑖− (2𝑚+ 2)| = 2 ⋅ 𝑆3. (14)

Because |2𝑖 −(2𝑚 +2)| is always an even number the sum 𝑆3 =
∑𝑚

𝑖=1 |2𝑖 −(2𝑚 +1)| is equal to the sum of the 𝑚 first even positive 
numbers, and it is given by 𝑆3 =𝑚(𝑚 + 1). Therefore, for 𝑛 = 2𝑚 + 1 (the odd number case), we get (15)

𝐹max(𝑛) = 2𝑚(𝑚+ 1). (15)

Because 𝑛 = 2𝑚 + 1, one has 𝑚 = 1
2 (𝑛 − 1). Replacing the expression of 𝑚 in (15), we get (16)

𝐹max(𝑛) = 1
2
(𝑛− 1)(𝑛+ 1). (16)

In summary, the normalized Spearman 𝐹 -distance between two rankings 𝐹 (𝑟𝑋,1, 𝑟𝑋,2) is given by (17)

𝐹 (𝑟𝑋,1, 𝑟𝑋,2) =
𝐹 (𝑟𝑋,1, 𝑟𝑋,2)
𝐹max(𝑛)

=

⎧⎪⎪⎨⎪⎪⎩
2
𝑛2

𝑛∑
𝑖=1

|𝑟𝑋,1(𝑖) − 𝑟𝑋,2(𝑖)|, (if 𝑛 even),

2
(𝑛−1)(𝑛+1)

𝑛∑
𝑖=1

|𝑟𝑋,1(𝑖) − 𝑟𝑋,2(𝑖)|, (if 𝑛 odd).

(17)

If the normalized 𝐹 -distance equals one it means two totally different rankings, and if it equals zero it means identical rankings.

3.3. Example 2 (with Spearman’s 𝐹 -distance)

Consider 𝑛 = 4 different elements (or objects) denoted as 𝐴, 𝐵, 𝐶 , and 𝐷 (for example, cars, bikes, houses, wines, or whatever). 
Suppose that the reference set of objects is chosen as 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶,𝑥4 =𝐷}. We consider two experts providing 
each the ranking-indexes 𝑟𝑋,1 = (4,2,1,3) and 𝑟𝑋,2 = (2,3,4,1) expressing their own preference choice of these objects based on 
some own criteria. The ranking-index 𝑟𝑋,1 = (4,2,1,3) means that the first expert has the preference order 𝐷 ≻𝐵 ≻𝐴 ≻ 𝐶 , whereas 
𝑟𝑋,2 = (2,3,4,1) means that the second expert has the preference order 𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴. Therefore, the ranked (ordered) sets are 
respectively equal to 𝑅𝑟𝑋,1

(𝑋) = {𝑥4, 𝑥2, 𝑥1, 𝑥3} = {𝐷,𝐵,𝐴,𝐶} and equal to 𝑅𝑟𝑋,2
(𝑋) = {𝑥2, 𝑥3, 𝑥4, 𝑥1} = {𝐵,𝐶,𝐷,𝐴}. The 𝐹 -distance 

between these two ranking-indexes 𝑟𝑋,1 and 𝑟𝑋,2 is (18)

𝐹 (𝑟𝑋,1, 𝑟𝑋,2) =
4∑
𝑖=1

|𝑟𝑋,1(𝑖) − 𝑟𝑋,2(𝑖)| = |4 − 2|+ |2 − 3|+ |1 − 4|+ |3 − 1| = 2 + 1 + 3 + 2 = 8, (18)

and (19)

𝐹 (𝑟𝑋,1, 𝑟𝑋,2) = ( 2
𝑛2

) ⋅ 𝐹 (𝑟𝑋,1, 𝑟𝑋,2) =
2
16

⋅ 8 = 1. (19)

Because 𝐹𝑋 (𝑟𝑋,1, 𝑟𝑋,2) = 1 (which is the maximum normalized distance), it means that the rankings based on 𝑟𝑋,1 and 𝑟𝑋,2 are 
totally different and inconsistent. A priori, we may consider that this result makes sense because these two rankings, which reflect 
the preference orders 𝐷 ≻𝐵 ≻𝐴≻ 𝐶 and 𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴, are very different, and because they do not share a same object at the 
same rank of the preference order because the two rankings are (20) and (21).

𝑅𝑟𝑋,1
(𝑋) = {𝐷,𝐵,𝐴,𝐶}, (20)

𝑅𝑟𝑋,2
(𝑋) = {𝐵,𝐶,𝐷,𝐴}. (21)

However, we can already suspect a problem in this 𝐹 -distance measure because it does not capture well some partial consistencies 
between preferences orders Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 and Pref2 ≜𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 expressed by the experts. For example, in Pref1 and in 
Pref2 we have the preference 𝐵 ≻𝐴 satisfied, as well all the preference 𝐷 ≻𝐴. So it seems counter-intuitive to consider the rankings 
5

𝑅𝑟𝑋,1
(𝑋) = {𝐷, 𝐵, 𝐴, 𝐶} and 𝑅𝑟𝑋,2

(𝑋) = {𝐵, 𝐶, 𝐷, 𝐴} as totally different and fully inconsistent.
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3.4. Calculation of 𝐹 -distance when ties occur

In our previous example 2, we considered rankings with no ties, and we did calculate the 𝐹 -distance based on formula (8)

without difficulty. For applying formula (8) when ties occur in the ranking index, we must proceed differently for indexes where 
a tie occurs. The classical method is to calculate the average value of all indexes involved in a tie and replace the indexes of the 
tie with their average value (which can be a noninteger index). Then, the formula (8) is used. For instance, if we consider the 
reference set 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶,𝑥4 =𝐷} and the preference order 𝑃𝑟𝑒𝑓1 =𝐵 ≻𝐴 ≻ (𝐷 = 𝐶) and the second preference 
order 𝑃𝑟𝑒𝑓2 =𝐵 ≻ (𝐴 = 𝐶) ≻𝐷, then the corresponding ranking-indexes are respectively given by 𝑟𝑋,1 = (2, 1, (3, 4)) and 𝑟𝑋,2 =
(2, (1, 3), 4). Replacing the indexes appearing in ties by their average value, we now consider the modified ranking-indexes 𝑟′

𝑋,1 =
(2, 1, 3.5, 3.5) and 𝑟′

𝑋,2 = (2, 2, 2, 4) in the 𝐹 -distance formula and we obtain (22)

𝐹 (𝑟𝑋,1, 𝑟𝑋,2) =
4∑
𝑖=1

|𝑟′
𝑋,1(𝑖) − 𝑟′

𝑋,2(𝑖)| = |2 − 2|+ |1 − 2|+ |3.5 − 2|+ |3.5 − 4| = 0 + 1 + 1.5 + 0.5 = 3. (22)

This method for dealing with ties in ranking indexes is actually disputable because the interpretation and justification of non-

integer indexes are unclear, and the averaging of indexes in ties yields multiplicities of some (integer and noninteger) indexes. We 
consider that this way of processing ties in ranking indexes is not very satisfying and effective. We will show how the new method 
proposed in this work solves this problem more effectively.

4. Invariance under indexing principle (IUIP)

4.1. Counter-example for the 𝐹 -distance

This very simple 𝐹 -distance is actually not satisfactory at all because it highly depends on the choice of the indexing of the objects 
in the reference set, which may yield very different results and conclusions. Based on a very simple counter-example, we show that 
𝐹 -distance does not satisfy the principle of invariance under indexing.

As a very simple counter-example, consider the same four distinct objects 𝐴, 𝐵, 𝐶 , and 𝐷 as in example 2, and define a new 
reference set as 𝑌 = {𝑦1 =𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶}. The experts do not change their preference orders, but the reference set is 
changed here. Therefore, for expert 1 we still have Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 , and Pref2 ≜𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 for expert 2. The ranking-

indexes expressed in the reference set 𝑌 are respectively given by 𝑟𝑌 ,1 = (2,1,3,4) because 𝑅𝑟𝑌 ,1
(𝑌 ) = {𝑦2, 𝑦1, 𝑦3, 𝑦4} = {𝐷,𝐵,𝐴,𝐶}, 

and we have 𝑅𝑟𝑌 ,1
(𝑌 ) =𝑅𝑟𝑋,1

(𝑋). Similarly, one must take 𝑟𝑌 ,2 = (1,4,2,3) because 𝑅𝑟𝑌 ,2
(𝑌 ) = {𝑦1, 𝑦4, 𝑦2, 𝑦3} = {𝐵,𝐶,𝐷,𝐴} and we 

have in this case 𝑅𝑟𝑌 ,2
(𝑌 ) =𝑅𝑟𝑋,2

(𝑋). If we calculate the 𝐹 -distance between 𝑟𝑌 ,1 and 𝑟𝑌 ,2 we get (23)

𝐹 (𝑟𝑌 ,1, 𝑟𝑌 ,2) =
4∑
𝑖=1

|𝑟𝑌 ,1(𝑖) − 𝑟𝑌 ,2(𝑖)| = |2 − 1|+ |1 − 4|+ |3 − 2|+ |4 − 3| = 1 + 3 + 1 + 1 = 6, (23)

and (24)

𝐹 (𝑟𝑌 ,1, 𝑟𝑌 ,2) = ( 2
𝑛2

) ⋅ 𝐹 (𝑟𝑌 ,1, 𝑟𝑌 ,2) =
2
16

⋅ 6 = 0.75. (24)

We see that the normalized 𝐹 -distance 𝐹 (𝑟𝑌 ,1, 𝑟𝑌 ,2) = 0.75 between these two ranking-indexes 𝑟𝑌 ,1 and 𝑟𝑌 ,2 is different from 
𝐹 (𝑟𝑋,1, 𝑟𝑋,2) = 1 obtained in (19). This result and behavior are very counter-intuitive because the rankings for each expert expressed 
in different reference sets contain exactly the same information about the preference orders, and of course, we have the same 
rankings because 𝑅𝑟𝑌 ,1

(𝑌 ) =𝑅𝑟𝑋,1
(𝑋) and 𝑅𝑟𝑌 ,2

(𝑌 ) =𝑅𝑟𝑋,2
(𝑋). So, there is absolutely no rational reason why the distances between 

these rankings must be different depending on the reference set chosen (either 𝑋 or 𝑌 ). Our example 2 and this counter-example 
represent the same ranking information, just expressed in the different reference sets 𝑋 and 𝑌 , and one sees that we obtain two 
different results. Which one is correct and makes sense (if any)? Why? This simple counter-example casts in doubt the usefulness of 
the 𝐹 -distance for applications requiring the measurement of a distance between two rankings. A good distance measure between 
two rankings must be independent of the choice of the reference set we are working with, which is referred to as invariance under 
the indexing principle (IUIP). Clearly, Spearman’s 𝐹 -distance does not satisfy this important principle.

5. A new distance between rankings

To overcome the problem of the non-invariance under indexing of the 𝐹 -distance, we propose a new distance between rankings 
that satisfies all properties of a metric and satisfies IUIP.

The basic idea of establishing a new distance between rankings is to use all information available in the rankings given by the 
experts. More precisely, we need to count the different types of preference order in all possible pairwise comparisons between two 
elements of the reference set under consideration. This is done by calculating the 𝑛× 𝑛 pairwise Preference-Score Matrix (PSM) based 
on the ranking given by each expert.

By convention, the row index 𝑖 of the PSM corresponds to the index of elements 𝑥𝑖 on the left side of preference order 𝑥𝑖 ≻ 𝑥𝑗 , 
6

and the column index 𝑗 of the PSM corresponds to the index of the element 𝑥𝑗 on the right side of preference order 𝑥𝑖 ≻ 𝑥𝑗 . Hence 
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we denote a pairwise Preference-Score Matrix 𝑴 𝑟𝑋
(𝑋) = [𝑀𝑟𝑋

(𝑖, 𝑗)] where its components 𝑀𝑟𝑋
(𝑖, 𝑗) for 𝑖, 𝑗 = 1, 2, … , 𝑛 are defined 

as (25)

𝑴 𝑟𝑋
(𝑖, 𝑗) =

⎧⎪⎨⎪⎩
1, if 𝑥𝑖 ≻ 𝑥𝑗 ,

−1, if 𝑥𝑖 ≺ 𝑥𝑗 ,

0, if 𝑥𝑖 = 𝑥𝑗 .

(25)

Note that all components 𝑀𝑟𝑋
(𝑖, 𝑖) (𝑖 = 1, 2, … , 𝑛) of the main diagonal of the matrix 𝑴 𝑟𝑋

are always equal to zero. Also, PSM is 
always an anti-symmetrical matrix by construction because the preference 𝑥𝑖 ≻ 𝑥𝑗 is equivalent to the preference 𝑥𝑗 ≺ 𝑥𝑖. Hence if 
𝑥𝑖 ≻ 𝑥𝑗 is true which means 𝑀𝑟𝑋

(𝑖, 𝑗) = 1 then necessarily 𝑥𝑗 ≻ 𝑥𝑖 is false which means that 𝑥𝑗 ≺ 𝑥𝑖 is true and thus 𝑀𝑟𝑋
(𝑗, 𝑖) = −1, 

and the other way around. Consequently, 𝑴 𝑟𝑋
(𝑋)𝑇 = −𝑴 𝑟𝑋

(𝑋), and Tr(𝑴 𝑟𝑋
(𝑋)) = 0.

In example 2, 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶,𝑥4 =𝐷} and the preference order of expert 1 is Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 . Therefore, we 
have (26)

𝑴 𝑟𝑋,1
=

⎛⎜⎜⎜⎜⎜⎝

≻ 𝑥1 =𝐴 𝑥2 = 𝐵 𝑥3 = 𝐶 𝑥4 =𝐷

𝑥1 =𝐴 0 −1 1 −1
𝑥2 =𝐵 1 0 1 −1
𝑥3 = 𝐶 −1 −1 0 −1
𝑥4 =𝐷 1 1 1 0

⎞⎟⎟⎟⎟⎟⎠
. (26)

The component 𝑴 𝑟𝑋,1(1,2) of matrix 𝑴 𝑟𝑋,1
equals -1 because the preference 𝑥1 ≺ 𝑥2 is true, or equivalently the preference 𝐴 ≺ 𝐵

is true because in Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 we have 𝐵 ≻ 𝐴 which is equivalent to the preference 𝐴 ≺ 𝐵. Other values of components 
𝑴 𝑟𝑋,1(𝑖,𝑗) are obtained from the definition (25).

In example 2 where the reference set is 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶,𝑥4 =𝐷}, the preference order of expert 2 is Pref2 ≜ 𝐵 ≻ 𝐶 ≻

𝐷 ≻𝐴, and we have (27)

𝑴 𝑟𝑋,2
=

⎛⎜⎜⎜⎜⎜⎝

≻ 𝑥1 =𝐴 𝑥2 = 𝐵 𝑥3 = 𝐶 𝑥4 =𝐷

𝑥1 =𝐴 0 −1 −1 −1
𝑥2 =𝐵 1 0 1 1
𝑥3 = 𝐶 1 −1 0 1
𝑥4 =𝐷 1 −1 −1 0

⎞⎟⎟⎟⎟⎟⎠
. (27)

If we consider our simple counter-example using the reference set 𝑌 = {𝑦1 =𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶}, for expert 1 with ranking 
Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 we have now (28)

𝑴 𝑟𝑌 ,1
=

⎛⎜⎜⎜⎜⎜⎝

≻ 𝑦1 =𝐵 𝑦2 =𝐷 𝑦3 =𝐴 𝑦4 = 𝐶

𝑦1 =𝐵 0 −1 1 1
𝑦2 =𝐷 1 0 1 1
𝑦3 =𝐴 −1 −1 0 1
𝑦4 = 𝐶 −1 −1 −1 0

⎞⎟⎟⎟⎟⎟⎠
. (28)

If we consider our simple counter-example of Spearman’s F-distance using the reference set 𝑌 = {𝑦1 =𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶}, 
for expert 2 with ranking Pref2 ≜ 𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 we have the following PSM (29)

𝑴 𝑟𝑌 ,2
=

⎛⎜⎜⎜⎜⎜⎝

≻ 𝑦1 =𝐵 𝑦2 =𝐷 𝑦3 =𝐴 𝑦4 = 𝐶

𝑦1 =𝐵 0 1 1 1
𝑦2 =𝐷 −1 0 1 −1
𝑦3 =𝐴 −1 −1 0 −1
𝑦4 = 𝐶 −1 1 1 0

⎞⎟⎟⎟⎟⎟⎠
. (29)

At this current stage, we have to find a way to measure the distance between the rankings based on the knowledge of the PSM 
of each expert. The natural idea is to use directly a distance between PSM matrices. In practice, there are many ways to define the 
distance between two matrices depending on the choice of a norm for the matrix. We first recall Kemeny’s distance and then present 
7

our new distance and discuss the differences in their results.
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5.1. Kemeny’s distance

In [16], Kemeny used a particular axiomatic approach to define his distance between preferences orderings. More precisely, if we 
consider two rankings of 𝑁 objects from which we calculate their associated 𝑛 × 𝑛 ordering matrices4 𝑴1 = [𝑀1(𝑖, 𝑗), 𝑖, 𝑗 = 1, … , 𝑛]
and 𝑴2 = [𝑀2(𝑖, 𝑗), 𝑖, 𝑗 = 1, … , 𝑛] respectively, Kemeny’s distance between these two rankings are defined as5 (30) [16]

𝑑𝐾 (𝑴1,𝑴2) =
1
2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

|𝑀1(𝑖, 𝑗) −𝑀2(𝑖, 𝑗)|. (30)

Kemeny’s distance is a true metric invariant to labeling, and it satisfies our Invariance under the indexing principle (IUIP) because, 
in his axiomatic approach, he includes IUIP as a requested condition to satisfy (see condition 2 of [17], p. 587).

• Example 2 with 𝑋 = {𝑥1 =𝐴,𝑥2 = 𝐵,𝑥3 = 𝐶,𝑥4 =𝐷}
In our example 2 when working with reference set 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶,𝑥4 =𝐷} and considering the preference order-

ings Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 and Pref2 ≜𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 we have the ordering matrices (31) and (32)

𝑴 𝑟𝑋,1
=
⎡⎢⎢⎢⎣
0 −1 1 −1
1 0 1 −1
−1 −1 0 −1
1 1 1 0

⎤⎥⎥⎥⎦ , (31)

and

𝑴 𝑟𝑋,2
=
⎡⎢⎢⎢⎣
0 −1 −1 −1
1 0 1 1
1 −1 0 1
1 −1 −1 0

⎤⎥⎥⎥⎦ . (32)

Applying Kemeny’s definition (30) we obtain (33)

𝑑𝐾 (𝑴 𝑟𝑋,1
,𝑴 𝑟𝑋,2

) = 1
2

𝑁∑
𝑖=1

𝑁∑
𝑗=1

|𝑀𝑟𝑋,1
(𝑖, 𝑗) −𝑀𝑟𝑋,2

(𝑖, 𝑗)| = 6. (33)

If we want to work with a normalized Kemeny’s distance in [0, 1], then we need to calculate the maximum Kemeny’s dis-

tance, which is naturally obtained when the two preference orderings are in total contradiction, that is, for instance, when 
Pref′1 ≜𝐴≻𝐵 ≻ 𝐶 ≻𝐷 and Pref′2 ≜𝐷 ≻𝐶 ≻𝐵 ≻𝐴. This corresponds to ordering matrices (34) and (35)

𝑴 ′
𝑟𝑋,1

=
⎡⎢⎢⎢⎣
0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

⎤⎥⎥⎥⎦ , (34)

and

𝑴 ′
𝑟𝑋,2

=
⎡⎢⎢⎢⎣
0 −1 −1 −1
1 0 −1 −1
1 1 0 −1
1 1 1 0

⎤⎥⎥⎥⎦ . (35)

Applying Kemeny’s definition (30) we obtain (36)

𝑑max
𝐾

= 𝑑𝐾 (𝑴 ′
𝑟𝑋,1

,𝑴 ′
𝑟𝑋,2

) = 1
2

𝑁∑
𝑖=1

𝑁∑
𝑗=1

|𝑀 ′
𝑟𝑋,1

(𝑖, 𝑗) −𝑀 ′
𝑟𝑋,2

(𝑖, 𝑗)| = 12. (36)

The normalized Kemeny’s distance between preference orderings Pref1 ≜𝐷 ≻𝐵 ≻𝐴 ≻ 𝐶 and Pref2 ≜𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 when work-

ing on the reference set 𝑋 = {𝑥1 =𝐴,𝑥2 = 𝐵,𝑥3 = 𝐶,𝑥4 =𝐷} is finally given by (37)

𝑑𝐾 (𝑴1,𝑴2) =
𝑑𝐾 (𝑴1,𝑴2)

𝑑max
𝐾

= 6
12

= 0.5 (37)

• Example 2 with 𝑌 = {𝑦1 =𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶}

4 Kemeny’s ordering matrix coincides with the PSM whose elements are defined by (25).
8

5 We use the subscript K in our notation to refer to Kemeny.
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If we consider our example 2 using the reference set 𝑌 = {𝑦1 =𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶}, for expert 1 with ranking 
Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 and Pref2 ≜ 𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 we consider now the ordering matrices (38) and (39)

𝑴 𝑟𝑌 ,1
=
⎡⎢⎢⎢⎣
0 −1 1 1
1 0 1 1
−1 −1 0 1
−1 −1 −1 0

⎤⎥⎥⎥⎦ , (38)

and

𝑴 𝑟𝑌 ,2
=
⎡⎢⎢⎢⎣
0 1 1 1
−1 0 1 −1
−1 −1 0 −1
−1 1 1 0

⎤⎥⎥⎥⎦ . (39)

Applying Kemeny’s definition (30) we obtain (40)

𝑑𝐾 (𝑴 𝑟𝑌 ,1
,𝑴 𝑟𝑌 ,2

) = 1
2

𝑁∑
𝑖=1

𝑁∑
𝑗=1

|𝑀𝑟𝑌 ,1
(𝑖, 𝑗) −𝑀𝑟𝑌 ,2

(𝑖, 𝑗)| = 6. (40)

If we want to work with a normalized Kemeny’s distance in [0, 1] then we need to calculate the maximum Kemeny’s distance 
obtained when the two preference orderings are in total contradiction, that is for instance when Pref′1 ≜𝐴≻𝐵 ≻ 𝐶 ≻𝐷 and 
Pref′2 ≜𝐷 ≻𝐶 ≻ 𝐵 ≻𝐴. This corresponds to ordering matrices expressed w.r.t. the reference set 𝑌 = {𝑦1 = 𝐵, 𝑦2 = 𝐷, 𝑦3 = 𝐴,

𝑦4 = 𝐶} as follows (41)

𝑴 ′
𝑟𝑌 ,1

=
⎡⎢⎢⎢⎣
0 1 −1 1
−1 0 −1 −1
1 1 0 1
−1 1 −1 0

⎤⎥⎥⎥⎦ , (41)

and (42)

𝑴 ′
𝑟𝑌 ,2

=
⎡⎢⎢⎢⎣
0 −1 1 −1
1 0 1 1
−1 −1 0 −1
1 −1 1 0

⎤⎥⎥⎥⎦ . (42)

Applying Kemeny’s definition (30) we obtain (43)

𝑑max
𝐾

= 𝑑𝐾 (𝑴 ′
𝑟𝑌 ,1

,𝑴 ′
𝑟𝑌 ,2

) = 1
2

𝑁∑
𝑖=1

𝑁∑
𝑗=1

|𝑀 ′
𝑟𝑌 ,1

(𝑖, 𝑗) −𝑀 ′
𝑟𝑌 ,2

(𝑖, 𝑗)| = 12. (43)

The normalized Kemeny’s distance between preference orderings Pref1 ≜𝐷 ≻𝐵 ≻𝐴 ≻ 𝐶 and Pref2 ≜𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 when work-

ing on the reference set 𝑌 = {𝑦1 =𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶} is finally given by (44)

𝑑𝐾 (𝑴 𝑟𝑌 ,1
,𝑴 𝑟𝑌 ,2

) =
𝑑𝐾 (𝑴 𝑟𝑌 ,1

,𝑴 𝑟𝑌 ,2
)

𝑑max
𝐾

= 6
12

= 0.5 (44)

We verify that Kemeny’s distance is independent of the reference set chosen (i.e. the indexing, or labeling) for the objects because 
we have for our example 2 (45):

𝑑𝐾 (𝑴 𝑟𝑋,1
,𝑴 𝑟𝑋,2

) = 𝑑𝐾 (𝑴 𝑟𝑌 ,1
,𝑴 𝑟𝑌 ,2

) = 0.5 (45)

Based on this normalized Kemeny’s distance 𝑑𝐾 (𝑴 𝑟𝑋,1
,𝑴 𝑟𝑋,2

) = 0.5 we cannot establish for sure if the two rankings are more 
similar, or if they are more dissimilar because the normalized Kemeny’s distance 0.5 is just in the middle of interval [0, 1].

5.2. A new ranking distance based on Frobenius’ norm

Here, we consider the vectorial space 𝑛 of the real square matrices of dimension 𝑛 × 𝑛, and we propose to use the well-known 
Frobenius’ norm, which is one of the most frequent matrix norms used in linear algebra. Frobenius’ norm ||𝑴||𝐹 of a square matrix 
𝑴 = [𝑀(𝑖, 𝑗), 𝑖, 𝑗 = 1, … , 𝑛] ∈𝑛 is defined by (46) [14,23]

||𝑴 || =

√√√√ 𝑛∑ 𝑛∑|𝑀(𝑖, 𝑗)|2 =√
Tr(𝑴𝑇𝑴), (46)
9

𝐹

𝑖=1 𝑗=1
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where 𝑴𝑇 is the transpose of the matrix 𝑴 , and Tr(.) is the trace operator for matrix. Based on this norm, the distance between two 
matrices 𝑴1 and 𝑴2 of the same dimensions is simply defined by6 (47)

𝑑𝐹 (𝑴1,𝑴2) = ||𝑴1 −𝑴2||𝐹 . (47)

Theorem. The Frobenius’ distance 𝑑𝐹 (𝑴1, 𝑴2) satisfies the invariance under indexing principle.

Proof. Consider a reference set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} of 𝑛 objects, and another reference set 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} for these 𝑛 ob-

jects, then there is a permutation matrix (𝑈 ) that transforms 𝑋 into 𝑌 [22] such that 𝒚 = 𝑼𝒙, where 𝒚 ≜ [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 and 
𝒙 ≜ [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 [22]. This permutation matrix 𝑼 is a unitary orthogonal matrix [23] that verifies 𝑼𝑇𝑼 = 𝑼𝑼𝑇 = 𝑰𝑛×𝑛, where 
𝑰𝑛×𝑛 is the 𝑛 × 𝑛 identity matrix. If one considers a preference ordering Pref𝑋 expressed on the reference set 𝑋 and its corresponding 
preference ordering Pref𝑌 expressed on the reference set 𝑌 , the corresponding ordering matrices 𝑴𝑋 and 𝑴𝑌 are similar because 
they are linked via the orthogonal matrix 𝑼 . Consequently, we have7 (48)

𝑴𝑌 =𝑼−1𝑴𝑋𝑼 (48)

If we consider two ordering matrices 𝑴𝑌 ,1 =𝑼−1𝑴𝑋,1𝑼 and 𝑴𝑌 ,2 =𝑼−1𝑴𝑋,2𝑼 characterizing two preferences orderings Pref𝑌 ,1
and Pref𝑌 ,2 defined on the reference set 𝑌 , we have (49)

𝑴𝑌 ,1 −𝑴𝑌 ,2 =𝑼−1𝑴𝑋,1𝑼 −𝑼−1𝑴𝑋,2𝑼 =𝑼−1(𝑴𝑋,1 −𝑴𝑋,2)𝑼 (49)

and its transpose is expressed as (50)

(𝑴𝑌 ,1 −𝑴𝑌 ,2)𝑇 = (𝑼−1(𝑴𝑋,1 −𝑴𝑋,2)𝑼 )𝑇 =𝑼𝑇 (𝑴𝑋,1 −𝑴𝑋,2)𝑇 (𝑼−1)𝑇 (50)

Therefore (51),

(𝑴𝑌 ,1 −𝑴𝑌 ,2)𝑇 (𝑴𝑌 ,1 −𝑴𝑌 ,2) =𝑼𝑇 (𝑴𝑋,1 −𝑴𝑋,2)𝑇 (𝑼−1)𝑇𝑼−1(𝑴𝑋,1 −𝑴𝑋,2)𝑼 (51)

Because 𝑼𝑇𝑼 = 𝑰𝑛×𝑛 (𝑼 being a unitary orthogonal matrix), we have 𝑼𝑇 =𝑼−1 and so (𝑼−1)𝑇 = (𝑼𝑇 )𝑇 =𝑼 , so that (𝑼−1)𝑇𝑼−1 =
𝑰𝑛×𝑛. Therefore the matrix product (𝑴𝑌 ,1 −𝑴𝑌 ,2)𝑇 (𝑴𝑌 ,1 −𝑴𝑌 ,2) is written as (52)

(𝑴𝑌 ,1 −𝑴𝑌 ,2)𝑇 (𝑴𝑌 ,1 −𝑴𝑌 ,2) =𝑼𝑇 (𝑴𝑋,1 −𝑴𝑋,2)𝑇 (𝑴𝑋,1 −𝑴𝑋,2)𝑼 =𝑼−1(𝑴𝑋,1 −𝑴𝑋,2)𝑇 (𝑴𝑋,1 −𝑴𝑋,2)𝑼 (52)

Because the matrices in the trace of a product can be switched without changing the result (which is called the similarity invariance

of the trace operator) [23] meaning that Tr(𝑨) = Tr(𝑷 −1𝑨𝑷 ) for any square matrix 𝑨 and any invertible matrix 𝑷 of the same 
dimensions, we always have (53)

Tr((𝑴𝑌 ,1 −𝑴𝑌 ,2)𝑇 (𝑴𝑌 ,1 −𝑴𝑌 ,2)) = Tr(𝑼−1(𝑴𝑋,1 −𝑴𝑋,2)𝑇 (𝑴𝑋,1 −𝑴𝑋,2)𝑼 ) = Tr((𝑴𝑋,1 −𝑴𝑋,2)𝑇 (𝑴𝑋,1 −𝑴𝑋,2)) (53)

Consequently, we always have (54)

𝑑𝐹 (𝑴𝑌 ,1,𝑴𝑌 ,2) = 𝑑𝐹 (𝑴𝑋,1,𝑴𝑋,2) (54)

This shows that the Frobenius’ distance between two preference orderings characterized by their ordering matrices is invariant under 
indexing, meaning it is independent of the choice of reference set we work with. This completes the proof of the theorem.

• Example 2 with 𝑋 = {𝑥1 =𝐴,𝑥2 = 𝐵,𝑥3 = 𝐶,𝑥4 =𝐷}
In our example 2 and when working with reference set 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶,𝑥4 =𝐷} we work with PSM 𝑴 𝑟𝑋,1

given in 
(31) and 𝑴 𝑟𝑋,2

given in (32), and we have (55)

𝑴 𝑟𝑋,1
−𝑴 𝑟𝑋,2

=
⎡⎢⎢⎢⎣
0 0 2 0
0 0 0 −2
−2 0 0 −2
0 2 2 0

⎤⎥⎥⎥⎦ , (55)

and (56)

(𝑴 𝑟𝑋,1
−𝑴 𝑟𝑋,2

)𝑇 =
⎡⎢⎢⎢⎣
0 0 −2 0
0 0 0 2
2 0 0 2
0 −2 −2 0

⎤⎥⎥⎥⎦ . (56)

6 We use the subscript F in our notation to refer to Frobenius.
10

7 See the definition of similar matrices in [23].
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Therefore (57),

(𝑴 𝑟𝑋,1
−𝑴 𝑟𝑋,2

)𝑇 (𝑴 𝑟𝑋,1
−𝑴 𝑟𝑋,2

) =
⎡⎢⎢⎢⎣
4 0 0 4
0 4 4 0
0 4 8 0
4 0 0 8

⎤⎥⎥⎥⎦ . (57)

Hence (58)

Tr((𝑴 𝑟𝑋,1
−𝑴 𝑟𝑋,2

)𝑇 (𝑴 𝑟𝑋,1
−𝑴 𝑟𝑋,2

)) = 4 + 4 + 8 + 8 = 24 (58)

and we finally get (59)

𝑑𝐹 (𝑴 𝑟𝑋,1
,𝑴 𝑟𝑋,2

) =
√
24 ≈ 4.8990 (59)

If we want to work with a normalized distance in [0, 1], then we need to calculate the maximum distance that is naturally 
obtained when the two preference orderings are in total contradiction, that is, for instance, when Pref′1 ≜𝐴≻𝐵 ≻ 𝐶 ≻𝐷 and 
Pref′2 ≜𝐷 ≻𝐶 ≻ 𝐵 ≻𝐴. This corresponds to PSM matrices (60)

𝑴 ′
𝑟𝑋,1

=
⎡⎢⎢⎢⎣
0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

⎤⎥⎥⎥⎦ , (60)

and (61)

𝑴 ′
𝑟𝑋,2

=
⎡⎢⎢⎢⎣
0 −1 −1 −1
1 0 −1 −1
1 1 0 −1
1 1 1 0

⎤⎥⎥⎥⎦ . (61)

Hence (62),

𝑴 ′
𝑟𝑋,1

−𝑴 ′
𝑟𝑋,2

=
⎡⎢⎢⎢⎣
0 2 2 2
−2 0 2 2
−2 −2 0 2
−2 −2 −2 0

⎤⎥⎥⎥⎦ , (62)

and (63)

(𝑴 ′
𝑟𝑋,1

−𝑴 ′
𝑟𝑋,2

)𝑇 =
⎡⎢⎢⎢⎣
0 −2 −2 −2
2 0 −2 −2
2 2 0 −2
2 2 2 0

⎤⎥⎥⎥⎦ . (63)

Therefore (64),

(𝑴 ′
𝑟𝑋,1

−𝑴 ′
𝑟𝑋,2

)𝑇 (𝑴 ′
𝑟𝑋,1

−𝑴 ′
𝑟𝑋,2

) =
⎡⎢⎢⎢⎣
12 8 0 −8
8 12 8 0
0 8 12 8
−8 0 8 12

⎤⎥⎥⎥⎦ . (64)

Hence (65)

Tr((𝑴 ′
𝑟𝑋,1

−𝑴 ′
𝑟𝑋,2

)𝑇 (𝑴 ′
𝑟𝑋,1

−𝑴 ′
𝑟𝑋,2

)) = 12 + 12 + 12 + 12 = 48, (65)

and we finally get8 (66)

𝑑max
𝐹 ,𝑋

= 𝑑𝐹 (𝑴 ′
𝑟𝑋,1

,𝑴 ′
𝑟𝑋,2

) =
√
48 ≈ 6.9282 (66)

The normalized Frobenius’ distance between preference orderings Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 and Pref2 ≜𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 when 
working on the reference set 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶,𝑥4 =𝐷} is finally given by (67)

𝑑𝐹 (𝑴 𝑟𝑋,1
,𝑴 𝑟𝑋,2

) =
𝑑𝐹 (𝑴 𝑟𝑋,1

,𝑴 𝑟𝑋,2
)

𝑑max
𝐹 ,𝑋

≈ 0.7071. (67)
11

8 The double subscript 𝐹 , 𝑋 introduced in 𝑑max
𝐹 ,𝑋

is necessary to indicate explicitly the reference set we are working with, i.e., the set 𝑋 here.
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• Example 2 with 𝑌 = {𝑦1 =𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶}
If we consider our example 2 using the reference set 𝑌 = {𝑦1 =𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶}, for expert 1 with ranking 
Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 and Pref2 ≜ 𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 we consider now the ordering matrices 𝑴 𝑟𝑌 ,1

given by (38), and 𝑴𝑟𝑌 ,2
given by (39). Applying the distance definition (47) we obtain (68)

𝑴 𝑟𝑌 ,1
−𝑴 𝑟𝑌 ,2

=
⎡⎢⎢⎢⎣
0 −2 0 0
2 0 0 2
0 0 0 2
0 −2 −2 0

⎤⎥⎥⎥⎦ , (68)

and (69)

(𝑴 𝑟𝑌 ,1
−𝑴 𝑟𝑌 ,2

)𝑇 =
⎡⎢⎢⎢⎣
0 2 0 0
−2 0 0 −2
0 0 0 −2
0 2 2 0

⎤⎥⎥⎥⎦ . (69)

Therefore (70),

(𝑴 𝑟𝑌 ,1
−𝑴 𝑟𝑌 ,2

)𝑇 (𝑴 𝑟𝑌 ,1
−𝑴 𝑟𝑌 ,2

) =
⎡⎢⎢⎢⎣
4 0 0 4
0 8 4 0
0 4 4 0
4 0 0 8

⎤⎥⎥⎥⎦ . (70)

Hence (71)

Tr((𝑴 𝑟𝑌 ,1
−𝑴 𝑟𝑌 ,2

)𝑇 (𝑴 𝑟𝑌 ,1
−𝑴 𝑟𝑌 ,2

)) = 4 + 8 + 4 + 8 = 24, (71)

and we finally get (72)

𝑑𝐹 (𝑴 𝑟𝑌 ,1
,𝑴 𝑟𝑌 ,2

) =
√
24 ≈ 4.8990. (72)

If we want to work with a normalized distance in [0, 1], then we need to calculate the maximum distance obtained when the two 
preference orderings are in total contradiction, that is, for instance, when Pref′1 ≜𝐴≻𝐵 ≻ 𝐶 ≻𝐷 and Pref′2 ≜𝐷 ≻𝐶 ≻𝐵 ≻𝐴. 
This corresponds to ordering matrices 𝑴 ′

𝑟𝑌 ,1
given by (41) and 𝑴 ′

𝑟𝑌 ,2
given by (42) expressed w.r.t. the reference set 

𝑌 = {𝑦1 = 𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶}. Applying the distance definition (47) we obtain (73)

𝑴 ′
𝑟𝑌 ,1

−𝑴 ′
𝑟𝑌 ,2

=
⎡⎢⎢⎢⎣
0 2 −2 2
−2 0 −2 −2
2 2 0 2
−2 2 −2 0

⎤⎥⎥⎥⎦ , (73)

and (74)

(𝑴 ′
𝑟𝑌 ,1

−𝑴 ′
𝑟𝑌 ,2

)𝑇 =
⎡⎢⎢⎢⎣
0 −2 2 −2
2 0 2 2
−2 −2 0 −2
2 −2 2 0

⎤⎥⎥⎥⎦ , (74)

and (75)

(𝑴 ′
𝑟𝑌 ,1

−𝑴 ′
𝑟𝑌 ,2

)𝑇 (𝑴 ′
𝑟𝑌 ,1

−𝑴 ′
𝑟𝑌 ,2

) =
⎡⎢⎢⎢⎣
12 0 8 8
0 12 −8 8
8 −8 12 0
8 8 0 12

⎤⎥⎥⎥⎦ . (75)

Hence (76)

Tr((𝑴 ′
𝑟𝑌 ,1

−𝑴 ′
𝑟𝑌 ,2

)𝑇 (𝑴 ′
𝑟𝑌 ,1

−𝑴 ′
𝑟𝑌 ,2

)) = 12 + 12 + 12 + 12 = 48, (76)

and we finally get (77)

𝑑max
𝐹 ,𝑌

= 𝑑𝐹 (𝑴 ′
𝑟𝑌 ,1

,𝑴 ′
𝑟𝑌 ,2

) =
√
48 ≈ 6.9282. (77)

The normalized Frobenius’ distance between preference orderings Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 and Pref2 ≜𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 when 
working on the reference set 𝑌 = {𝑦1 =𝐵,𝑦2 =𝐷,𝑦3 =𝐴,𝑦4 = 𝐶} is finally given by (78)

̃
𝑑𝐹 (𝑴 𝑟𝑌 ,1

,𝑴 𝑟𝑌 ,2
)

12

𝑑(𝑴 𝑟𝑌 ,1
,𝑴 𝑟𝑌 ,2

) =
𝑑max
𝐹 ,𝑌

≈ 0.7071. (78)
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Table 1

Relative consistencies in 
Pref1 and Pref2 .

Pref1 Pref2

𝐷 ≻≻𝐴 𝐷 ≻𝐴

𝐵 ≻𝐴 𝐵 ≻≻≻𝐴

𝐵 ≻≻ 𝐶 𝐵 ≻ 𝐶

Table 2

Inconsistencies in Pref1
and Pref2 .

Pref1 Pref2

𝐷 ≻𝐵 𝐵 ≻≻𝐷

𝐷 ≻≻≻ 𝐶 𝐶 ≻𝐷

𝐴≻ 𝐶 𝐶 ≻≻𝐴

We have verified that this new ranking distance based on the Frobenius’ norm is independent of the reference set chosen (i.e., the 
indexing, or labeling) for the objects because we have, for our example 2 (79)

𝑑𝐹 (𝑴 𝑟𝑋,1
,𝑴 𝑟𝑋,2

) = 𝑑𝐹 (𝑴 𝑟𝑌 ,1
,𝑴 𝑟𝑌 ,2

) ≈ 0.7071. (79)

Remark 1. It is worth to check that the unitary orthogonal matrix 𝑼 for the permutation from the reference set 𝑋 = {𝑥1 =𝐴, 𝑥2 =𝐵,

𝑥3 = 𝐶,𝑥4 =𝐷} to the reference set 𝑌 = {𝑦1 =𝐵, 𝑦2 =𝐷,𝑦3 =𝐴, 𝑦4 = 𝐶} is given by (80)

𝑼 =
⎡⎢⎢⎢⎣
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤⎥⎥⎥⎦ . (80)

As mentioned in the proof of the Theorem, we can verify that 𝑼 𝑇𝑼 =𝑼𝑼𝑇 = 𝑰4×4, and the equalities (81) and (82) hold.

𝑴 𝑟𝑌 ,1
=𝑼𝑇𝑴 𝑟𝑋,1

𝑼 , (81)

𝑴 𝑟𝑌 ,2
=𝑼𝑇𝑴 𝑟𝑋,2

𝑼 . (82)

Remark 2. In our example 2, it is interesting to observe that normalized Kemeny’s distance and normalized Frobenius’ distance 
between the two rankings of example 2 provide different interpretations about these rankings. Based on normalized Kemeny’s 
distance 𝑑𝐾 (𝑴 𝑟𝑋,1

, 𝑴 𝑟𝑋,2
) = 0.5, it is clear that we cannot assert for sure if the two preference orderings Pref1 ≜𝐷 ≻𝐵 ≻𝐴≻ 𝐶 and 

Pref2 ≜ 𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 are more similar than dissimilar because the distance 0.5 we get is in the middle of interval [0, 1]. However, 
based on the normalized Frobenius’ distance 𝑑𝐹 (𝑴 𝑟𝑋,1

,𝑴 𝑟𝑋,2
) = 0.7071, we can clearly infer that Pref1 and Pref2 are more dissimilar 

than similar because their 𝑑𝐹 = 0.7071 distance is closer to 1, than to 0. Which interpretation is correct and makes sense? To answer 
this question, we must examine the relative consistencies and inconsistencies in Pref1 and Pref2 orderings, which are summarized in 
Tables 1 & 2.

In the Tables 1 & 2, the double ≻≻ notation indicates that there is one object between the left-object side of ≻≻ and its right-object 
side. For instance, in Table 1, 𝐷 ≻≻𝐴 means that we have “𝐷 ≻ some object ≻𝐴”. Similarly, the triple ≻≻≻ notation indicates that 
there are two objects in between.

Based on the Tables 1 & 2, one could argue that preference orderings include three relative consistencies and three inconsistencies, 
and so we may consider there is no reason to establish that they are more similar than dissimilar. This is what Kemeny’s distance tells 
us with 𝑑𝐾 (𝑴 𝑟𝑋,1

,𝑴 𝑟𝑋,2
) = 0.5. We think that this reasoning is disputable because we note that the relative consistencies of Table 1

are different. For instance, in Table 1 we have 𝐵 ≻𝐴 for Pref1, whereas 𝐵 ≻≻≻𝐴 for Pref2, etc. So, we think it is more reasonable to 
consider Pref1 and Pref2 as more dissimilar than similar, and this is what expresses the Frobenius’ distance 𝑑𝐹 (𝑴 𝑟𝑋,1

,𝑴 𝑟𝑋,2
) = 0.7071.

5.3. On Kemeny’s axiomatic

We recall the four axioms used by Kemeny’s to justify his distance (see [16], Chap. 2).

• Axiom 1:

– Axiom 1.1: 𝑑(𝐴, 𝐵) ≥ 0, and inequality holds if and only if 𝐴 and 𝐵 are same ranking.

– Axiom 1.2: 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴).
13

– Axiom 1.3: 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶) ≥ 𝑑(𝐴, 𝐶), and the equality holds if and only if the ranking 𝐵 is between 𝐴 and 𝐶 .
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• Axiom 2: If 𝐴′ results of 𝐴 by a permutation of objects, and 𝐵′ results of 𝐵 by the same permutation of objects, then 𝑑(𝐴′, 𝐵′) =
𝑑(𝐴, 𝐵).

• Axiom 3: If two rankings 𝐴 and 𝐵 agree except for a set 𝑆 of 𝑘 elements, which is a segment of both, then 𝑑(𝐴, 𝐵) may be 
computed as if these 𝑘 objects where the only objects being ranked.

• Axiom 4: The minimum positive distance is 1.

Axiom 1 stipulates that the distance must be a true metric, and axiom 2 corresponds to the invariance under the indexing principle. 
Axioms 1 & 2 are good natural axioms for establishing a distance between rankings. To verify Axiom 1.3, Kemeny’s needs to choose a 
notion of “betweenness”. The definition of a distance based on a norm of a matrix is more general and mathematically well defined. 
This is why we prefer to use the Frobenius’ norm of a matrix for establishing the Frobenius’ distance between rankings in this study.

Kemeny’s Axiom 3 stipulates that if two rankings are in complete agreement at the beginning and at the end of the list and differ 
only in the middle, then the distance does not change after deleting both the first and the last objects to be ranked [1]. This axiom 3 is 
not so intuitive in our opinion but is rather a consequence of working with PSM. Obviously, Frobenius’ distance 𝑑𝐹 satisfies Kemeny’s 
axiom 3 because the matrix 𝑴 =𝑴1 −𝑴2 will be a square matrix with all its bordering elements equal to zero because the first 
elements and the last elements of the rankings are the same for the conditions of rankings expressed in Axiom 3. Consequently, the 
distance result 𝑑𝐹 will depend only of the non-zero elements of 𝑴 =𝑴1 −𝑴2 (i.e. the elements of its “interior” sub-matrix 𝑴 int). 
For instance, if one considers four objects with preferences Pref1 =𝐴 ≻ 𝐵 ≻ 𝐶 ≻𝐷 and Pref2 = 𝐴 ≻ 𝐶 ≻ 𝐵 ≻𝐷 satisfying conditions 
of Axiom 3, then we have the PSM (83)

𝑴1 =
⎡⎢⎢⎢⎣
0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

⎤⎥⎥⎥⎦ , 𝑴2 =
⎡⎢⎢⎢⎣
0 1 1 1
−1 0 −1 1
−1 1 0 1
−1 −1 −1 0

⎤⎥⎥⎥⎦ . (83)

Hence, 𝑴1 −𝑴2 is the zero-border matrix equal to (84)

𝑴 =𝑴1 −𝑴2 =
⎡⎢⎢⎢⎣
0 0 0 0
0 0 2 0
0 −2 0 0
0 0 0 0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
𝟎 … 𝟎
⋮ 𝑴 int ⋮
𝟎 … 𝟎

⎤⎥⎥⎦ , (84)

where the interior sub-matrix 𝑴 int is (85)

𝑴 int =
[
0 2
−2 0

]
. (85)

Therefore (86),

𝑴𝑇𝑴 =
⎡⎢⎢⎣
𝟎 … 𝟎
⋮ 𝑴𝑇

int
𝑴 int ⋮

𝟎 … 𝟎

⎤⎥⎥⎦ . (86)

Clearly, Tr(𝑴𝑇𝑴) = Tr(𝑴𝑇
int
𝑴 int), and Frobenius’ distance is 𝑑𝐹 (𝑀1, 𝑀2) =

√
Tr(𝑴𝑇𝑴) =

√
Tr(𝑴𝑇

int
𝑴 int). This proves that 

the Frobenius’ distance between 𝑴1 and 𝑴2 does not change after deleting both the first and the last objects to be ranked because 
it depends only on interior sub-matrix 𝑴 int which is nothing but the PSM of objects in the middle of rankings that have swapped.

As written by Kemeny himself in [16] (p. 10), the axiom 4 is “in the nature of a convention”. This axiom 4 has been chosen to fit 
with Kemeny’s distance definition, but it is actually arbitrary and disputable. It is worth noting that this minimal Kemeny’s positive 
distance of 1 is obtained only between a strict (i.e., proper) ranking and a tied ranking as shown by Kemeny’s in his example for the 
3-objects case (see Fig. 2 of [16], p. 17, and next in this paper on Fig. 1). We can also justify the Frobenius’ distance between rankings 
by modifying the arbitrary Kemeny’s axiom 4 in order to fit with the Frobenius’ distance definition as well, and thus requiring that 
the minimum positive distance is 

√
2 (because 

√
2 is the minimum positive Frobenius’ distance between the simple preference 𝐴 ≻𝐵

and the tie 𝐴 =𝐵). This would not be more arbitrary than the choice made by Kemeny for his axiom 4. Or if we prefer, we can scale 
(i.e. divide) the Frobenius’s distance by the factor 

√
2 to satisfy Kemeny’s axiom 4, and we can work with 1√

2
𝑑𝐹 (𝑴1, 𝑴2) instead 

of Kemeny’s distance without violating Kemeny’s axiomatic.

Consequently, Kemeny’s statement about the unicity of his distance verifying his axiomatic is wrong because the (
√
2-scaled) 

Frobenius’ distance also satisfies his axiomatic. The justification of Frobenius’ distance between rankings has the same axiomatic 
strength as Kemeny’s approach, and it cannot be disputed or discarded based on Kemeny’s axiomatic argumentation.

5.4. Comparison of Frobenius’ distance with Kemeny’s distance

Comparison 1. We use Kemeny’s example [16] (p. 17) for ranking three objects. Kemeny’s result is shown in Fig. 1. We recall the 
14

equivalence between Kemeny’s notation for preference ordering and our notations in Table 3.
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Table 3

Equivalence between Kemeny’s notation and ours.

Preference # Kemeny’s notation our notation

𝑃1

⎛⎜⎜⎜⎝
𝑎

𝑏

𝑐

⎞⎟⎟⎟⎠ 𝑎 ≻ 𝑏 ≻ 𝑐

𝑃2

(
𝑎

𝑏− 𝑐

)
𝑎 ≻ (𝑏 = 𝑐)

𝑃3

⎛⎜⎜⎜⎝
𝑎

𝑐

𝑏

⎞⎟⎟⎟⎠ 𝑎 ≻ 𝑐 ≻ 𝑏

𝑃4

(
𝑎− 𝑐

𝑏

)
(𝑎 = 𝑐) ≻ 𝑏

𝑃5

⎛⎜⎜⎜⎝
𝑐

𝑎

𝑏

⎞⎟⎟⎟⎠ 𝑐 ≻ 𝑎 ≻ 𝑏

𝑃6

(
𝑐

𝑎− 𝑏

)
𝑐 ≻ (𝑎 = 𝑏)

𝑃7

⎛⎜⎜⎜⎝
𝑐

𝑏

𝑎

⎞⎟⎟⎟⎠ 𝑐 ≻ 𝑏 ≻ 𝑎

𝑃8

(
𝑏− 𝑐

𝑎

)
(𝑏 = 𝑐) ≻ 𝑎

𝑃9

⎛⎜⎜⎜⎝
𝑏

𝑐

𝑎

⎞⎟⎟⎟⎠ 𝑏 ≻ 𝑐 ≻ 𝑎

𝑃10

(
𝑏

𝑎− 𝑐

)
𝑏 ≻ (𝑎 = 𝑐)

𝑃11

⎛⎜⎜⎜⎝
𝑏

𝑎

𝑐

⎞⎟⎟⎟⎠ 𝑏 ≻ 𝑎 ≻ 𝑐

𝑃12

(
𝑎− 𝑏

𝑐

)
(𝑎 = 𝑏) ≻ 𝑐

𝑃13

(
𝑎− 𝑏− 𝑐

)
𝑎 = 𝑏 = 𝑐

For convenience and for comparison with Frobenius’ distances in our study, additional links from point (i.e. preference) 𝑃1 to 
preferences 𝑃4, 𝑃5, 𝑃6 and 𝑃7 with their Kemeny’s distances have been also included on Fig. 1, as well as distances from 𝑃2 to 𝑃4, 
𝑃5, 𝑃6 and 𝑃7. For symmetrical reasons, other links between other preferences are not necessary to be shown.

The same representation based on Frobenius’ distance is shown on Fig. 2.

The comparison of Figs. 1 & 2 shows the differences between Kemeny’s and Frobenius’ distances. What is remarkable is that 
Kemeny’s distance from one point to another always equals the sum of the values of the path between the two points, whose sum is 
minimal. For instance, 𝑑𝐾 (𝑃1, 𝑃13) = 𝑑𝐾 (𝑃1, 𝑃2) + 𝑑𝐾 (𝑃2, 𝑃13) = 1 + 2 = 3, which means that the triangular inequality condition is an 
equality condition. Using Frobenius’ distance, the triangular inequality holds because 𝑑𝐹 (𝑃1, 𝑃13) = 2.44 < 𝑑𝐹 (𝑃1, 𝑃2) + 𝑑𝐹 (𝑃2, 𝑃13) =√
2+2 = 3.4142. Similarly, 𝑑𝐾 (𝑃2, 𝑃6) = 𝑑𝐾 (𝑃2, 𝑃13) +𝑑𝐾 (𝑃13, 𝑃6) = 2 +2 = 4, whereas 𝑑𝐹 (𝑃2, 𝑃6) = 3.46 < 𝑑𝐹 (𝑃2, 𝑃13) +𝑑𝐹 (𝑃13, 𝑃6) =

2 + 2 = 4. Other verifications can be easily done using most distance values shown in Figs. 1 & 2. We think that this behavior of 
Frobenius’ distance is more reasonable than Kemeny’s distance.

Note that “normalized figures” can be obtained by dividing the 𝑑𝐾 values of each link of Fig. 1 by 𝑑max
𝐾

= 6, and by dividing the 
𝑑𝐹 values of each link of Fig. 2 by 𝑑max

𝐹
≈ 4.8990. The normalized distances (Kemeny’s and Frobenius’) between all possible rankings 

of three objects are shown in Figs. 3 and 4 for convenience.

Comparison 2. To assess the differences between normalized Kemeny’s distance 𝑑𝐾 (., .) and the normalized Frobenius’ distance 
𝑑𝐹 (., .), we make a comparative analysis when considering the strict preference ordering Pref1 ≜𝐴≻𝐵 ≻ 𝐶 ≻𝐷 with respect to all 
possible (i.e. 24) strict9 preferences Pref2 generated from all possible permutations of 4 elements. The results are listed in Table 4.
15

9 For simplicity and for limiting the number of cases to browse, we do not consider all possible ties that can occur.
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Fig. 1. Kemeny’s distances for 3 rankings.
16

Fig. 2. Frobenius’ distances for 3 rankings.
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Fig. 3. All possible normalized Kemeny’s distances for 3 rankings.

Fig. 4. All possible normalized Frobenius’ distances for 3 rankings.

From Table 4, we observe the different distances we obtain with Kemeny’s distance and Frobenius’ distance except in the total con-

sistency case for which 𝑑𝐾 (𝑀1, 𝑀2) = 𝑑𝐹 (𝑀1, 𝑀2) = 0 and in the total contradictions case for which 𝑑𝐾 (𝑀1, 𝑀2) = 𝑑𝐹 (𝑀1, 𝑀2) = 1. 
This result makes sense, and it is naturally expected. We observe also that we always have 𝑑𝐾 (𝑀1, 𝑀2) ≤ 𝑑𝐹 (𝑀1, 𝑀2). The choice 
between Kemeny’s distance and Frobenius’ distance for measuring the distance between rankings is not clear at this stage of our 
study for the applications because both distances 𝑑𝐾 and 𝑑𝐹 verify Kemeny’s axioms 1, 2 & 3, and they differ only in the arbitrary 
convention for the axiom 4. Only evaluation of these distances on real applications may help to choose between 𝑑𝐾 and 𝑑𝐹 distances 
17

in practice.
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Table 4

Comparison of 𝑑𝐾 (., .) and 𝑑𝐹 (., .) between preference order-

ings Pref1 and Pref2 .

Pref1 Pref2 𝑑𝐾 (., .) 𝑑𝐹 (., .)

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐴≻𝐵 ≻ 𝐶 ≻𝐷 0 0

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐴≻𝐵 ≻𝐷 ≻𝐶 0.1667 0.4082

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐴≻ 𝐶 ≻ 𝐵 ≻𝐷 0.1667 0.4082

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐴≻ 𝐶 ≻𝐷 ≻𝐵 0.3333 0.5774

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐴≻𝐷 ≻𝐵 ≻ 𝐶 0.3333 0.5774

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐴≻𝐷 ≻ 𝐶 ≻ 𝐵 0.5000 0.7071

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐵 ≻𝐴≻ 𝐶 ≻𝐷 0.1667 0.4082

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐵 ≻𝐴≻𝐷 ≻ 𝐶 0.3333 0.5774

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐵 ≻ 𝐶 ≻𝐴 ≻𝐷 0.3333 0.5774

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐵 ≻ 𝐶 ≻𝐷 ≻𝐴 0.5000 0.7071

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐵 ≻𝐷 ≻𝐴≻ 𝐶 0.5000 0.7071

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐵 ≻𝐷 ≻ 𝐶 ≻𝐴 0.6667 0.8165

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐶 ≻𝐴 ≻ 𝐵 ≻𝐷 0.3333 0.5774

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐶 ≻𝐴 ≻𝐷 ≻𝐵 0.5000 0.7071

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐶 ≻ 𝐵 ≻𝐴 ≻𝐷 0.5000 0.7071

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐶 ≻ 𝐵 ≻𝐷 ≻𝐴 0.6667 0.8165

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐶 ≻𝐷 ≻𝐴≻𝐵 0.6667 0.8165

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐶 ≻𝐷 ≻𝐵 ≻𝐴 0.8333 0.9129

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐷 ≻𝐴≻𝐵 ≻ 𝐶 0.5000 0.7071

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐷 ≻𝐴≻ 𝐶 ≻ 𝐵 0.6667 0.8165

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐷 ≻𝐵 ≻𝐴≻ 𝐶 0.6667 0.8165

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐷 ≻𝐵 ≻ 𝐶 ≻𝐴 0.8333 0.9129

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐷 ≻𝐶 ≻𝐴 ≻𝐵 0.8333 0.9129

𝐴≻𝐵 ≻ 𝐶 ≻𝐷 𝐷 ≻𝐶 ≻ 𝐵 ≻𝐴 1 1

5.5. Dealing with ties

Because of how the proposed approach handles the ranking thanks to the Preference-Score Matrix, the ties do not create any 
problems here. When some alternatives in the ranking are in ties, the Preference-Score Matrix will be filled with 0 on specific 
positions when the alternatives are equal. Then, the procedure remains the same. Distances between rankings, including ties, are 
shown in Figs. 1 & 2 for the three objects ranking example.

5.6. Extension with weights

It is also possible to extend this approach with positive importance weights to calculate weighted distance, which could be useful 
in some cases. For example, to calculate the distance between two ranking of 𝑛 values, we first have to define a weights vector 𝒘
with (87)

𝒘 = [𝑤1,𝑤2,… ,𝑤𝑛]𝑇 . (87)

The choice of importance weights vector 𝒘 is generally left to the user. For example, weights vector (88) was successfully used 
in weighted similarity correlation coefficient [28], which, however, does not follow IUIP. The sum of this progression could be 
calculated according to (89).

𝒘(𝟐) = [2−1,2−2,… ,2−𝑛]𝑇 , (88)

𝑛∑
𝑖=1

𝒘(𝟐)(𝑖) = 2−1 + 2−2 +…+ 2−𝑛 = 1 − 2−𝑛. (89)

By convention, 𝑤1 is the weight for the best-preferred object, 𝑤2 is the weight for the 2nd best-preferred object, etc. The sum of the 
weights is not necessarily equal to one. This does not matter if we work with normalized weighted Frobenius’ distance.

Suppose we have a chosen a reference set 𝑋 of 𝑛 objects and two preferences orderings Pref1 and Pref2 from which the ordering 
matrices 𝑴𝑋,1 and 𝑴𝑋,2 are derived. From 𝑴𝑋,1 and 𝑴𝑋,2 we calculate the scoring vector 𝒔𝑋,1 and 𝒔𝑋,2 defined by (90)

𝒔𝑋,1 =
⎡⎢⎢⎣
∑𝑛

𝑗=1𝑀𝑋,1(1, 𝑗)
⋮∑𝑛

𝑗=1𝑀𝑋,1(𝑛, 𝑗)

⎤⎥⎥⎦ , (90)
18

and (91)
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𝒔𝑋,2 =
⎡⎢⎢⎣
∑𝑛

𝑗=1𝑀𝑋,2(1, 𝑗)
⋮∑𝑛

𝑗=1𝑀𝑋,2(𝑛, 𝑗)

⎤⎥⎥⎦ . (91)

We can sort each value of score vector 𝒔𝑋,1 and 𝒔𝑋,2 by their decreasing sorting to obtain the respective sorted vectors 𝒔sorted
𝑋,1 and 

𝒔sorted
𝑋,2 in order to identify the position of the weight 𝑤𝑖 we must assign to each value. This is called the weighting assignment of score 

values, which is characterized by the weighting vectors 𝒘𝑋,1 and 𝒘𝑋,2. Because the score vector 𝒔𝑋,1 can always be obtained from 
the (decreasing) sorted score vector 𝒔sorted

𝑋,1 by a unitary permutation matrix 𝑽 𝑋,1 such that 𝒔𝑋,1 = 𝑽 𝑋,1𝒔
sorted
𝑋,1 , and similarly because 

𝒔𝑋,2 = 𝑽 𝑋,2𝒔
sorted
𝑋,2 with a 𝑛 × 𝑛 unitary permutation matrix 𝑽 𝑋,2, the weighting vectors 𝒘𝑋,1 and 𝒘𝑋,2 are obtained respectively by 

(92) and (93)

𝒘𝑋,1 = 𝑽 𝑋,1𝒘, (92)

𝒘𝑋,2 = 𝑽 𝑋,2𝒘. (93)

From weights vectors 𝒘𝑋,1 and 𝒘𝑋,2 we build weighting diagonal matrices 𝑾 𝑋,1 and 𝑾 𝑋,2 defined by (94) and (95)

𝑾 𝑋,1 = 𝑑𝑖𝑎𝑔(𝒘𝑋,1), (94)

𝑾 𝑋,2 = 𝑑𝑖𝑎𝑔(𝒘𝑋,2). (95)

The notation 𝑑𝑖𝑎𝑔(𝒘𝑋,𝑘) for 𝑘 = 1, 2 represents the square diagonal matrix having its main diagonal terms equal to the elements 
of vector 𝒘𝑋,𝑘, and all its non-diagonal elements equal zero. The weighted Frobenius’ distance between rankings is simply defined 
by the distance between weighted ordering matrices 𝑾 𝑋,1𝑴𝑋,1 and 𝑾 𝑋,2𝑴𝑋,2 which is mathematically expressed as (96)

𝑑𝐹 ,𝒘(𝑴𝑋,1,𝑴𝑋,2) =
[
Tr((𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2)𝑇 (𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2))

] 1
2
. (96)

It can be easily verified that this weighted Frobenius’ distance is also invariant to indexing. This verification is left to the reader.10

If one wants to use the Frobenius’ distance with the normalized weights, it is possible either by using normalized weights 𝒘̃, 
where 𝑤̃𝑖 =

𝑤𝑖∑𝑛
𝑖 𝑤𝑖

or using the Equation (97), which utilizes the sum of the non-normalized weights to normalize the distance after 
the weighting. Both methods are equivalent and provide same results.

𝑑𝐹 ,𝒘̃(𝑴𝑋,1,𝑴𝑋,2) =
[
Tr((𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2)𝑇 (𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2))

] 1
2 ∕

𝑛∑
𝑖=1

𝒘(𝑖)

(97)

In particular case of using weights 𝒘(2) (88) the sum can be expressed as (89), therefore the Equation (97) has the form of (98).

𝑑𝐹 ,𝒘̃(𝑴𝑋,1,𝑴𝑋,2) =
[
Tr((𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2)𝑇 (𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2))

] 1
2 ∕(1 − 2−𝑛)

(98)

5.7. Example 3: 𝑑𝐹 ,𝒘 calculation between rankings

To show in detail how to calculate the weighted Frobenius’ distance between rankings, we consider for simplicity two preference 
orderings of three objects 𝐴, 𝐵 and 𝐶 chosen as Pref1 ≜𝐴≻𝐵 ≻ 𝐶 and Pref2 ≜𝐴≻ 𝐶 ≻ 𝐵. We show how the calculations are done 
based on the two reference sets 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶} and 𝑌 = {𝑦1 =𝐵,𝑦2 = 𝐶,𝑦3 =𝐴} to calculate 𝑑𝐹 ,𝒘(𝑴𝑋,1, 𝑴𝑋,2) and 
𝑑𝐹 ,𝒘(𝑴𝑌 ,1, 𝑴𝑌 ,2).

Case 1: Using reference set 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶}

With the reference set 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶} and for the preferences Pref1 ≜𝐴≻𝐵 ≻ 𝐶 and Pref2 ≜𝐴≻ 𝐶 ≻ 𝐵, we obtain 
the following ordering matrices (i.e. PSM) 𝑴𝑋,1 (99) and 𝑴𝑋,2 (100) with their scores 𝒔𝑋,1 and 𝒔𝑋,2

𝑴𝑋,1 =
⎡⎢⎢⎣
0 1 1
−1 0 1
−1 −1 0

⎤⎥⎥⎦ , and 𝒔𝑋,1 =
⎡⎢⎢⎣
2
0
−2

⎤⎥⎥⎦ , (99)

𝑴𝑋,2 =
⎡⎢⎢⎣
0 1 1
−1 0 −1
−1 1 0

⎤⎥⎥⎦ , and 𝒔𝑋,2 =
⎡⎢⎢⎣
2
−2
0

⎤⎥⎥⎦ . (100)

10 Verify that 𝑑𝐹 ,𝒘(𝑴𝑌 ,1, 𝑴𝑌 ,2) = 𝑑𝐹 ,𝒘(𝑴𝑋,1, 𝑴𝑋,2) by taking into account that 𝑴𝑌 ,𝑖 = 𝑼−1𝑴𝑋,𝑖𝑼 and 𝑾 𝑌 ,𝑖 = 𝑼−1𝑾 𝑋,𝑖𝑼 for 𝑖 = 1, 2 and that 𝑼 is a unitary 
19

permutation matrix such that 𝑼𝑇𝑼 = 𝑰𝑛×𝑛 .
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Sorting elements of score vectors 𝒔𝑋,1 and 𝒔𝑋,2 by descending order yields11 (101)

𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,1 =

⎡⎢⎢⎣
2
0
−2

⎤⎥⎥⎦ , and 𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,2 =

⎡⎢⎢⎣
2
0
−2

⎤⎥⎥⎦ . (101)

The unitary permutation matrices 𝑽 𝑋,1 and 𝑽 𝑋,2 are respectively given by (102) and (103)

𝑽 𝑋,1 =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ = 𝑰3×3, (102)

and

𝑽 𝑋,2 =
⎡⎢⎢⎣
1 0 0
0 0 1
0 1 0

⎤⎥⎥⎦ . (103)

Suppose that the importance weights vector is chosen as in (88) with 𝑛 = 3, that is (104)

𝒘 = [𝑤1 = 1∕2,𝑤2 = 1∕4,𝑤3 = 1∕8]𝑇 . (104)

The weighting vectors 𝒘𝑋,1 and 𝒘𝑋,2 are given by formulas (92) - (93), and we get (105) and (106) respectively:

𝒘𝑋,1 = 𝑽 𝑋,1𝒘 = 𝑰3×3𝒘 =𝒘 =
⎡⎢⎢⎣
1∕2
1∕4
1∕8

⎤⎥⎥⎦ , (105)

𝒘𝑋,2 = 𝑽 𝑋,2𝒘 =
⎡⎢⎢⎣
1 0 0
0 0 1
0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1∕2
1∕4
1∕8

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕2
1∕8
1∕4

⎤⎥⎥⎦ . (106)

Based on 𝒘𝑋,1 and 𝒘𝑋,2 one gets the weighting matrices (107) and (108):

𝑾 𝑋,1 = 𝑑𝑖𝑎𝑔(𝒘𝑋,1) =
⎡⎢⎢⎣
𝑤1 0 0
0 𝑤2 0
0 0 𝑤3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕2 0 0
0 1∕4 0
0 0 1∕8

⎤⎥⎥⎦ , (107)

𝑾 𝑋,2 = 𝑑𝑖𝑎𝑔(𝒘𝑋,2) =
⎡⎢⎢⎣
𝑤1 0 0
0 𝑤3 0
0 0 𝑤2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕2 0 0
0 1∕8 0
0 0 1∕4

⎤⎥⎥⎦ . (108)

The matrix products 𝑾 𝑋,1𝑴𝑋,1 and 𝑾 𝑋,2𝑴𝑋,2 are (109) and (110) respectively:

𝑾 𝑋,1𝑴𝑋,1 =
⎡⎢⎢⎣

0 1∕2 1∕2
−1∕4 0 1∕4
−1∕8 −1∕8 0

⎤⎥⎥⎦ , (109)

and

𝑾 𝑋,2𝑴𝑋,2 =
⎡⎢⎢⎣

0 1∕2 1∕2
−1∕8 0 −1∕8
−1∕4 1∕4 0

⎤⎥⎥⎦ . (110)

Their difference is (111)

𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2 =
⎡⎢⎢⎣

0 0 0
−1∕8 0 3∕8
1∕8 −3∕8 0

⎤⎥⎥⎦ , (111)

and we have (112)

(𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2)𝑇 (𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2) ≈
⎡⎢⎢⎣
0.0312 −0.0469 −0.0469
−0.0469 0.1406 0
−0.0469 0 0.1406

⎤⎥⎥⎦ . (112)

The trace of this matrix is (113)
20

11 In this example 𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,1 = 𝒔𝑋,1 because the elements of 𝒔𝑋,1 are already in (vertical) descending order.
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Tr((𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2)𝑇 (𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2)) ≈ 0.3125. (113)

Finally, we get the weighted Frobenius’ distance value (114)

𝑑𝐹 ,𝒘(𝑴𝑋,1,𝑴𝑋,2) =
√
0.3125 ≈ 0.5590. (114)

If we need to obtain the Frobenius’ distance with normalized weights we apply the Equation (97) to get (115):

𝑑𝐹 ,𝒘̃(𝑴𝑋,1,𝑴𝑋,2) =
√
0.3125

1 − 2−3
≈
√
0.3125
0.8750

≈ 0.6389. (115)

Case 2: Using reference set 𝑌 = {𝑦1 =𝐵,𝑦2 = 𝐶,𝑦3 =𝐴}

Suppose that we work with the same preference orderings Pref1 ≜𝐴≻𝐵 ≻ 𝐶 and Pref2 ≜𝐴≻ 𝐶 ≻ 𝐵 with the reference set 
𝑌 = {𝑦1 =𝐵,𝑦2 = 𝐶,𝑦3 =𝐴}. We get the following ordering matrices (i.e. PSM) 𝑴𝑌 ,1 and 𝑴𝑌 ,2 with their scores 𝒔𝑌 ,1 and 𝒔𝑌 ,2: 
(116) and (117) respectively

𝑴𝑌 ,1 =
⎡⎢⎢⎣
0 1 −1
−1 0 −1
1 1 0

⎤⎥⎥⎦ , and 𝒔𝑌 ,1 =
⎡⎢⎢⎣
0
−2
2

⎤⎥⎥⎦ , (116)

𝑴𝑌 ,2 =
⎡⎢⎢⎣
0 −1 −1
1 0 −1
1 1 0

⎤⎥⎥⎦ , and 𝒔𝑌 ,2 =
⎡⎢⎢⎣
−2
0
2

⎤⎥⎥⎦ . (117)

Sorting elements of score vectors 𝒔𝑌 ,1 and 𝒔𝑌 ,2 by descending order yields (118)

𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑌 ,1 =

⎡⎢⎢⎣
2
0
−2

⎤⎥⎥⎦ , and 𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑌 ,2 =

⎡⎢⎢⎣
2
0
−2

⎤⎥⎥⎦ . (118)

The unitary permutation matrices 𝑽 𝑌 ,1 and 𝑽 𝑌 ,2 are respectively given by (119) and (120)

𝑽 𝑌 ,1 =
⎡⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦ , (119)

and

𝑽 𝑌 ,2 =
⎡⎢⎢⎣
0 0 1
0 1 0
1 0 0

⎤⎥⎥⎦ . (120)

The weighting vectors 𝒘𝑌 ,1 and 𝒘𝑌 ,2 are given by formulas (92) - (93) (with replacing 𝑋 by 𝑌 in notations), and we get using 
the same importance weights vector 𝒘 = [𝑤1 = 1∕2, 𝑤2 = 1∕4, 𝑤3 = 1∕8]𝑇 (121) and (122)

𝒘𝑌 ,1 = 𝑽 𝑌 ,1𝒘 =
⎡⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1∕2
1∕4
1∕8

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕4
1∕8
1∕2

⎤⎥⎥⎦ , (121)

𝒘𝑌 ,2 = 𝑽 𝑌 ,2𝒘 =
⎡⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1∕2
1∕4
1∕8

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕8
1∕4
1∕2

⎤⎥⎥⎦ . (122)

Based on 𝒘𝑌 ,1 and 𝒘𝑌 ,2 one gets the weighting matrices (123) and (124)

𝑾 𝑌 ,1 = 𝑑𝑖𝑎𝑔(𝒘𝑌 ,1) =
⎡⎢⎢⎣
𝑤2 0 0
0 𝑤3 0
0 0 𝑤1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕4 0 0
0 1∕8 0
0 0 1∕2

⎤⎥⎥⎦ , (123)

𝑾 𝑌 ,2 = 𝑑𝑖𝑎𝑔(𝒘𝑌 ,2) =
⎡⎢⎢⎣
𝑤3 0 0
0 𝑤2 0
0 0 𝑤1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕8 0 0
0 1∕4 0
0 0 1∕2

⎤⎥⎥⎦ . (124)

The matrix products 𝑾 𝑌 ,1𝑴𝑌 ,1 (125) and 𝑾 𝑌 ,2𝑴𝑌 ,2 (126)

𝑾 𝑌 ,1𝑴𝑌 ,1 =
⎡⎢⎢⎣

0 1∕4 −1∕4
−1∕8 0 −1∕8
1∕2 1∕2 0

⎤⎥⎥⎦ , (125)
21

and
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𝑾 𝑌 ,2𝑴𝑌 ,2 =
⎡⎢⎢⎣

0 −1∕8 −1∕8
1∕4 0 −1∕4
1∕2 1∕2 0

⎤⎥⎥⎦ . (126)

Their difference is (127)

𝑾 𝑌 ,1𝑴𝑌 ,1 −𝑾 𝑌 ,2𝑴𝑌 ,2 =
⎡⎢⎢⎣

0 3∕8 −1∕8
−3∕8 0 1∕8
0 0 0

⎤⎥⎥⎦ , (127)

and we have (128)

(𝑾 𝑌 ,1𝑴𝑌 ,1 −𝑾 𝑌 ,2𝑴𝑌 ,2)𝑇 (𝑾 𝑌 ,1𝑴𝑌 ,1 −𝑾 𝑌 ,2𝑴𝑌 ,2) ≈
⎡⎢⎢⎣
0.1406 0 −0.0469

0 0.1406 −0.0469
−0.0469 −0.0469 0.0312

⎤⎥⎥⎦ . (128)

The trace of this matrix is (129)

Tr((𝑾 𝑌 ,1𝑴𝑌 ,1 −𝑾 𝑌 ,2𝑴𝑌 ,2)𝑇 (𝑾 𝑌 ,1𝑴𝑌 ,1 −𝑾 𝑌 ,2𝑴𝑌 ,2)) ≈ 0.3125. (129)

Finally we get (130)

𝑑𝐹 ,𝒘(𝑴𝑌 ,1,𝑴𝑌 ,2) =
√
0.3125 ≈ 0.5590. (130)

Or if we need to have distance with normalized weights (131):

𝑑𝐹 ,𝒘̃(𝑴𝑌 ,1,𝑴𝑌 ,2) =
√
0.3125

1 − 2−3
≈
√
0.3125
0.8750

≈ 0.6389. (131)

We have 𝑑𝐹 ,𝒘(𝑴𝑌 ,1,𝑴𝑌 ,2) = 𝑑𝐹 ,𝒘(𝑴𝑋,1,𝑴𝑋,2), which shows that the IUIP indeed works with this weighted Frobenius’ distance 
as expected (see Theorem). Moreover we can check that 𝑴𝑌 ,𝑖 = 𝑼−1𝑴𝑋,𝑖𝑼 and 𝑾 𝑌 ,𝑖 = 𝑼−1𝑾 𝑋,𝑖𝑼 for 𝑖 = 1, 2 using the unitary 
matrix 𝑼 characterizing the permutation from the reference set 𝑋 to the reference set 𝑌 , which is given in this example by (132)

𝑼 =
⎡⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎦ . (132)

5.8. Example 4: 𝑑𝐹 ,𝒘 between tied rankings

We briefly show an example where ties occur in the preference orderings. We still consider 3 objects 𝐴, 𝐵 and 𝐶 with preference 
orderings Pref1 ≜ (𝐴 = 𝐶) ≻ 𝐵 and Pref2 ≜ 𝐶 ≻ (𝐴 = 𝐵). We work with the reference set 𝑋 = {𝑥1 =𝐴,𝑥2 =𝐵,𝑥3 = 𝐶}. Because there 
are 3 objects, we work a priori with importance weights vector 𝒘 = [𝑤1, 𝑤2, 𝑤3]𝑇 , and as previously we take 𝒘 = [𝑤1 = 1∕2, 𝑤2 =
1∕4, 𝑤3 = 1∕8]𝑇 . In this example, we have (133) and (134)

𝑴𝑋,1 =
⎡⎢⎢⎣
0 1 0
−1 0 −1
0 1 0

⎤⎥⎥⎦ , and 𝒔𝑋,1 =
⎡⎢⎢⎣
1
−2
1

⎤⎥⎥⎦ , (133)

𝑴𝑋,2 =
⎡⎢⎢⎣
0 1 1
−1 0 0
−1 0 0

⎤⎥⎥⎦ , and 𝒔𝑋,2 =
⎡⎢⎢⎣
2
−1
−1

⎤⎥⎥⎦ . (134)

Sorting elements of score vectors 𝒔𝑋,1 and 𝒔𝑋,2 by descending order yields (135)

𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,1 =

⎡⎢⎢⎣
1
1
−2

⎤⎥⎥⎦ , and 𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,2 =

⎡⎢⎢⎣
2
−1
−1

⎤⎥⎥⎦ . (135)

Because of ties, the previous method cannot be directly applied, and some additional manipulations have to be done to make 
correctly the weighting assignment of score values when some score values are equal. For this, we must adapt the values of the 
importance weights vector 𝒘 to take into account the multiplicity of score values in their descending order. This adaptation is 
needed for each preference ordering where ties occur. More precisely, in our example, one sees that the unitary permutation matrix 
𝑽 𝑋,1 such that 𝒔𝑋,1 = 𝑽 𝑋,1𝒔

𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,1 is not unique and the two matrices 𝑽 𝑎

𝑋,1 or 𝑽 𝑏
𝑋,1 can be chosen (136)

𝑽 𝑎 =
⎡⎢1 0 0
0 0 1

⎤⎥ , and 𝑽 𝑏 =
⎡⎢0 1 0
0 0 1

⎤⎥ . (136)
22

𝑋,1 ⎢⎣0 1 0⎥⎦ 𝑋,1 ⎢⎣1 0 0⎥⎦
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Similarly, the unitary permutation 𝑽 𝑋,2 such that 𝒔𝑋,2 = 𝑽 𝑋,2𝒔
𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,2 is not unique because of the tie, and the two matrices 𝑽 𝑎

𝑋,2 or 
𝑽 𝑏

𝑋,2 can also be chosen (137)

𝑽 𝑎
𝑋,2 =

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ , and 𝑽 𝑏
𝑋,2 =

⎡⎢⎢⎣
1 0 0
0 0 1
0 1 0

⎤⎥⎥⎦ . (137)

The adaptation (i.e., modification) of importance vector 𝒘 = [𝑤1, 𝑤2, 𝑤3]𝑇 is necessary to apply to calculate the weighted 
Frobenius’ distance. This is done using the multiplicity of score values and their ranks in the 𝒔𝑠𝑜𝑟𝑡𝑒𝑑

𝑋,1 and 𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,2 vectors. More 

precisely, because the multiplicity of the first best score (its value is 1) in 𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,1 the vector 𝒘 = [𝑤1, 𝑤2, 𝑤3]𝑇 must be replaced by 

𝒘′ = [𝑤1, 𝑤1, 𝑤2]𝑇 . Also because of the multiplicity of the second best score (its value is -1) in 𝒔𝑠𝑜𝑟𝑡𝑒𝑑
𝑋,2 the vector 𝒘 = [𝑤1, 𝑤2, 𝑤3]𝑇

must be replaced by 𝒘′′ = [𝑤1, 𝑤2, 𝑤2]𝑇 . With these adaptations, we get (138) and (139)

𝒘𝑋,1 = 𝑽 𝑎
𝑋,1𝒘

′ = 𝑽 𝑏
𝑋,1𝒘

′ =
⎡⎢⎢⎣
1∕2
1∕4
1∕2

⎤⎥⎥⎦ , (138)

𝒘𝑋,2 = 𝑽 𝑎
𝑋,2𝒘

′′ = 𝑽 𝑏
𝑋,2𝒘

′′ =
⎡⎢⎢⎣
1∕2
1∕4
1∕4

⎤⎥⎥⎦ (139)

Based on 𝒘𝑋,1 and 𝒘𝑋,2 one gets the weighting matrices (140) and (141) respectively

𝑾 𝑋,1 = 𝑑𝑖𝑎𝑔(𝒘𝑋,1) =
⎡⎢⎢⎣
𝑤1 0 0
0 𝑤2 0
0 0 𝑤1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕2 0 0
0 1∕4 0
0 0 1∕2

⎤⎥⎥⎦ , (140)

𝑾 𝑋,2 = 𝑑𝑖𝑎𝑔(𝒘𝑋,2) =
⎡⎢⎢⎣
𝑤1 0 0
0 𝑤2 0
0 0 𝑤2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕2 0 0
0 1∕4 0
0 0 1∕4

⎤⎥⎥⎦ . (141)

The matrix products 𝑾 𝑋,1𝑴𝑋,1 and 𝑾 𝑋,2𝑴𝑋,2 are (142)

𝑾 𝑋,1𝑴𝑋,1 =
⎡⎢⎢⎣

0 1∕2 0
−1∕4 0 −1∕4
0 1∕2 0

⎤⎥⎥⎦ , (142)

and (143)

𝑾 𝑋,2𝑴𝑋,2 =
⎡⎢⎢⎣

0 1∕2 1∕2
−1∕4 0 0
−1∕4 0 0

⎤⎥⎥⎦ . (143)

Their difference is (144)

𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2 =
⎡⎢⎢⎣

0 0 −1∕2
0 0 −1∕4

1∕4 1∕2 0

⎤⎥⎥⎦ , (144)

and we have (145)

(𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2)𝑇 (𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2) ≈
⎡⎢⎢⎣
1∕16 1∕8 0
1∕8 1∕4 0
0 0 (1∕4) + (1∕16)

⎤⎥⎥⎦ . (145)

The trace of this matrix is (146)

Tr((𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2)𝑇 (𝑾 𝑋,1𝑴𝑋,1 −𝑾 𝑋,2𝑴𝑋,2)) = (1∕16) + (1∕4) + (1∕4) + (1∕16) = (1∕8) + (1∕2) = 0.625. (146)

Finally, we get the weighted Frobenius’ distance value (147)

𝑑𝐹 ,𝒘(𝑴𝑋,1,𝑴𝑋,2) =
√
0.625 ≈ 0.7906, (147)

and if it is required to have a distance with normalized weights, we can calculate it as follows (148):

𝑑𝐹 ,𝒘(𝑴𝑋,1,𝑴𝑋,2)
√
0.625
23

𝑑𝐹 ,𝒘̃(𝑴𝑋,1,𝑴𝑋,2) = 1 − 2−3
=

0.8750
= 0.9035 (148)
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Therefore, we see that weighted Frobenius’ distance can be calculated even if the preference orderings include ties, but the 
calculation is a bit more complicated than with strict preference orderings because of the necessity of adapting the importance 
weights vectors for taking into account the multiplicity of score values in the score vectors (if any). This adaptation can, however, 
be done automatically in the correct programming code of this method.

Note. It is worth noting that 𝑑𝐹 ,𝒘 provides the same result as 𝑑𝐹 when all the components of importance weights vector 𝒘 are equal 
to one. This can be easily verified in our examples 3 and 4, taking 𝒘= [1, 1, 1]𝑇 and comparing with the result that we obtain using 
Frobenius’ distance formula (47). For example 3 we get 𝑑𝐹 = 𝑑𝐹 ,𝒘=[1,1,1]𝑇 = 2.8284, and for example 4 we get 𝑑𝐹 = 𝑑𝐹 ,𝒘=[1,1,1]𝑇 = 2. 
It is also worth noting that when working with the normalized distances, the normalization of weights has no impact on the result 
because one always has (149):

𝑑𝐹 ,𝒘̃ =
𝑑𝐹 ,𝒘̃

𝑑max
𝐹 ,𝒘̃

=
𝑑𝐹 ,𝒘∕(

∑𝑛

𝑖=1𝒘(𝑖))
𝑑max
𝐹 ,𝒘

∕(
∑𝑛

𝑖=1𝒘(𝑖))
=
𝑑𝐹 ,𝒘

𝑑max
𝐹 ,𝒘

= 𝑑𝐹 ,𝒘. (149)

6. Conclusion and perspectives

In this paper, we proposed a new effective distance between rankings based on the Frobenius’ norm of the square matrix, which 
satisfies the invariance under the indexing principle, i.e., it returns the same results with no regard to the order of labels in evaluated 
sets. The approach is mainly intended to use rankings represented as indexes of the ordered set, which is a more natural way for 
most people. However, it can also be used with rankings represented by values and provides stable results. Moreover, the proposed 
approach can deal with ties and can be extended to calculate the weighted distance between two rankings. We have also shown the 
difference between Frobenius’ distance and Kemeny’s distance, although they are based on the same definition of ordering matrices.

In future works, we plan to examine how this approach performs in real-life decision-making problems and compare the Frobenius’ 
distance with Kemeny’s distance and correlation coefficients used in the literature. Because of the useful properties of the Frobenius’ 
distance, it could be potentially used in distance-based machine-learning algorithms, such as clustering or classification, therefore it 
would be interesting to investigate such applications too. Another interesting direction of future research is preparing the simulation 
to check how specific changes in the ranking will influence distance. Finally, it would be very interesting to see if it is possible to 
extend this approach to uncertain and incomplete rankings.
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