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Abstract

To provide a mechanistic explanation of sustained then damped oscilla-
tions observed in a depolymerisation experiment, a bi-monomeric variant
of the seminal Becker-Döring system has been proposed in [8]. When all
reaction rates are constant, the equations are the following:

dv

dt
= −vw + v

∞∑
j=2

cj ,
dw

dt
= vw − w

∞∑
j=1

cj ,

dcj
dt

= Jj−1 − Jj , j ≥ 1 , Jj = wcj − vcj+1 , j ≥ 1 , J0 = 0,

where v and w are two distinct unit species, and ci represents the concen-
tration of clusters containing i units.

We study in detail the mechanisms leading to such oscillations and
characterise the different phases of the dynamics, from the initial high-
amplitude oscillations to the progressive damping leading to the conver-
gence towards the unique positive stationary solution. We give quanti-
tative approximations for the main quantities of interest: period of the
oscillations, size of the damping (corresponding to a loss of energy), num-
ber of oscillations characterising each phase. We illustrate these results
by numerical simulation, in line with the theoretical results, and provide
numerical methods to solve the system.
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1 Introduction

We are interested in describing the damped oscillations of the following model:

dv

dt
= −vw + v

∞∑
j=2

cj , v(0) = v0, (1)

dw

dt
= vw − w

∞∑
j=1

cj , w(0) = w0, (2)

dcj
dt

= Jj−1 − Jj , Jj = wcj − vcj+1, cj(0) = c0j , j ≥ 1, J0 = 0. (3)

In this system, v(t) and w(t) denote the concentrations of two monomeric species
and cj(t) represents the concentrations of polymers, clusters or aggregates contain-
ing j units/monomers at time t. Clusters grow by polymerisation events adding a
w-monomer and shrink by catalytic depolymerisation induced by v-monomers. Sys-
tem (1)-(3) is a particular case of a system with more general coefficients that was
introduced in [8]. Specifically, we are assuming in (1)-(3) that the reaction rates are
size-independent. The goal of introducing this model is to explain sustained, though
damped, oscillations, experimentally observed during the time-course of protein fibrils
depolymerisation experiments [8, 10], which are also displayed when simulating (1)–
(3), see [8]. These experiments raised significant interest since the classical Becker-
Döring model for the polymerisation/depolymerisation of polymers features a well-
known Ljapunov functional, which conflicts with sustained oscillations. The need to
propose a new mathematical model like (1)–(3) was therefore pointed out by the exper-
imentalists in the hope to gather new insights into the mechanics of prion dynamics.
The question of how variants of standard aggregation-fragmentation systems can give
rise to persistent or persistent then damped oscillations has attracted increasing in-
terest in recent years. For example, another modification of the Becker-Döring system
has been proposed in [17, 16]. This system leads to sustained oscillations due to a
very different mechanism, namely the atomisation of large polymers into monomers,
see also [7, 11]. Such rapid shortening events also appear to be responsible for damped
oscillations observed numerically in a model of microtubule dynamics [13].

Notice that there are two remarkable differences between the model (1)-(3) and
the classical Becker-Döring model [4], as it can be found for instance in [2, 20, 14, 21].
On the one hand, there are two different types of monomers, whose concentrations are
given by v, w, whereas c1 represents the concentration of the smallest cluster, which
is not necessarily a monomeric species. This leads to the conservation of the total
number of clusters

∑∞
j=1 cj , a quantity which is not preserved in the Becker-Döring

system.
As a second difference, the reaction yielding the depolymerisation of a cluster

of size j into a v-monomer and a cluster of size (j − 1) is not modelled as a linear
process, but as a nonlinear reaction catalyzed by a v-monomer itself. In other words,
the depolymerisation reaction has the form

cj + v → cj−1 + 2v. (4)

We emphasise that the presence of several types of oligomers [1] and monomers as well
as the possibility of the uncommon catalytic depolymerisation reaction (4) have been
then confirmed by other observations [19].
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A first numerical and theoretical study has been carried out in [8]. It gave necessary
and sufficient conditions for the existence of a positive steady state and studied the
stability of boundary steady states (Proposition 4 in [8]). Numerical simulations and
comparison with well-known oscillatory systems (subsection 5.3. in [8]) provided evi-
dence for sustained damped oscillations converging towards the positive steady state,
when it exists.

The aim of the present study is to characterise in full detail the mechanisms driving
the system from pronounced oscillations to equilibrium. The results will be justified
using formal asymptotic expansions (see for instance [12], [15] or [5]), complemented
with numerical simulations yielding results analogous to those obtained in the asymp-
totic formulae. Some rigorous mathematical results that support the scenario for the
solutions described in this paper are proved in the companion paper [9].

The plan of this paper is the following. In section 2, we describe in detail the
model studied and provide some important notations and lemmas which are used
throughout the paper. In subsection 2.2, we summarize the form of the solutions of a
rescaled version of the Lotka-Volterra model, which we will identify as approximation
to the behaviour of the monomeric concentrations (v, w), and which will be shown to
drive the oscillatory behaviour of the solutions of (1)–(3) (subsection 2.3). Finally, in
subsection 2.4, we sum-up the main results and describe the processes that evolve the
initial distribution of clusters to the final equilibrium distribution. We have found it
convenient to decompose this evolution into four different Phases I, II, III, and IV,
which are characterised by the range of values of the Lotka-Volterra energy associated
to the monomer concentrations (v, w) as well as the range of a typical cluster size k
containing most of the mass of the cluster distribution {ck}k∈N.

Section 3 describes in detail the evolution of the cluster concentrations {ck} during
one Lotka-Volterra cycle of the concentrations (v, w). This analysis is relevant through-
out the phases that we denote as Phases I and II. The evolution of the concentrations
{ck} along several Lotka-Volterra cycles, and the slow changes occuring from one cycle
to the next during Phases I and II, is then described in section 4. Phases III and IV
are described in sections 5 and 6 respectively. Section 7 summarises and discusses
the main conclusions of this article as well as possible generalisations. Finally, three
appendices at the end of the paper some detailed calculations about the form of the
solutions of the Lotka-Volterra problem, on analysis of the linearised problem around
the steady states of (1)–(3) and a description of the numerical methods we used.

Notation 1.1 We will use extensively the classical asymptotic notation f ∼ g as
x → x0 to indicate that limx→x0

f(x)
g(x)

= 1. When x0 is not specified it means that
f ∼ g when ε → 0. We will use also the notation f ≪ g as x → x0 to indicate
that limx→x0

f(x)
g(x)

= 0. We will use the notation f ≃ g to indicate informally that the
two functions f and g can be expected to be approximately equal for a suitable range of
values. We will use the notation f ≈ g to indicate that the functions f and g are of the
same order of magnitude for some range of values of their argument. More precisely,
there exists a constant C > 1 such that 1

C
f ≤ g ≤ Cf. We will use the notation f ≲ g

to indicate that there is a constant C > 0 such that f ≤ Cg.
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2 Coupling Lotka-Volterra and Becker-Döring
systems

2.1 A first overview of the dynamics

When looking at (1)–(3), we first observe that there are two conserved quantities,
namely

M = v + w +

∞∑
j=1

jcj , ε =

∞∑
j=1

cj . (5)

The first conserved quantity represents the total massM > 0 whereas the second is the
number of clusters. This second conservation law is an important difference between
our system and the classical Becker-Döring system, in which the smallest clusters
and monomers are identical. Our study will show its importance to the dynamical
behaviour: Since our system preserves the number of clusters, the question is how its
size distribution evolves with time.

We remark that we can assume M = 1 without loss of generality because the
equations (1)–(3) are invariant under the change of variables v →Mv, w →Mw, cj →
Mcj , and ε→Mε, which transforms the equations (5) in

1 = v + w +

∞∑
j=1

jcj , ε =

∞∑
j=1

cj . (6)

Notice that since v ≥ 0 and w ≥ 0 these equations imply that ε ≤ 1 and the
identity ε = 1 takes place only if v = w = 0 and cj = δj,1.

The aim of our study is to quantitatively analyse the asymptotic behaviour of
the solutions of the problem (1)–(3), (6) for ε → 0. The smallness of ε may have
two biological interpretations: either only few polymers exist initially and the ini-
tial mass lies mainly in the two monomeric species v and w, or the mass is dis-
tributed among monomers and clusters with a very large average cluster size iM so that
iM (0) :=

∑
ici(0)∑

ci
= O( 1

ε
). This last case is typical of amyloid fibrils depolymerisation

or fragmentation experiments [23, 3].
Using the conservation of the number of clusters, we can rewrite (1)–(3) in a simpler

form:

dv

dt
= −vw + v (ε− c1) , (7)

dw

dt
= vw − εw, (8)

dcj
dt

= Jj−1 − Jj , ∀j ≥ 1, J0 = 0, Jj = wcj − vcj+1, j ≥ 1. (9)

The global-in-time existence and uniqueness of a nonnegative solution to this system
has been proved in [8] (Theorem 2), under the assumption that the initial nonnegative
state (v0, w0, c0j ) satisfies

v0 + w0 +

∞∑
j=1

j2c0j <∞.

There is a family of boundary steady states for which w = 0. We can have either
v = 0 and an arbitrary distribution of concentrations cj satisfying the constraint∑

j≥1 jcj = 1, or alternatively, v = 1 − ε, c1 = ε, and cj = 0 for j ≥ 2. All the

5



boundary steady states happen to be unstable as soon as ε < 1
2
, what is assumed from

now on (since we even assume ε≪ 1), see Prop. 4 in [8]. Existence and uniqueness of
a unique positive steady state (Corollary 4 in [8]) for ε < 1

2
is given by

θ := 1− 1
2ε

(
1−

√(
1− 2ε

)2
+ 4ε2

)
∼ ε,

c̄1 := εθ ∼ ε2, c̄i := (1− θ)i−1c̄1, v̄ := ε, w̄ := ε− c̄1.
(10)

In Appendix B, we prove that this positive steady state is locally linearly stable.
The system (7)–(8) for (v, w) may be viewed as a c1-perturbation of a Lotka-

Volterra (LV) system, which would permanently oscillate in case c1 ≡ 0. The unper-
turbed Lotka-Volterra system, i.e. (7)–(8) with c1 ≡ 0, is governed by the Hamiltonian

E = v + w − 2ε− ε log
(vw
ε2

)
, (11)

and features the steady state v = w = ε, which corresponds to the minimum of the
Hamiltonian E = 0. All other trajectories of the unperturbed Lotka-Volterra system
(7)–(8) with c1 ≡ 0 are closed periodic orbits for positive values of E and we define
T (E) as the associated time period.

For the full system (7)–(9), in which v, w interact with the clusters cj and vice
versa, the function E(t) is neither a conserved quantity nor a Ljapunov functional. The
absence of a suitable entropy is one difficulty in the study of (7)–(9). More precisely,
the following formula for the change of the energy holds

dE

dt
= (ε− v) c1. (12)

As we shall demonstrate, solutions to the full system (7)–(9) feature approximate LV
cycles, where v and w oscillate around the steady state values of the full system v̄ = ε
and w̄ = ε − c̄1; see Lemmas 2.2 to 2.6 for a full description of the dynamics of one
LV cycle. Hence we see from (12) that the sign of dE

dt
changes over every time period.

The energy level Ē of the steady state of the full system is computed from (10):

Ē = v̄ + w̄ − 2ε− ε log
( v̄w̄
ε2

)
= −c̄1 − ε log

(
1− c̄1

ε

)
∼ ε

θ2

2
∼ ε3

2
. (13)

We expect that solutions to our model system (7)–(9), which depart from E ≈ 1,
will slowly decrease the mean value of the energy E along successive approximate LV
cycle, each of these cycles being characterised by a given level of energy E. Quantifying
precisely this trend is the aim of this article. We will show that the decay-on-average
of the values of E takes place by means of an intricate mechanism, in which the
concentrations cj oscillate in cluster sizes j with a transport speed given by w − v.

For small perturbations of the steady state (10), we expect c1 to remain in the
order of c̄1 ∼ ε2. Else, we can expect c1 to be very small, except for the times in
which ⟨j⟩, the mean value of the concentrations cj , reaches its minimum values. This
happens when depolymerisation dominates, namely for v ≫ ε. During these times,
even if c1 still remains small, it modifies E the most. This explains why we expect

that in average ∆E =
∫ t+T (t)

t
d
ds
E(s)ds, where T (t) is the time (pseudo) period, to be

negative.
In fact, the values of c1 remain small during most times, except for a possible

initial transient state (for instance if the system departs from cj = εδ1(j)). Therefore,
the change of E will be small in each cycle of the variables v, w, but eventually its
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value will decrease and approach the minimum value E ∼ ε3

2
after sufficiently long

times.
A full description of this slow approach is the aim of this article. To do so, we

first focus on the dynamics during one (approximately unperturbed) LV cycle. In
subsection 2.2 we begin by analysing the different stages of the dynamics of (v, w)
over one LV cycle (Lemmas 2.2 to 2.6). This done, in subsection 2.3 we can focus on
the size distribution dynamics, which appears close to a drift-diffusion equation with
coefficients given in terms of the previously studied (v, w). This strategy is the basis
of our asymptotic long-time study and explains how the perturbation slowly modifies
the LV cycles; we sketch it in subsection 2.4.

2.2 Study of the unperturbed Lotka-Volterra system

According to our above argumentation, c1 is expected to be very small during most of
the evolution; It will be shown a posteriori that this ansatz is self-consistent. In this
section, we thus study in detail the dynamics over one cycle of (v, w) solutions to the
unperturbed LV system, i.e., (7)–(8) with c1 ≡ 0, namely

dv

dt
= −vw + vε,

dw

dt
= vw − εw, w(0) = v(0) ≥ ε, (14)

where the last condition defines a convenient starting- and end-point of a LV cycle.
Notice that the steady state of (14) is at

v = w = ε, E = 0. (15)

We recall that the energy E defined by (11) is constant along the solutions of (14):
the trajectories associated to (v, w) solution of (14) are the level lines of the function
E. The solutions (v, w) are periodic, oscillating around the equilibrium value (15).

In order to describe the behaviour of the solutions of (14) we first use some rescaling
properties of the solutions, summed-up in the following lemma.

Lemma 2.1 (Scaling properties) Let (v, w)(t;E, ε) denote the unique solution (v, w)
to (14) with v(0) = w(0) > ε and E defined by (11), that is

E = 2(v(0)− ε)− 2ε log

(
v(0)

ε

)
. (16)

Note that (16) is strictly monotone increasing in v(0) > ε and that trajectories of (14)
are uniquely defined in terms of values E > 0. Let T (E, ε) denote the period of the
corresponding LV cycle. By a scaling argument we have the following identities:

(w (t;E, ε) , v (t;E, ε)) =
(
Ew

(
Et; 1,

ε

E

)
, Ev

(
Et; 1,

ε

E

))
(17)

and

T (E, ε) =
T
(
1, ε

E

)
E

. (18)

A large part of this paper will be concerned with the dynamics of the solutions
during the range of times in which ε

E
≪ 1. Due to (17) and (18), in order to compute

the asymptotic behaviour of w, v, T for this range of values of ε and E, it is enough
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Figure 1: Numerical solution of the Lotka-Volterra system (14) for ε = 0.02 and
v(0) = w(0) = 1

2 . To avoid numerical dissipation we rather solved the system
for (log(v), log(w)), see Appendix C.1, System (144). Left: phase portrait for
(v, w) illustrating the different stages of the trajectory over one period T. The
dashed purple line is the subset where v = w, the dotted blue lines are w = ε
or v = ε. Right: time-evolution of the solution (v, w).

to compute their asymptotic behaviour for E = 1 and ε → 0. Given E = 1, we first
note that (16) implies

v(0) = w(0) ∼ 1

2
+ ε log

(
1

ε

)
+ ε (1− log (2)) +O(ε2 log(ε)) as ε→ 0. (19)

Figure 1 depicts the (v, w) phase portrait of a LV cycle and the associated time
evolution of the concentrations. We divide a LV cycle into five stage subject to the
following five lemmas, each describing the corresponding contribution to the period
T . The proofs of these lemmas by standard asymptotic expansions are carried out in
Appendix A.

Lemma 2.2 (First stage: fast decay of v from v(0) to ε, increase of w) Let E
be given by (11) and ε ≪ 1. Let (v, w) be the unique periodic solution to (14) corre-
sponding to E = 1, i.e. subject to initial data at time t0 = 0 asymptotically charac-
terised in (19). We define t1 by

t1 := min
t≥0

{t, v(t) = ε} .

On (0, t1), w increases, v decreases, and as ε→ 0 the solution is approximated by

v(t) = 1− 1
1+e−t +O(εe−t log(ε)t),

w(t) = 1
1+e−t (1 +O(ε log(ε)t)) , t1 ∼ − log(ε),

w(t1) = 1− ε log(ε) + ε+ o(ε), v(t1) = ε.

(20)

Lemma 2.3 (Second stage: decay of v and w)
Under the assumptions of Lemma 2.2, we define

t2 := min
t≥t0

{t, w(t) = ε} .
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On (t1, t2), w and v decrease, and as ε→ 0 we have

t2 − t1 ∼ 1

ε
log

(
1

ε

)
. (21)

Lemma 2.4 (Third stage: v increases, w decreases, minimum of v + w) Under
the assumptions of Lemma 2.2, we define

t3 := min
t≥t2

{t, v(t) = ε} .

On (t2, t3), w decreases, v increases to ε, and as ε→ 0 we have

t3 − t2 ∼ 1

ε2
, w ∼ ε exp (−ε (t− t2)) , v ∼ v (t2) e

−1 exp (ε (t− t2)) . (22)

Lemma 2.5 (Fourth stage: v and w increase, symmetric to Stage 2)
Under the assumptions of Lemma 2.2, we define

t4 := min
t≥t3

{t, w(t) = ε} .

On (t3, t4), w and v increase, and as ε→ 0 the time interval is approximated by

v ∼ εeε(t−t3), t4 − t3 ∼ 1

ε
log

(
1

ε

)
. (23)

Lemma 2.6 (Fifth stage: v decreases, w increases, end of the cycle)
Under the assumptions of Lemma 2.2, we define

t5 := min
t≥t4

{t, v(t) = w(t) > ε} .

On (t4, t5), w increases, v decreases, and as ε → 0 the time interval is approximated
by

t5 − t4 ∼ log

(
1

ε

)
. (24)

We remark that the period T is given as T = t5 − t0 = t5. We also notice that
the third stage is the longest, giving the total cycle its asymptotic length. During
this stage almost nothing visible happens since both v and w are exponentially small.
By contrast, the first and last stages, where v and w are largest, are extremely fast.
These considerations drive all the following analysis, where we distinguish between a
transport part (first and last stages of the cycle) and a transport-diffusion part (second
to fourth stages). This is made clearer in the following section where we analyse the
dynamics of the cluster size distribution along one LV cycle.

2.3 Cluster size distribution dynamics along one LV cycle,
initial time

In subsection 2.2, we have described the dynamics of (v, w) along one LV cycle, ne-
glecting the perturbation given by c1. Let us now reason similarly for the cluster size
distribution: assuming that (v, w) is given by the unperturbed LV system, how does
the cluster distribution evolve?

9



At this point, we remark that the equations (9) for the evolution of the clusters
can be rewritten as

dcj
dt

=
(w − v

2

)
(cj−1 − cj+1) +

(w + v

2

)
(cj−1 + cj+1 − 2cj) , j ≥ 2 , (25)

dc1
dt

= vc2 − wc1. (26)

For given v and w, the equations (25) for j ≥ 2 constitute discrete-in-size convection-
diffusion equations while equation (26) for the smallest cluster concentration c1 forms
a kind of dynamical boundary condition. The approximation of discrete-in-size poly-
merisation/depolymerisation by a continuous-in-size convection-diffusion PDE is well-
known in the literature, see e.g. [21]. If we assume that the concentrations cj change
slowly in the variable j (in a sense that will be precised later), we can read (25), (26)
as a discretized version of the PDE

∂c

∂t
(j, t) + Ṽ (t)

∂c

∂j
(j, t) =

d (t)

2

∂2c

∂j2
(j, t) . (27)

where we introduce

Ṽ (t) = (w − v) (t) , d (t) = (w + v) (t) . (28)

In particular, we approximate the discrete-in-size cluster concentrations cj (t) by a
smooth continuous-in-size distribution function c (j, t) where j ∈ (0,∞) denotes now
– with a slight abuse of notation – a continuum size variable. Hence, we assume

cj(t) ≃ c(j, t), j ∈ N, |cj+1 − cj | ≪ 1,

∣∣∣∣∂c∂j
∣∣∣∣≪ 1. (29)

The PDE (27) constitutes a valid approximation for sufficiently large j, [21]. For cluster
sizes j of order one the approximation (27) breaks down and in order to calculate the
concentrations cj we need to use the system of equations (25)–(26). Hence, we denote
by the outer layer the range in size where the approximation (27) holds and by the
boundary layer the range where we have to consider the system (25)–(26).

In the following, we assume that there exists initially a characteristic cluster size,
denoted as L0 (and Ln for the n−th following LV cycle), around which the con-
centrations cj give a relevant contribution to the cluster distribution {cj}j∈N. More
precisely, we assume at t = 0 when v = w > ε that the initial concentrations are given
approximately by means of

cj(0) ≃ c(j, 0) ≃ ε

L0
φ0

(
j

L0

)
, j ∈ (0,∞). (30)

We assume that φ0 is a measure defined in [0,∞) which can contain a Dirac delta in
x = 0, modelling the fact that the mass contained in c1 may be of the same order of
magnitude as the mass contained in large clusters: we thus define

φ0(x) = ψ0(x) +m0δ(x), (31)

where ψ0 is a smooth function and supported in (0,∞) andm0 ≥ 0 the mass contained
in the Dirac delta. Thanks to (6) and w.l.o.g., we consider M = 1, which implies∑∞

j=1 jcj = O(1) as well as
∑∞

j=1 cj = ε. For concentrations of the form (30) it follows
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that we have L0 = O( 1
ε
). Assuming ε ≪ 1 in (6), we typically have L0, Ln ≫ 1. We

also impose ∫ ∞

0

φ0(dx) =

∫ ∞

0

xφ0(dx) = 1, (32)

which defines uniquely L0 by L0 =
∑

jcj
ε

∈ [1, 1
ε
). Note that we understand

∫∞
0

=∫
[0,∞)

, i.e. we include the Dirac mass at 0.

The heuristic considerations in this section provides us with the qualitative be-
haviour of the clusters along one LV cycle: their size distribution is transported at the
speed Ṽ (t), and is diffused at the diffusion rate d(t)

2
. We remark for instance that if

w > v, we have that Ṽ (t) > 0 (see Figure (3c) and Figure (2a) below as part of a
more detailed discussion). In particular the convective term in (27) shifts the distri-
bution of clusters towards larger values of j (see Figure (3d) and Figure (2b)). Similar
to Lemma 2.1 in subsection 2.2, we obtain the following lemma 2.7, which collects
scaling properties concerning the transport and the total diffusion along one LV cycle.

Lemma 2.7 With the notations and assumptions of Lemma 2.1, let us define the
characteristic curve Y (t;E, ε) and the total diffusion D(E, ε) by

Y (t;E, ε) :=

∫ t

0

(w − v) (s;E, ε) ds , D(E, ε) :=
1

2

∫ T (E,ε)

0

d(s)ds. (33)

We have the relations

Y (t;E, ε) = Y
(
Et; 1,

ε

E

)
, D(E, ε) = D(1,

ε

E
). (34)

The next lemma gathers results concerning D, Y , T and the average values of v and
w.

Lemma 2.8 Under the assumptions of Lemma 2.2, we have

T (1, ε) ∼ 1

ε2
,

∫ T

0

v(s)ds =

∫ T

0

w(s)ds = εT ∼ 1

ε
, D (1, ε) ∼ 1

ε
. (35)

Let us denote Y (t) = Y (t; 1, ε) and D = D(1, ε). We have the following behaviour of
Y and D along one LV cycle.

• On (0, t2), Y is increasing.

• The main contribution to D is due to w in the interval (t1, t2) (see Figure (2a))
and v in (t3, t4), (see Figure (2e)). Elsewhere, the contribution is negligible.

• On (t2, t3), Y is almost constant, its largest value Ymax ∼ 1
ε
being reached at

t2 +
t3−t2

2
,

• On (t3, t5), Y is decreasing.

2.4 Main results and sketch of the dynamics phases

A main goal of this paper is to determine the evolution of the characteristic cluster
length L and its approximate cluster size distribution φ over time; In particular for
the n−th LV cycle, we will denote by (Ln, φn) the corresponding typical length and
size distribution. It will turn out that after the variables v, w have approximately
followed several LV cycles (14), the energy E changes and the concentrations {cj}j∈N

11



can be approximated by means of a formula of the form (30), for new choices of the
length Ln and the function φn.

We now assume that the initial length L0 is much smaller than 1
ε
. Otherwise, if

L0 is of order 1
ε
for the initial distribution of clusters, then the first of the four phases

described below is skipped by the dynamics. We also remark that L0 ≪ 1
ε
in (6)

implies that the sum
∑∞

j=1 jcj is much smaller than 1 for small ε. Thus, (v + w) ≃ 1
for small ε and we can assume E = 1 and use the analysis carried out in Subsection 2.2,
Lemmas 2.2 to 2.5. Actually, this approximation holds, not only for the initial time,
but whenever we have L≪ 1

ε
.

In case that initially L0 ≪ 1
ε
, the evolution of the concentrations towards the

equilibrium distribution undergoes four different phases. In each phase a different
mechanisms governs the evolution of the concentrations {cj}j∈N , v, w and the energy
E and the characteristic length L. We describe the leading magnitudes associated to
these phases as well as the mechanism yielding the dissipation of energy E. At the
end of these four phases the concentrations {cj}j∈N , v, w approach to an equilibrium.
Notice that the approach to equilibrium takes place by means of an involved procedure
and we do not see (at least currently) that it can be captured by means of a Ljapunov
function.

• Phase I: The energy E remains near a constant of order 1. The period
T (E, ε) of the LV oscillations is of order 1

ε2
(see subsection 2.2). The evolution

of the cluster distributions takes place by means of a combination of an oscilla-
tory motion of the cluster distribution towards larger values of j and backwards
to clusters with j of order one, combined with a spreading of the cluster con-
centration distribution in the space of cluster sizes (see subsection 2.3). The
distribution spreads an amount of order 1√

ε
in the space of cluster sizes in each

LV cycle, and if we assume that initially L = L0 ≈ 1 we require a number of
cycles n of order 1

ε
to arrive to L = Lfin ≈ 1

ε
(see subsection 4.1, Prop. 4.3).

From this point on, the order of magnitude of L remains in the order of 1
ε
.

• Phase II: Decay of the energy E from order 1 to order ε. The function
φ approximating the concentrations cj has a nontrivial evolution (Corollary 3.3
and Prop. 4.1). The energy E decreases from a value close to 1 to Efin ≈ ε.
The distribution of clusters evolves by means of a combination of an oscillatory
displacement towards large cluster sizes combined with their spread in the space
of cluster size as in Phase I (Lemma. 3.4). The period T of the LV oscillations is
of order E

ε2
(Lemmas 2.1 and 2.8). The number of LV oscillations taking place

during this phase is of order n ≈ log( 1
ε
)

ε
(see subsection 4.1, Prop. 4.3).

• Phase III: Decay of the energy E from order ε to order ε3. The con-
centrations of clusters cj remain nearly constant for large sizes j, but the con-
centrations cj with j of order one oscillate during the LV oscillations of the
concentrations v, w (see section 5, Prop. 5.2). The period of the oscillations T
remains in the order of 1

ε
. The number of LV oscillations n taking place during

this phase is of order n ≈ − log(ε2)
ε

(see subsection 5.3). The oscillations for
the cluster concentrations j of order one are progressively damped and finally
become negligible (see subsection 5.3, Prop. 5.4).

• Phase IV: Final trend to the equilibrium. The energy E remains of order
ε3. The concentrations cj evolve towards their equilibrium value and their values
can be approximated using a nonlinear second order parabolic equation (see
section 6, Prop. 6.2). During this phase, all the concentrations cj with j of

12



order one can be approximated by a single function C
(
0+, t

)
which changes in

the same time scale in which the whole distribution of concentrations {cj}j∈N
approach to equilibrium. The oscillations being negligible, the total duration
for this last phase is in the order of 1

ε3
.

3 Phases I and II: from one LV cycle to the next

As pointed out in subsection 2.3, the dynamics of the {cj}j∈N is a discrete-in-size
convection-diffusion process. We now describe in detail the evolution of the cluster
concentrations {cj}j∈N during one LV cycle of the monomer concentrations (v, w) .We
will illustrate how this mechanism leads to an approximation of the cluster distribution
in terms of the ansatz (31) consisting of an aggregated mass for the smallest cluster
and a smooth profile function for large cluster sizes during the Phases I and II. For
this reason, we assume in all of this section that the energy satisfies ε≪ E ≲ 1, hence
all the lemmas of subsections 2.2 and 2.3 are valid. We use them in order to find out
what is the decay of energy along one LV cycle, and how to go from a cycle n to a
cycle n+ 1.

Figure 2 plots phase portraits of the monomeric concentrations (v, w) and snap-
shots of the approximate cluster size distribution c(j, t) on time intervals [t1, t2], [t2, t3]
and [t3, t4] according to Lemmas 2.3, 2.4 and 2.5. It is for didactic reasons that Figure 2
starts with Lemma 2.3 describing stage two: The corresponding evolution of the size
distribution in Figure 2b shows very nicely the convective transport to larger cluster
sizes (Ṽ ≃ w in (27)–(28) due to v being small on [t1, t2]) combined with the diffusive
spreading occurring in this stage according to d ≃ w. Convection and diffusion slow
down as w decays in the phase portrait Figure 2a.

Next in Figure 2c, the monomer concentrations (v, w) are small compared to ε
on the interval [t2, t3] of Lemma 2.4. Hence, the cluster size distribution undergoes
only negligible convection and diffusion in Figure 2d, making [t2, t3] the longest time
interval within one LV cycle.

The dynamics picks up again in stage four described in Lemma 2.5 and plotted
in Figure 2e, which sees the growth of v on the time interval [t3, t4] while w remains
small. Accordingly, Figure 2f shows convection of the size distribution towards smaller
clusters combined with diffusive spreading. We highlight that the resizing of cluster
towards smaller sizes is naturally limited by the smallest cluster size c1 where we
observe the formation of an aggregate.

Figure 3 shows in subfigure 3b that the aggregation at the smallest cluster is
further enhanced on the time interval [t4, t5] of stage five, Lemma 2.6, during which
the phase portrait of (v, w) reaches the end time T of a LV cycle in Figure 3a. Finally,
Figures 3d and 3d show the first stage of a LV cycle as in Lemma 2.2. We remark again
that we decided to plots this first time interval last, since the evolution of the cluster
distribution during the first stage when the aggregate of the smallest cluster begins
to convect towards larger clusters is difficult to read without knowing the previous
discussion.

Combining the time scales characterised in Lemma 2.8 with the above discussion of
Figures 2 and 3 suggests to separate the dynamics of each LV cycle into two principal
steps: 1) a ”pure transport” step, during which the diffusion is negligible - this is
the interval [0, t1] and symmetrically [t4, t5]; we could even extend these intervals
to the intermediate time points [0, t1,2] and [t3,4, t5] (see the proof of Lemma 2.3 in
the appendix where these times are defined); 2) a ”transport and diffusion” step,
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(a) Phase portrait of (v, w) for
t ∈ [t1, t2] = [3, 191], cf. Lemma 2.3

(b) Evolution of cluster distribution c(j, t)
for t ∈ [t1, t2] = [3, 191]

(c) Phase portrait of (v, w) for
t ∈ [t2, t3] = [191, 2541], cf. Lemma 2.4

(d) Evolution of cluster distribution c(j, t)
for t ∈ [t2, t3] = [191, 2541]

(e) Phase portrait of (v, w) for
t ∈ [t3, t4] = [2541, 2729], cf. Lemma 2.5

(f) Evolution of cluster distribution c(j, t)
for t ∈ [t3, t4] = [2541, 2729]

Figure 2: Phase portraits and snapshots of the cluster size distribution for one
cycle of the LV system during Phase I in the case ε = 0.0212. See Appendix C
for the details about the numerical simulations.
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(a) Phase portrait of (v, w) for t ∈ [t4, t5 =
T ] = [2729, 2732], cf. Lemma 2.6

(b) Evolution of cluster distribution c(j, t)
for t ∈ [t4, t5 = T ] = [2729, 2732]

(c) Phase portrait of (v, w) for t ∈ [T, T +
t1] = [2733, 2736], cf. Lemma 2.2

(d) Evolution of cluster distribution c(j, t)
for t ∈ [T, T + t1] = [2733, 2736]

Figure 3: Phase portraits and snapshots of the cluster size distribution during
the fastest region of the LV phase portrait in Phase I. See Appendix C for the
details about the numerical simulations.

where both transport and diffusion are important, which is given by the symmetric
intervals [t1,2, t2] and [t3, t3,4]. The remaining time interval [t2, t3] is a kind of lag time
where almost nothing happens, neither transport nor diffusion, due to the exponential
smallness of both v and w.

The following proposition characterises one iteration step of the size distribution
of clusters as plotted in Figures 3a and 3b (by taking the final depicted time points)
from a first appearance (which we shall call t = 0 rather than t = T for the sake of
simplicity) to its second appearance after one period T .

Proposition 3.1 (Initial cycle and iterative formula) Let M = 1, ε ≪ E0 ≤ 1,
and v(0) = w(0) > ε such that (11) is satisfied. Let 1 ≪ L0 ≲ 1

ε
, and cj(0) defined

by (30) for some measure φ0 satisfying (31)–(32). Let T0 := T (E0, ε) be the time period
of the unperturbed LV system (14), D0 := D(E0, ε) the diffusion defined by (33), and
σ0 := D0

(L0)2
.

15



Defining (φ1, L1) such that cj(T0) =
ε
L1
φ1(

j
L1

) and φ1 satisfies (31)–(32), we have

φ1 (x) ≈
L1

L0
χ(0,∞) (x)

∫ ∞

0

G

(
L1

L0
x− η;σ2

0

)
φ0 (η) dη

+ δ (x)

∫ 0

−∞
dζ

∫ ∞

0

G
(
ζ − η;σ2

0

)
φ0 (η) dη, (36)

where G is the fundamental solution for the heat equation:

G (ξ; s) =
1√
4πs

exp

(
− ξ

2

4s

)
(37)

and L1 is given by

L1

L0
=

∫ ∞

0

φ0 (η) dη

∫ ∞

0

xG
(
x− η;σ2

0

)
dx

= 1 +

∫ ∞

0

xdx

∫ ∞

0

G
(
x+ η;σ2

0

)
φ0(η)dη.

(38)

Remark 3.2 If we had that L0 is of order one (i.e. the initial size concentration is
concentrated in cluster sizes j of order one), then the solution during a LV cycle would

spread the cluster concentrations to regions of size
√

E
ε

≫ 1. Therefore, in a single

cycle the width of the region in which the clusters are concentrated would become much
larger than one; this explains why we have assumed in Prop 3.1 that L0 ≫ 1. Notice
that with this assumption, if there is a fraction of clusters in the concentrations cj
with j of order one, we should include a Dirac mass at in φ0 at x = 0 containing this
fraction of clusters.

Heuristic proof of Proposition 3.1. We provide a heuristic proof of Proposition
3.1 divided into the following steps: In subsection 3.1, we analyse the ODE system as
being close to a continuous convection-diffusion equation: its dynamics along one LV
cycle is thus described in Lemma 3.4 below. This result is used in subsection 3.2 to
obtain (36)–(38) by solving the diffusion equation during one cycle with the help of
the fundamental solution to the heat equation.

It is clear that as long as the assumptions of the Proposition 3.1 remain valid, we
can apply it to successive time periods Tn themselves defined by successive energies
En. Hence, the following corollary holds as long as En ≫ ε.

Corollary 3.3 Under the assumptions and notations of Prop. 3.1, the same result
applies between two successive cycles n and n + 1 as long as En ≫ ε. By denoting
accordingly φn, Ln, mn, ψn and σ2

n, we have the following iterative formulae:

ψn+1 (x) =
Ln+1

Ln

∫ ∞

0

G

(
Ln+1

Ln
x− η, σ2

n

)
ψn (η) dη

+mn
Ln+1

Ln
G

(
Ln+1

Ln
x, σ2

n

)
,

mn+1 =

∫ 0

−∞
dζ

∫ ∞

0

G
(
ζ − η, σ2

n

)
ψn (η) dη +

mn

2
,

Ln+1

Ln
= 1 +

∫ ∞

0

xdx

∫ ∞

0

G
(
x+ η, σ2

n

)
ψn (η) dη

+mn

∫ ∞

0

xG
(
x, σ2

n

)
dx. (39)
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3.1 An approximate transport and diffusion equation.

As a first step to establish Proposition 3.1, let us study the dynamics of the cluster size
distribution during one cycle. We use equations (25)–(26) as written in subsection 2.3
and interpret them as a discretised drift-diffusion equation (27). Moreover, it will be
useful to rescale time in (27) and consider the following convection-diffusion equation

∂c

∂τ
(j, τ) +

2 (w − v)

(w + v)

∂c

∂j
(j, τ) =

∂2c

∂j2
(j, τ) , τ(t) =

∫ t

0

d(s)

2
ds, (40)

where we recall that d = w + v and Lemmas 2.7, 2.8, i.e.

D(E, ε) :=
1

2

∫ T (E,ε)

0

d(s)ds ∼ E

ε
,

which is a consequence of d = O(ε) for those part of the LV cycle which contribute to
the integral the most. Hence, one can image the time-rescaling as roughly τ = O(εt).
The time-rescaled equation (40) is a key step in understanding these dynamics.

Lemma 3.4 Under the assumptions and notations of Prop. 3.1, we define ∆t :=√
1

E0ε
. During the time interval [0, T0], the size distribution cj(t) approximately evolves

according to the following dynamics:

1. Over the time interval [0,∆t], transport dominates diffusion: i.e. cj(t) ≈ cj−Y (t)(0)
is transported along Y (t) > 0 defined by (33), and moves towards larger sizes.

2. Over the time interval t ∈ [∆t, T0 − ∆t], cj(t) is close to the solution to (40),
hence cj(t) ≈ u(x, τ(t)) with j = x + Y (t), τ and d defined by (28), and u
solution to the pure diffusion equation

∂u

∂τ
(x, τ) =

∂2u

∂x2
(x, τ), E0∆t ≤ τ ≤ D0 − E0∆t. (41)

During this time interval, the total diffusion is in the order of D0 ≈ E0
ε
: the

size distribution diffuses in a range ∆x ≈
√

E0
ε
.

3. In the time interval t ∈ [T0 −∆t, T0], transport dominates diffusion again. We
have cj(t) ≈ cj−Y (t)+Y (T0−∆t)(T0 −∆t) and Y (t) < 0. The mass moving again
towards smaller sizes, for j < ∆x, the mass accumulates in c1.

Proof. W.l.o.g. and for the sake of simplicity, we set E0 = 1 as the general case
follows by the change of variables detailed in Lemmas 2.1 and 2.7. Let us begin by
proving the central behaviour of Step 2 given by (41). To do so, we use (40) and
identify – with some abuse of notations – its solution c(j, τ) with c(x, τ). We have
τ(T (E0, ε)) = D0 defined in (33), and it follows that (40) becomes (41).

The approximation (41) is valid on the whole size space (0,+∞) (and even (−∞,+∞)
in the sense that we do not need any boundary condition to solve the heat equation)
if the mass is contained in large enough clusters, i.e. Y (t) large enough, which is true,
thanks to Lemma 2.8, on an interval [∆t, T0−∆t] for some ∆t ∈ (t1, t2) to be specified.
In this case, we expect to have c1 very small, so that the equations for v and w (7)–(8)
may be approximated by the unperturbed LV system (14), and the approximation of
Y done in Lemma 2.8 is a posteriori validated.

During this time interval, the range of values of cluster sizes in which the con-
centrations c are relevant spreads according to the equation (41). Notice that this
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spreading process can be thought as diffusion in the space of cluster sizes, although
this diffusion is not related to any physical diffusion in the physical space, but it is just
a mathematical description that allows to compute the evolution of the concentrations
in the space of cluster sizes. Let us denote the heat equation semigroup exp

(
τ∂2

x

)
as S (τ) . Assuming ∆t ≪ D0 (this will be confirmed a posteriori), the total time for
diffusion during [∆t, T0 −∆t] is thus in the order of τ(T0) = D0 ∼ E0

ε
, see Lemma 2.7

and 2.8. Due to the properties of the heat semigroup, the characteristic length for

diffusion is thus of order
√

E0
ε

≪ D0.

This provides us with the order of magnitude for ∆t: at the final stage [T0−∆t, T0]
of the LV cycle, when the concentrations front returns to values of j of order one, the

concentrations cj for j = O(1) got diffused over a region of order
√

E0
ε

cluster sizes

(see Figures 2f and 3b). The transport speed dY
dt

= w(t) − v(t) in this region is of
order −E0 by Lemmas 2.1 and 2.5, thus the time interval during which the size region[
1,
√

E0
ε

]
hits c1 is of order

∆t =
1

E0

√
E0

ε
=

√
1

E0ε
.

Concerning the dynamics of the clusters in the boundary layer during the arrival
of the concentrations front, the mass diffused accumulates in j = 1 (see Figures 2f and
(4a)). For clusters of order one, we can approximate the concentrations cj by means
of the solutions of

dcj
dτ

= (cj+1 − cj−1) + (cj−1 + cj+1 − 2cj) , j ≥ 2 (42)

dc1
dτ

= 2

(
c2 −

ε

E0
c1

)
. (43)

To conclude, it remains to prove that the diffusion may be neglected in the intervals
[0,∆t] and [T0 −∆t, T0]: this is due to the fact that the time interval is much smaller
than the total diffusion D0. The approximations in Steps 1 and 3 by a pure transport
equation are thus valid.

3.2 From the initial cycle to the next

In this section, we (heuristically) obtain (36) and (38) of Proposition 3.1. These two
formulae may be viewed as linking a prototypical size distribution at a first time point
T0 (or in general Tn, for the n−th cycle) to the size distribution after one more cycle at
time T1 (respectively Tn+1) provided that the initial energy E0 (or En) of this period
satisfies ε≪ E0, En ≪ 1.

We remark that as a first prototypical size distribution at T0, we consider the size
distribution obtained after finishing an initial LV cycle, at the time point when the
values of w and v cross the half-line {w = v > ε} and we already have aggregated a
positive amount of mass in clusters with size j of order one, and more precisely in
the smallest cluster size j = 1 as shown in Figure (3b) (see also Figure (4b)) below.
This mass comes from two sources, first, a possible contribution of the original size-
distribution φ0(1/L0) which has been transported back and forth - and diffused, hence
lowered - and secondly, to the diffusion of small clusters φ0(j/L0) with j within a width√

E
ε
≫ 1, which will accumulate to some fraction on j = 1 during the transport back

to the origin.
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(a) Size distribution when v > w, v > ϵ (b) Size distribution when v = w, v > ϵ

(c) Size distribution when v < w, w > ϵ

Figure 4: Scheme of the evolution of the cluster sizes of order one.

We remark that the conditions in (6) imply that

1 = v + w + εL0

∫ ∞

0

xφ0 (x) dx ,

∫ ∞

0

φ0 (x) dx = 1

where we approximate the sums in (6) by means of integrals. In order to define L0 in
a unique manner, we assume (32) and obtain

1 = v + w + εL0 ,

∫ ∞

0

φ0 (x) dx = 1 (44)

First, we pretend that we can neglect the effect of the boundary conditions arising
for clusters with size j = 1. Then, Lemma 3.4 allows us to compute the concentrations
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after one LV cycle from the concentrations at the beginning of the LV cycle (with
energy E) by evaluating the heat semigroup S (τ) with time step τ = D (E, ε) . This
would give the approximation

ε

L1
φ1

(
j

L1

)
=

ε

L0
S (D0)

[
φ0

(
·
L0

)
χ(0,∞) (·)

]
(j) for j ≫

√
E0

ε
, (45)

where χ(0,∞) (·) is the characteristic function in the half-line {j > 0} . This approxi-
mation can be expected to be valid for cluster sizes away of the boundary layer, i.e.

for j ≫
√

E0
ε
. We notice that if we were to take negative values of j, the right-hand

side would still be positive, which is impossible with the discrete system. As already
stated in Lemma 3.4, this mass, instead of being diffused in the region of negative
clusters, accumulates in clusters with j = 1 (see the last frames in Figure (2f) and
Figure (3b) and Figure (4b)).

Then, to define φ1 in terms of φ0 we must include all this mass in a Dirac mass
at the origin. This gives

ε

L1
φ1

(
j

L1

)
=
ε

L0
χ(0,∞) (j)S (D0)

[
φ0

(
·
L0

)
χ(0,∞) (·)

]
(j)

+
ε

L0
δ (j)

∫ 0

−∞

(
S (D0)

[
φ0

(
·
L0

)
χ(0,∞) (·)

])
(ξ) dξ

or after some simplifications

φ1

(
j

L1

)
=
L1

L0
χ(0,∞) (j)S (D0)

[
φ0

(
·
L0

)
χ(0,∞) (·)

]
(j)

+
L1

L0
δ (j)

∫ 0

−∞

(
S (D0)

[
φ0

(
·
L0

)
χ(0,∞) (·)

])
(ξ) dξ.

We rewrite this equation using the fundamental solution for the heat equation G(ξ; s)
defined by (37), and we obtain

φ1

(
j

L1

)
=
L1

L0
χ(0,∞) (j)

∫ ∞

0

G (j − ξ;D0)φ0

(
ξ

L0

)
dξ

+
L1

L0
δ (j)

∫ 0

−∞
dk

∫ ∞

0

G (k − ξ;D0)φ0

(
ξ

L0

)
dξ.

We write x = j
L1

and use the change of variables ξ = L0η, and k = L0ζ :

φ1 (x) = L1χ(0,∞) (x)

∫ ∞

0

G (L1x− L0η;D0)φ0 (η) dη

+ δ (x)L0

∫ 0

−∞
dζ

∫ ∞

0

G (L0ζ − L0η;D0)φ0 (η) dη,

where we use that L1δ (L1x) = δ (x) .
We now use that G(ξ, s) = 1

λ
G
(
ξ
λ
, s
λ2

)
for any λ > 0, and taking λ = L0 we obtain

φ1 (x) =
L1

L0
χ(0,∞) (x)

∫ ∞

0

G

(
L1

L0
x− η;

D0

(L0)
2

)
φ0 (η) dη

+ δ (x)

∫ 0

−∞
dζ

∫ ∞

0

G

(
ζ − η;

D0

(L0)
2

)
φ0 (η) dη,
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which is (36).
In order to conclude the computation of φ1 we need to determine L1. To this end

we impose the condition (32), namely
∫∞
0
xφ1 (x) dx = 1. Notice that since we assume

that
∫∞
0
φ0 (x) dx = 1 we automatically have

∫∞
0
φ1 (x) dx = 1. We thus have

1 =

∫ ∞

0

xφ1 (x) dx =
L1

L0

∫ ∞

0

xdx

∫ ∞

0

G

(
L1

L0
x− η;σ2

0

)
φ0 (η) dη .

Then
L1

L0
=

∫ ∞

0

∫ ∞

0

G
(
x− η;σ2

0

)
xdxφ0 (η) dη,

which is the first equality of (38). The second one has the advantage of highlighting
that L1 > L0. To obtain it, we use the symmetry of G to write

L1

L0
=

∫ ∞

0

(∫ ∞

−∞
G
(
x− η;σ2

0

)
xdx−

∫ 0

−∞
G
(
x− η;σ2

0

)
xdx

)
φ0(η)dη

=

∫ ∞

0

ηφ0(η)dη −
∫ ∞

0

∫ 0

−∞
G
(
x− η;σ2

0

)
xdxφ0 (η) dη

= 1 +

∫ ∞

0

φ0 (η)

∫ ∞

0

xG
(
x+ η;σ2

0

)
dxdη

and this is the second equality of (38). It ends the proofs of Prop. 3.1. This also
provides us with the the formulae in (39). Taking as the initial step ψn and mn with
Supp(ψn) ⊂ (0,∞) as in (31) and denoting accordingly Dn and σ2

n = Dn
(Ln)2

using

E = En in (33), we obtain the formulae in (39) and finish the proof of Corollary 3.3
by using the formulae in Prop. 3.1, replacing the corresponding terms and iterating
over the LV cycles.

3.3 Energy decay and iterative mapping

As a first result in Proposition 3.5, we compute the energy decay over a first LV cycle
and we obtain a semi-explicit representation formula and provide an estimation in
terms of

√
ε. As a second step, Proposition 3.6 quantifies the change of energy E

and the change of typical cluster length scale L over following LV cycle iterations as
long as the energy remains relatively big in comparison with ε. Please note that some
cases in the proof of Proposition 3.6 require a more detailed analysis compared to the
present section and are therefore postponed to subsection 4.2. While this might be
sub-optimal in terms of presentation, we felt that as a result, Proposition 3.6 belongs
to this section and shouldn’t be stated any later.

Proposition 3.5 Under the assumptions and notations of Prop. 3.1, the main change
of the energy with a LV cycle occurs in the interval [T0 −∆t, t4] and may be approxi-
mated as follows:

E1 − E0 ∼ −
∫ 0

−∞
|s|W0(s)ds, (46)

with W0 defined by

W0 (·) =
ε

L0
S (D0)

[
φ0

(
·
L0

)
χ(0,∞) (·)

]
. (47)
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Moreover, since σ0 := D0
(L0)2

≈ 1, the following estimation holds

|∆E0 | :=
∫ 0

−∞
|s|W0(s)ds ≈ εL0 ≲

√
ε. (48)

With Propositions 3.1 and 3.5, we can now obtain formulae quantifying the change of
energy and the change of the cluster length scale over instances of following LV cycles.

Proposition 3.6 Under the assumptions and notations of Propositions 3.1 and 3.5
and Corollary 3.3, as long as En ≫ ε, the following estimation holds

|∆En | :=
∫ 0

−∞
|s|Wn(s)ds ≈ mn

√
Enε+

En

Ln
ψn(0) ≲

√
ε (49)

if σ2
n ≪ 1. Moreover, iteration formulae for the energy En+1 and the cluster length

scale Ln+1 are given by

|En+1 − En| ≈
En

Ln
,

Ln+1

Ln
= 1 + Cn, Cn =

|∆En |
εLn

≈ En

εL2
n

. (50)

Proof of Proposition 3.5. As a first step, we prove the expression (46). We recall
that the energy dynamics is given by (12): dE

dt
= (ε−v)c1, so that we need to compute

where the contribution to
∫
(ε − v)c1dt is dominant. We also recall the partition of

the LV phase space and the corresponding partition of the time period introduced in
subsection 2.2 and in Lemma 3.4.

• During [0, t1], by Lemmas 2.1 and 2.2 we have c1 ≤ ε and v ∈ [ε, E0
2
] hence∣∣∣∫ t1

0
(ε− v)c1dt

∣∣∣ ≲ εE0
2
t1 ∼ − ε

2
log(ε).

• During [t1,∆t], we have v ≤ ε hence |
∫∆t

t1
(ε− v)c1dt ≲ ε2∆t ≈ ε

3
2√
E0
.

• During [∆t, T0 − ∆t], c1 ≲ e−
√

E0
ε ≪ ε4 hence

∫ T0−∆t

∆t
(ε − v)c1dt ≪ ε2 is

negligible.

• During [T0 −∆t, t4], we compute below the contribution
∫ t4
T0−∆t

(ε− v)c1dt.

• During [t4, T0], analogously to the time [0, t1], we have
∣∣∣∫ T0

t4
(ε− v)c1dt

∣∣∣ ≲ − ε
2
log(ε).

It remains to compute the contribution to the change of energy during the time [T0 −
∆t, t4]. We have seen in Lemma 3.4 that we can approximate the size distribution
dynamics by the pure transport equation along Y (t), and moreover in [T0 −∆t, t4] we
have v ∼ E0 and w ≲ ε, hence in the variable τ we have dY

dτ
∼ −2. The discontinuity of

the characteristic function χ(0,∞)(·) results in the formation of a concentration front,
that can be described when it approaches to clusters of order one by means of the
function

c (·, τ) = ε

L0
S (D0)

[
φ0

(
· − 2 (τ∗ − τ)

L0

)
χ[0,∞) (·)

]
(51)

where τ∗ = D0 is the period of the LV cycle. It is convenient to rewrite this formula
defining the function W0 by (47),then

c (j, τ) =W0 (j − 2 (τ∗ − τ)) .
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Here, we use j as continuum variable. The flux of monomers towards clusters of order
one can thus be approximated as c

(
0+, t

)
=W0 leading (43) to be written

dc1
dτ

= 2W0 (−2 (τ∗ − τ)) .

Then, using that the function describing the concentrations front W0 decays fast for
large negative values of its argument so that integrating between τ(T0 −∆t) and τ as
the same order of magnitude as integrating between 0 or even −∞ and τ , we obtain

c1 (τ) ∼ 2

∫ τ

0

W0 (−2 (τ∗ − s)) ds ∼
∫ 2(τ−τ∗)

−∞
W0 (s) ds for τ < τ∗. (52)

In order to estimate the order of magnitude of the change of the energy due to the
interaction of the concentrations waves with the regions with cluster sizes j of order

one, we use the fact that W0 is of order ε
L0

and it has a width of order
√

E0
ε

(cf.

(47)). We remark that this scaling properties for W0 are based in the assumption that
the contribution of the Dirac in φ0 gives a contribution to W0 of the same order of
magnitude that the part of φ0 in {x > 0} .
We can then compute the change of the energy using (12). We recall that dE

dt
=

(ε− v) c1, hence
dE
dτ

= 2(ε−v)
(w+v)

c1 ≈ −2c1 in [T0 −∆t, t4] since v ≃ E0 and w ≲ ε. Then,
as long as E ≫ ε, we have the following approximation during the range of times in
which c1 contributes significantly to the change of E

dE

dτ
≃ −2E

E
c1 = −2c1 (53)

Combining (52) and (53) and claiming again that the integrals are negligible away
from [T0 −∆t, t4], we obtain

E1 − E0 ≈ −4

∫ τ∗

0

∫ τ

0

W0(−2(τ∗ − s))dsdτ =
∫ 0

−τ∗
W0(s)sds

≈ −
∫ 0

−∞
W0 (s) |s| ds.

In order to prove the estimation (48), we compute

∆E0 =
ε

L0

∫ 0

−∞
|s|
∫ ∞

0

φ0

(
y

L0

)
G(s− y;D0)dyds

=
ε

L2
0

∫ ∞

0

s

∫ ∞

0

φ0

(
y

L0

)
G

(
s+ y

L0
;σ2

0

)
dyds

= εL0

∫ ∞

0

s

∫ ∞

0

φ0(y)G(s+ y;σ2
0)dyds

= εL0

∫ ∞

0

s

(
m0G(s;σ2

0) +

∫ ∞

0

ψ0(y)G(s+ y;σ2
0)dy

)
ds.

Using
∫∞
0
sG(s;σ2)ds = σ√

π
, we obtain

∆E0 = εL0

(
m0σ0√

π
+

∫ ∞

0

s

∫ ∞

0

ψ0(y)G(s+ y;σ2
0)dyds

)
. (54)
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Since σ0 ≈ 1, the sum of the first and second terms is in the order of εL0 since
m0 +

∫∞
0
ψ0(x)dx = 1, which shows (48).

Proof of Proposition 3.6. The formula of the energy decay (46) as well as its
estimate (54) holds over the iterations of the LV cycles as long as En ≫ ε. The only
change in comparison to the first cycle is that if σn ≪ 1, we have that

∆En = εLn

(
mnσn√

π
+

∫ ∞

0

s

∫ ∞

0

ψn(y)G(s+ y;σ2
n)dyds

)
,

where the first term is in the order of εLnmnσ = εmn

√
Dn = mn

√
Enε (cf. Lemma

2.8), whereas the second term may be approximated by

εLnψn(0)σ
2
n

∫ ∞

0

∫ ∞

y

(z − y)G(z; 1)dzdy ≈ εψn(0)
Dn

Ln
=
En

Ln
ψn(0).

Concerning the changes in the cluster distribution over the LV cycles, for
Ln+1

Ln
, we

have
Ln+1

Ln
= 1 + Cn,

with

Cn =

∫ ∞

0

∫ ∞

0

xG(x+ η, σ2
n)φn(η)dηdx =

1

εLn

∫ 0

−∞
|s|Wn(s)ds =

|En+1 − En|
εLn

,

so that it only remains to prove either the estimation of En+1 −En or the one for Cn

to get the other.
In the cases that Ln ≈ 1√

ε
, we easily obtain (50) from (48) since then En ≈ 1, so

εLn ≈
√
ε ≈ En

Ln
, which finishes the proof of Proposition 3.6 in this case. However,

the proof is much more involved in case Ln ≫ 1√
ε
, or equivalently, for σn ≪ 1. It then

requires the analysis carried out in Subsection 4.2 below.

4 Phases I and II: overall dynamics

4.1 Early Phase I: initial increase of the characteristic
length

With an initial energy E0 ≈ 1, we have noticed that even if L0 ≪ 1√
ε
, the diffusive

effects within one LV cycle yield L1 ≈ 1√
ε
, whereas the energy remains E1 ≈ 1 since

∆E0 ≈ εL0 ≪ 1 by Prop. 3.5. Over following LV cycles, by (50) we have that
Ln increases much faster than En decreases. Departing from L1 ≈ 1√

ε
, we have

C1 ≈ 1. Hence, after a few cycles (in the order of − log(ε)) we have Ln ≫ 1√
ε
, so that

σ2
n = En

εL2
n
≪ 1 (see Prop. 3.6). The change in the size distribution for the early Phase

I is illustrated in the Figure 5.

4.2 Continuation of Phase I and Phase II: size distribution
evolution

The change of energy in one LV cycle being of order at most
√
ε (see Prop. 3.5 and

3.6), the energy En first remains of order one while σn ≪ 1 (Phase I) then decreases
to order ε (Phase II).
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(a) Size distribution c(j, t) when v = w >
ϵ, i.e. for t = 0, T0, T1, T2.

(b) Size distribution c(j, t) when v = w <
ϵ, i.e. for t ≈ ∆t, T0+∆t, T1+∆t, T2+∆t.

Figure 5: Evolution of the cluster size distribution over four LV cycles with
ε = 0.02 and 1/

√
ε ≈ 7. See Appendix C for the details about the numerical

simulations.

(a) Phase portrait of the monomers (b) Evolution of the concentration of c1

(c) Evolution of the energy E

Figure 6: Change of the energy E (11) for one iteration of the LV cycle when
c1 ̸= 0 in equations (7)–(8).
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To describe the dynamics after the early Phase I, we are in the case of σn ≪ 1 (see
Prop. 3.6) so that we need to evaluate both mn and ψn(0) to prove (50). It is thus
convenient to separate the size domain in three parts: the Dirac delta for c1 (providing
mn), a boundary layer for sizes 1 ≪ i ≲ 1√

ε
, and large sizes i ≫ 1√

ε
, so that ψn(0)

may be viewed as the limit for x→ ∞ of the boundary layer as well as the limit x→ 0
of the large-sizes part of the domain. This is expressed in the following proposition.

Proposition 4.1 Let ε ≪ En and 1√
ε
≪ Ln, so that σ2

n = En
εL2

n
≪ 1. Set x = j

Ln
.

Following the notations of Corollary 3.3, we have the following approximations for the
size distribution ψn.

• For x > 0 not small, more precisely x = j
Ln

with j ≫
√

En
ε
, we have

ψn(x) ≈ ψ(x) :=
2

π
e−

x2

π , (55)

from which we also achieve the proof of (50).

• For x = j
Ln

with j ≲
√

En
ε
, defining x = σn+1ξ, mn = σnMn and ψn(σnξ) =

Un(ξ), we have that (Un,Mn) ≈ (U,M) solutions of the following system:

U (ξ) =

∫ ∞

0

G (ξ − ζ; 1)U (ζ) dζ +MG (ξ; 1) , ξ > 0 (56)

M

2
=

∫ 0

−∞
dζ

∫ ∞

0

G (ζ − ξ; 1)U (ξ) dξ (57)

U (∞) =
2

π
(58)

Proof. In all the following dynamics, we have that
|∆En |
εLn

≪ 1 so that (50) implies
Ln+1

Ln
∼ 1 in the limit σn → 0+. For convenience, we recall the first two iteration

formulas (39) previously stated in Corollary 3.3:

ψn+1 (x) =
Ln+1

Ln

∫ ∞

0

G

(
Ln+1

Ln
x− η, σ2

n

)
ψn(η)dη +mn

Ln+1

Ln
G

(
Ln+1

Ln
x, σ2

n

)
,

mn+1 =

∫ 0

−∞
dζ

∫ ∞

0

G
(
ζ − η, σ2

n

)
ψn (η) dη +

mn

2
(59)

In the following we approximate (39) resp. (59) using the expansion formula∫ ∞

0

G
(
x− y;σ2)ψ (y) dy = ψ (x) + σ2∂xxψ (x) + o

(
σ2) as σ → 0+ (60)

which holds not uniformly but provided that x > 0 is fixed while and σ → 0+. On the

other hand, the term mn
Ln+1

Ln
G
(

Ln+1

Ln
x;σ2

n

)
in the first equation of (39) resp. (59) is

exponentially small in σ2
n if x is of order one. We then obtain using (60) the following

approximation

ψn+1 (x) =
Ln+1

Ln

[
ψn + σ2

n∂xxψn

](Ln+1

Ln
x
)
, x > 0 , (61)

if σ2
n tends to zero. Notice that the iterative formula (61) does not depend onmn. This

suggests in particular that the ratio
Ln+1

Ln
can be determined independently on mn if
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σ2
n ≪ 1. We will assume that ψn stabilizes to a steady state. In addition, we use the

fact that σ2
n tends to zero. We will assume that

Ln+1

Ln
∼ 1+aσ2

n as σ2
n → 0, where a > 0

must be determined. Then, looking for steady states ψ of (61) and neglecting lower
order terms, as well as using the approximation ψ

((
1 + aσ2

)
x
)
≃ ψ (x)+aσ2x∂xψ (x) ,

we obtain that ψ solves

σ2 (aψ (x) + ax∂xψ (x) + ∂xxψ (x)) = 0

where we keep only the lower order terms in σ2. Then

aψ (x) + ax∂xψ (x) + ∂xxψ (x) = 0 , x > 0 . (62)

We can expect to have the approximation ψn ≃ ψ as n → ∞. Moreover, we
remark that we can expect to have mn → 0 as n becomes larger enough. Indeed, this
is a consequence of the fact that as σ2

n → 0, also the amount of mass transferred to
the region x < 0 by the heat semigroup tends to zero. Therefore, the normalization
condition (32) implies that approximately∫ ∞

0

ψ (x) dx =

∫ ∞

0

xψ (x) dx = 1. (63)

The integrable solutions of (62) have the form ψ (x) = Ce−
ax2

2 where C is an
arbitrary real constant. The normalization conditions (63) imply C = a = 2

π
. Then

we obtain (55), and also

Ln+1

Ln
= 1 +

2

π
σ2
n , σ2

n =
D (En, ε)

(Ln)
2 .

as n becomes large enough. This also achieves the heuristic proof of (50).

We now consider the description of the functions ψn (x) for small x, i.e. for x

in the order of σn. In the first equation of (39) resp. (59), we use
Ln+1

Ln
∼ 1 and

introduce the new variables x = σn+1ξ, ψn (σnξ) = Un (ξ) . Then

Un+1 (ξ) ∼
∫ ∞

0

G
(
σn+1ξ − η;σ2

n

)
ψn (η) dη +mnG

(
σn+1ξ;σ

2
n

)
.

Defining η = σnζ and using G(y;σ2) = 1
σ
G( y

σ
; 1), we obtain

Un+1 (ξ) ∼
∫ ∞

0

G

(
σn+1

σn
ξ − ζ; 1

)
Un (ζ) dζ +

mn

σn
G

(
σn+1

σn
ξ; 1

)
.

We now remark that
σn+1

σn
∼ 1 as σn → 0. Moreover, using the rescaling mn =

σnMn, we introduce the following equation as the definition for the rescaled profile
Un of boundary layer describing the concentrations near x = 0:

Un+1 (ξ) =

∫ ∞

0

G (ξ − ζ; 1)Un (ζ) dζ +MnG (ξ; 1) , ξ > 0 . (64)

In order to obtain a closed system for both Un andMn, we use the second equation
in (39) resp. (59). With the definitions of Un and Mn, we obtain the equation

Mn+1 =
Ln+1

Ln

∫ 0

−∞
dζ

∫ ∞

0

G (ζ − ξ; 1)Un (ξ) dξ +
Ln+1

Ln

Mn

2
.
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Approximating then
Ln+1

Ln
by 1, we obtain

Mn+1 =

∫ 0

−∞
dζ

∫ ∞

0

G (ζ − ξ; 1)Un (ξ) dξ +
Mn

2
. (65)

The equations (64)–(65) describe the iterative dynamics of the boundary layer near
x = 0 yielding the cluster concentrations as well as the mass of the peaks appearing
there. These equations must be solved combined with the matching condition that
results from the fact that ψn (σnξ) = Un (ξ) . Then, since σn ≪ 1, it is natural to
impose the matching condition Un (∞) = ψn

(
0+
)
. Taking into account (55), we must

then impose the following matching condition for the system (64)–(65)

Un (∞) =
2

π
. (66)

It is natural to assume that the solutions of (64)–(66) approach a stationary solution
for large n. Therefore, they become close to the solutions of the problem (56)–(58),
and it ends the (heuristic) proof.

In the companion paper [9], it will be proved that there exists a unique solution
of (56)–(57) satisfying the boundary condition (58). The resulting function U (ξ) and
the rescaled mass M describe the concentration of clusters cj for j in the order of 1

σn
,

with 1 ≪ 1
σn

≪ Ln.

Remark 4.2 We can use the third equation in (39) to estimate
Ln+1

Ln
to check the

correctness of the approximation (50) that has been obtained with a different approach,
approximating the evolution of the cluster sizes with x of order one by means of a
differential operator. We have

Ln+1

Ln
= 1 + σ2

n

∫ ∞

0

ydy

∫ ∞

0

G (y + ξ; 1)Un (ξ) dξ +Mnσ
2
n

∫ ∞

0

yG (y; 1) dy .

Using then the approximations Un ≃ U and Mn ≃M , we obtain the following approx-
imation

Ln+1

Ln
= 1 + σ2

n

(∫ ∞

0

ydy

∫ ∞

0

G (y + ξ; 1)U (ξ) dξ +M

∫ ∞

0

yG (y; 1) dy

)
.

Therefore, both terms in the formula of
Ln+1

Ln
give a comparable contribution. Another

way to see this result is to go back to (49) in Prop. 3.6: replacing ψ(0) by 2
π

and m
by σnM we have

|∆En | ≈Mσn

√
Enε+

En

Ln

2

π
≈ En

Ln

(
M +

2

π

)
,

and here again both terms are of similar order.
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4.3 Overall dynamics during phases I and II

From (50) we can now detail the overall dynamics during Phases I and II, that we
summarize in Prop. 4.3. Let us first define the constant

A :=

∫ ∞

0

ydy

∫ ∞

0

G (y + ξ; 1)U (ξ) dξ +M

∫ ∞

0

yG (y; 1) dy. (67)

Proposition 4.3 Departing from E0 ≈ 1 and L0 ≈ 1√
ε
, with A defined by (67), we

have the following dynamics.

• Phase I: as long as n≪ 1
ε
, we have

Ln ∼
√

2An

ε
, En ∼ 1. (68)

• Phase II: Ln increases to 1
ε
and En decreases, and at the end of Phase II, i.e.

for 1
ε
≪ n ≲ − log(ε)

ε
, we have

Ln ∼ 1

ε
(1− e−1e−Aεn), En ∼ e−1e−Aεn. (69)

Proof. The whole proof is based on studying the sequence (Ln, En) defined by (50).
We have already described the early Phase I in subsection 4.1: after a few cycles we

have Ln ≫ 1√
ε
, and then by Prop. 4.1 ψn approaches 2

π
e−

x2

π and we can approximate

Mn and Un by the solutions of (56)–(58). We can then approximate the evolution of
Ln using that Cn ∼ Aσ2

n so that (50) may be written in the following more precise
way:

Ln+1

Ln
− 1 ∼ AEn

ε (Ln)
2 , En+1 − En ∼ −AEn

Ln
. (70)

Phase I asymptotics.

As long as En ∼ 1, we can simplify (70) by writing

Ln+1 ∼ Ln +
A

εLn
.

Hence
(Ln)

2

2
∼ (L0)

2

2
+
An

ε

for 1 ≪ n≪ 1
ε
, and we obtain the asymptotics (68).

Phase II asymptotics

We define a new set of variables, namely

Ln =
1

ε
ℓ (s) , En = e (s) , s = εn (71)

Then (70) becomes

ℓ (s+ ε)− ℓ (s)

ε
∼ Ae (s)

ℓ (s)
,
e (s+ ε)− e (s)

ε
∼ −Ae (s)

ℓ (s)
.
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It is natural to approach the left-hand side of these equations by derivatives. We then
obtain the following system of ODEs

d

ds
ℓ (s) =

Ae (s)

ℓ (s)
,

d

ds
e (s) = −Ae (s)

ℓ (s)
, (72)

and since at the beginning of Phase II we still have Ln ≪ 1
ε
and En ∼ 1, the matching

conditions for Ln, En yield the initial conditions

ℓ (0) = 0 , e (0) = 1. (73)

The initial conditions stated in (73) makes the system (72) singular, however the
initial conditions are compatible since the solution ℓ is bounded away from 0 exponen-
tially fast. Equations (72)–(73) yield the evolution of Ln, En during Phase II. These
equations can be solved in the following implicit form

− 1

A
ℓ− 1

A
log (1− ℓ) = s , e = 1− ℓ . (74)

Notice that this equation (or directly (72)) implies the asymptotic behaviour

ℓ (s) ∼
√
2As , e (s) ∼ 1 as s→ 0 .

We obtain that ℓ increases from ℓ = 0 for s = 0 to ℓ = 1 as s tends to infinity. On
the other hand e decreases from e = 1 for s = 0 to e = 0 as s tends to infinity. We
have the following asymptotic behaviour for ℓ and s

ℓ (s) ∼
(
1− e−1e−As

)
, e (s) ∼ e−1e−As as s→ ∞ . (75)

Combining (71) and (75) yields the evolution of Ln, En during Phase II. The
formula for ℓ (s) in (75) implies that Ln remains of order 1

ε
during the Phase II.

Remark 4.4 The approximations (70) have been computed under the assumption that
this displacement En

ε
is very large. However, the formula for e (s) in (75) as well as

the fact that En = e (s) imply that for n of order 1
A

1
ε
log
(
1
ε

)
the energy En becomes

of order ε and then the approximations (70) are not any longer valid. This marks
the beginning of Phase III. We also notice that during this phase the concentrations ck
experience a displacement of order En

ε
in the space of cluster sizes k (see Lemmas (2.7)

and (2.8)).

5 Phase III: Energy reduction from order ε to
order ε2.

5.1 Early Phase III: matching condition

Phase III begins when En becomes of order ε, so that all the analysis made for Phases I
and II, which rely on the assumption En

ε
≫ 1, is no more valid. However, we can infer

the initial state at the beginning of Phase III as the limit value obtained at the end
of Phase II: this is expressed in the following lemma.
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(a) Phase portrait of the monomers (b) Evolution of the energy E

Figure 7: Numerical simulation of the evolution of the monomers and the energy
in Phase II (c.f section 4.1). The color scheme indicates the time evolution in
Figures 7a and 7b. (Right) The y–axis scale is logarithmic and the horizontal
line is En ≈ ε where ε = 0.02 in the numerical simulation. The decreasing affine
line in red is an illustration of the exponential decay of the energy that takes
place in Phase II (see Prop. 4.3).

Lemma 5.1 With the notations of the previous results, at the end of Phase II and
beginning of Phase III, we have

En ≈ ε, Ln≈
1

ε
, Tn ≈ 1

ε
, Y n

max ≈ 1, cj(Tn) ∼ ε2ψ(εj), j ≫ 1, (76)

with ψ defined by (55). Moreover, we have v(Tn) = w(Tn) = O(ε) and cj(Tn) ≈ U(j)
for j = O(1).

Proof. The energy En ≈ ε is the definition of the beginning of Phase III, so that
we deduce from Prop. 4.3 that n ≈ − log(ε)

ε
. Hence, by (69) we have Ln≈ 1

ε
. Thanks

to Lemmas 2.7 and 2.8, the maximal displacement for clusters Y n
max ≈ En

ε
tends to

become of order 1, and the time period for one cycle Tn ≈ En
ε2

tends to be of order 1
ε
.

Since En is of order ε we obtain that w and v are of order ε too (cf. (11)).
For the size distribution, we recall its description done in Prop. 4.1: a Dirac mass

of weight mn ≈ σnM, a boundary layer of width σn in the variable x = j
Ln

and the

function ε
Ln
ψ( j

Ln
) for j

Ln
≫ σn. We now have σn =

√
Dn
Ln

=
√
En√
εLn

≈ ε so that the

boundary layer width vanishes: the approximation by ε
Ln
ψ( j

Ln
) ∼ ε2ψ(εj) is valid for

any j ≫ 1, and for the boundary layer we have cj ≈ U(j).

5.2 Dynamics of Phase III: a new scaling

From this initial state, it is natural to introduce the following change of variables in
order to describe Phase III:

w = εW , v = εV , ck = ε2Ck , τ = εt. (77)
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Notice that the variable τ here is different from the variable τ defined for Phases I
and II. Then the equations (7)–(9) become

dV

dτ
= −VW + V (1− εC1) , (78)

dW

dτ
= VW −W, (79)

dCj

dτ
= J̄j−1 − J̄j , ∀j ≥ 1, J̄0 = 0, J̄j =WCj − V Cj+1, j ≥ 1. (80)

It is also natural to define a rescaled LV energy associated to the problem (78)–
(80). Notice that if we set ε = 0 in (78)–(79), we obtain the conservation of the
rescaled LV energy Ẽ, i.e.

E = εẼ, Ẽ = V +W − 2− log (VW ) . (81)

During the Phase III we expect the rescaled energy Ẽ to be reduced from values of
order one to values of order ε2, which is the order of magnitude of its equilibrium value.
Notice that the solutions of (78)–(80) are small perturbations of the LV equation,
though the perturbation is different from the one in Phases I and II: here, for Ẽ ≈ 1,
we have that V and W always remain in the order of one, and each phase of the LV
cycle lasts for a time of order one in the variable τ . The perturbative term −εV C1

yields changes in the rescaled energy Ẽ that is illustrated numerically in Figures 8 and
9.

The main difference between Phase III, described by means of (78)–(80), and
Phases I and II is that the change of energy of the LV oscillations does not take
place in the specific interval [T −∆t, t4] of the LV cycle, but during the whole cycle.
Moreover, in the analysis of Phases I and II, the main change of the energy during a
LV cycle takes place when the concentration wave is closer to cluster sizes j of order
one and during those times c1 is much larger than the concentrations cj with j ̸= 1.
On the contrary, during Phase III, the rescaled concentrations Cj with j of order one
have the same order of magnitude as C1. Due to this, we cannot use a perturbative
argument to approximate the values of C1 as it was made in the analysis of Phases I
and II, but we need to study a problem which involves the whole sequence {Cj}j∈N .
Let us gather the results for Phase III in the following proposition.

Proposition 5.2 Let T in
3 denote the beginning of Phase III. Let us depart from En,

Ln, Tn and cj(Tn) described by (76) and define V, W, τ and Cj by (77), Ẽn := 1
ε
En

and τ inn = εT in
3 . On each cycle τn > τ inn , we can approximate the dynamics with the

following system taken on [τn, τn+1]:

dV

dτ
= −VW + V, (82)

dW

dτ
= VW −W, (83)

dCj

dτ
=
W − V

2
(Cj−1 − Cj+1) +

V +W

2
(Cj−1 − 2Cj + Cj+1) , j ≥ 2, (84)

dC1

dτ
= V C2 −WC1, Ẽk = V +W − 2− log(VW ), V (0) =W (0) > 1, (85)

and with the additional matching condition

lim
j→∞

Cj (τ) =
2

π
∀τ ∈ [τn, τn+1]. (86)
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(a) Monomers (b) Monomers

(c) Size distribution (d) Size distribution

(e) Energy (f) Energy

Figure 8: Numerical illustration of the evolution of the size distribution of the
clusters, the monomers and the energy (81) in Phase III over one cycle (c.f
the rescaled system described in the equations (78)–(80)). The time evolution
indicated by the colors is the same for the three Figures 8a, 8c and 8e (resp. 8b,
8d and 8f). The Figures 8c and 8d are truncated and only show the evolution
of the size distribution for sizes smaller than 50. The time t = 0 corresponds to
the end of Phase II and the beginning of Phase III in this simulation.
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The change of energy between two successive cycles is then given by

Ẽn+1 − Ẽn ≈ ε

∫ τn+1

τn

(1− V (τ))C1 (τ) dτ, (87)

with (C1, V ) solutions to (82)–(86).

Proof. Let us first prove that Cj ≈ ψ(εj) for j ≈ 1
ε
: this implies the matching

condition (86), the system (82)–(85) being written for j large but εj small. This is
obtained through a transport-diffusion equation as for Phases I and II. We depart from
the initial condition given by Lemma 5.1

Cj(τ
in
n ) = ψ (εj) , τ inn = εT in

3 for j large , (88)

We rewrite (80) as a discrete transport-diffusion equation, as we did in (25)

dCj

dτ
=

(
W − V

2

)
(Cj−1 − Cj+1) +

V +W

2
(Cj−1 − 2Cj + Cj+1) . (89)

Denoting as x the variable εj and approximating the discrete derivatives in the previous
formula by means of continuous derivatives as we did in (27) (writing Cj (τ) as C (x, τ)
with x = εj), we obtain

∂C (x, τ)

∂τ
= ε (V −W )

∂C (x, τ)

∂x
+
V +W

2
ε2
∂2C (x, τ)

∂x2
. (90)

Equation (90) allows to estimate the variation of the concentrations Cj with large j :

• The periods τn > τ inn of each LV cycle is of order one during Phase III.

• (V −W ) is periodic in each LV cycle, hence the transport rate ε (V −W ) cause
an oscillation of C (x, τ) in the variable x of order ε or equivalently, in the
variable j the amplitude of the oscillations is of order one.

• Since the second order term V +W
2

ε2 ∂2C(x,τ)

∂x2 is O(ε2), significant changes in the
shape of the concentrations C (x, τ) only happen over times τ of order 1

ε2
.

To sum-up, over times τ much smaller than 1
ε2
, we can neglect the modifications of

the concentrations C(x, τn), and only small oscillations during each period. Notice
that the equations (78)–(80) suggest that there is a change of the rescaled LV energy
Ẽ of order ε in each LV cycle as long as Ẽ is of order one, so that the number of LV
cycles needed for Ẽ to become small is of order 1

ε
. The end of Phase III, characterised

by Ẽ small, is studied below in Prop. 5.4, and concerns a number of cycles in the

order − log(ε2)
ε

. Since one LV period is of order one in the variable τ during the whole

Phase III, we deduce that the total duration of Phase III is of order − log(ε2)
ε

≪ 1
ε2

in
the variable τ , hence the external concentrations C (x, τ) ≈ ψ(x) remain frozen during
Phase III.

This allows to obtain the matching condition (86) (cf. Prop 4.1). We then ob-
tain (82)–(85) to approximate C1 to the leading order. We expect to have a stable
periodic solution of (82)–(86) for each value of the rescaled energy Ẽ. Notice that
the solution of (82)– (83) can be computed for each value of Ẽ ≥ 0 independently
on the values of Cj . Thus, (84)–(86) become a system of infinitely many ODEs with
prescribed functions W, V for each value of Ẽ.
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We end the proof of Prop. 5.2 by computing the change of rescaled energy Ẽ during
each cycle: we use that

dẼ

dτ
= ε (1− V )C1,

which yields (87).

Remark 5.3 Contrarily to Phase II, where (70) provided an explicit formula to esti-
mate the decay of energy, we have in Phase III no way to approximate (82)–(86) in
order to estimate the right-hand side of (87): in general this has to be done numeri-
cally, except at the end of Phase III, for which we have the following result.

5.3 End of Phase III: energy decay

As already said, we expect to have a number of cycles in the order of 1
ε
before reaching

Ẽn ≪ 1. We now compute the integral on the right-hand side of (87) at the end of
Phase III, i.e. for Ẽn → 0. We obtain the following result.

Proposition 5.4 Under the assumptions and notations of Prop. 5.2, for the range
ε2 ≪ Ẽn ≪ 1, we can approximate the decay of energy by

Ẽn+1 − Ẽn ≈ −εaẼn, (91)

for a given constant a > 0 of order one. Hence the energy decays exponentially fast
at the end of Phase III. The assumptions of Prop. 5.2 are valid until Ẽn ≈ ε2, which
happens after a number of cycles in the order of 1

aε
log( 1

ε2
). At the end of this period,

we thus have Ẽn = O(ε2), V − 1 = O(ε), W − 1 = O(ε), Cj ≈ ψ(εj) for j ≈ 1
ε
.

Remark 5.5 We notice that, as at the end of Phase II and Phase III, and despite the
fact that the scalings differ, the energy decays exponentially, with a rate in the order of
ε in both cases (cf. Figures 7b and 9). However the constants (A and a) are different.

Remark 5.6 The energy decay at the end of Phase III is also characterizing the damp-
ing of the oscillations of the trajectories of the monomers’ concentrations. Proposition
5.4 proves that the trajectories (V,W ) are enclosed in a ball of center (1, 1) and radius
ε. However, one can note that the steady-state (10) for the monomers is shifted from
the point (1, 1), hence more precise estimate can be found for V − 1 after 1

aε
log( 1

ε2
)

cycles. The damping of the oscillations are studied more precisely in section 6 and the
results will be refined in Lemma 6.1 using a more precise asymptotic expansion when
linearizing around the steady-state.

Proof. Let us linearize the set of equations (82)–(86), writing

V = 1 + α , W = 1 + β , Cj =
2

π

(
1 + ηj

)
where |α| , |β| and

∣∣ηj∣∣ are small. Then, keeping only the linear terms in α, β and ηj ,
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Figure 9: Numerical simulation of the time evolution of the Energy Ẽ defined
in (81) during Phase III and the beginning of Phase IV. The time t = 0 corre-
sponds to the end of Phase II and the beginning of Phase III in this simulation.
The y-axis is logarithmic and ε = 0.02. The decay of the energy is exponential-
like until it reaches an order of magnitude of ε2 ≈ 10−4; the order of magnitude
of the energy oscillations then become of the same order of magnitude as the
energy itself, and then decay (end of Phase III).
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we obtain the following equations

dα

dτ
= −β, (92)

dβ

dτ
= α, (93)

dηj
dτ

=
(
ηj−1 − 2ηj + ηj+1

)
, j ≥ 2, (94)

dη1
dτ

= (α− β) + η2 − η1, lim
j→∞

ηj (τ) = 0 for all τ . (95)

The rescaled energy Ẽ can be approximated for small values as

Ẽ =
1

2

(
α2 + β2) .

Then, the solution of (92)–(93) can be written, up to a translation of the origin of
time τ as

α =
√

2Ẽ cos (τ) , β =
√

2Ẽ sin (τ) .

We notice that we now have periods of the LV cycle of τn ∼ 2π. In fact, it is enough
to solve the reference problem

dφj

dτ
=
(
φj−1 − 2φj + φj+1

)
, j ≥ 2, (96)

dφ1

dτ
= eiτ + φ2 − φ1, (97)

lim
j→∞

φj (τ) = 0 for all τ . (98)

since solutions
{
ηj
}
j∈N to (94)–(95) are recovered from solutions

{
φj

}
j∈N to (96)–(98)

by means of

ηj =
√

2Ẽ
[
Re
(
φj

)
− Im

(
φj

)]
, j ≥ 1.

We look for solutions of the problem (96)–(98) in the form

φj = Aje
iτ

where the coefficients Aj solve

iAj = Aj−1 − 2Aj +Aj+1, j ≥ 2 (99)

iA1 = A2 −A1 + 1. (100)

We can look for particular solutions of (99) in the form

Aj = (r)j−1 , j ∈ N,

which yields the two roots

r± =
1

2

[
(2 + i)±

√
4i− 1

]
.

We compute numerically |r−| ≈ 0.48053 < 1 while |r+| > 1. Therefore, in order to
obtain a solution φj satisfying (98), we must have

Aj = K0 (r−)
j−1 , j ∈ N
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for some K0 ∈ C. In order to determine K0 we use (100). Then

K0 [(1 + i)− r−] = 1.

Therefore,

φj =
(r−)

j−1

[(1 + i)− r−]
eiτ =

(r−)
j−1[

i
2
+
√
i− 1

4

]eiτ , j ≥ 1.

Thus,

ηj =
√

2Ẽ

Re

 (r−)
j−1[

i
2
+
√
i− 1

4

]eiτ
− Im

 (r−)
j−1[

i
2
+
√
i− 1

4

]eiτ

 , j ≥ 1.

or, equivalently

ηj =
√

2Ẽ Re

 (r−)
j−1 (1 + i)[

i
2
+
√
i− 1

4

] eiτ
 =

√
2Ẽ Re

(
(1 + i)φj

)
, j ≥ 1.

We can now approximate the integral on the right-hand side of (87) as follows:

Ẽn+1 − Ẽn = ε

∫ τn

0

(
1− V

(
τ ; Ẽn

))
C1

(
τ ; Ẽn

)
dτ

= −2ε

π

∫ τn

0

α
(
τ ; Ẽn

)(
1 + η1

(
τ ; Ẽn

))
dτ

= −2
√

2Ẽε

π

∫ τn

0

cos (τ) η1
(
τ ; Ẽn

)
dτ

= −4εẼ

π
Re

(
(1 + i)K0

∫ 2π

0

cos (τ) eiτdτ

)
= −4εẼ

π
Re

(
(1 + i)K0

∫ 2π

0

cos2 (τ) dτ

)
= −4εẼ Re ((1 + i)K0)

with

Re ((1 + i)K0) = Re

 (1 + i)

i
2
+
√
i− 1

4

 = 0.92505 > 0.

Then

Ẽn+1 − Ẽn = −4εẼn Re ((1 + i)K0) = −aεẼn where a ≈ 3.6922 > 0. (101)

Phase III continues until the time in which the contribution of the term −εV C1 in
(78) becomes comparable to the term −VW + V = −V β, so that the approximation
of (78) by (82) becomes invalid. Therefore, we need to compare the terms εC1 and β.
Since C1 remains of order one during the whole phase, Phase III ends when β becomes

of order ε. The order of magnitude of β is of order
√
Ẽn. Thus, Phase III is valid as

long as Ẽn ≳ ε2. Notice that (101) yields an exponential decay for Ẽn with the form
exp (−anε) . It then follows that Ẽn becomes of order ε2 after 1

aε
log
(

1
ε2

)
LV cycles.
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6 Phase IV: Oscillations decay and stabilization

As outlined in the previous section, the final Phase IV starts once the energy level is
in the order of ε3 (or ε2 for the rescaled variables of Phase III). We recall that this
is also the order of magnitude of our system’s equilibrium energy value Ē, see (13).
We decompose Phase IV into two successive stages: first, a phase similar to the end
of Phase III, where now the oscillations (yet no longer the energy) decay and finally
become negligible. Secondly, the trend to equilibrium occurs through an approximate
parabolic equation, with non-oscillatory coefficients.

6.1 End of Phase III and early Phase IV: decay of the
oscillations

In the previous section, Proposition 5.4 gives the decay of the energy until the end of
Phase III as well as the characterization of the monomers and the cluster distribution
until the end of Phase III, i.e. until Ẽn ≈ ε2, resp. En ≈ ε3. The following lemma
also characterizes the end of Phase III, but allows us to describe more precisely the
damping of the oscillations occurring at the very end of Phase III and the beginning
of Phase IV.

Lemma 6.1 Under the assumptions of Prop. 5.4, the oscillations become negligible

after a number of cycles in the order of
log(ε−1)

ε
and we have

V = 1 +O(ε3/2), W = 1− εC∞ +O(ε3/2), C1 = C∞ +O(ε).

During these cycles, the changes in the size distribution Cj have been negligible, so
that C∞ = 2

π
and Cj ≈ ψ(εj).

Proof. In (78), when linearizing and taking W = 1 + β (cf. Proof of Prop. 5.4), the
term −εV C1 becomes comparable to −V β and it cannot be any longer ignored to the
leading order. In order to understand the evolution of W, V, Cj during this phase, it
is natural to introduce new variables α̃, β̃ and ηj defined by

V = 1 + εα̃, W = 1−εC∞ + εβ̃, Cj = C∞(1 + εη̃j),

where C∞ = 2
π
at the ”beginning of the very end” of Phase III but is expected to slowly

change during Phase IV. Then, keeping the leading terms in (78)–(80) we obtain the
following approximate model

dα̃

dτ
= −β̃−εα̃β̃ − εC∞η̃1 (102)

dβ̃

dτ
= α̃(1− εC∞) + εα̃β̃ (103)

dη̃j
dτ

= ε

(
β̃ − α̃

2

)(
η̃j−1 − η̃j+1

)
+
(
η̃j−1 − 2η̃j + η̃j+1

)
(104)

−εC∞(η̃j−1 − η̃j) + ε
β̃ + α̃

2
(η̃j−1 − 2η̃j + η̃j+1) , j ≥ 2

dη̃1
dτ

= η̃2 − η̃1 + α̃− β̃ + C∞ + ε(α̃η̃2 − β̃η̃1 + C∞η̃1) . (105)
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We keep only the leading order terms to get

dα̃

dτ
= −β̃ (106)

dβ̃

dτ
= α̃ (107)

dη̃j
dτ

= η̃j−1 − 2η̃j + η̃j+1 , j ≥ 2 (108)

dη̃1
dτ

= η̃2 − η̃1 + α̃− β̃ + C∞. (109)

We notice that the system obtained only differs from (92)–(95) by the source term
+C∞ in the equation for η̃1, which expresses the fact that there is a constant non-
negligible difference between the influx of monomers (due to the depolymerisation rate
V ) and the outflux due to the polymerisation W ≈ V − C∞.

We first solve (106)–(107) as we did for (92)–(93): we notice that solutions to
(106)–(107) are 2π periodic (as for (92)–(93)), which implies that periods τn of (102)-
(103) are 2π +O(ε). With respect to the energy of (102)–(103), we have

Ẽ ≈ ε2
α̃2 + (β̃ − C∞)2

2
=: ε2Ê + ε2

C2
∞ − 2β̃C∞

2
,

where we have defined Ê := α̃2+β̃
2

2
, so that up to choosing a proper initial time we

have α̃ =
√

2Ê cos(τ) and β̃ =
√

2Ê sin(τ). The oscillations of the energy Ẽ are now
of the same order of magnitude as its value (see Fig. 9, values around E = 10−4, for
an illustration), as they are expressed by the term −ε2β̃C∞, so that we also define its
average over a time period:

< Ẽ >= ε2∆Ê + ε2
C2

∞

2
,

so that it tends to its equilibrium ε2
C2

∞
2

when ∆Ê vanishes. We also compute

dÊ

dτ
= ε−2 dẼ

dτ
+ C∞

dβ̃

dτ
= −εα̃C∞η̃1 − εα̃β̃(C∞ + α̃− β̃), (110)

so that over a period τn = 2π +O(ε), we have

∆Ê∼− εC∞
1

2π

∫ τn+2π

τn

α̃(s)η̃1(s)ds, (111)

and we are left to compute η̃1 in order to estimate the decay of energy.

Solution to (108)–(109). Recognizing in (108)–(109) a linear system with two

sources α̃− β̃ and C∞, we superimpose the solution η̃
(1)
j to (106)–(109) with C∞ = 0

– this is exactly the solution to (94)–(95) computed above for ηj , where we simply

replace α, β, Ẽ by α̃, β̃ and Ê respectively – with the solution η̃
(2)
j of the system with

a constant source C∞, namely

dη̃
(2)
j

dτ
= η̃

(2)
j−1 − 2η̃

(2)
j + η̃

(2)
j+1, j ≥ 2 (112)

dη̃
(2)
1

dτ
= η̃

(2)
2 − η̃

(2)
1 + C∞. (113)
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To solve (112)–(113), let us compute the system satisfied by its Laplace transform

Lj(z) :=
∫∞
0
e−zτ η̃

(2)
j (τ)dτ :

zL1(z) = L2(z)− L1(z) +
C∞

z
,

zLj(z) = Lj−1(z)− 2Lj(z) + Lj+1(z).

We look for solutions Lj(z) = B(z)θ(z)j−1, to find

θ2 − θ(2 + z) + 1 = 0,

so that

θ±(z) = 1 +
z

2
±
√
z +

z2

4
.

Since we want |θ| < 1 to ensure that the solutions vanish when j → ∞, we have to
choose θ−(z) which satisfies |θ−(z)| < 1 for z /∈ {0, 4}. We then compute B(z) with
the equation for L1, and find

zB(z) = B(z)(θ−(z)− 1) +
C∞

z
,

so that finally

Lj(z) =
C∞θ−(z)

j−1

z (z − θ−(z) + 1)
=

C∞

(
1 + z

2
−
√
z + z2

4

)j−1

z

(
z
2
+
√
z + z2

4

) .

We can now compute the inverse Laplace transform, and obtain, taking δ > 0,

η̃
(2)
j (z)(τ) =

C∞

2iπ

∫ δ+i∞

δ−i∞
ezτ

(
1 + z

2
−
√
z + z2

4

)j−1

z

(
z
2
+
√
z + z2

4

) dz.

We can deform the contour of integration (δ − i∞, δ + i∞) by making δ → 0 and
taking the contour (−∞ − iδ,−iδ) ∪ {|z| = δ,Re(z) > 0} ∪ (iδ,−∞ + iδ) so that
the main contribution for the inverse Laplace transform comes from the half circle
C := {|z| = δ,Re(z) > 0}, on which we compute

η̃
(2)
1 ≈C∞

2iπ

∫
C
ezτz−

3
2 dz ≈ C∞

√
τ

2iπ

∫
C

eηdη

η3/2
≈C∞

√
τ

iπ

∫
C

eηdη

η1/2
= C

C∞
√
τ

iπ
,

for a given constant C. This allows us to compute the change of energy due to the
contribution of η̃

(2)
1 , see below.

Let us also verify that for j ≫ 1 the influence of η̃
(2)
j remains negligible on the

timecourse of this phase, which is in the order of 1
ε
, so that the large-sizes distribution

remains approximately unchanged. For z ≪ 1, we compute

Lj(z) ∼ C∞
(1−

√
z)j−1

z
3
2

∼ C∞
e−j

√
z

z
3
2

.
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Thus, computing the inverse Laplace transform for j ≫ 1 – more precisely j =
√
τx,

since the typical timescale for the discrete diffusion equation is O(
√
τ) – and differen-

tiating it in time, we obtain

∂

∂τ
η̃
(2)
j ≈ C∞

2iπ

∫
C
ezτ

e−j
√
z

√
z
dz =

C∞

2iπ
√
τ

∫
C
eη
e−x

√
η

√
η

dη,

where we have used the change of variables η = zτ .We can see by integrating by parts
that this expression decreases faster than any polynomial when x→ ∞, which ensures
that the contribution of η̃

(2)
j vanishes for j → ∞. Moreover, since the time derivative

of η̃
(2)
j is in the order of 1√

τ
, the time needed for the clusters distribution departing

from j ≈ 1 to come to j ≈ 1
ε
is of order 1

ε2
, which appears much larger than the total

time of this period in the τ variable, which is in the order of log(ε−1)
ε

, see below.

Computation of the change of energy. Writing η̃1 = η̃
(1)
1 + η̃

(2)
1 , we can now

gather the two contributions for the change of energy (cf. (101) and (111)), writing

∆Ê = ∆
(1)

Ê
+∆

(2)

Ê
,

≈ −εaÊ − ε
√

2Ê
C2

∞

2π

C

iπ

∫ τ+2π

τ

√
τcos(τ)dτ.

As already seen above, we have a > 0 so that the first term ensures an exponential
decay for Ê. However, the sign of the second term changes according to the exact

time-point τ ∈ [τn, τn + 2π], and since it is weighted by
√
Ê it may after a while

reveal dominant. However, at the beginning of this stage, we have Ê ≫ 1 so that the
second term is negligible compared to the first one. We can thus assume τ > τn ≫ 1
without loss of generality. We now estimate the integral in ∆

(2)

Ê
for large τ .

∫ τ+2π

τ

√
τcos(τ)dτ = (

√
τ + 2π −

√
τ)sin(τ)−

∫ τ+2π

τ

1

2

sin(s)√
s
ds,

=
√
τ

(√
1 +

2π

τ
− 1

)
sin(τ) +O

(
1√
τ

)
,

= O(
1√
τ
).

We can now argue as in (71) for Phase II, and define Ên = e(s) with s = εn, to get

de

ds
= −ae+

√
eF (s),

with a > 0 and F (s) = O(
√

ε
s
). We solve this equation by writing y =

√
e which

satisfies
dy

ds
=

1

2
√
e

de

ds
= −a

2
y(s) +

1

2
F (s),

so that

y(s) = y(0)e−
a
2
s + e−

a
2
s

∫ s

0

F (t)e
a
2
tdt =s→∞ O

(
e−

a
2
s +

√
ε

s

)
.
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Solving this equation we obtain that e(s) is in the order of e−as + O( ε
s
). Since the

validity of the approximation of this phase ends when α̃, β̃ ≪ 1, i.e. when e(s) ≪ 1,
we notice that the second term does not really play a role, and the phase ends for

s = O(− log(ε)), i.e. for a number of cycles in the order of log(ε−1)
ε

.We notice however
that after this, the energy decays much more slowly, due to the second term: at the
end of this phase, the energy Ê is still in the order of ε

log ε−1 , so that α̃, β̃ = O(ε1/2). It
is however sufficient to enter the next and final phase, where oscillations have become
negligible.

6.2 Phase IV: stabilization by means of a parabolic equa-
tion

During this phase, the concentrations Cj stabilize to their equilibrium values. The
oscillations of the concentrations W, V cease, V stabilizes to its equilibrium, and
finally there is a feedback loop from the concentrations Cj to determine the value of
the concentration W. Let us now sum-up the main results of Phase IV in the following
formal proposition.
Proposition 6.2 Departing at time T in

4 from the initial conditions described in Lemma. 6.1,
the behaviour of Cj is approximated by the following free-boundary problem in the vari-
able τ̄ := ε3(t− T in

4 ) :

∂C (x, τ̄)

∂τ̄
= C

(
0+, τ̄

) ∂C (x, τ̄)

∂x
+
∂2C (x, τ̄)

∂x2
, x > 0 , τ̄ > 0 , (114)

∂C
(
0+, τ̄

)
∂x

+
(
C
(
0+, τ̄

))2
= 0 , τ̄ > 0 , (115)

C (x, τ̄ = 0) = ψ (x) . (116)

Moreover, we have V ∼ 1 and W ∼ 1 − εC
(
0+, τ̄

)
during all of Phase IV. We

thus have, for τ̄ → ∞ and a time t in the order of 1
ε3

in the physical time variable:
lim

τ̄→∞
W − 1 = −ε, lim

τ̄→∞
Cj ∼ exp(−εj).

Proof. At the end of Phase III, we have seen that α̃ and β̃ became negligible compared
to C∞ and to η̃j . We can approximate system (108)–(109) by

dη̃j
dτ

= η̃j−1 − 2η̃j + η̃j+1, j ≥ 2 (117)

dη̃1
dτ

= η̃2 − η̃1 + C∞, (118)

or equivalently, by recalling Cj = C∞(1 + εη̃j) and taking the equations for Cj for j
of order one, we can approximate (108)–(109) as

dCj

dτ
= (Cj−1 − 2Cj + Cj+1) , j ≥ 2 (119)

dC1

dτ
= C2 − C1, (120)

where, at the beginning of Phase IV, Cj is approximately constant equal to C∞ = π
2
for

j large. We notice that Equations (119)–(120) yield an evolution for Cj independent of
α̃, β̃. Equation (119) is a discrete diffusion equation, so that solutions of (119)–(120)
converge, in times τ of order one, to Cj = C∞.
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To understand what happens for larger times, we now examine the evolution of
the concentrations Cj with j of order 1

ε
. Let us recall (89), where we keep only the

leading order term for the diffusion and the ε order for the transport:

dCj

dτ
= −εC∞

2
(Cj−1 − Cj+1) + (Cj−1 − 2Cj + Cj+1).

As done for the previous phases (we recall that since the end of Phase II we have
Ln ∼ 1

ε
), we use the approximation of Cj (τ) as C (x, τ) with x = εj. Then

∂C (x, τ)

∂τ
= −ε2C∞

∂C (x, τ)

∂x
+ ε2

∂2C (x, τ)

∂x2
. (121)

This equation must be solved with the initial condition (116) obtained in Lemma (6.1)
at the beginning of Phase IV. The value of C∞ can be approximated identifying it
with the value obtained for the outer concentrations C (x, τ) as x→ 0+. Introducing
also the time scale τ̄ = ε2 (τ − τ in) where τ in = εT in

4 is the time when we assume the
Phase IV to begin, we obtain (114).

In order to determine the boundary condition to be imposed at x = 0 for the
solutions to (114), we use the second condition in (6), that is

1 =

∞∑
k=1

εCk =

∞∑
k=1

εC (εk, τ̄) ≃
∫ ∞

0

C (x, τ̄) dx , (122)

which implies that
∫∞
0
C (x, τ̄) dx is constant for all τ̄ and integration of (114) yields

(115).
On the other hand, the first condition in (6) implies an additional normalization

condition, namely

1 = ε (V +W ) + ε2
∞∑
j=1

jCj = ε (V +W ) +

∞∑
j=1

εjC (εj, τ̄) ε

≈ ε (V +W ) +

∫ ∞

0

xC (x, τ̄) dx .

Using that V and W are close to 1 we then obtain the following normalization
condition as ε→ 0 ∫ ∞

0

xC (x, τ̄) dx = 1. (123)

The problem (114)–(116) yields the evolution of the cluster concentrations during
Phase IV. The steady states of the system (114)–(115) have the form

Cs(x) = K exp (−Kx) , x > 0 ,

where K > 0 is an arbitrary constant. Notice that Cs(x) satisfies the normalization
condition (122) for any K > 0. In order to determine K we use the normalization
condition (123). We calculate ∫ ∞

0

xCs(x)dx =
1

K
.

Thus, (122) implies K = 1. Therefore the equilibrium distribution of clusters is given
by

Cs (x) = exp (−x) , x > 0 . (124)
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7 Discussion

7.1 Other choices of initial concentrations.

It is worth to note that choosing initial cluster distributions different from the ones
considered in the previous subsections, i.e. the energy at initial time E0 of order 1
and the characteristic length at initial time L0 of order 1 (or more generally smaller
than 1

ε
), the dynamics of the system differ from those described above in the four

consecutive phases.

Initial condition widely spread along the size axis. Certainly, we can skip
some of the phases starting with initial cluster contributions having, say E0 ≈ 1 and
L0 ≈ 1

ε
. This would result in an evolution without Phase I, starting directly in Phase

II. If, in addition to L0 ≈ 1
ε
we have also E0 ≈ ε2, we could have evolutions starting

directly in Phase III, skipping the two previous phases.

Initial condition concentrated on the small sizes. If we take as starting
point values of

(
w0, v0

)
for which the concentrations ck tend to move towards smaller

values of k, we can obtain very large changes of the energy just in the early transient
states. For instance, if we begin with E0 close to 1 with w0 = v0 < ε, and concen-
trations c0k concentrated in values of k of order one, we obtain a concentrations wave
moving towards lower values of k. This results in a large increase of c1 and as a con-
sequence large changes of the Energy E. Due to this the initial, transient dynamics
of the whole system can result in values of (w, v) that differ significantly from a LV
orbit. After the values of (w, v) reach the line w = v > ε we obtain a dynamics that
can be described as indicated above, for suitable values of E.

Initial condition concentrated in a dirac mass along the size axis.
Moreover, we can make choices of the initial cluster concentrations which differ more
drastically of the previous phases, because they cannot be characterized in a meaning-
ful manner by a single characteristic length L0. This would be the case, for instance
with distributions with the form

cj,0 = εδj,Rε where Rε =
a

ε
, for some a ∈ (0, 1) .

We will assume also that v and w are of order one. In this case we have approx-
imately E0 ≃ 1 − a > 0 for small ε. We will assume then that initially v = w ≃ 1−a

2

by definiteness. On the other hand, it is not clear what should be the definition of
L0. Taking into account the set of values where the mass of the clusters is concen-
trated we should take L0 = Rε = a

ε
. On the other hand, there is not dispersion in the

concentration distributions and therefore it would be also reasonable to assume that
L0 = 1. Actually, the evolution of the cluster concentrations in this case differs from
the one described in the previous sections. For these initial concentrations, we obtain
oscillations of the concentrations cj in the space of cluster sizes j in a manner similar
to the one described in subsections 2.3, 4.2, while at the same time diffusion in the
space of clusters takes place (cf. (36)). During the first oscillations, the values of c1
are exponentially small in 1

ε
and, due to this, the energy En which characterizes each

of the LV cycles remains almost constant. The diffusion in the space of cluster sizes
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(a) Energy (log scale) (b) Size distribution

Figure 10: Numerical simulation of the evolution of the cluster size distribution
and the energy taking as initial condition a Dirac mass located at the size
Rε = 25 and v = w ≈ 1−a

2 . The time evolution is indicated by the colors in
Figure 10b. The Figure 10b is truncated on the y–axis at 0.001. In the Figure
10a, the horizontal red lines illustrate the thresholds when the energy would be
inferior to ε.

increases slowly the width of the cluster distributions. The values of c1 become sig-
nificant (i.e. non-exponentially small), after 1

ε
LV cycles. Actually, after this number

of cycles, the distribution of clusters has a characteristic length of order 1
ε
and the

corresponding evolution becomes similar to the one described in Phase II, with the
only difference that the cluster concentrations is not necessarily given by the Gaussian
distribution ψ (x) in (55). We then obtain an evolution similar to the one described
in subsection 4.2, but where an additional evolution of the concentrations φn (x) by
means of the iteration (39) must be included (cf. Figure 10). During this modified
Phase II, the energy En decreases until reaching values of order ε, when the system
starts to evolve according to the mechanism described in Phase III, and eventually,
the concentrations approach to the equilibrium as described in Phase IV.

7.2 Concluding remarks

In this paper, using asymptotic and numerical methods, we have described the be-
haviour of the solutions of the system of equations (7)–(9). This system of equa-
tions couples the dynamics of the classical Lotka-Volterra oscillator with a generalized
Becker-Döring model that describes the concentrations of clusters with each given
length. The coupled system was introduced in [8]. This paper describes the way in
which the chemical concentrations v, w, {ck}k∈N approach to their equilibrium values
if the parameter ε is small. This equilibrium is reached by means of a mechanism in
which the concentrations of v, w oscillate, with decreasing amplitude around a center
(ε, ε) , with the monomers spreading in the set of chemical concentrations {ck}k∈N in
increasingly larger values of cluster sizes k, until reaching sizes of order k ≈ 1

ε
. In this

paper we have derived a set of equations that describes the decrease of the amplitude
of the oscillations in the space (v, w) as well as a sequence of iterative mappings that
describes the evolution of the chemical concentrations {ck}k∈N . A characteristic fea-
ture of the mechanism that yields the damping of oscillations that we have obtained
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is the onset of some oscillations of the whole set of chemical concentrations {ck}k∈N
in the space of cluster sizes k.

In the course of the analysis, we have raised a series of interesting asymptotic
problems, e.g. the trend of the iterative system (64)–(65)–(66) towards its steady
state (56)–(58), or the study of the nonlinear free-boundary problem (114)–(116),
or yet a rigorous justification for the heuristic description of the ”collision” of the
cluster concentration waves with regions where k ≈ 1, in the fast-moving regions
t ∈ [Tn −∆t, Tn +∆t], see Lemma 3.4. Their proof is let for future work [9].

In this paper we have assumed that the reaction coefficients are constant and we
have modified the time scale to normalize them as one. It would be relevant to under-
stand if the damping mechanism for the chemical oscillations obtained in this paper
is also valid for more general choices of the chemical coefficients. Constant coefficients
are well-adapted for polymerisation by one or the two ends of fibrils, for instance,
whereas linear or affine coefficients could take into account secondary nucleation, i.e.
lateral polymerisation, and other more complex laws could take into account varying
geometries of the clusters [18, 22]. In the case considered in this paper, the model
can be rewritten in an obvious manner as a perturbation of the Lotka-Volterra model.
However, in the case of more general coefficients, it is not clear if the model can be
rewritten as a perturbation of Lotka-Volterra or some more involved oscillator.
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[4] Richard Becker and Werner Döring. Kinetische Behandlung der Keimbildung in
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A Extra computations for the LV system

In this appendix, we prove the asymptotic expansions of Lemmas 2.2 to 2.5. We
discuss also various orders of magnitude, which are useful to get some insight in the
oscillatory behaviour of the chemical concentrations v, w.

Proof of Lemma 2.2: from 0 to t1.
We develop asymptotically (14) as

dv

dt
= −vw + εv = −v (1− v +O(ε log(ε))) .

Hence,

1

v(1− v)

dv

dt
=

d

dt

(
log(

v

1− v
)

)
=

d

dt
log(−1 +

1

1− v
) = −1 +O(ε log(ε))

and we deduce

log(−1 +
1

1− v
) = −t+O(ε log(ε)t), −1 +

1

1− v
= e−t(1+O(ε log(ε))),

so finally

v(t) = 1− 1

1 + e−t
+O(e−tε log(ε)(t+ 1)).

We then compute that v(t1) = ε if e−t1 = ε+O(e−t1ε log(ε)(t1+1)), which implies

t1 ∼ − log(ε).

The equation for w may now be expanded:

dw

dt
= vw − εw = w

(
1− 1

1 + e−t
+O(ε log(ε))

)
,

hence

d

dt
log(w) = 1− et

et + 1
+O(ε log(ε)) =

d

dt
(t− log(et + 1)) +O(ε log(ε)),

so by integrating we get

logw(t) = − log 2 + t− log(et + 1) + log(2) +O(ε log(ε)t)

and finally

w(t) =
et

1 + et
(1 +O(ε log(ε)t)),

which provides us with w(t1) = 1 + O(ε(log ε)2), and gives (20). More precisely, we
compute from the energy

1 = w(t1)− ε− ε log(
w(t1)

ε
) =⇒ w(t1) = 1− ε log(ε) + ε+ o(ε).
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Proof of Lemma 2.3: From t1 to t2. During this second phase, v goes from
ε to exponentially small values, whereas w goes from approximately 1 to ε. We thus
define an intermediate time t1,2 by v(t1,2) := ε3/2, and the energy equality becomes

1 = w(t1,2)− ε log(
w√
ε
)− 2ε+O(ε3/2) =⇒ w(t1,2) = 1− ε

2
log(ε) + 2ε+O(ε3/2),

from which we deduce that on (t1, t1,2),

dv

dt
= −v(w − ε) = −v(1 +O(ε log(ε))) =⇒ v(t) = εe−(t−t1)+O(ε log(ε)(t−t1)),

hence we have

ε3/2 = εe−(t1,2−t1)+O(ε log(ε)(t1,2−t1)) =⇒ t1,2 − t1 ∼ −1

2
log(ε)

and on (t1,2, t2) we have v = O(e3/2) ≪ ε hence

dw

dt
= −w(ε+O(ε3/2)) =⇒ w(t) =

(
1− ε

2
log(ε) + 2ε+O(ε3/2)

)
e−ε(t−t1,2),

we then use w(t2) = ε to obtain

ε =
(
1− ε

2
log(ε) + 2ε+O(ε3/2)

)
e−ε(t2−t1,2)

=⇒ t2 − t1,2 ∼ −1

ε
log(ε) , (125)

so that

t2 − t1 ∼ −1

ε
log(ε).

If we need an intermediate time t∗2 such that t∗2 − t1,2 ∼ 1√
ε
, useful for the typical

symetric time interval during which mass accumulates in c1, we see that w(t∗2) ∼
e−

√
ε ∼ 1, justifying the approximations carried out for ∆t in Lemma 3.4.
We can also compute explicitely

dv

dt
= −v(w − ε) = −v

((
1− ε

2
log(ε) + 2ε+O(ε3/2)

)
e−ε(t−t1,2) − ε

)
,

which implies

v(t) = ε3/2 exp

(
−
(
1

ε
− 1

2
log(ε) + 2 +O(ε1/2)

)
(1− e−ε(t−t1,2)) + ε(t− t1,2)

)
.

Taken in t = t2 and using (125) we get

v(t2) = ε3/2 exp

(
−1

ε
+

1

2
log(ε)− 2 +O(ε1/2) +

1

ε
ε− log(ε)

)
= ε3/2 exp

(
−1

ε
− 1

2
log(ε)− 1 +O(ε1/2)

)
∼ εe−1e−

1
ε ,
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formula which we can also obtain from the conservation of energy:

E = v + w − 2ε− ε log
(vw
ε2

)
1 = v + ε− 2ε− ε log

(vw
ε2

)
1 = −ε− ε log

(vε
ε2

)
+O(ε3/2)

v ∼ εe−1 exp

(
−1

ε

)
Proof of Lemma 2.4: From t2 to t3. We divide the trajectory connecting

(v (t2) , w (t2)) with (v (t3) , w (t3)) into two (symmetric) parts, by defining t2,3 by

v(t2,3) = w(t2,3).

For t ∈ [t2, t2,3] we have v (t) ≤ w (t) , and for t ∈ [t2,3, t3] we have v (t) ≥ w (t) .
During the first interval we have that v is much smaller than ε and we approximate
(14) as

dv

dt
= −vw + vε ,

dw

dt
= −εw .

We then obtain the approximations

w ∼ ε exp (−ε (t− t2))

v ∼ v (t2) exp (ε (t− t2)− [1− exp (−ε (t− t2))])

for t ∈ [t2, t2,3] . We can determine t2,3 by means of the condition v (t2,3) = w (t2,3)

applied to the energy conservation: since v = w = O(e−
1
ε ), we compute

1 = 2v − 2ε− ε log(
v2

ε2
) = −2ε(1 + log(

v

ε
)) +O(e−

1
ε ).

Hence v(t2,3) = w(t2,3) ∼ εe−1e−
1
2ε , and using w(t2,3) ∼ εe−ε(t2,3−t2) we get

t2,3 − t2 ∼ 1

2ε2
.

We can now compute (t3 − t2,3) using a same argument, due to the symmetry
of the equation. Notice that the energy formula (11) as well as v (t3) = ε imply
w (t3) ∼ εe−1 exp

(
− 1

ε

)
. In the interval t ∈ [t2,3, t3] we can approximate (14) as

dv

dt
= εv ,

dw

dt
= vw − εw ,

because w ≪ ε for t ∈ [t2,3, t3] .We then obtain the following approximation (t3 − t2,3) ∼
1

2ε2
for small ε. Then

t3 ∼ t2 +
1

ε2
as ε→ 0.

Proof of Lemma 2.5: From t3 to t4.
For t > t3 both v and w increase. This stage can be analyzed in a manner

symmetric to the one from t1 to t2. During this phase v becomes of order one. This
happens in times of order 1

ε
(up to a logarithmic correction). We can define t4 by
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means of w (t4) = ε. During this phase we can do the same computations as in (t1, t2)
so that we obtain:

t4 − t3 ∼ 1

ε
log

(
1

ε

)
.

Proof of Lemma 2.6: From t4 to t5.
Finally, the trajectory returns to the line {w = v} . Using the conservation of energy

formula (11) we can approximate the evolution of (w, v) by means of the equation

dw

dt
= w (1− w) , v = 1− w

We have defined define t5 by means of w (t5) = v (t5) > ε. Using that w (t4) = ε
we obtain the following approximation, symmetric to the interval (0, t1):

t5 − t4 ∼ log

(
1

ε

)
.

Proof of Lemma 2.7 Using (17) and (18) we obtain

D (E, ε) =
E

2

∫ T (E,ε)

0

(w + v)
(
Es; 1,

ε

E

)
ds =

1

2

∫ ET (E,ε)

0

(w + v)
(
s; 1,

ε

E

)
ds

=
1

2

∫ T(1, ε
E )

0

(w + v)
(
s; 1,

ε

E

)
ds = D

(
1,
ε

E

)
Proof of Lemma 2.8
The equivalent T (1, ε) ∼ 1

ε2
comes directly from Lemmas 2.2 to 2.6. It is known

that for the Lotka-Volterra system, the mean value of v and w satisfies the equality

1

ε

∫ T

0

v(s)ds =
1

ε

∫ T

0

w(s)ds = ε,

hence their equivalent and the one for D(1, ε). This proves (35). The maximum value
of Y is given by

Ymax(t) =

∫ T
2

0

(w(s)− v(s))ds =

∫ t2,3

0

(w(s)− v(s))ds

and with Lemmas 2.2 to 2.6 we get

Y (t1) =
∫ t1
0

(w(s)− v(s))ds ∼
∫ t1
0

ds ∼ − log(ε),∫ t1,2
t1

(w(s)− v(s))ds ∼ t1,2 − t1 ∼ − 1
2
log(ε),∫ t2

t1,2
(w(s)− v(s))ds ∼

∫ t2
t1,2

e−ε(s−t1,2)ds ∼ 1
ε
,∫ t2,3

t2
(w(s)− v(s))ds ≤

∫ t2,3
t2

w(s)ds ∼
∫ t2,3
t2

εe−ε(t−t2)ds ≤ 1.

Finally, we see that the maximal contribution to the displacement of Y is linked to
the part (t1,2, t2), and we have Ymax ∼ 1

ε
.

B Linearised stability around the positive steady
state

In this appendix we study the linear stability of the steady states (10).
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Proposition B.1 (Linear stability around the positive steady state)
For M = 1 and ε ≪ 1, the unique positive steady state defined by (10) is locally
asymptotically stable.

Proof. We provide here the main lines for the linear stability analysis, letting a fully
rigorous and complete study for future work. We introduce new variables by means of

cj = c̄j(1 + φj), j ≥ 1, v = v̄(1 + V ), w = w̄(1 +W ), (126)

and recall that the positive steady state (v̄, w̄, c̄j) is defined by (10), namely

θ := 1− 1
2

(
1
ε
−
√(

1
ε
− 2
)2

+ 4

)
∼ ε,

c̄1 := εθ ∼ ε2, c̄i := (1− θ)i−1c̄1, v̄ := ε, w̄ := ε− c̄1 = ε(1− θ).

Assuming |φj | + |V | + |W | ≪ 1, neglecting higher order terms, we get the following
linearised system:

dV

dt
= −ε(1− θ)W − εθφ1, (127)

dW

dt
= εV, (128)

dφ1

dt
= −ε(1− θ)(W + φ1 − V − φ2), (129)

dφj

dt
= ε(φj−1 − φj +W − V )− ε(1− θ)(φj − φj+1 +W − V ). (130)

Introducing the time variable τ = εt we get

dV

dτ
= −(1− θ)W − θφ1, (131)

dW

dτ
= V, (132)

dφ1

dτ
= −(1− θ)(W + φ1 − V − φ2), (133)

dφj

dτ
= (φj−1 − φj +W − V )− (1− θ)(φj − φj+1 +W − V ). (134)

We look for solutions to the eigenproblem, hence of the form (V (t),W (t), φj(t)) =

eλτ (V,W,φj) with λ ∈ C. We get the system:

λV = −(1− θ)W − θφ1, (135)

λW = V, (136)

λφ1 = −(1− θ)(W + φ1 − V − φ2), (137)

λφj = (φj−1 − φj +W − V )− (1− θ)(φj − φj+1 +W − V ). (138)

We recall that θ ∼ ε and, thus, θ ≪ 1 as soon as ε ≪ 1, hence we treat the solutions
to (135)–(138) in a perturbative manner with respect to θ.

At the limit θ = 0, we get

λV = −W, (139)

λW = V, (140)

λφ1 = −W − φ1 + V + φ2, (141)

λφj = φj−1 − 2φj + φj+1. (142)
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We notice that we have two eigenvalues λ0 = ±i, with V = ±iW , linked to an
oscillatory regime of period 2π (coherent with the period found at the end of Phase III),
and, in the case V =W = 0, a continuous spectrum similar to the one of the discrete
heat equation, whose admissible generalised eigenvalues all have a negative real part
except λ = 0 (associated to the constant sequence φj = φ1 for all j).

Case (a): λ = ±i, V = ±iW. We only detail the computations for λ = i since
the case λ = −i follows from taking the conjugate. For W0 = −i, V0 = 1 we obtain

φ2 = (i+ 1)φ1 − (1 + i),

φj+1 = (i+ 2)φj − φj−1, j ≥ 2.

We recognize a linear recurrent sequence of order 2 for j ≥ 2, whose characteristic
equation is

r2 − (i+ 2)r + 1 = 0 =⇒ r± =
i+ 2±

√
(i+ 2)2 − 4

2
= 1 +

i

2
±
√
i− 1

4
.

Since |r−| < 1 and |r+| > 1, the only admissible value is r−, that we denote r = r−
for simplicity. We finally have

V0 = 1, W0 = −i, φj,0 =
1 + i

1− r
rj , r = 1 +

i

2
−
√
i− 1

4
. (143)

Case (b): W = V = 0. Then (141) implies (λ+1)φ1 = φ2, and (142) implies for
j ≥ 2

λφj = φj−1 − 2φj + φj+1, j ≥ 2,

λφ1 = −(φ1 − φ2).

We recognize the discrete heat equation. As previously, the characteristic equation is

r2 − (λ+ 2)r + 1 = 0 =⇒ r± =
λ+ 2±

√
(λ+ 2)2 − 4

2
=
λ+ 2±

√
λ(λ+ 4)

2

We see that for λ = 0 we have r± = 1 linked to the constant sequence φj = 1.
If λ ̸= 0, generalised eigenvectors are given by linear combinations of the two

sequences (rj−1
± )j≥1. Using the boundary condition at j = 1 and r+ + r− = λ+ 2, we

obtain

φj = rj−1
+ − 1− r−

1− r+
rj−1
− ,

so that to ensure (φj) ∈ ℓ∞(C) we need |r±| ≤ 1. Since r+r− = 1, we define r± = e±iβ

with β ∈ [0, 2π), and compute

λ = eiβ + e−iβ − 2 = 2(cos(β)− 1) ∈ [−4, 0].

To conclude: We have found that no admissible (generalised) eigenvalue has a positive
real part, and the only eigenvalues with a nonnegative real part are λ = 0, λ = i and
λ = −i.

In the case θ ≪ 1, we consider a perturbation of the eigenvalue λ0 = i (the case
λ0 = −i is similar) and its eigenvector given by (143) by writing the asymptotics

λ = λ0 + θλ1, V = V0 + θV1, W =W0 + θW1, φj = φj,0 + θφj,1,
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then keeping only the first order terms in θ, the system (135)–(138) becomes

λ0V1 + λ1V0 = −W1 +W0 − φ1,0, =⇒ iV1 + λ1 = −W1 − i− φ1,0

λ0W1 + λ1W0 = V1, =⇒ iW1 − iλ1 = V1

=⇒ −W1 + 2λ1 = −W1 − i− φ1,0 =⇒ λ1 = −1

2
(i+

1 + i

1− r
r),

and we check numerically that Re(λ1) < 0, leading to damping oscillations.
We now consider the stability of the continuous spectrum, when λ0 = 2(cos(β)−1).

Detailed computations are necessary for a fully rigorous justification, and are left for
future work. In brief, we notice that as soon as θ ≲ β, we have Re(λ) = λ0+θRe(λ1) <
0, so this part of the spectrum remains stable. The more delicate part is thus when
β ≲ θ ≪ 1. We can carry out an asymptotic expansion as before, and conclude that
the continuous spectrum remains in the half-plane with nonpositive real parts.

To conclude, we note that the oscillations have a period of order 2π in the variable
τ and the damping occurs in a time of order 1/θ ∼ 1/ε, which corresponds to a period
of order 2π/ε and a damping as 1/ε2 in the original variable t : this is in line with the
analysis carried out for the end of Phase III.

C Numerical computations

In this appendix, we give details on the numerical simulation used to illustrate the
evolution of the system (1)-(3). The code is written in MATLAB and is published
online (https://github.com/mmezache/BiMono Becker Doring). The numerical study
has an illustrative purpose and is divided based on the framework considered for the
model, either the size-continuous framework or the size-discrete framework.

C.1 The continuous model

We recall the approximation of the model by a diffusion-convection equation (27)–(28)
describing the evolution of clusters during Phases I and II:

∂tc(j, t) + Ṽ (t)∂jc(j, t) =
d(t)

2
∂2
j c(j, t), j ∈ Ω ⊂ R∗

+, t ∈ [0, T )

where
Ṽ (t) = w(t)− v(t) , d(t) = w(t) + v(t)

and where v and w are the solution of the Lotka-Volterra system (14):
d
dt
v(t) = v(t)(ϵ− w(t)), v(0) = 0.6,

d
dt
w(t)= w(t)(v(t)− ϵ), w(0) = 0.6,

where ϵ =
∫
Ω
c(j, t)dj.

Computation of the monomers

The system (14) depends on the parameters ϵ ≪ 1 which makes it stiff when one
attempts to solve it numerically. The main reason for the instability of the numerical
schemes is that the trajectories of v and w, which form the following closed-curve

E = v(t) + w(t)− 2ϵ− ϵ log

(
v(t)w(t)

ϵ2

)
,
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pass through strictly positive values but very close to 0. The issue is then to find the
balance between the accuracy of the numerical schemes and preserving the positivity
properties (see for instance [6]). To illustrate this phenomenon, let ϵ = 10−2 and we
define the function

g : x ∈ R∗
+ 7→ 2(x− ϵ− ϵ(log(x)− log(ϵ)))− 1.

The function g corresponds to the Hamiltonian E (11) minus 1. Then, the root
x∗ ∈ (0, ϵ) such that g(x∗) = 0 gives insights on the minimal values taken by v and w.
We have

g(x∗) = 0

−2ϵ log(x∗) = 1− 2ϵ log(ϵ) + 2ϵ− 2x∗

−2ϵ log(x∗) ≥ 1− 2ϵ log(ϵ)

x∗ ≤ exp
(

1−2ϵ log(ϵ)
−2ϵ

)
≤ 2× 10−24.

Since the solution of system (14) goes very close to 0, the numerical scheme needs to be
capable of preserving the positivity. In order to ensure the positivity of the numerical
solutions of system (14), the structure of the Lotka-Volterra system that forces the
solutions to remain positive can be used. We apply the following change of variable
x = log(v) and y = log(w). Hence, we have

d
dt
x(t)= ϵ− ey(t), x(0) = log(0.6),

d
dt
y(t)= ex(t) − ϵ, y(0) = log(0.6).

(144)

The numerical solution of (144) is then computed with the high accuracy Runge-Kutta
scheme at the 8th order.

Numerical scheme for the diffusion-convection equation

We propose to use an implicit scheme to solve the diffusion-convection equation (27)
with a centered difference operator for the convection term. Consider a constant step
time discretisation of the interval [0, T ] tn = n∆t, n = 0, . . . , N1, where T = tN1 and
∆t is the time step. Consider a constant step ”space” discretisation of the interval of
sizes [0, L] jk = k∆j, k = 0, . . . , N2, where L = jN2 and ∆j is the space step. We look
for an approximation cnk of c(k∆j, n∆t). The scheme is then the following:

cn+1
k − cnk

∆t
+ Ṽ n+1 c

n+1
k+1 − cn+1

k−1

2∆j
− dn+1

2

cn+1
k+1 − 2cn+1

k + cn+1
k−1

(∆j)2
= 0, (145)

for n = 0, . . . , N1 − 1 and k = 1, . . . , N2 − 1. The approximation of the integral terms
are given by

ϵn = ∆j

N2∑
k=1

cnk , (146)

Mn = ∆j

N2∑
k=1

jkc
n
k . (147)
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Conservation of the total concentration of clusters

Proposition C.1 The numerical scheme defined in (145) is conservative for the
quantity ϵ if the following equation holds for the boundary conditions :

0 = cn0 − (an+1 + bn+1 + 1)cn+1
0 − (an+1 − bn+1)cn+1

1 + cnN2

+ (an+1 − bn+1 − 1)cn+1
N2

+ (an+1 + bn+1)cn+1
N2−1,

(148)

where

an+1 =
∆tṼ n+1

2∆j
and bn+1 =

∆tdn+1

2(∆j)2
.

Proof. For the sake of clarity, we use the following notations an+1 = a and bn+1 = b.
The approximation of the integral term is defined by (146), dividing by the space step,
we have

N2∑
k=0

cnk = cn0 +

N2−1∑
k=1

cnk + cnN2
,

= cn0 +

N2−1∑
k=1

(
− (a+ b)cn+1

k−1 + (1 + 2b)cn+1
k + (a− b)cn+1

k+1

)
+ cnN2

,

= cn0 + cn+1
N2

+

N2−2∑
k=2

cn+1
k − (a+ b)(cn+1

0 + c1)
n+1

+ (1 + 2b)(cn+1
1 + cn+1

N2−1) + (a− b)(cn+1
N2−1 + cn+1

N2
),

= cn0 − (a+ b+ 1)cn+1
0 − (a− b)cn+1

1

+ cnN2
+ (a− b− 1)cn+1

N2
+ (a+ b)cn+1

N2−1 +

N2∑
k=0

cn+1
k .

Hence, if the equation (148) holds then the total cluster concentration defined by (146)
is the same at each time iteration.

As a direct result of Proposition C.1, the boundary conditions can be chosen as
the following in order to keep the tridiagonal structure of the matrix for the numerical
scheme (145) :c

n
0 = (1 + 2an+1)cn+1

0 +∆j(an+1 − bn+1)
cn+1
1 −cn+1

0
∆j

,

cnN2
= (1− 2an+1)cn+1

N2
+∆j(an+1 + bn+1)

cn+1
N2

−cn+1
N2−1

∆j
.

Discussion about the total mass of the system (14)–(27)

The system composed by equations (14) and (27) is a continuous approximation of the
behaviour of the more complex polymerisation/depolymerisation chemical reactions
with two monomers and the catalytic depolymerisation. As such, the system does
not ensure the conservation of the total mass. For instance, let Ω = R+, assume
sufficient regularity conditions for (c, v, w) and the correct boundary conditions such
that ϵ remains constant. Then

d

dt

(
v(t) + w(t) +

∫
Ω

jc(j, t)dj

)
= −Ṽ (t)ϵ+ Ṽ (t)

∫
Ω

c(j, t)dj − d(t)

2

∫
Ω

∂jc(j, t)dj,

=
d(t)

2
c(0, t).
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This implies that the solution of (27) has a homogeneous Dirichlet boundary con-
ditions. Moreover, the conservation of the total concentration of clusters imposes a
homogeneous Robin boundary conditions. Taking into account the two boundary con-
ditions, the solution is locally constant and equal to 0 in a neighbourhood of ∂Ω = 0.
Hence, the numerical scheme proposed above is conservative only for the total con-
centration of clusters. The correction imposed by the mass conservation law in the
equations for the monomers is neglected because of its small order of magnitude in the
continuous approximation. The total mass increases at each time step.
Using the previous notations, consider N2 = ∞, for the sake of simplicity. The dis-
cretization scheme (145), with the choice of numerical quadratures (146) and (147)
imply that the total mass is increasing by the following amount at each iteration

dn+1 −∆jṼ n + 1

2
cn+1
0 .

One thing to note is that the purpose of the discretization of the continuous ap-
proximation is to illustrate the transient dynamics of the clusters over one cycle of the
Lotka-Volterra oscillations. Hence, the increase of the total mass does not significantly
affect the interpretation that can be made of the graphs.

Numerical simulation of the advection-diffusion equation

The numerical simulations of (27) and (14) are illustrated in Figures 2 and 3. The
parameters are T = 104, ∆t = 0.05, L = 250 and ∆j = 0.5 The initial conditions are
v(0) = w(0) = 0.6 and

c0(x) = e−
x2

2σ µ
√

2
πσ

where σ = 10 and µ = 0.02. Hence, ϵ0 ≈ 0.0212 and v0 + w0 +M0 ≈ 1.2503.

C.2 The discrete model

The numerical computation of the discrete model is using the 8th order Runge Kutta
scheme. In order to ensure the nonnegativity of the concentrations of monomers, we
apply the change of variables

v → ev and w → ew.

The maximal size of the clusters is set to 500. The code can be found on the following
link: https://github.com/mmezache/BiMono Becker Doring.
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