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Abstract

Equivalence between the discrete laws of electromagnetism and mechanics is revealed by the derivation

of a non-linear equation intertwining electrical and magnetic effects. The alternative physical model to

Maxwell’s is based on the conservation of the acceleration of electric current, the only variable in the

law of discrete electromagnetism. The modeling of this law is based solely on the essential elements

of electrostatics and magnetostatics, where Ohm’s and Ampère’s laws are reformulated in a dynamic

framework. The Maxwell-Thomson law is abandoned and the conservation of magnetic flux is ignored,

this emancipation paves the way for the potential existence of magnetic monopoles. The Maxwell-Gauss

equation expressing the conservation of electric flux is also set aside, as it is implicitly satisfied in the

discrete formulation. The discrete point of view consists in observing that direct and induced currents

flow on the same conductor without interacting in the steady state, and in an intertwined manner in the

variable state. The sum of these two contributions forms the material derivative of the electric current

density, the current acceleration. This quantity can be decomposed into a curl-free and a divergence-free

components, a Helmholtz-Hodge decomposition to extract both direct and induced contributions. The law

of discrete electromagnetism presents complete symmetry in the exchange of electric and magnetic fields.

Inertial terms of the current acceleration contained in its material derivative are none other than the

non-linear Lorentz forces. The new formulation is equivalent to the law of motion of discrete mechanics.
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1 Introduction

Maxwell’s equations remain the reference model for electromagnetism, even though there are
many tensor, covariant and potential formulations. The brilliant idea of J.C. Maxwell in 1865
[1] was to federate the existing laws of electrostatics and magnetism into a dynamic version.
This reflects very well the coupling between direct and induced effects in interlaced circuits. A.
Einstein’s [2] demonstration of the invariance of these equations under a Lorentz transformation
gave them a modernist status that persists to this day. The introduction of non-linear Lorentz
forces [3] extended the scope of these equations to interactions with moving fluids. Excellent
works, notably those by L. Landau and E. Lifchitz [4] are essential references for understanding
the nature of these equations.

Attempts at an alternative to Maxwell’s equations are few and far between. Jefimenko’s
equations [5] express the integral forms of the electric and magnetic fields of a distribution of
electric charges by considering the notion of finite celerity of electromagnetic waves and that of
a delay similar to Liénard and Wichert’s time lapse [6]. The notion of time lapse is essential
in physics, as it is the one that highlights the relationship between cause and effect. It is
natural in electromagnetism, but is also present in all dynamic phenomena, such as mechanics.
In a way, electric and magnetic fields are intertwined, even entangled. Some visions, such as
that of E. Tonti [7, 8], envisage considering the structures of certain laws of physics, notably
those of electromagnetism and fluid mechanics, by drawing out their similarities in the form of
diagrams. Analogies between the Navier-Stokes and Maxwell equations have also been noted [9],



but for all that, the comparisons remain superficial. Analogies are not formal equivalences that
unify physical laws. Other works of a similar nature examine mathematical properties in the
context of classical [10] and relativistic [11] electrodynamics. An important problem examined
in detail is that of the existence of monopoles [12]. For several decades, a discrete vision of
electromagnetism has emerged, combining the properties of Maxwell’s equations with those of
differential geometry [13, 14, 15] but, for the most part, they correspond to the solution of these
equations in the discrete framework of DEC (Discrete Exterior Calculus) or mimetic methods.

The aim here is to model electrical and magnetic phenomena in an original way, keeping in
mind Maxwell’s idea of federating the laws specific to these fields into a dynamic vision. The
choice of Ampère’s and Ohm’s laws as the initial basis is a natural one, since they translate the two
elementary phenomena of direct and induced currents. These laws are then transformed to make
them compatible with the unsteady nature of coupled phenomena. The original choice of electric
current density as the principal variable allows us to exclude the electric E and magnetic B fields
as potential variables, which are merely consequences of the current density j alone. Maxwell’s
equations are overdetermined, and it is essential to apply the principle of parsimony, i.e. to
reduce to the strict minimum the quantities needed to describe the phenomena, without loss of
information. The conservation of current density is the basic principle that allows us to derive a
time-evolution equation as an acceleration. The fundamental law of discrete electromagnetism
states that the acceleration of a current, of an elementary charge or of a material medium,
is equal to the sum of the accelerations applied to it. Discrete mechanics [16] then becomes
the appropriate framework for transposing the mechanical effects of the law of motion into
electromagnetic effects in an equivalent law. This quantification paves the way for the proposal
of a unique law in which fluid velocity and electric current are two formally equivalent quantities.

2 Comments on Maxwell’s equations

2.1 Maxwell’s model

Maxwell’s mathematical model takes the form of a set of partial differential equations de-
scribing the behavior of electric and magnetic circuits, classical optics and, in general, classical
electromagnetism. The microscopic Maxwell equations in vacuum are (i) the Maxwell-Thomson
equation, (ii) the Maxwell-Gauss law, (iii) the Maxwell-Faraday law and (iv) the Maxwell-Ampère
law,





∇ ·B = 0, ∇ ·E = ρe/ε0,

∇×E = −
∂B

∂t
,

∇×B = µ0 j + µ0 ε0
∂E

∂t
,

(1a)

(1b)

(1c)

where ρe is the electric charge density, j, the current density vector, E the electric field vector
and B the magnetic field; the dielectric permittivity of vacuum is noted ε0 and the magnetic
permeability of vacuum µ0, these two quantities can be grouped together in the inverse of the
celerity squared c2

0
= 1/ε0 µ0. The Lorentz force acting on the electric charge q whose velocity

is equal to V can be read as follows,

F = q (E+V ×B) , (2)

where the electric force associated with the electric field E and where the product V×B of the
velocity vector and the induced magnetic field represents the magnetic contribution to the total
force F. In addition to Maxwell’s equations, there are the constitutive laws of Ohm’s law and
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the conservation of charge,




j = σ E,

∂ρe
∂t

+∇ · j = 0,

(3a)

(3b)

where j is the current density vector and σ is the electrical conductivity.
Numerous books and manuals are devoted to these equations, including Landau & Lifchitz

[4]. The Maxwell-Ampère law (1c) clearly shows two contributions

j =
1

µ0
∇×B− ε0

∂E

∂t
, (4)

where the second term is a current density called displacement current by Maxwell to extend
Ampère’s law to the variable regime; ε0 is the permittivity of vacuum.

2.2 Maxwell’s equations in terms of potentials

Maxwell’s equations, where the fields E = −∇e and B = ∇×A are coupled by terms ad hoc:




1

c2
0

∂2E

∂t2
−∇2E = ∇

Å

ρe
ε0

ã

− µ0
∂j

∂t
,

1

c2
0

∂2B

∂t2
−∇2B = ∇× (µ0 j) ,

(5a)

(5b)

or those that use the Lorentz gauge condition:

ε0 µ0
∂e

∂t
+∇ ·A = 0, (6)

which can be written, with 1/c2
0
= ε0 µ0, in the form of propagation equations on the two

potentials e and A: 



1

c2
0

∂2e

∂t2
−∇2e =

ρe
ε0
,

1

c2
0

∂2A

∂t2
−∇2A = µ0 j.

(7a)

(7b)

Thus, the two equations for the electric field E and the magnetic field B (5) cannot be reduced
to a single equation. The fundamental reason for this is the strongly coupled nature of electric
and magnetic effects, one inevitably driving the other when motion is no longer stationary or
continuous. J.C. Maxwell understood this when he synthesized the existing laws of electrostatics
and magnetostatics in a dynamic context. The electromagnetic equation must reflect the fact
that the direct field and the induced field are two facets of the same phenomenon, defining a
causal link between electric and magnetic fields.

2.3 Overdetermination of Maxwell’s equations

The overdetermination of Maxwell’s equations is obvious if we consider the number of un-
knowns - six in all, three for each of the electric E and magnetic B field components - compared
to the number of equations, the components of the Maxwell-Faraday and Maxwell-Ampère equ-
ations and the two Gaussian equations. In fact, it’s difficult to understand how the laws overlap
when the combination of some of them leads to the satisfaction of the others. Certain vector
identities based on the conservation of magnetic flux also make it possible to restrict the number
of equations to close the system.
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Some sequential equations in physics display the same characteristics of overdetermination
of equations or variables. Constitutive laws can be used to close a system of equations, but
this procedure also has its drawbacks. Indeed, in this case, there are inevitably overlaps of
information that cause a time shift in the values of the variables. This is the case, for example,
with the Euler equations for isentropic compressible flows, where the three components of the
Euler equation - conservation of mass, energy equation and law of state - lead to a system that
is well closed by the three components of momentum, density, pressure and temperature, but is
still overdetermined; the energy equation can easily be shown to be unnecessary. In other words,
an overdetermined system of equations may provide a solution, but this solution still contains
inconsistencies, even if they go undetected.

2.4 Non-existence of monopoles

The search for magnetic monopoles has been the subject of sustained research in recent deca-
des, both experimentally [17] and theoretically [18, 19], in nuclear physics. Other contributions
[20, 12, 21, 22, 23, 24], provide a more general perspective on this issue. The potential existence
of magnetic monopoles is examined in detail by K.A. Milton [25] in its theoretical and experi-
mental aspects. The existence of monopoles is often postulated [25] as ∇·B = 4π ρm, where ρm
is the magnetic charge density. Let’s consider one of the relations of Maxwell’s equations, the
Maxwell-Thomson law:

∇ ·B = 0. (8)

To impose this condition on the gradient of a function, simply set B = ∇ ×A, where A is
the potential vector of B. This rather too natural mathematical view of how to proceed is a
roundabout way of eliminating another possible contribution of the magnetic field. The constraint
(8) imposed by Maxwell’s equations is abusive, as it excludes any possibility of predicting the
existence of monopoles. It could be considered a limit if the celerity of light were infinite or if
the stationary regime were reached; in fact, the celerity c0 is very great but not infinite.

3 An alternative law of electromagnetic wave propagation

Modelling an alternative law to Maxwell’s equations cannot be based on modifying them.
Indeed, Maxwell’s equations have a logic, and the fact that they have stood the test since their
derivation proves their representativeness. The attempt presented here takes up modeling based
on Ohm’s and Ampère’s laws, forgetting all the other laws of classical electromagnetism.

The microscopic version in terms of magnetic and electric fields, sometimes referred to as
Maxwell’s equations in vacuum, is complemented in classical electromagnetism by a macroscopic
version more akin to a continuum approach. This difference does not exist in the approach
presented here, which is essentially based on the conservation of acceleration. We must return to
the profound meaning of the Weak Equivalence Principle (WEP) revisited by discrete mechanics,
where the intrinsic acceleration of an isolated particle with or without mass, or of an element of
a material medium, is equal to the sum of the accelerations imposed on it. The law proposed
for electromagnetism is therefore a local equation that applies to a global material medium, and
constitutes the very principle of many physics equations.

The local law of electromagnetism is based on the coupling model between electrical and
magnetic phenomena, which only makes sense in a time-varying regime. Direct and induced
currents are interwoven in a complex geometric structure. The core of this structure, known as
Maxwell’s local reference frame, considers a Γ conductor and a current coil arranged around the
conductor.
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3.1 Maxwell’s local frame of reference

The Maxwell local reference frame shown in Figure 1 is a geometric structure made up
of a primal structure, a rectilinear segment Γ bounded by two ends a and b where its length
dh = [a, b] is called the discrete horizon because the time needed to cross this distance is equal
to dt = dh/c where c is the celerity of the electromagnetic wave. The dual structure is the ∆
circuit surrounding the Γ conductor. Each structure is oriented respectively by the unit vectors
t for the primal segment and n for the dual contour, so that t · n = 0 by construction. The
scalar potential φ is located on the a or b vertices of the segment and the vector potential ψ
is assigned to the dual contour. Other Γ segments are connected by their vertices to form a
Γ∗ family delimiting a flat polygonal surface (not shown) called primal facet S whose oriented
normal is n. The physical domain of Ω is thus tessellated by a set of Maxwell reference frames
interconnected by their common vertices. The Γ and ∆ circuits are thus interwoven to form
an unstructured mesh of polyhedral cells with any number of faces. The only unknown in an
electromagnetism problem lies on the Γ segment, namely the intrinsic acceleration γ = dv/dt,
which here represents the current density derivative dj/dt. This geometric structure has the
property of being entirely symmetrical when we exchange the roles of Γ and ∆, i.e. those of the
electric and magnetic fields themselves.

Figure 1. Maxwell’s local reversible frame of reference: a line segment Γ of length dh = [a, b]
oriented along the unit vector t forms the primal structure. The dual contour ∆ positively
oriented by n is such that t ·n = 0. The acceleration γ and velocity v are vectors carried by the
oriented segment Γ; the scalar potential φ is assigned to its extremities and the vector potential
ψ is fixed on the contour ∆.

Four discrete differential operators correspond to these structures: (i) the gradient operator
∇φ = (φb − φa)/dh, which is the restriction on Γ of the classical gradient, (ii) the velocity
divergence ∇ · v, which represents the flux of the vector v across the dual surface D orthogonal
to the segment, (iii) the primal curl ∇×v calculated as the circulation of this vector along the Γ∗

contour, whose result is a vector oriented along n and (iv) the dual curl of the vector potential,
∇⊗ψ, whose result is projected onto the Γ segment. This operator ∇⊗ is not the tensor product
of classical analysis. Moreover, the notion of second-order or higher-order tensor does not exist in
discrete mechanics, and vectors themselves are scalars on oriented segments. Remarkable vector
identities due to the construction of this set, ∇×∇φ = 0 and ∇ · ∇ ⊗ψ = 0 give the modeling
orthogonality properties essential to a realistic description of physical phenomena. These discrete
operators are the only ones necessary and sufficient to describe all interactions between electric
and magnetic currents.

In this structural context, the modeling of physical phenomena is carried out while ignoring
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the concepts of classical mechanics, mass m or density ρ, force, pressure, global energy and
the classical notions of one-point derivation, integration, differential calculus and mathematical
analysis in general. Thus, the modeling of phenomena relies solely on concepts of differential
geometry to derive the law of discrete mechanics [16].

3.2 Modeling of currents

The following modeling of the discrete electromagnetic equation is not a variant of Maxwell’s
equations, but is based solely on Ohm’s and Ampère’s laws, extended to the dynamic regime.
The other laws used by Maxwell and federated in his model are not taken into account. In
particular, the Maxwell-Thomson law, ∇·B = 0, which expresses that the magnetic flux is always
conservative, is not an acceptable constraint a priori, it’s a law ad hoc. The proposed approach
aims to reduce the number of unknowns and equations in electromagnetism, as the various forms
of Maxwell’s equations are overdetermined. The principle of parsimony is applied to establish
a model reduced to the bare minimum, but complete from a physical point of view. Similarly,
the Lorentz electromagnetic force should emerge naturally from the model without being added
a posteriori. The material derivative of the electric current density dj/dt is the starting point
of the proposed approach, symbolizing the acceleration of electric charges in a conductor in the
same way as the acceleration of a fluid flowing through a channel; both phenomena are therefore
governed by the same fundamental law of discrete mechanics.

The total current j cannot be the sum of the direct current jdir and the induced current jind
in steady state, as this makes no sense. On the other hand, when the current is variable, the
two direct and induced currents are nested, and the total current is the sum of the other two,
j = jdir + jind both flowing on the same Γ segment. The electric field can be defined by its
potential noted here e in the form E = −∇e and the induction field B is associated with the
magnetic permeability of the medium µ. These quantities are linked by Ohm’s law and Ampère’s
law,





jdir = −σ ∇e,

jind =
1

µ
∇⊗B,

(9a)

(9b)

where σ is the local electrical conductivity and µ the local magnetic permeability. These two
laws are only valid in steady state. To obtain a law for the evolution of the total current j,
we must first model the evolution of the electric and magnetic potentials. Note that the vector
potential is the induction field B itself, whose flux is not conservative a priori.





ce
de

dt
= −∇ · jdir,

cm
dB

dt
= ∇× jind.

(10a)

(10b)

where ce = Ce/V is the electrical capacitance per unit volume expressed in s4A2/kgm5, or
farad per unit volume; cm is its magnetic equivalent expressed in s3A2/kgm3. By integrating
the expressions of the potentials (9), these relationships become diffusion equations,





de

dt
= ae ∇

2e,

dB

dt
= am ∇2B,

(11a)

(11b)

where ae = σ/ce is a diffusion coefficient expressed in m2s−1 and am = 1/µ cm is a magnetic
diffusion coefficient. The last relation implies that ∇ ·B = 0.
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These diffusion equations are only a certain representation of reality. Although they take time
scales into account, they in no way reflect the propagation of elastic and magnetic waves, whose
celerity is equal to c0 in a vacuum. On the other hand, they are representative of phenomena with
large time constants, such as the diffusion of electric current in a metallic conductor, where the
velocity of electrons is very low, of the order of magnitude of a few centimetres per second. For
very small time constants, the diffusion equations become erroneous, like those for heat transfer
based on Fourier’s law or Stokes’ law based on Newton’s viscous law. In fact, phenomenological
laws such as Fourier’s law for heat transfer, Newton’s law describing the behavior of viscous fluids
or Ohm’s law are integrated into partial differential equations to become evolutionary laws, such
as the heat equation with temperature or enthalpy as the variable, Stokes’ equation for momen-
tum, and so on. These are generally diffusion or advection-diffusion equations. Unfortunately,
the corresponding solutions contain artefacts, as wave velocity is not taken into account on very
small time scales, since wave celerity is implicitly infinite. Discrete mechanics introduces the no-
tion of time at small scales and transforms these equations into propagation laws; for example,
the heat equation is transformed into a propagation law at small time constants, but recovers
the classical behavior of diffusion at large time constants [26]. Under these conditions, the laws
must be transformed into propagation laws. Assuming a = dtc2 where dt is the observation time
of the phenomenon, we find: 




1

c2
d2e

dt2
−∇2e = 0,

1

c2
d2B

dt2
−∇2B = 0,

(12a)

(12b)

a wave equations.
At this stage, however, direct and induced currents are not nested, so it is necessary for the

total current j = jdir + jind to be the only variable of a discrete electromagnetic law in the
form of an evolution law, considering its material derivative dj/dt whose direct and induced
components can be read, 




djdir
dt

= −∇

Å

d(σ e)

dt

ã

,

djind
dt

= ∇⊗

Å

d(B/µ)

dt

ã

.

(13a)

(13b)

To obtain the scalar and vector potentials of the current acceleration dj/dt, it is necessary
to consider the generalized form of Ohm’s law, e = R Cde/dt − L Cd2/dt2 where R is the
resistance in ohm, C the electrical capacitance in farad and L the electrical inductance in henry;
this generalized Ohm’s law has been extended to periodic currents. In this case, the hyperbolic
character of this law is not reduced to an additional term, but results from the physical modeling
of the undulatory nature of electric and magnetic waves. Thus, the law of evolution of electric
potential can be reduced to de/dt = e/R C where the quantity τe = R C is a time constant
expressing the characteristic time of the velocity of electric current in a conductor. By analogy,
there is a time τm = Rm Cm with which the magnetic wave information propagates, where Rm
and Cm are quantities that don’t exist in classical electromagnetism because the induction field
B is constrained to satisfy the zero divergence condition, ∇ ·B = 0. The relations (13) become,





djdir
dt

= −∇
( σ

R C
e
)
,

djind
dt

= ∇⊗

Å

1

µ Rm Cm
B

ã

,

(14a)

(14b)

where direct and induced currents jodir = −∇(σe) and joind = −∇⊗(B/µ) when the phenomenon
becomes stationary, at large time constants; indeed, a current j is the sum of its value at time
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to and the product of acceleration and time, j = jo + γ dt. While the velocity of the direct
current jdir may be low in metallic conductors, it becomes equal to the celerity of the electric
wave c0 in a vacuum. In the case of magnetic wave propagation, this is not the case, as there is
no accumulation of charges in a monopole, which is why it is wrong to assert the conservation
of magnetic flux.

At this stage, the material derivatives of the second member are considered as electric and
magnetic potentials, which take the form φe = σ e/τe and ψm = B/(µ τm). These are quantities
that accumulate electrical and magnetic energies over time, and are defined to within a constant.
The time lapse dt is not a simple differential element, but has a real physical meaning associated
with the incremental vision of the formulation. When this time lapse is significant, we find
the laws relating to continuous or slowly varying currents of Ohm’s and Ampère’s laws (9).
The sequential description of the evolution of current potentials φe and ψm at time to + dt, is
discretized as φe = φoe + dφe and ψm = ψom+ dψm where φoe and ψom are the retarded potentials
[6] and where dφe and dψm are the corresponding increments.





djdir
dt

= −∇
(
φoe − dt c2 ∇ · jdir

)
,

djind
dt

= ∇⊗
(
ψom − dt c2 ∇ · jind

)
.

(15a)

(15b)

Currents are only defined by additive constants; indeed, the superposition of a uniform current
does not modify the interactions modeled by an equation possessing the property of relativity.
Similarly, a uniform velocity vo does not alter the mechanical equilibrium defined by Newton’s
law, the principle of inertia or Newton’s first law. It is therefore the velocity that is the discrete
integral of the acceleration v = vo+dtγ and not acceleration which is the material derivative of
velocity; in the latter case, the contribution of vo disappears, resulting in a loss of information
about the current state of the system. The quantity vo will be linked to a state of equilibrium
at time to. Motion is called inertial or Galilean motion, as is the electric current j, which must
be written as j = jo+dtγ where γ is the acceleration of the electric current. The direct current
thus becomes jdir = jodir + dt γdir and similarly for the induced current, jind = joind + dt γind.
Note also that the curl of a gradient is zero, so ∇·jdir = 0, and that the divergence of a dual curl
is also zero, so ∇·jind = 0. These vector identities, such as ∇·jdir = ∇·j and ∇×jind = ∇×j,
allow us to establish a law of motion for the total current. The discrete and alternative law
of Maxwell’s equations can then be written as a single equation for a single variable, the total
current,

dj

dt
= −∇

(
φoe − dt c2 ∇ · j

)
+∇⊗

(
ψom − dt c2 ∇× j

)
. (16)

As scalar and vector potentials are not variables, these two quantities are updated incremen-
tally to calculate current potentials based on retarded potentials.

®

φe = φoe − dt c2 ∇ · j,

ψm = ψom − dt c2 ∇× j,

(17a)

(17b)

where the current density j present in these updates is the solution of the equation (16).
The equation of discrete electromagnetism (16) associated to potential updates (17) consti-

tutes a law of conservation of current acceleration; indeed the ratio v = j/ρe is a velocity and
its material derivative d(j/ρe)/dt is an acceleration.

It expresses the conservation of total energy, the sum of direct and induced energies. The
conservation of the electric charge q or of the electric charge density ρe is written from the
divergence of the current density ∇ · j in the form ∇ρe/dt+∇ · j = 0. However, electric charge
is subject to displacement or advection in space, so the partial derivative must be replaced by

8



the material derivative. The balance of electrical energy over an elementary volume φe that we
follow during its movement leads to a similar expression,





dρe
dt

+ ρe ∇ · (j/ρe) = 0,

dφe
dt

+ φe ∇ · (j/ρe) = 0,

(18a)

(18b)

where φe is an energy per unit mass and is none other than the celerity squared c2. These
two relations relate to different variables, but they are structurally identical; their variables are
therefore equivalent.

Just as in special and general relativity the equivalence between mass and energy E = m c2,
the previous laws express the equivalence between charge and electrical energy, E = q̃ c2 with
q̃ = q ρ/ρe where q is the electric charge, ρ the density and ρe the charge density. Thus q̃, the
charge by unit mass mass, plays the same role as the mass m in mechanics. However, it should
be remembered that these equivalences are in fact only proportionalities and that it is preferable
to write E/m = c2 and E/q̃ = c2, these are energies which are written φ = c2 in a general way,
an energy per unit of mass.

Under these conditions, the role of mass and electric charge is no longer necessary for the
derivation of the laws of physics, which already express the conservation of energy through these
equivalences. The real cause of these equivalences lies in the profound meaning of the Principle
of Weak Equivalence (WEP) revisited by discrete mechanics, where the proper acceleration of a
particle with or without mass, or of an element of material medium, is equal to the sum of the
accelerations imposed on it by the exterior, γ = h. Newton’s second law becomes an equality of
accelerations. It should be noted, however, that the formula E/m = c2 or E/q̃ = c2 represents
only one component of total acceleration, that corresponding to directional or direct effects, but
rotational effects must also be included in the expression of total acceleration, γ = −∇φ+∇⊗ψ.

The terms dφe = −dt c2∇· j and dψm = −dt c2∇× j are respectively accumulated in scalar
and vector potentials representing electric and magnetic charges. Electric charges are located
on the vertices of the Figure 1 structure, and magnetic charges are associated with each of the
primal facets. Conservation of electric charge dρe + ρe ∇ · j = 0 and of the magnetic charge
dρm + ρm ∇ · j = 0 are already implicitly included in the equation (16), so there’s no need to
add them to this law. As with direct effects, where there is a phase shift between the electric
current and the corresponding field, induced effects present the same type of phase shift between
the magnetic field B and the induced current. The existence of magnetic monopoles is not
predicted by classical electromagnetism or the theory of relativity, and no elementary particle
with a magnetic monopole has ever been observed. The discrete law of electromagnetism (16)
actually shows that the classical conservation constraint of Maxwell’s equations ∇ ·B = 0 is not
strictly imposed; this would be the case if the celerity c were infinite, which is not the case since
c = c0 ≈ 108 ms−1. As the discrete law shows, the phase shift is of the order of magnitude of
c2 ≈ 1015s. Remember that the weak equivalence principle is only valid to within 10−15. In 1931,
Paul Dirac [27] demonstrated its theoretical existence within the framework of quantum physics,
but for the time being, classical or relativity theories and quantum physics are irreconcilable
on this point, preventing any unification of fundamental laws. G. Lochak [28] gives another
interpretation, but this problem remains open for the time being.

In addition to the potential existence of monopoles, the law (16) differs widely from Maxwell’s
equations in all their versions: classical, tensorial, relativistic in Minkowski space, in potentials.
The complex nature of direct and induced currents leads to a drastic reduction of equations
and variables to a single variable, the current j and a single equation (16). Scalar and vector
potentials are accumulators, not new variables. The law of motion is non-linear, and the non-
linearities are those of the material derivative γ = dj/dt; the addition of the Lorentz force is not

9



necessary, as it is already integrated into the material derivative on the current. The acceleration
on the current density reveals a formal Helmholtz-Hodge decomposition, γ = −∇φ+∇⊗ψ, the
sum of a curl-free term and a second divergence-free term. It is therefore possible to establish an
alternative formulation of Maxwell’s equations, where the true variable is a generalized velocity.

3.3 The discrete law of motion

Newton’s second law of dynamics has been reformulated by discrete mechanics in the form
γ = h where the intrinsic acceleration γ of a particle with or without mass is equal to the sum of
the accelerations applied to it; acceleration is a conservative quantity. With a view to eventual
unification, it becomes necessary to establish a law in which the main variable and the other
unified quantities could take on different meanings depending on the field of physics concerned.
The term velocity v will be used for the main variable, which may refer to fluid velocity, electric
current density, heat flux, etc. Table 1 shows the correspondence between the quantities used in
discrete mechanics and those classically used in electromagnetism. The quantities in the table are
respectively charge density ρe, permittivity ε, magnetic permeability µ, electrical conductivity
σ, electric potential e and electric current density j. The longitudinal celerity cl differs from the
transverse celerity ct, even though in the case of electromagnetism in a vacuum cl = ct = c0 is
equal to the celerity of light.

v φ ψ c2l c2t

j/ρe (σ/τe) e (1/(µ τm))B 1/(ε µ) 1/(ε µ)

Table 1. Correspondence between the quantities of discrete mechanics and those of electroma-
gnetism, where j is the current density, e the electric potential, B the magnetic induction, ρe the
electric charge density, ε the electric permittivity, µ the magnetic permeability and σ the electric
conductivity. The quantities τe = R C and τm = Rm Cm are the respective time constants for
the evolution of electric and magnetic currents.

Thus, the discrete law of motion, established in fluid mechanics as an alternative to the
Navier-Stokes or Euler equations [16, 29], in solid mechanics to replace the Navier-Lamé equation
[30], or for heat transfer [26], can be extended to electromagnetism as an alternative to Maxwell’s
equations. As the derivation of the general law has already been performed and presented in
some of these articles, its final form is given directly,

dv

dt
= −∇

(
φo − c2l dt∇ · v

)
+∇⊗

(
ψo − c2t dt∇× v

)
+ hs, (19)

where φo and ψo are the retarded scalar and vector potentials. The source term hs represents
a possible acceleration applied on the same segment Γ of the primal structure; it will itself be
written in two terms of a Helmholtz-Hodge decomposition. The two potentials are updated
respectively from the divergence of the velocity and its primal curl from the expressions,





αl φ
o − c2l dt∇ · (v − vo) 7−→ φo,

αt ψ
o − c2t dt∇× (v − vo) 7−→ ψo,

v − γ dt 7−→ vo,

u− v dt 7−→ uo,

(20a)

(20b)

(20c)

(20d)

where the symbol 7−→ denotes the update of the quantity concerned and will take the place of
the retarded quantity when the vector equation is next solved. The quantities αl and αt are the
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restitution factors for longitudinal and transverse waves; for example, α = 0 corresponds to a
totally dissipative medium. The quantity vo is the retarded velocity at time to.

The transformation of the law of electromagnetism (16) into a law (19) is not a simple
analogy, but a quantification of certain laws of physics derived from the fundamental principle
of mechanics. The Table 1 is used to formulate the mathematical problem from the properties
of the medium considered and the boundary conditions, and to solve it before returning to the
specific variables using the same table. However, it is not necessary to use classical physical
quantities, as the solution of the problem (v, φ,ψ) physically represents the result, each unified
quantity already having a precise meaning.

The law (19) has certain properties associated with the symmetry observed when the roles of
electric and magnetic fields are reversed. According to Noether’s theorem [31], these symmetries
define properties of invariance in time and space associated with the conservation of certain
quantities. Invariance in time defines the conservation of total energy; invariance by rotation in
space, the conservation of angular momentum; and invariance by translation, the conservation of
momentum. The difference with Noether’s theorem is the formulation of the equation in terms
of accelerations and its natural Helmholtz-Hodge decomposition. The first two terms on the
right-hand side of this equation are locally orthogonal, giving it special structural properties.

3.4 Lorentz acceleration and inertia

The Lorentz force can be derived in different ways, depending on the formalism chosen, the
initial Maxwell-Lorentz formalism, the Lagrangian formulation or the space-time formulation.
This section shows that Lorentz acceleration results from a non-linear superposition. Inertia is a
complex concept in mechanics, involving the non-linear interaction of one field with another or
with itself. Maxwell’s equations of electromagnetism, originally linear, were supplemented by a
force generated by the interaction of a velocity field and a magnetic field; when a charged particle
moves at velocity w in an electromagnetic field, it is subject to the Lorentz force,

d(m v)

dt
= −q (E+w ×B) (21)

where q is the particle’s elementary charge in coulomb, w its velocity, E the electric field in
Volt per meter, B the magnetic field in Tesla, q = mw the momentum where m = γ m0 is the

relativistic mass, m0 the mass of the particle at rest and γ = 1/
»

1− v2/c2
0

the Lorentz factor.
The first term on the right-hand side corresponds to acceleration by the direct field, and the
second term to a non-linear response called the magnetic force. The latter deflects the particle
in the opposite direction to the electric field gradient, and is used to collimate electron beams
in accelerators. If the particle is uncharged (q = 0), the actions of an electric and magnetic field
on it are zero. If it carries an electric charge, it accelerates and interacts with these fields. In
this context, it is not possible to directly transpose the Lorentz force in the discrete approach, as
the B field is attached to each facet and directed along its n oriented normal, whereas classical
electromagnetism defines all quantities per point in the continuous medium approach. Moreover,
the B field is not conservative a priori. In classical mechanics, the velocity of the particle w is
defined per point in a three-dimensional space, as is the induction field B, and the vector product
w ×B must then be projected into a system of orthogonal axes.

In fact, the law of discrete motion (19) is representative of both fluid motion [16] and ele-
ctromagnetic currents when expressed from the unified variables of the Table 1. The velocity
of a particle is denoted w and the velocity of the unified electric current v = j/ρe. In discrete
mechanics, inertia takes on another representation [32] and the material derivative is written:

dv

dt
=
∂v

∂t
+∇

Å

|v|2

2

ã

−∇⊗

Å

|v|2

2
n

ã

, (22)
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when only one phenomenon is considered, fluid mechanics or electromagnetism. When coupled,
however, the two currents flow along the same segment at velocities w and v. While the linear
terms are the same, the inertia corresponding to the interaction between the two phenomena
includes additional terms that need to be specified. Vector calculus shows that the sum of two
vectors squared can be written,

(w + v)2 = |w|2 + 2w · v + |v|2, (23)

where appears the scalar product 2 w · v; in this case, the velocities are carried by the same
segment and this scalar product becomes a simple product; moreover, the vectors themselves are
scalars associated with oriented segments. If we omit the inertia terms specific to each of the two
phenomena, the inertia corresponding to the coupling terms can be written as a Helmholtz-Hodge
decomposition,

κL = ∇ (w · v)−∇⊗ (w · v n) , (24)

where the Lorentz scalar potential φL = w · v linked to the vertices of the primal structure
and the vector potential ψL = w · v n is located on a facet and oriented along n. This is the
discrete form of Lorentz acceleration. The first term can also be written as v · ∇w +w · ∇v or
(v/w) ·∇

(
|w|2/2

)
+(w/v) ·∇

(
|v|2/2

)
expresses the advection of a current by the fluid velocity

and its opposite equivalent in the longitudinal direction oriented by the vector t. The second
term is also an advection term in the n direction. Proper inertia terms already represent the
advection of a flow by itself.

3.5 Conservation of charges

The conservation of mass in mechanics, the conservation of electric charges and possibly
magnetic charges are not necessary laws in discrete mechanics. These laws are already implicit
in the unified law of motion.

Let’s consider first the conservation of mass in mechanics established for a volume Ω that we
follow during its motion; in the absence of internal sources, the density ρ satisfies the equation,

∂ρ

∂t
+∇ · (ρ v) = 0, (25)

which completes the Navier-Stokes and Euler equations. These equations, based on the conserva-
tion of momentum q = ρv do not intrinsically conserve mass; the law of conservation of mass or
density is absolutely necessary under these conditions. In discrete mechanics, the conservation of
acceleration γ = dv/dt expresses both the conservation of mass and the conservation of angular
momentum. Acceleration itself is energy per unit mass and length; the equivalence of mass and
compressive energy derived from the theory of relativity means that the concept of mass can be
completely abandoned in the formulation of the law of discrete motion [16]. Newton’s second
fundamental law is revisited and becomes an equality between accelerations, γ = h, the intrinsic
acceleration of a particle with or without mass or of a material medium is equal to the sum of
the accelerations imposed on it.

In electromagnetism, the conservation of electric charge is written,

∂ρe
∂t

+∇ · j = 0, (26)

where ρe is the electric charge density and j the current density.
However, the electric charge or its surface density ρe is a scalar which must be transported

in an Eulerian view and the partial derivative is then replaced by the total derivative,

dρe
dt

+ ρe ∇ ·

Å

j

ρe

ã

=
∂ρe
∂t

+∇ · j +

Å

j

ρe

ã

· ∇

Å

1

ρe

ã

= 0, (27)
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where the last term is similar to the displacement current of the electric charge introduced by
Maxwell to ensure consistency with Ampère’s law in the variable regime. The conservation of
electric charge equations in classical electromagnetism (26) and in discrete electromagnetism
(27) differ on this point. In fact, this difference has little impact on the formulation presented
because, as in mechanics, this conservation law is not necessary, it is already implicitly contained
in the law of conservation of current (16). Thus ρe is no longer a variable in the problem, which
makes it possible to restrict the total number of unknowns in electromagnetism. In the unified
version, the quantity v = j/ρe is identified as a velocity.

The conservation of magnetic charge ρm could also be evaluated from the magnetic field, since
the constraint on the induced field is no longer guaranteed, ∇ ·B 6= 0. The law of conservation
of magnetic charge ρm will take the same form as the expression (27). Thus, in all cases, these
conservation laws are excluded from the discrete formulation but what they express is already
integrated into the unified general law of motion (19).

3.6 Equations in terms of potentials

Like Maxwell’s equations, discrete mechanics can lead to a different form by applying the
divergence operator to the equation (19). The rotation term disappears and:

∇ · γ = ∇ ·

Å

dv

dt

ã

=
d

dt
(∇ · v) + (∇ · v)2 , (28)

assuming cl constant; the result is a scalar potential equation,

∇2φ = −
d

dt
(∇ · v)− (∇ · v)2 , (29)

but updating φ from the same equation system allows us to derive c2l ∇ · v = −dφ/dt and,
replacing:

∇2φ−
1

c2l

d2φ

dt2
=

Ç

1

c2l

dφ

dt

å2

. (30)

Now let’s apply the primal curl operator to the acceleration γ:

∇× γ = ∇×

Å

dv

dt

ã

=
d

dt
(∇× v) + (∇× v)2 n. (31)

Considering the identity c2t ∇× v = −dψ/dt and taking into account the equality ∇⊗ ψ =
∇(∇ · ψ) − ∇2ψ, as the pseudo-vector ψ is solenoidal ∇ · ψ = 0, we can simplify the equation
obtained and recapitulate the formulation in potentials:





∇2φ−
1

c2l

d2φ

dt2
=

Ç

1

c2l

dφ

dt

å2

,

∇2ψ −
1

c2t

d2ψ

dt2
=

Ç

1

c2l

dψ

dt

å2

n.

(32a)

(32b)

If we compare Maxwell’s equations (7) in terms of potentials e and A with those of the system
(32) on φ and ψ, we find a similarity, but the second derivatives in time become material second
derivatives. The difference corresponds to the advection of quantities at velocity v; these inertial
effects, not taken into account in Maxwell’s equations, may be second-order, but it cannot be
denied that every medium or elementary particle is subject to acceleration due to variations in
its velocity. Indeed, all media possess a finite compressibility characterized by the celerity cl or
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ct; these potential equations translate the exchange of compression energy from one point of a
conductor to another. The physical significance of this phenomenon is best illustrated in the
equation of motion (19), where the equilibrium potentials φo and ψo represent instantaneous
exchange accumulators with their respective deviators dt c2l ∇ · v and dt c2t ∇ × v. At first
order, in a vacuum, if we neglect the effects of inertia, we find expressions for potentials derived
directly from Maxwell’s equations. Another difference is that in discrete mechanics φ and ψ are
expressed in the same fundamental units, length and time, and above all are potentials of the
same quantity, acceleration.

Indeed, the application of operators to an equation, whatever they may be, inevitably leads
to a loss of information; this degradation is due to the elimination of certain terms from the
initial equation. The intrinsic properties of discrete vision verify the two essential equalities
∇ × ∇φ = 0 and ∇ · (∇ ⊗ ψ) = 0, but for all that it’s important to keep both contributions
in the same equation of motion. By solving the equation of motion, we obtain the acceleration
and velocity potentials in a single step. The retarded potentials φo and ψo represent long-term
persistent quantities, such as permanent magnetization or hysteresis effects.

3.7 A relativistic equation

The equation of discrete motion (19) applied to fluid flow, stress in solids, and heat transfer
on small time and space scales [26] is also valid for light propagation. The velocities cl and ct
are then equal to the celerity of light c0. If we set v = vo + γ dt and u = uo + v dt where u is
the displacement field, we find a propagation equation:

d2u

dt2
=−∇

(
φo−c20∇ · u

)
+∇×

(
ψo−c20∇× u

)
+hs, (33)

where γ = d2u/dt2 is a material second derivative containing non-linear terms in an Eulerian
view. The source term itself can be expressed as a Helmholtz-Hodge decomposition, hs = ∇φs+
∇⊗ψs where φs and ψs are the potentials of hs. The discrete equation of motion thus appears
as an alternative to the Maxwell-Lorentz equations including directly applied accelerations, and
in particular gravitational acceleration, whether or not the particle’s mass is zero.

The symmetrical form of the vector equations (33) shows a retarded time ([6]) at the origin
of the Jefimenko equations [33, 5], which justifies the existence of a causal link between electric
and magnetic fields. This equation concerns only the displacement u, a scalar quantity on the
oriented segment Γ; updates are used to explicitly calculate the retarded potentials φo and ψo,
the energies per unit mass of the direct and induced effects. The only unknown in the single
equation (33) is velocity, or in this case, displacement. Considering the celerity of light c0 as an
invariant, we can transform the operators by the classical formula of vector analysis:

∇2u = ∇∇ · u−∇×∇× u, (34)

to obtain an equation where the second member is solely a function of the retarded potentials
without the source terms:

d2u

dt2
− c20 ∇

2u = −∇φo +∇⊗ψo. (35)

This equation is an alternative to Maxwell’s equations; it contains the Lorentz force by
considering the non-linear terms of the material derivative; in a Lagrangian description of motion,
the material derivative becomes a partial derivative. By abandoning the concept of a memory
model and deleting the other terms on the right-hand side of the equation (35), the equation
becomes a vacuum propagation equation, an Alembertian equation, �u = 0. In the general
case, the equation is non-linear and the second member of (35) is none other than the retarded
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displacement uo, hence:
1

c2
0

d2u

dt2
−∇2 (u− uo) = 0. (36)

The Lagrangian form �u = 0 then allows us to attribute relativistic character to the law of
discrete motion; this d’Alembert equation and, by extension, the equation (19) is indeed invariant
under a Lorentz transformation. The corresponding proof has already been given in [34].

3.8 The potential existence of monopoles

The question of whether all vectors, with or without physical significance, can be decomposed
into a part with zero divergence and another part with curl-free? The answer is yes, but in the
general case this decomposition has no particular physical significance, e.g. the scalar and vector
potentials of velocity v are not those of acceleration γ = −∇φ + ∇ψ. While γ is an absolute
quantity, velocity has only a relative significance; their respective potentials do not have the
same importance in physics. Requiring a field to be curl-free or divergence-free has important
consequences for the meaning of the laws of physics. The transposition of the induction field B

into a unified quantity is ψo, the potential vector of acceleration, and its definition is written:

ψo = −

ˆ to

0

c20 ∇× v dτ. (37)

There is no reason to assume that ψo is a curl; the accumulation over time (37) of this
potential implies that it is retarded like those of Liénard-Wiechert [6] . The limiting case consi-
dered for c→ ∞ induces that magnetic charge accumulation is not possible, the potential vector
ψo = −c2t dt∇ × v or, in classical notation, B = ∇ ×A. Since ψo is not a curl, this retarded
potential opens the way to the possible existence of monopoles. The intrinsic acceleration γ
of the particle or material medium is not temporally equal to the accelerations imposed by the
left-hand side of the law of motion; there is a time lag due to the non-infinite celerity of light.
Discrete mechanics corresponds to a local model in which information flows from cause to effect
between the intrinsic acceleration and the two orthogonal terms on the right-hand side of the
law of motion γ = −∇φ+∇ψ. Another important difference concerns the relationship between
scalar and vector potentials. In discrete mechanics, they are expressed from the same velocity
as φo ∝ ∇ · v and ψo ∝ ∇× v, which is not the case for e and A, which are coupled using the
Maxwell-Faraday equation in the form E = −∇e− ∂A/∂t.

So, assigning a stationary function to the magnetic field, for example B = q/r2 r, is a
possibility but is not obvious a priori. Even if the mathematical operations are legal, the physical
implications are difficult to interpret. Discrete mechanics requires (i) that we abandon mass m
and electric charge density ρe and magnetic charge density ρm, (ii) that we interpret electric and
magnetic fields as one and the same current field, and (iii) that only a vector equation on this
field can ensure the coupling between these two contributions.

The physical interpretation of these discrete mechanical concepts is illustrated by the diagram
in Figure 1. The segment Γ is traversed in time dt over a distance equal to the discrete horizon
dh = c0 dt by the direct current under the effect of a potential gradient (φb − φa)/dh. Similarly,
the induced current represented by ∇ ⊗ ψ does not instantaneously cross the contour of ∆;
during this time, at least the ψ field is not a curl-free field. The analogy with fluid mechanics
can be used, noting that the rotation of a viscous fluid in a rotating cylindrical cavity only
involves all the fluid it contains in a rigid rotation for a time that depends on the conditions of
the experiment [32]. The velocity field is constant in rotation, ∇ × v = Cte only after a long
delay. The laws of physics seem to show a fundamental coherence between apparently disparate
phenomena. The extension of the laws of mechanics to electromagnetism seems to confirm this
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similarity. The link between discrete mechanics and quantum physics has yet to be made, but
the possible existence of magnetic monopoles by ∇ ·B 6= 0 opens up this potential way.

3.9 A drastic reduction in the number of variables

The principle of parsimony applied to physics consists in minimizing the number of unknowns
and equations without losing the information or representativeness of the phenomena. The
development phase of physics, and in particular electrostatics and magnetism, led to the creation
of specific laws, followed by a phase of assembling these laws by coupling. This is what Maxwell
achieved by introducing a dynamic vision. However, the number of physical quantities was not
reduced, nor was the number of equations. In a three-dimensional space, the number of unknowns
is six, the three components of the electric and magnetic fields, E and B but eight equations, the
three components of Ampère’s and Faraday’s equations and Gauss’s two equations. Under the
right conditions, certain redundancies can be eliminated. Some vector identities, ∇ · ∇×B = 0
and ∇·∇×E = 0 also allow us to reduce the system to six equations with six unknowns. However,
if we rewrite them in terms of vectors and scalar potentials, the equations are underdetermined
due to the gauge fixation. Generally speaking, there are still difficulties in interpreting Maxwell’s
initial set, and problems of consistency in the boundary conditions to be adopted on each of the
unknowns. Of course, we must add the impossibility of explaining certain phenomena in quantum
physics, notably those involving photons.

The discrete electromagnetic equation is unique, and the only unknown is the unified velocity
v. The scalar and vector potentials of the current acceleration, φ and ψ respectively, are then
updated from the divergence of the total velocity ∇ · v and its primal curl ∇× v. The retarded
acceleration potentials φo and ψo are the energies per unit mass accumulated over time as a
result of transfers between the direct and induced fields. Since the frame of reference of discrete
mechanics is local, references to the components of a vector, tensor or quadri-vector no longer
have the same meaning as in traditional field theory.

An essential advantage of discrete mechanics is that it substantially reduces the number of
fundamental units needed to describe unknowns and potentials. Only two fundamental units are
used in the unified version, those of length and time, namely the meter and the second in the S.I.
international system. The very many definitions attached to electrical and magnetic phenomena
are no longer useful in this context, and only the velocities cl and ct assimilated to the celerity of
light c0 in vacuum, the unified velocity expressed in ms−1 and the potentials, energies per unit
of mass expressed in m2s−2, are needed to model a problem of electromagnetism.

3.10 Differences and convergences

Maxwell’s equations are partial differential equations in time and space; it is possible to
reformulate them in the language of exterior algebra if we know how to determine the analogues
of derivation operations on differential forms. They can also be found in the form of tensors, e
and A potentials, or in a form used in special relativity, quadrivectors. The discrete equation
of motion (19) is very different from these classical forms of electromagnetism. The key point
is that this equation does not call into question previous results, but we can expect significant
differences in form, as the discrete formulation is based directly on Ohm’s and Ampère’s laws.

A fundamental difference lies in the treatment of instationarity in the equations. In Maxwell’s
equations, they are associated with temporal variations in the electric potential ∂E/∂t in the
Maxwell-Ampere equation and in the induced magnetic field ∂B/∂t in the Maxwell-Faraday
equation; they appear as quantities ad-hoc that enable us to represent the evolutions of these
quantities but also of all those to which they are associated. In discrete mechanics, it is the
acceleration of the current dj/dt that generates all the temporal evolutions of the variables; from
a physical point of view, it is the variations in acceleration that generate the strong coupling
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between E and B. These fields therefore become solenoidal for B, ∇·B = 0, and irrotational for
E, ∇×E = 0 or E = −∇e and B = ∇×A, the induced magnetic field B does not accumulate
magnetic charges. The electric field E is a polar vector defined by the gradient of the electric
potential E = ∇e, while the induced magnetic field B is a pseudo-vector associated with the
normal n of the primal topology; these two fields are not expressed in the same units. In discrete
mechanics or discrete electromagnetism, the vectors ∇φ and ∇⊗ψ are two true vectors carried
by Γ whose sum is equal to the acceleration γ, the three vectors being expressed in the same
units.

Whether or not electric and magnetic fields are time-dependent, the gauge conditions associ-
ated with Maxwell’s equations are quite complex to define and apply. In discrete mechanics, the
two fields γφ = −∇φ and γψ = ∇⊗ ψ are orthogonal and therefore exchange nothing directly,
these two accelerations γφ and γψ are independent. The exchange mechanism is in fact complex:
when one of the two fields is no longer in equilibrium with the other, it’s the γ acceleration that
varies, redistributing electric currents into magnetic fields, or vice versa. If γ = 0 two orthogonal
fields can only be locally equal to a constant.

Another remarkable difference is the absence of inertia terms in Maxwell’s equations; in a
discrete medium, they are written as ∇(|v|2/2)−∇⊗(|v|2/2n). It should be noted that the dual
curl operator does not exist in a continuous medium; it is similar to the gradient operator but in
directions orthogonal to it in two dimensions of space; in a discrete medium, it corresponds to the
circulation of an axial vector along the dual contour ∆ of Figure 1. Inertia exists whether or not
the medium has mass, as in the case of photons for light. Velocity variations due to inertia - those
of electrons, photons and matter - can be of very different values in different cases. It should
be noted that the Navier-Lamé equations do not include inertial terms, which are practically
negligible in the usual cases, but this does not mean that they do not exist; the displacement of
the medium must always be accompanied by inertial effects if there are spatio-temporal variations
in velocity.

By combining the Maxwell-Gauss and Maxwell-Ampère equations, we obtain the law of con-
servation of electric charge density ∂ρe/∂t + ∇ · j = 0; this equation is identical in fluids and
solids. Although the treatment of instationarity is different, the discrete mechanics equation has
the general characteristics of Maxwell’s original equations. The need to unify the equations of
physics requires that an equation be formulated on the basis of a single variable - the velocity
of the fluid, solid or electric current. In the absence of variations in electric and magnetic fields,
Maxwell’s equations decouple and the magnetostatic equations give rise to different treatments,
with the Coulombian approach favoring the scalar potential e and the Amperian approach fa-
voring the vector potential A. In discrete mechanics, since the two terms are orthogonal, they
must also be separately equal to zero. Similarly, in electrostatics, an electric potential can be
defined in the same way as in discrete mechanics.

4 Conclusion

The proposed formulation is already an alternative formulation of the Navier-Stokes, Euler
and Navier-Lamé equations; in these cases, the celerity is that of acoustic waves in fluids or
solids. The structure of this alternative equation is very close to the concepts developed from
Maxwell’s reference frame illustrated in Figure 1; in the case of electromagnetism, where direct
and induced currents are naturally intertwined, the formulation coupling longitudinal waves to
transverse waves is entirely relevant.

The originality of this proposal lies in the derivation of an electromagnetic equation based on
Ampère’s and Ohm’s primary laws, postulating the conservation of current density acceleration.
The transposition of the law of discrete mechanics, where it is acceleration, the material deri-
vative of velocity, that is conserved, led to the recovery of the structure of a Helmholtz-Hodge
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decomposition, a sum of a component curl-free and another divergence-free. Another striking
result concerns the non-conservation of magnetic flux, the induction field is not a priori at zero
divergence, so this assumption turns out to be unnecessary. It is not true at very low time con-
stants and, like many laws of physics interpreted on bases where phenomena are slow, becomes
erroneous under very different conditions. This observation paves the way for the possibility of
one day proving the existence of magnetic monopoles. Abandoning the constraint of magnetic
flux conservation makes the law of motion totally symmetrical, with the roles of electric and
magnetic fields interchangeable.

The principle of parsimony applied to the derivation of a discrete law of electromagnetism
has enabled a drastic reduction in the quantities needed to model these phenomena. If this law is
validated and accepted, its main interest will probably lie in reducing the number of variables and
also the number of fundamental units needed to describe them; only two fundamental units are
required, those of length and time. Contrary to the postulate of the theory of special relativity,
these two concepts are strictly disjoint; indeed, apart from a few special cases such as the celerity
of light in a vacuum, the velocity of a particle or a material medium is not equal to the celerity
of the medium.
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Appendix - Test cases

The cases dealt with in this section do not constitute a validation of the discrete electroma-
gnetism model, but simply serve to illustrate the founding aim of this approach by showing a
few examples of applications. It is only by multiplying the number of test cases that we can be
sure of the representativeness of the physical model and, ultimately, of its completeness.

A - Magnetic field created by a wire of infinite length

This very simple case corresponds to a stationary phenomenon derived from magnetostatics;
a current I flows in an electrical conductor of infinite length and very small radius; it has an
electrical conductivity σ and the permeability of the external medium is equal to that of vacuum
µ0. The degeneracy of the equation of motion (19) gives the magnetostatic equation in terms of
potentials:

−∇φ+∇⊗ψ = 0. (38)

The two quantities φ(x) and ψ(r) are functions of different variables, and the two fields of
equation (38) are orthogonal. Stokes’ theorem and the fundamental theorem of the integral mean
value allow us to write:

ˆ

2π

0

ψ · t dl =

ˆ b

a

∇φ dx. (39)
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With a constant, zero in this case since the magnetic field lines are closed, the solution to
this problem is as follows:

ψ · n =
(φb − φa)

2 π r
. (40)

By replacing the potentials by the usual electromagnetic variables and noting that (eb−ea) =
I/σ we find the result classically obtained by Biot and Savart’s law in the form of the n component
of the magnetic field:

B(r) =
µ0 I

2 π r
. (41)

What’s interesting about the equation (38) and its solution (40) involving the two potentials
φ and ψ, is that it’s expressed using just two fundamental units, time and space. In electro-
magnetism, the equations and their solutions involve the other fundamental units, mass M and
intensity A. From the point of view of the unification of the laws of physics, this would remain
a difficulty; indeed, it is not an analogy that is sought, but a single equation.

In the general context of electromagnetism, it is the discrete equation (19) that must be
integrated directly in space and time; it allows us to find the solution of the velocity v by knowing
its value at the previous time to. Any perturbation of the magnetic or electric field, or any
variation in a source term or boundary condition, generates an acceleration γ which extends to
the two components of its Hodge-Helmholtz decomposition. Understanding the behavior of this
discrete equation is highly complex, and it would be illusory to attempt to explain it with trivial
reasoning. It’s enough to find the results obtained classically with the previously established laws
of physics, which doesn’t mean that the equations have to be identical. For example, the discrete
mechanics equation is significantly different from the Navier-Stokes equation, but the solutions
are the same. Although different from one of Maxwell’s forms, the equation of discrete motion
must allow us to find the same results as in electromagnetism. The formalism presented to unify
certain equations of physics cannot, of course, escape the concepts of general relativity introduced
by Einstein to integrate those of Newton and many others before him, notably Galileo.

B - Magnetic field around a permanent magnet

The first example of magnetostatics involves making a permanent magnet and calculating
the residual magnetic field. Equation (19) is a continuous memory model that includes the
possibility of representing the permanent magnetization of a ferromagnetic metal. Let’s consider
the case of a magnetic field B created by a permanent magnet M. The induced magnetic field
B = µ0 (H+M) where H is the excitation magnetic field, M is the magnetization field and µ0
is the vacuum permeability; in the case where H = 0, the induction field B is the residual flux
density.

Magnetization is achieved by applying a magnetic field to a piece of ferromagnetic material.
The system of equations (19) is solved by maintaining a constant field B and updating the
equilibrium vector potential ψo with the transverse restitution factor αt = 1. At the end of this
phase, the magnet is permanent and ψo maintains a constant field M inside the magnet; the
value of the field ψo can be obtained with conventional electromagnetic variables. The second
phase of the experiment consists in studying the magnetic field induced B outside the magnet
in a vacuum or in air, always maintaining (19) a field ψo = y ez generating a velocity equal
to v = ∇ ⊗ ψo = 1 ex inside the solid domain. The scalar potential φo updated over time by
the velocity divergence is not zero, but it has no influence on the magnetic field; this velocity
field becomes at zero divergence (Coulomb gauge) both inside and outside the magnet. Figure 2
shows the magnetic field generated by a permanent magnet in a vacuum. This ψ field has zero
divergence and corresponds to the field that gave rise to it if the material is perfectly remanent.

We can see that the magnetic flux current lines ψo and the equipotentials of φo are orthogonal.
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Figure 2. A magnet made of ferromagnetic material, represented by the rectangle, produces
a magnetic field on the outside. The field imposed in the magnet is equal to ψo = y ez. The
magnetic field in the entire domain is represented by a color gradient, and equipotentials by lines.

C -Induced currents in a cylindrical conductor

When medium and high-frequency alternating currents flow in a conductor, they exhibit a
skin effect. The skin effect is due to the opposing eddy currents induced by the changing magnetic
field resulting from these alternating currents. The highest current density is found at the surface
of the conductor. In good conductors such as metals, the skin depth is given by:

δ =

 

2

ω µ σ
, (42)

where µ is the magnetic permeability of the material, σ is the conductivity of the conductor and
ω = 2 π f the angular frequency of the current.

Let’s consider the case of a cylindrical conductor of indefinite length and radius R subjected
to an alternating current of frequency f . The solution to this problem is obtained from Maxw-
ell’s equations, where the time-dependent terms are preserved. The current density has three
components in a cylindrical orthogonal coordinate system, but only the component along z is
non-zero, I = (0, 0, Iz). Assuming ν = 1/µ σ, the equation reduced to one component of the
Laplacian vector is written:

∂Iz
∂t

= −
1

r

∂

∂r

Å

ν r
∂Iz
∂r

ã

. (43)

For a temporal solution in the general case, equation (43) can be solved by separating the
time and space variables to give a solution of the form:

Iz(z, t) =
∞∑

n=1

[AnJ0(knr) +BnK0(knr)] exp{−k
2
n t}, (44)

where the families of constants (An, Bn, kn) are determined by the boundary conditions and the
initial condition. In the established periodic regime, it is possible to pose Iz(r, t) = ℜ{Iz(r)exp(jωt)}
and the solution is then:

Iz(r) = AJ0(kr) +BK0(kr), (45)

where A and B are complex constants to be determined from the average current to be imposed
to obtain a surface current at r = R equal to IM and the boundary condition at r = 0. In the
case of the cylindrical conductor, the solution is as follows:

Iz(r) = IM
J0(kr)

J0(kR)
, (46)
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The electromagnetic quantities 1/(ε µ) are replaced here by ν = dt c2t . Non-linear inertial
terms are not included in this presentation, but they exist even though they are not present in
Maxwell’s equations. This equation, deduced from the vector equation of the system (19), can
be solved in time or frequency space. The numerical solution of this problem is sought directly
from the discrete equation of motion (19) without any gauge condition, as it allows us to obtain
the solution of the problem, the current density v and the magnetic field ψ, while maintaining
the current field v at zero divergence ∇ · v = 0.

(a) (b)

Figure 3. (a) Magnetic field current lines for an unstructured 63 coarse mesh based on regular
triangles. (b) Reduced rms current density induced by an alternating electric current of frequency
f in a cylindrical conductor.

The simulation was carried out in the time regime, and the effective current density was
calculated over a large number of periods. The simulation parameters are ν = 1/(µ µ) = 10−2,
f = 1000, R = 10−2 and dt = 10−6. For these values, the penetration depth is δ = 1.78 10−3 m.
No quantitative comparison has been made, but convergence in time and space should be of order
two, as for all other simulations performed with this formulation. Simulations can be carried out
in 1D, in (r, z), 2D in (r, θ), 3D in structured or unstructured meshes (polygonal, polyhedral)
whose cells have any number of flat faces. The vector potential field ψo(r) in Figure 3a represents
the induced magnetic field B at zero divergence in the (r, θ) plane of a cylindrical conductor.
The unstructured mesh of coarse regular triangles is used to represent the magnetic flux lines.
The rms current (velocity) in the conductor is associated with the mean magnetic field ψo; the
equation corresponding to the steady state is written:

∇× (ψo − ν ∇× v) = 0. (47)

Figure 3b shows the skin effect, the non-uniform distribution of current density for a moderate-
frequency alternating current.

D - Solenoid coil

The N turns of a cylindrical coil of axis z, radius R and length L are traversed by a current
of intensity I creating a magnetic field H whose component on θ depends on the variables (r, z).
The aim is to find the magnetic field and the electric field from the system of equations (19) in
the framework of unified variables transposing the magnetic field H into a vector potential ψ
and the electric field defined by the electric potential e transposed into a scalar potential φ.
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The current in the coil is represented by a constant source term Sb on a rectangle in the plane
(r, z) of length L = 0.1 and area A = 10−3. The imposed source term is equal to Sb = 103 ez
which enables us to calculate a parameter called δ from the current intensity and the number
of turns of the coil, i.e. δ = N I/2 L = 125. This value is associated with the value of the
magnetic field linearly dependent on r created in the coil of mean radius R = 0.025. Figure 4
shows the axisymmetric solution of the component on θ of the magnetic field ψ(r, z) and the
electric potential φ(r, z) around the coil. The boundaries of the domain have been chosen far
enough from the coil to obtain a coil-independent solution.

Figure 4. Cylindrical electromagnet coil represented in the (r, z) plane orthogonal to the unit
vector n such that n = t × m. The electric field E is mainly oriented along m, the magnetic
field B (ψ) along n and the current density j (v) along t.

The solution converges in a few iterations to obtain a current field v with zero divergence
at machine accuracy. At all points, the orthogonality of the electric and magnetic flux lines
is verified. As expected, in the coil, the magnetic field is practically uniform along z and the
electric potential varies linearly; to a first approximation, their evolutions can be written as:





φo(z) = −δ z,

ψ(r) = ν ∇× v =
δ

2
r eθ.

(48a)

(48b)

Throughout the domain, the stationary solution (φ,ψ) depends on (r, z). It satisfies the
following equation:

−∇φo −∇⊗ (ν ∇× v) = 0, (49)

and the solution obtained by the formalism presented is, once transposed, identical to that of the
classical equations of electromagnetism. However, several fundamental conceptual differences
appear as soon as the equations are derived. The case presented or similar cases are generally
associated with the Coulomb gauge ∇ ·A = 0 where A is the potential vector of the magnetic
field. Here, the constraint ∇ · v = 0 is not strictly guaranteed, the order of magnitude of ∇ · v
depends on the celerity of the wave cl; even if cl = c0 the celerity of light in vacuum, the constraint
is not imposed a priori but obtained in the course of the resolution. Similarly, the generalised
magnetic field ψo = ν ∇ × v is in fact of zero divergence since ν is a constant on each facet of
the primitive geometric topology but here it is the vector potential of the acceleration. All the
non-linear terms in the equation of motion have been retained in the solution, even though they
are negligible in the proposed test case. Finally, the solution of an electromagnetism problem in
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the discrete context is always represented by the gradient of a potential φo and the dual curl of
a vector potential ψo, two orthogonal fields on the whole geometric topology.

E - A case of electromagnetic levitation

The selected test problem was the subject of a code validation benchmark in 2008, based
on experiments by Kurz et al. dating from 1996 [35, 36]. An aluminum cylinder defined by the
domain Ωc with conductivity σ = 3.4107Sm−1 and mass m = 0.107kg is levitated by two coaxial
cylindrical coils; the electrodynamic levitation device is shown in Figure 5a. The inner coil has
N = 960 turns and the outer coil N = 576 turns; a sinusoidal current flows through them in the
opposite direction I(t) = I0 sin(2πfct) with I0 = 20 A and fc = 50Hz. The source term in the
turns is given by Sb = ±N/A I(t) where A is the cross-sectional area of each coil in the (r, z)
plane. The plate is positioned at z = 3.8 10−3m at the initial instant. The simulation is carried
out on a Ω domain large enough to avoid perturbations due to boundary conditions; these are
of the homogeneous Neuman type on velocity. The mesh is composed of 8 104 quadrangles to
represent the (r, z) plane in axisymmetric cylindrical coordinates. The time step is that of the
discrete model dt = 10−4s and the simulation represents a total time of 1.8 s.

Several strategies are possible for modeling the phenomena, from direct monolithic simulation
coupling all the electromagnetic and mechanical equations, to more or less partial decoupling of
these equations. First of all, it should be noted that the frequency of the current fc = 50 Hz
is much higher than that of the mechanical oscillations generated by the competition between
gravitational acceleration and acceleration due to electrodynamic effects. It is then possible to
decouple electromagnetism from mechanical actions by averaging velocity and scalar and vector
potentials over a sufficient number of periods. The commonly accepted assumption is that the
induced magnetic field is unaffected by mechanical oscillations. The filtered potentials φo and
ψo will then be used to calculate the upward acceleration generated by the alternating current
in the coils. The unsteady equations (19), including the non-linear inertial terms, are integrated
in time. Figure 5b shows the mean scalar potential field φo(r, z) for a coil-plate distance equal
to z = 1.1 10−3m. The decreasing potential values with z in the plate region clearly show that
the greater the height z, the weaker the force exerted.

z

0 

R = 65

41 46.5

28 1552

3

B B21

(a) (b)

Figure 5. Levitation of a cylindrical plate; (a) electrodynamic levitation device with dimensions
in mm; (b) mean scalar potential φo(r, z).

The mechanical force exerted by the magnetic field in the plate is classically expressed as
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the integral over Ωc of the vector product j × B. In discrete mechanics, this vector product
corresponds to one of the non-linear terms in the equation of motion ∇ ⊗ (|v|2/2 n), which is
also an acceleration. These non-linear effects are reflected in the vector potential ψo but also in
the scalar potential φo. The electromagnetic acceleration on the plate in (r, θ, z) coordinates can
therefore be calculated from the −∇φo acceleration:

hm(z) = −
1

[Ωc]

ˆ

Ωc

∇φo dv. (50)

Given the mean field φo(r, z) calculated above, we see that hm(z) decreases as the distance
between the coils and the plate increases; to first order, its variation can be estimated by the
law h(z) = −1.7 103 z + 29.2. The acceleration of gravity is equal to g = −9.81 ez. If v is
the vertical velocity of the levitating cylindrical plate, we can calculate its evolution over time
using the fundamental law of mechanics in terms of accelerations dv/dt = hm(z) − g with
dz/dt = v. In this case, the vertical plate position solution obtained with a second-order time
scheme oscillates indefinitely around its equilibrium position equal to z = 11.4 10−3 m with a
frequency of f = 6.5 Hz. Induced second-order electromagnetic or mechanical effects may be
responsible for the reduced amplitude of experimentally observed oscillations [35, 36, 37]. The
geometric configuration of the electrodynamic levitation device shows the proximity of the first
coil to the plate; the average acceleration during the first cycle is of the order of magnitude of
v ≈ 0.14ms−1 but an acceleration of the order of magnitude of (2πf)2, i.e. nearly 150 times that
of gravity. The damping effects are probably due to positive and negative pressure variations
between the plate and the coils.

To clarify the influence of air flows on the levitating plate’s motion over time, we need to
solve the equation of motion, assuming that the coils are solid obstacles and that the plate moves
in a reciprocating motion. The solution in air is described by the equation (19) where V is the
fluid velocity, φo = p/ρ is the scalar potential where p is the pressure and ρ the density, ν = µ/ρ
is the kinematic viscosity; the celerity cl here is that of sound in air. The equation becomes:

∂V

∂t
+∇

Å

|V|2

2

ã

−∇⊗

Å

|V|2

2
n

ã

= −∇
(
φo − dt c2l ∇ ·V

)
−∇⊗ (ν ∇×V) . (51)

The potential field φo (the pressure) in a limited area around the plate is given in Figure 6
for a time t0 = 0.04 s for which the plate is located at a height of z = 11 10−3 m. From the
instantaneous solution, it is possible to estimate the pressure difference generated by the rise of
the plate at an imposed velocity of V = 0.05m s−1 for air considered as a compressible perfect
gas of celerity cl ≈ 340m s−1.

Figure 6. Levitation of an aluminium plate; instantaneous pressure field at time t = t0+810−5s
in the vicinity of the plate as it moves upwards. The mean difference on either side of the plate
is equal to ∆φo = [−35, 15] or ∆p = [−41, 18], about 50 Pa.
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The time τ = 810−5 s allows the wave to propagate beyond the distance separating the plate
from the first coil. Coherent phenomena are observed where the pressure is higher on the upper
part of the plate but above all there is a significant depression between the two elements. From
the mass m = 0.107 kg of the plate and its surface, it is possible to calculate the instantaneous
negative acceleration due to the pressure difference ∆p, i.e. γp ≈ 18m s−2. Compared with the
electromagnetic and gravitational accelerations, the acceleration due to the pressure difference is
not negligible. The coupling between the plate and the internal coil therefore acts as a damper:
when the plate rises, the coil exerts a negative acceleration and when it falls, an overpressure
induces a positive acceleration. Although they represent only a small part of this contribution,
viscous movements produce dissipation transformed into heat. As the velocities considered are
low, these effects depend, to a first approximation, linearly on the velocity of the plate v. In order
to model these phenomena, the assumption of linearity is adopted: damping is described by a
constant η. The oscillator is therefore composed of the accelerations due to the electromagnetic
fields, gravity and damping in the form:





dv

dt
= hm − g − η v,

dz

dt
= v.

(52a)

(52b)

In the absence of a complete simulation of the mechanical and electromagnetic effects, the
constant η was chosen to best represent the decay of the oscillations; only the frequency f =
6.5Hz was calculated from the electromagnetic simulation. Figure 7 compares the model results
with those obtained experimentally [35, 36].

Figure 7. Levitation of an aluminum plate; measured height (solid line) [35, 36] compared with
calculated height (dotted line)

The results of the simulations carried out using the proposed physical model are consistent
with those in the literature, for example [37]. This analysis allows us to understand the role of
unsteady compressible air flows around the levitating plate, but it is only qualitative. Fluid-
structure interactions coupled to electromagnetism can be treated monolithically by considering
that the electromagnetic and mechanical equations are the same. However, the differences in
orders of magnitude between the different frequencies of the problem make this approach more
difficult to implement and take us out of the context of validating the physical model presented.
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