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Abstract

The completeness of the Navier-Stokes equations is addressed using two examples, a simple rotational
motion and the turbulent Taylor-Green vortex; in both cases the solutions are not physical. The main
artefacts and paradoxes of the Navier-Stokes equations are intrinsic to the notion of a continuous medium
and to the representation of the velocity field in three-dimensional space in terms of components. The
main error is inherent in the form of the inertia of these equations, more precisely in the Lamb vector,
which induces the existence of fictitious forces, the Coriolis and centrifugal forces. In the presence of
strong rotational effects, as in turbulence, the solutions of the Navier-Stokes equations are incorrect. On
the other hand, the discrete law of motion, considered as an alternative to the Navier-Stokes equations
[7], makes it possible to find the vast majority of solutions of the classical formalism, but excludes from
the outset non-physical solutions. The inertia is represented as the sum of two contributions, a first
curl-free component and a second component divergence-free, a Helmholtz-Hodge decomposition. The
main difference between the two approaches is the abandonment of the concepts of classical mechanics,
where the global frame of reference is replaced by Maxwell’s local frame of reference. Rigid rotation
thus becomes inertial motion in the same way as uniform translational motion in the Galilean frame
of reference. Taylor-Green turbulent flow, the only interesting case where the two solutions diverge, is
reinterpreted in the light of the conclusions drawn from the in-depth analysis of inertial effects.
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1. Introduction

The main attraction of a theory or formulation lies in its logical completeness. If a physically
admissible solution challenges that theory, the whole edifice is weakened. To legitimately chal-
lenge the existing model, we need to explain the underlying reasons for the discrepancy between
the model and the observations. The reconstruction of a more robust edifice must solve the
problem without altering the properties of classical theory.

The Navier-Stokes equations are representative of the vast majority of physical observations
and rightly constitute the standard model accepted by everyone. It is derived from the funda-
mental law of dynamics, Newton’s second law. This law is based on the notion of a continuous
medium in which all quantities are reduced to a single point in a three-dimensional Galilean
frame of reference called R

3. These concepts are themselves derived from the Weak Equivalence
Principle (WEP) [44], where the mass associated with gravitational acceleration is equal to the
mass associated with inertia. The theory of special and general relativity does not question these
basic concepts, but introduces Lorentz invariance, which replaces Galilean invariance when the
velocity is close to the celerity of light [14].

Discrete mechanics [7] presents itself as an alternative to the Navier-Stokes equations based
on very different concepts, (i) mass is removed from the WEP by considering acceleration to
be an absolute quantity, (ii) the Galilean frame of reference R is replaced by a local frame of
reference called Maxwell’s frame of reference M, (iii) the concepts of force, momentum and energy
are also abandoned, and (iv) the derivation of the law of motion is based on the conservation
of acceleration, energy per unit of mass and length. The analytical solutions and the results of

1



the simulations carried out with this new formulation are identical to those of the Navier-Stokes
equations for a wide range of flows, compressible or incompressible, two-phase [5, 8], and so on.

The only issue addressed here is the potential discrepancy between the discrete formulation
and the Navier-Stokes equations, which is strictly due to the physical model and not to the
associated methodologies. At present, the only discrepancy observed concerns the turbulent
Taylor-Green flow at a Reynolds number of Re = 1600 [9], where the kinetic energy increases
from the first instants. It is not easy to conclude which of the two models is correct, since the
velocity fields evolve very closely with time and the overall energy decay obeys the classical law.
In the many other simulations carried out, the solutions are identical, as are the many analytical
solutions. The originality of this analysis lies (i) in the presentation of a unique and simple
solution to the Navier-Stokes equations, (ii) in the physical and theoretical foundations of the
discrepancies observed for the Taylor-Green vortex, and (iii) in the robust resolution of these
problems using the discrete model.

The theoretical solution at the origin of the disagreement between the two models corresponds
to the superposition of a radial source flow and a rigid rotating flow at constant angular velocity;
the solution obtained is that of a steady flow of an inviscid fluid, where the spatial evolutions are
essentially due to the inertial terms; the result is the same for a flow where the viscous term is
described by a linear term. On the other hand, the inertial terms are non-linear and one of the
main differences between the two models is their different form. In discrete mechanics, the dual
contour of the inertial potential replaces the Lamb vector of classical mechanics; the former has
zero divergence, while the nature of the latter is indeterminate. This major change is due not only
to the Navier-Stokes equations, but to continuum mechanics itself. The essential consequence
concerns the inertial or non-inertial nature of uniform rotational motion. In classical mechanics
and in the theory of relativity, rotational motion at constant angular velocity is considered to be
accelerated, i.e. non-inertial, whereas in discrete mechanics this motion is inertial.

The final discussion focuses on the observed inconsistency and analyses its causes in detail.
In fact, the inconsistency of the simple solution reveals a complexity that goes far beyond the
Navier-Stokes equations; it concerns the concept of inertia and its interpretation in a classical
global frame of reference. The meaning of Newton’s second law, which translates the conservation
of momentum, can be called into question by abandoning the notion of mass, which is nevertheless
present in relativity theory and in physics as a whole. Its equivalence to energy per unit of mass
is sufficient to derive a kinematic law of motion.

The alternative to the Navier-Stokes equations [7] presents the main objections to the stan-
dard model of fluid mechanics. Most of them do not question its legitimacy in representing many
fluid flow problems of all kinds. Some of these objections are covered by artefact. For example,
the Navier-Stokes vector equation does not conserve mass by itself, but the addition of a special
mass conservation equation allows this constraint to be maintained.

The aim of this article is to demonstrate the non-exhaustiveness of the Navier-Stokes model.
This demonstration is based on a simple example which shows that a flow associated with a
source and a uniform rotation leads to an inconsistency. The reasons for this inconsistency are
examined in depth. The only known discrepancy between the Navier-Stokes equations and the
discrete model is a turbulent flow, the Taylor-Green vortex at a Reynolds number of Re = 1600,
which is used to explain the discrepancy in the light of the simple result described above.

2. Discrete mechanics framework

The discrete model has already been described in previous papers [5, 6, 7] but, given its
non-standard nature, the main concepts of its derivation are briefly outlined.

2.1. Maxwell’s local frame of reference
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One of the cornerstones of discrete mechanics is the abandonment of the Galilean or inertial
frame of reference of classical mechanics. The description of the cosmos from a global frame of
reference is forgotten in favour of a quasi-local and quasi-instantaneous vision, where space is
limited to what can be perceived over a limited period of time. Predicting a distant event is
illusory, and any change of frame of reference is uncertain, so the notion of a change of frame
of reference can be abandoned. It is reasonable to describe the evolution of a physical system
over a period of time dt and a length dh, called the discrete horizon, these two quantities being
linked by the celerity of the wave dh = c dt. The extension to a three-dimensional real domain
must therefore be made from cause to effect.

Maxwell’s brilliant idea [26] in 1865 is a means of reconstructing a local frame of reference
which will make it possible to construct a new approach to mechanics. The Figure 1 shows an
electrical conductor Γ of length dh = [a, b], where a and b are the vertices of this rectilinear
structure, called primal; this segment is oriented along the unit vector t. The dual contour ∆
oriented along n surrounds the segment Γ so that the two unit vectors are orthogonal, t · n = 0.
These two nested geometric structures form Maxwell’s local frame of reference, M.

Figure 1: Maxwell local frame of reference: a straight segment Γ of length dh = [a, b] oriented along the unit vector
t forms the primal structure. The dual contour ∆ positively oriented by n is such that t · n = 0. Acceleration γ
and velocity v are vectors carried by the Γ oriented segment; scalar potential φ is assigned to its ends and vector
potential ψ is fixed on the ∆ contour.

A variable electric current flowing on Γ produces an induced current on ∆. This is the
result of Maxwell’s unification of the laws of magnetism and electrodynamics established by his
predecessors into a dynamic vision [26]. This model is used here to derive a mechanical equation
as an alternative to Newton’s fundamental law of mechanics. Maxwell’s local frame of reference,
shown in Figure 1, is a radical change from the point of view of the perception of space; the
description of distant events is inaccessible by changing the frame of reference, interactions take
place from cause to effect. If is the unit vector defined by the expression m = t × n, then
Maxwell’s local frame of reference (t,n,m) replaces the global frame of reference (ex, ey, ez) of
classical mechanics.

The acceleration γ and the velocity v are discrete quantities defined on the segment Γ; they
are both components of spatial vectors, the knowledge of which is not required, and scalars
associated with the segment oriented by the unit vector t. The scalars, such as the scalar
potential φ, are located at the vertices a and b of the original structure, and the pseudo-vectors,
such as the vector potential ψ, are carried by the dual contour ∆, oriented positively by the
unit vector n. All local reference frames of Maxwell are assembled by their common vertices to
tessellate the physical domain under consideration. By locating the variables in this reference
frame, we can eliminate any interpolation in the derivation of the law of discrete motion. To
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distinguish the discrete velocity v from the velocity vector of the space R
3(x, y, z) of classical

continuum mechanics, the latter is denoted V.
The information is transferred between the two geometric structures using four discrete op-

erators, (i) the discrete divergence of the velocity ∇·v associated with the vertices of the primal
structure, obtained by summing the fluxes entering the dual volume, (ii) the primal curl of the
velocity ∇× v, calculated from the circulation on a contour formed by coplanar segments, (iii)
the gradient of the scalar potential ∇φ = (φb − φa)/dh, which is the restriction to the segment
Γ of the gradient vector of space, and (iv) the dual curl of the vector potential ∇ ⊗ ψ, also
computed by Stokes’ theorem on the dual contour ∆. The operator ∇⊗ denoting the dual curl
is not the tensor product of classical mechanics; any confusion is avoided because the discrete
formulation has no tensors of order greater than or equal to two and the vectors themselves
are scalars associated with oriented segments. Note that the primal curl ∇ × v has a double
representation, that of a scalar ω = ∇ × v · n = ω · n located at the barycentre of the primal
facet and that of a vector ω orthogonal to it. The geometric structures have several remarkable
properties that mimic those of the continuous medium, including the identities ∇ · ∇ ⊗ ψ = 0
and ∇×∇φ = 0.

2.2. Generic discrete equation of motion

The exegesis of the Principia [30] by specialists in the history of science highlights the status
of external force attributed by I. Newton to the force of inertia; the latter must then have a cause,
a real source in the context of absolute space. For Newton, the inertia of a mass and the force of
inertia are identical. Without using the term acceleration, he introduced the term modification
of the state of rest or uniform rectilinear velocity. Ernst Mach, for his part, formulated another
version of this concept: the inertia of a mass would be all the other masses present in the
universe. In fact, since Galileo, the universal law of falling bodies has closely linked inertial mass
to gravitational mass - the weak equivalence principle (WEP). The theory of relativity does not
change the meaning of inertia; mass, momentum and force are all representations that tend to
federate the two abstractions. Nearly five centuries after Galileo, the notion of mass remains
amalgamated with the notion of inertia.

Discrete mechanics breaks with this view and finally abandons the notion of mass to describe
inertia in a new law of motion; from this perspective, inertia becomes a local concept, intrinsic
to motion. In the absence of motion, the concept of inertia itself does not exist. Similarly, for
uniform rectilinear motion and for rigid rotational motion, inertia is zero; in the other cases,
motion is accelerated. It should be noted that, contrary to the definition given in classical
mechanics or in the theory of relativity, uniform rotational motion is not accelerated [6]. In this
context, inertia has nothing to do with mass; it is the local mean curvature of Bernoulli’s inertial
potential, φi = |v|2/2. The example of the photon deflected by the gravitational attraction of the
Sun or black holes shows that it has inertia even when its mass is zero. The spatial description
of inertia is strictly contained in the Maxwell frame of reference.

The new interpretation of WEP leads to the fundamental law of kinematics γ = h, the
intrinsic acceleration of a particle with or without mass or of a material medium is equal to the
sum of the accelerations applied to it. The law of discrete motion derived earlier [7] is































dv

dt
= −∇

(

φo − c2l dt∇ · v
)

+ ∇⊗
(

ψo − c2t dt∇× v
)

+ hs,

αl φ
o − c2l dt∇ · (v − vo) 7−→ φo,

αt ψ
o − c2t dt∇× (v − vo) 7−→ ψo,

(1)
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where hs = −∇φs +∇⊗ψs is a generic source term, also formulated in a two-term Helmholtz-
Hodge decomposition. The celerities of the longitudinal waves cl and the transverse waves ct are
specific properties of these waves in the considered medium. The quantities αl and αt between
0 and 1 are the restitution factors of the longitudinal and transverse waves respectively and are
related to the absorption coefficients of these waves. When these factors are equal to one, the
dissipation is zero and the total energy is conserved.

The properties of this discrete law of motion, established earlier, are based in part on its
form, γ = −∇φ + ∇ ⊗ ψ; the intrinsic acceleration is written as a two-term Helmholtz-Hodge
decomposition, the first curl-free and the second divergence-free. Despite its major differences
from the Navier-Stokes equations, it can be used to find solutions to the latter, with the exception
of the two examples presented here.

2.3. A local law without limits

The discrete law of motion (2) is a strong local formulation without any interaction a priori
with the boundary conditions. The law of motion (1) is not necessarily related to the boundary
conditions as long as the longitudinal and transverse waves do not reach the limits of the global
primal structure constituted by the set of interconnected Maxwell reference frames. If this is the
case, or if we are looking for a stationary solution, it is then necessary to set certain constraints. In
discrete mechanics, these constraints differ significantly from those applied to define the boundary
conditions associated with the Navier-Stokes equations. As the physical model is built entirely
on the local Maxwell frame of reference, the constraints must be applied locally. They are of
two types only, (i) a flow injected on the vertices of the primal structure and (ii) a shear stress
imposed on the segment Γ. The value of the flow q is a quantity expressed in m2 s−2, an energy
per unit mass that can be related to a flow rate; the shear stress r is, in the same way, an energy
per unit mass. The flow rate can be associated with a velocity v0 to evaluate the parameter
q = dt c2l ∇·v0 in a form equivalent to the compressive energy term. Similarly, the shear stress is
expressed from the kinematic viscosity, r = ν ∇ · v0. The corresponding accelerations −∇q and
∇ ⊗ r are projected onto the segment Γ as intrinsic acceleration γ and velocity v. A Dirichlet
condition on the velocity v = v0 can be imposed directly on a segment Γ even if this procedure
is not in accordance with the spirit of the formulation ; indeed, the velocity is a relative quantity
which can only be deduced from its value at the preceding instant, v = vo + γ dt, it is therefore
the acceleration which must be imposed. The law of motion incorporating these conditions is:

dv

dt
= −∇

(

φo − c2l dt∇ · v + q
)

+ ∇⊗
(

ψo − c2t dt∇× v + r
)

. (2)

The parameters q and r are applied respectively to each vertex and to each segment within
the physical domain or to each element constituting the boundaries of the latter. These two
quantities are sufficient to reproduce any type of boundary conditions usually applied when
solving the Navier-Stokes equations. The partial derivatives in space describing the boundary
conditions are replaced by discrete operators consistent with the formulation of the law of motion.

Certain notions of mathematical analysis to establish the properties of the Navier-Stokes
equations are no longer necessary, for example that of considering the decay of a solution to
infinity. The intrinsic hyperbolic nature of the law of motion (1) rules out any possibility of
reaching infinity in a finite time. Classical variational formulations aim to replace the Navier-
Stokes equation by an equivalent formulation, obtained by integrating the equation multiplied
by any test function. It is then necessary to integrate by parts, which gives rise to boundary
conditions. These boundary terms are then eliminated by the assumed regularity of the desired
solution or by ad hoc boundary conditions.

2.4. On the properties of Lamb’s vector
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The inertia term of the Navier-Stokes equations, K = V·∇V, is strictly equal to the rotational
form K = ∇(|V|2/2) −V ×∇ ×V where the latter term is none other than the Lamb vector,
L = −V×ω with ω = ∇×V. Applying the divergence and primal curl operators to the inertia
vector K reveals its specific properties,







∇ ·K = V · ∇ (∇ ·V) + (∇ ·V)2 − 2 I2,

∇×K = V · ∇ (∇×V)−∇×V · ∇V,

(3)

where V · ∇δ and V · ∇ω are transport terms for the divergence δ = ∇ ·V and the vortex. The
term I2 is the second invariant of the tensor ∇V a priori non-zero, including for incompressible
flow. The additional terms (∇ ·V)2, −2 I2 and ω · ∇V, mathematically exact whatever the
classical formulation of inertia, have an uncertain physical significance. The physical analysis of
the divergence of the Lamb vector is already a topic addressed in the literature [20, 7] but its
curl is just as instructive.

Let’s take the expression of Stokes’ theorem in the framework of classical mechanics,

ˆ

∂S
V · t dl =

ˆ

S

∇×V · n ds, (4)

where t is positively oriented according to the choice of orientation of the normal n to a facet of
the surface S and where ∂S is its edge (Figure 2).

Figure 2: Stokes’ theorem applied to a surface S bounded by the edge ∂S; the surface is composed of planar facets
s oriented by the normal n while each segment of the surface and the edge are oriented along the unit vector t.

If the approach adopted is that of discrete mechanics, the physical meaning given to Stokes’
Theorem (4) persists as long as the edge length and the surface S are themselves significant.
These quantities can be as small as necessary, but in no case can they be reduced to a point.
Establishing theorems on surfaces or volumes, as in classical mechanics, to extrapolate local
laws is a difficult process to master, since the notion of orientation is first ignored and then
reintroduced by the need to use a three-dimensional orthonormal frame of reference. In the
present case, the reduction of the length of the edges and of the surface of each facet of s leads,
to the nearest second order, to a velocity defined in a plane of this facet; by extension, considering
all facets, the velocity of V is defined only on the surface of S and not in the space of R3; this
velocity is the restriction of the space velocity on S. Thus the operator ∇×V makes no physical
sense when defined per point in the context of the continuous medium concept; whatever the
approach adopted and whatever the dimension of space, this operator must be defined for a fixed
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surface S. The application of Stokes’ theorem then depends on defining the surface velocity V

such that V · n on each facet s of the surface S.
Let’s apply the curl operator to the Lamb vector, −∇× (V × ω):

∇× (V × ω) = ω · ∇V − ω ∇ ·V −V · ∇ω +V∇ · ω. (5)

This expression (5) can be simplified by considering (i) that the flow is incompressible ∇·V =
0, (ii) that the vortex divergence is zero ∇ · ω = 0, that is,

∇×L = −∇× (V × ω) = ω · ∇V. (6)

The Navier-Stokes equation for incompressible flow with constant viscosity becomes:

∂ω

∂t
+V · ∇ω = ω · ∇V + ν ∇2ω, (7)

but in two-dimensional space the velocity gradient is a vector defined in the plane and ω·∇V = 0.
Applying the curl operator to the components of the Navier-Stokes equations reveals a significant
difference between two- and three-dimensional motion, but if we accept that the curl operator
is associated with a single surface, the term ω · ∇V is always zero. This paradox is resolved by
considering that the velocity vector V and its gradient ∇V are defined by each plane surface
and that its curl operator is orthogonal to it. Under these conditions, Lamb’s vector is a plane
vector because the vector product V × ω is orthogonal to the surface s. The rotational form of
the equation reduces to

dω

dt
= ν ∇2ω, (8)

an advection-diffusion equation, whatever the spatial dimension of the problem posed.
The notion of a local rotation associated with a point has no physical meaning; it’s an artefact

of the concept of a continuous medium. From a practical point of view, calculating the three
components of the curl of a vector from its partial derivatives leads to its evaluation in terms
of averages that depend on the position of the variables on the geometric structures. In the
general case, Lamb’s vector, L, is neither divergence-free nor curl-free, even for a divergence-
free velocity field, and is neither a gradient field nor a solenoidal field. A class of zero-inertia
problems V · ∇V = 0, e.g. Laminar channel flow, Poiseuille plane flow, leads us to define the
Lamb vector as a gradient field ∇(|V|2/2) = V × ∇ × V; this vector is orthogonal to both
the planar and axial velocity and is therefore equal and opposite to the velocity gradient. This
vector equality is ensured for each component of the R

3 coordinate system. The way in which
the inertia term becomes non-zero in laminar flow is undoubtedly related to the balance between
these two terms and is one of the keys to the loss of flow stability. The indeterminacy of the
nature of the Lamb vector makes the physical significance of this term for its interpretation in
general, and for turbulence in particular, more uncertain.

Another way of describing inertia is proposed by discrete mechanics [4], where the concept
is translated into a Helmholtz-Hodge decomposition of the inertial potential. In this formalism
there is no distinction between two-dimensional and three-dimensional motion: the law of motion
is spatially invariant.

2.5. Inertia as a mean curvature of Bernoulli potential

In discrete mechanics, the notion of curvature must be redefined by considering the planar
facet s bounded by the partial contour s of the Figure (2); vectors are scalars on segments Γ
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oriented by t and the facet is oriented by its normal n. Hence Stokes’ theorem,

ˆ

Γ

v dl =

ˆ

s

∇× v ds, (9)

becomes an identity vector. From the discrete point of view, the quantity v is constant on the
segment and ∇× v is also constant on the whole facet; this vector is carried by the unit vector
n. The dual curl operator applied to the potential vector ψ projects the result onto the segment
Γ,

ˆ

∆

∇⊗ψ ds =

ˆ

Γ

w dl, (10)

where v and w can thus benefit from the simple addition operation. This specific property elim-
inates the artefacts of classical mechanics based on approximations of the one-point derivation.

Let’s consider the separation of the kinetic energies into two components, the translational
kinetic energy, denoted Φk, and the rotational kinetic energy, denoted Ψk. These are the integrals
on the primal segment Γ defined by the local energies per unit mass φk and ψk,























Φk =

ˆ

Γ

∇φk dl =

ˆ

Γ

∇

Å

|v|2

2

ã

dl,

Ψk =

ˆ

Γ

∇⊗ψk dl =

ˆ

∆

∇⊗

Å

|v|2

2
n

ã

dl,

(11)

The global kinetic energy per unit mass is then the sum Φk +Ψk of the Maxwell reference frame
M shown in Figure 1. An essential feature of this model of conservation of kinetic energy is the
unique projection of the two energies of translation and rotation onto the Γ-segment, allowing
a simple addition. In fact, the conservation of kinetic energy can be expressed in terms of two
Bernoulli theorems, referred to here as the primal theorem and the dual theorem:



















φk +
|v|2

2
= cte along the Γ path,

ψk +
|v|2

2
n = cte along the ∆ path.

(12)

The mutual transformation of the kinetic energies φk and ψk is a complex process because
the operators associated with them, the gradient and the dual curl, are orthogonal; like the direct
and induced currents that Maxwell unified to establish the laws of electromagnetism, the two
kinetic energies can only be exchanged in the case of unsteady motion. Let’s consider the case
of rotational motion at constant angular velocity Ω = ω t so that the velocity is equal to ω r n
for a domain of surface D of circular contour ∆ and radius R. The kinetic energy of rotation is
carried by the segment Γ,

ˆ

Γ

|v|2

2
t dl = −

ˆ

D

∇⊗

Å

|v|2

2
n

ã

ds = π ω2 R3, (13)

where it is the dual curl ∇⊗ that projects the result onto the segment.
Another important aspect of the discrete formulation is the absence of mass. Whereas in

classical mechanics kinetic energy is expressed by a volume integration of ρ |V|2/2, in discrete
mechanics the local kinetic energy is expressed by ek = |V |2/2, an energy per unit mass. The
rotational energy, on the other hand, depends on the moment of inertia JΓ and not on the mass,
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and is written as Ek = JΓ ω
2/2. Moment of inertia is to rotational motion what mass is to

translational motion. By abandoning the concepts of mass and moment of inertia, it is possible
to combine translational and rotational energies and, equivalently, translational and angular
accelerations, the sum of which equals the intrinsic acceleration γ.

In discrete mechanics, inertia plays a very special role: it is completely integrated into the
other terms of the law of motion in the same form. For a velocity field v the material derivative
is written dv/dt = ∂v/∂t+ κ with

κ = ∇

Å

1

2
|v|2
ã

−∇⊗

Å

1

2
|v|2 n

ã

, (14)

where κ is defined by the inertial potential φi = |v|2/2. Its deeper meaning is related to the
spatial curvature of this potential, where the two orthogonal terms −∇φi + ∇ ⊗ (φi n) are
equivalent to those of the curvature of a surface in space [8]. Their values may add up, as
in the case of a sphere, or cancel out, as in the case of a minimal surface such as a catenoid.
In astrophysics, as in capillary effects, the energy minimisation that leads to a spherical drop
in equilibrium leads to quasi-spherical planets under the influence of gravity, although these
phenomena are completely dissociated. The specific form of inertia (14) corresponding to the
curvature of the Bernoulli potential does not depend on the reference frame chosen; whatever
the orientation of the segment Γ, the result on κ is the same. If the vector m is defined by
m = t × n, then the rotation of the reference frame (t,m) centred on the segment Γ around n

does not change the mean curvature κ, a result of differential geometry stated by Euler’s theorem
[16, 10]. The special properties associated with the mean curvature are as follows























∇ · κ = ∇2

Å

|v|2

2

ã

,

∇× κ = ∇2

Å

|v|2

2
n

ã

,

(15)

given the orthogonality relations of the discrete operators, which mimic those of the continuous
medium. Both terms of the expression (14) can be simultaneously zero, but some flows have a
mean curvature by compensation of two terms; this is the case of Couette flow or Poiseuille flow.

The inertia term in classical mechanics ∇(|V|2/2)−V×∇×V consists of a first term, that
of Bernoulli’s law, and a second term called Lamb’s vector L = −V×∇×V, which has a non-
zero divergence and generates fictitious non-physical forces, but which are necessary to ensure
mechanical equilibrium in a Galilean frame of reference. It is the local frame of reference M that
leads to the possibility of replacing the Lamb vector by a dual curl such that ∇ · (∇⊗ψi) = 0.

Noting δ = ∇ · v the divergence of velocity and ω = ∇ × v its primal curl, φi = |v|2/2
and ψi = |v|2/2 n the scalar and vector potentials of inertia and φo, the scalar potential of
acceleration and ψo = −ν ∇× v its vector potential, the applications of the divergence and curl
operators to the law of motion take the following forms:



















∇ · γ ≡
∂δ

∂t
+∇2φi = −∇2φo,

∇× γ ≡
∂ω

∂t
+∇2ψi = −∇2ψo.

(16)

The quantity δ is located on the vertices of the primal geometric structure and ω is both the
vortex vector and the vector carried by the normal to a facet ω = ω n with ω, a scalar located
at the barycentre of the facet. In this sense, the relations (16) are advection-diffusion transport
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equations for the divergence δ and the vortex ω.
These forms (16) must be used with great care, as they are not laws of motion. Application

of the operators transforms the discrete fundamental law of motion, eliminating contributions
that may be important in some cases. It should be noted that the application of the divergence
and primal curl operators to the law of motion gives them an equivalent role and a symmetry
that does not exist in classical mechanics. Indeed, the application of the divergence and primal
curl operators to the law of motion itself leads to different results from those obtained with the
Navier-Stokes equations.

Inertia (14) is the cornerstone of discrete mechanics, underpinning the global formalism of
the law of motion where each contribution participates in the orthogonal Helmholtz-Hodge de-
composition. The equation of motion then becomes

∂v

∂t
= −∇

Å

φo +
|v|2

2
− c2l dt∇ · v

ã

+ ∇⊗

Å

ψo +
|v|2

2
n− c2t dt∇× v

ã

, (17)

where scalar and vector potentials become Bernoulli potentials, φo
B = φo + φi and ψo

B = ψo +
φi n. Thus, the Lagrangian formulation (1) and the Eulerian form (17) are represented as a
two-term orthogonal Helmholtz-Hodge decomposition. The strict separation of solenoidal and
irrotational terms does not exist in classical mechanics; for example, the Navier-Stokes equations
are composed of terms that are neither divergence-free nor curl-free; moreover, this equation
is always accompanied by a mass conservation equation, whereas the equation (17) implicitly
ensures this conservation. In the case of a Newtonian viscous fluid, the vector potential ψo is
zero, as the accumulation of viscous stresses is no longer possible, and the grouping dt c2t is
replaced by the kinematic viscosity ν.

2.6. Inertia for superposition of two motions

Equation (17) is generic and applies to all physical phenomena covered by classical field
theory, including the motion of fluids and solids, and wave propagation of all kinds. In the
general case of couplings between different physical phenomena, the relative celerities of each of
these phenomena lead to additional non-linear terms for the inertia term. The analysis can be
performed for two velocities u and w, both associated with the same segment Γ; the nonlinear
term then takes the form,

(u±w)2 = |u|2 ± 2 u ·w + |w|2, (18)

where the scalar product u ·w is here a simple product carried by the same segment Γ. Noticing
that ∂(u+w)/∂t = ∂u/∂t+ ∂w/∂t, the material derivative becomes d(u+w)/dt = ∂u/∂t+κ
with

κ = ∇

Å

1

2
(u+w)2

ã

−∇⊗

Å

1

2
(u+w)2 n

ã

=







































∇

Å

1

2
|u|2
ã

−∇⊗

Å

1

2
|u|2 n

ã

+∇

Å

1

2
|w|2
ã

−∇⊗

Å

1

2
|w|2 n

ã

+∇ (u ·w)−∇⊗ (u ·w n) .

(19)

The inertia κ comprises three Helmholtz-Hodge decompositions, (i) that of the inertia asso-
ciated with the vector u, (ii) the same terms for the velocity w and (iii) the inertial terms of
the scalar product u ·w. The first two groups correspond to the inertial terms specific to each
component. Since the discrete velocities u and w are carried by the same segment Γ, the scalar
product is a simple product; however, if the velocities in space are orthogonal, the product of
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the components on the same segment is also zero.

2.7. Case of a uniform rotational motion

Let’s consider the case of a single motion defined by the components w = Ω × r = ω r eθ
where Ω is the constant rotation vector of the Oz axis, θ, the polar angle and r the distance
vector from the axis. The introduction of the velocity w into the law of discrete motion (1) is
as follows:

∂w

∂t
+∇

Å

|w|2

2

ã

−∇⊗

Å

|w|2

2
n

ã

= −∇
(

φo − c2l dt∇ ·w
)

+∇⊗ (ψo − ν ∇×w) . (20)

Calculating each term in this equation (20) leads to simplifications,



































∂w

∂t
= 0; ∇ ·w = 0,

∇

Å

|w|2

2

ã

−∇⊗

Å

|w|2

2
n

ã

= 0,

−∇⊗ (ν ∇×w) = 0,

(21)

where, in particular, inertia is zero by compensation. Thus, the sum of all terms is zero, including
the potential, φo = 0 since the divergence of w is zero, and the scalar potential ψo = 0 since
motion is inviscid.

This result is the basis for the extension of Galilean or inertial invariance to discrete mechanics
based on Maxwell’s local frame of reference. Rigid rotational motion is simply unobservable by
the law of motion. However, due to non-linearities, the interactions between uniform rotation w
and any other motion u are non-zero.

Subtracting equation (21) from equation (1) where v is replaced by u + w, the equation
remains:

du

dt
+∇ (u ·w)−∇⊗ (u ·w n) = −∇

(

φo − c2l dt∇ · u
)

+ ∇⊗ (ψo − ν ∇× u) . (22)

The equation (22) is composed of the classical terms of the law of generic motion (1) and two
non-linear terms based on the scalar product (u ·w). This term is also a simple product, since
u and w are carried by the same segment Γ. The quantity κ = ∇ (u ·w)−∇⊗ (u ·w n) is the
mean curvature of the scalar potential (u ·w). The curvature κ can be zero for two reasons, (i)
the scalar product u ·w = 0 is zero or, (ii) the two terms of the curvature are opposite. While
the first case is rarely encountered, the second can be observed in many flows of real practical
interest, such as Poiseuille flow. The laminar flow corresponding to the Poiseuille solution persists
as long as the Reynolds number is below a critical value Rec ≈ 2300, after which it becomes
unstable and then turbulent; the appearance of instabilities is strongly linked to the growth of
the non-linear terms and therefore to the curvature κ. Indeed, the other terms of the equation
of motion do not change fundamentally and, moreover, the Poiseuille solution is independent of
the viscosity ν and therefore of the Reynolds number; under certain conditions, it is possible to
maintain laminar flow well beyond Rec. The subcritical bifurcation of the solutions is probably
linked to the bmκ curvature, but this concomitance has not yet been established.

3. On a simple motion

The Navier-Stokes equations must be verified identically when a physically admissible solution
is injected into them. Similarly, if a physical solution is sought from the Navier-Stokes equations

11



by assigning physical assumptions and boundary conditions, it must respect these constraints
and be physically acceptable. Numerous textbooks [2, 41] describe the classical solutions of
the Navier-Stokes equations; they are all consistent and representative of reality. However,
completeness can only be achieved when no solution can fail the mathematical equation and the
underlying physical model. If an acceptable and experimentally feasible solution fails to satisfy
the equation, the whole edifice is weakened.

This section presents a motion composed of two superimposed solutions whose non-linear
interaction is not zero, a motion corresponding to a point source and a uniform rotation at
constant velocity. This motion can be realised experimentally in the form of a flow around a
cylinder of radius R1 rotating around its axis Oz. The volume of the fluid is limited by a cylinder
of radius R2 and the same axis. In steady mode, all the fluid is driven in a rigid rotation of angular
velocity Ω. At the same time, the same fluid is injected by the inner cylinder with a flow rate
D, while the outlet to the outer cylinder corresponds to free conditions. This motion is treated
as inviscid, but introducing the viscosity of the fluid would change absolutely nothing. Only
inertia governs the behaviour of the solution in terms of steady-state velocity and pressure. It is
of course possible to find the solution to this problem directly from the Navier-Stokes equations
and the boundary conditions, but this physical solution corresponds to the superposition of two
motions, those of a uniform rotational motion W and a radial motion U.

Let us therefore consider two incompressible stationary motions in a three-dimensional space
U and W associated with an orthonormal frame of reference R

3(r, θ, z). The sum of these two
motions is called V = U+W. The field U = a/r er corresponds to a radial flow with origin Oz
where a is a constant and W = Ω× r = ω r eθ is a rigid rotating flow around Oz of velocity of
rotation Ω. The first flow is accelerated and non-inertial and the second is also considered to be
non-inertial in the context of classical mechanics. The velocity field V thus defined is physically
admissible and corresponds to an inviscid flow. The two fields of which it is composed are
orthogonal, U ·W = 0 ; the field U has zero divergence and zero curl and W has zero divergence
and constant curl. The velocity field U can be studied in the context of potential holomorphic
functions representing irrotational perfect fluid flows from the function f(z) = D/2π Lnz where
D = 2 πa is the flow rate of a source centred at the origin and z = x+ i y, the complex variable.
The uniform motion W is not irrotational and cannot be studied using the same formalism. The
velocity field,

V(r) =
a

r
er + ω r eθ, (23)

can be used to calculate streamlines, which are plane spirals with decreasing pitch in a fixed
frame of reference. This motion is strictly axisymmetric and the velocity components do not
depend on the polar angle.

In discrete mechanics, the velocity is defined on each segment Γ of the primal structure; the
values assigned are equal to u = a/r er and w = ω r eθ.

3.1. With Navier-Stokes equations

This motion is perfectly admissible and can be carried out experimentally; it must be an
exact solution of the Navier-Stokes equations in a steady incompressible formulation. To check
this, we inject this field V into the Navier-Stokes equations; the only unknown factor remains
the pressure p(r, θ) in polar coordinates. The inertia contained in the derivative of the material
can be written in different ways:

V · ∇V = ∇

Å

|V|2

2

ã

−V ×∇×V, (24)

where the last term is the Lamb vector, which is neither a gradient nor a curl vector. It plays
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an important role in rotating flows, including turbulence, in the energy cascade of vortices. It
is the second form of inertia (24) that is used, but the conclusions are exactly the same as with
the first form. In particular, if the inertia is zero, the two terms of the second form are equal.

Since the motion is stationary, the acceleration γ in a fixed frame of reference is the material
derivative of the velocity V = a/ r er + ω r eθ is reduced to inertia,

γ = κ = ∇

Å

|V|2

2

ã

−V ×∇×V =

Å

−
a2

r3
− ω2 r

ã

er +
2 a ω

r
eθ, (25)

calculated from the two components of the Navier-Stokes equations, i.e. taking into account the
assumptions made,



















Vr
∂Vr

∂r
−

|Vθ|
2

r
=

Å

−
a2

r3
− ω2 r

ã

er,

Vr
∂Vθ

∂r
+

Vr Vθ

r
=

(a ω

r
+

a ω

r

)

eθ.

(26)

Given the incompressibility of motion, all that remains are the pressure gradients in the
second members of the Navier-Stokes equations:























ρ

Å

−
a2

r3
− ω2 r

ã

= −
∂p

∂r
⇒

p

ρ
= −

Å

a2

2 r2
−
ω2 r2

2

ã

+ f(θ),

ρ

Å

2 a ω

r

ã

= −
1

r

∂p

∂θ
⇒

p

ρ
= −2 a ω θ + g(r),

(27)

where successive integrations over r and θ can be used to calculate the functions f(θ) and g(r)
in order to obtain the pressure p(r, θ):

p

ρ
= −

a2

2 r2
+
ω2 r2

2
− 2 a ω θ + cte, (28)

where ρ is a constant.
The same calculation can be done in a rotating frame of reference R

′ where V
′ = W; noting

γ ′, the acceleration in the rotating frame of reference, we read the acceleration γ in the fixed
frame of reference:

γ = γ ′ + 2Ω×V
′ +Ω× (Ω× r) =

Å

−
a2

r3
− ω2 r

ã

er +
2 a ω

r
eθ, (29)

and the result for pressure (28) is of course identical. Note that the sum of the fictitious Coriolis
and centrifugal accelerations 2Ω×V

′ +Ω× (Ω× r) = 2 a ω/r eθ − ω
2 r er is non-zero even if

the two fields U and W are orthogonal. It is possible to calculate the Lamb vector separately,

−V ×∇×V = 2Ω×V
′ + 2Ω× (Ω× r) = 2Ω×

(

V
′ + (Ω× r)

)

= 2Ω×V, (30)

to find −V ×∇×V = −2 ω2 r er + 2 a ω/r eθ, a non-zero term.
The properties of this vector were stated by H. Lamb in 1895 [23] and it is used in many

problems in fluid mechanics. The application of the divergence and curl operators is of particular
interest, especially in turbulence [20]. By applying the divergence operator to the Lamb vector,
∇ · (−V×∇×V) = V · ∇×∇×V− |∇×V|2, These two terms, called bending and enstrophy
respectively, are thought to play an important role in turbulent rotational flows. In the case
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presented the divergence of the Navier-Stokes equations can be read,

∇ · (∇(|V|2/2)−V ×∇×V) = 2 a2/r4 − 2 ω2 = −∇2

Å

p

ρ

ã

, (31)

where the Laplacian of the second member gives the quantity p/ρ,

p

ρ
= −

a2

2 r2
+
ω2 r2

2
+ f(θ), (32)

such that f(θ) is a polynomial of order one; we naturally find the solution (28).
The application of the curl operator to the Navier-Stokes equations for an inviscid flow leads

to ∇× (∇(|V|2/2)−V×∇×V) +∇∇(p/ρ) = 0 or ∇× (−V×∇×V) = 0. The Lamb vector
L = −V×∇×V is not zero but its curl is zero and L can only be, for this example, the gradient
of a scalar potential L = ∇Φ with Φ = a2/r2 + 2 a ω θ to the nearest constant.

The expression of the pressure field (28) reveals a singularity: the pressure depends linearly
on the angle θ ; at each revolution, the pressure is incremented by the constant value −2 ρ a ω.
This is physically impossible because the field must be axisymmetric and periodic and satisfy
the condition p(r, θ + 2 π) = p(r, θ). Furthermore, the pressure increases as r2 when the radius
increases, which is physically impossible. These defects represent a real flaw in the representa-
tiveness of the Navier-Stokes equations, which do not satisfy the completeness requirement. The
reasons for this situation, discussed below, are deeply rooted in the continuum formalism.

3.2. In discrete mechanics

In discrete mechanics, the velocities are limited to the components of the segments of the
primal structure and are written as u = a/r er and w = ω r eθ where the unit vector t is
replaced by the unit vectors of the global frame of reference for greater clarity and above all to
facilitate comparison. In the case of the superposition of the two motions, the sum of the coupled
non-linear terms of the discrete formulation is zero, ∇ (u ·w)−∇⊗ (u ·w n) = 0. In fact, the
curvature of the inertial potential φi = |v|2/2 of the sum of the two contributions v is written:

κ = ∇

Å

|v|2

2

ã

−∇⊗

Å

|v|2

2
n

ã

=

Å

a2

r3
− ω2 r

ã

t−

Å

a2

r3
− ω2 r

ã

m = 0, (33)

each of the two terms is non-zero but the sum is zero. Whatever the orientations of the unit
vectors t and m, this result is the same because these orthogonal vectors form a basis of the
tangent plane of the potential φi. Under these conditions, the material derivatives of the local
fixed and moving reference frames are equal to:

dv

dt
≡

du

dt
= −

a2

r3
t, (34)

then t = er. The scalar potential of acceleration φo = p/ρ is equal to:

φo = −
a2

2 r2
+ cte, (35)

and the Bernoulli potential φo
B = φo + |u|2/2 = 0. The fact that the Bernoulli scalar potential,

an energy per unit mass, is equal to φo
B = 0 is perfectly legitimate because the motion defined

by the field v is already established and no energy is needed to maintain this motion over time,
it is inviscid.

Applying the divergence operator to the discrete equation of motion (22) immediately elim-
inates the dual curl terms and the contribution to the divergence of the scalar product u · w
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with w = ω r eθ of inertia is zero and all that remains is the contribution of the radial field u,
∇ · (∇(|u|2/2)−∇⊗ (|u|2/2 n)) = 2 a2/r4, i.e.

∇2
(

φo + |u|2/2
)

= ∇2φ0
B = 0. (36)

Similarly, the application of the primal curl operator to the equation (22) leads, given the
disappearance of the gradient of the scalar potential, to ∇ × (∇(|v|2/2) − ∇ ⊗ (|v|2/2 n)) =
∇× κ = 0.

A change of frame of reference, in the context of discrete mechanics, would not change the
result because the notion of a Galilean frame of reference for translational motions with constant
divergence has been extended to rotational motions with constant curl [6].

3.3. Comparison of solutions

Figure 3a shows, for the Navier-Stokes equations, the pressure field p(r)/ρ and the spiral
streamlines in a fixed frame of reference in the case where the two components U and W are
associated with the same axis.

(a) (b) (c)

Figure 3: Navier-Stokes equations: current lines corresponding to the velocity field V(r) = a/r er + ω reθ and
pressure eθ eθ and pressure field p(r) projected in a fixed Cartesian frame of reference R of classical mechanics,
(a) for aligned axes and (b) for a uniformly right-shifted axis of rotation Ω× (r− r0) (its centre is symbolised by
a white point). Discrete mechanics: (c) potential field φo and current lines of the field u(r) in the local frame of
reference of Maxwell.

Current lines describe spirals generated by the superposition of a uniform rotational motion
and a flow due to the injection of a fluid from a source located at the origin or by a fluid flow
on a circular contour with a fixed radius. The terms of inertia are responsible for the interaction
between the two motions. The use of a moving frame of reference linked to rotation would not
change much, apart from the direction of the helices observed with respect to the fixed frame of
reference. The pressure given by the expression (28) shows a discontinuity for θ = 0 or θ = 2 π
when the problem is necessarily axisymmetric, so this solution to the Navier-Stokes equations
is incorrect. Furthermore, the pressure increases in p ∝ r2 as the radius goes to infinity, which
makes no physical sense.

If the centre of rotation of the uniform rotational motion is shifted to a position r0, the
velocity field becomes Ω × (r− r0) and the current lines shown in Figure 3b are of course
modified compared to the previous case; the motion loses its axial symmetry and so does the
pressure. Physically, the change in the position of the centre of rotation of the motion is defined
by W = ω reθ should not change anything because the primal curl ∇×W = 2eθ ωn is constant
throughout space, including the origin and infinity. The fictitious Coriolis and centrifugal forces
allow a different description of motion because of the change in point of view, but are not
fundamentally different.
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In discrete mechanics, the potential field φ(r) and the current lines represented in Figure 3c
remain identical in a fixed or moving reference frame. In this case, the scalar product u ·w is
not zero but the sum κ = ∇ (u ·w)−∇⊗ (u ·w n) is effectively zero by compensation. In fact,
in discrete mechanics, the inertia κ represents the curvature of the inertial potential φi = |v|2/2.
As with the spatial curvature of an interface, the two vectors t and m = t×n are orthogonal and
rotating these two vectors with axes orthogonal to n does not change the local mean curvature
of the interface. Thus, whatever the vectors t and m and whatever the position of the centre
of rotation of the motion w, the mean curvature of the inertial potential is zero. For example,
this experiment involving the injection of a fluid into a cylindrical cavity in a space station in
geostationary orbit is not influenced by the distance separating it from the Earth. The potential
field φ(r) defined by the velocity component u(r) is axisymmetric and the current lines are radial
lines centred on the origin. Figure 3c illustrates the results recorded by an observer linked to the
experiment.

Noting that the global solution V contains the solution W of a rigid rotational flow, it is
possible to remove it a priori to eliminate the problem posed by the incoherence of the Navier-
Stokes equations relating to this velocity field. In practice, this separation is not possible in
more complex problems, such as turbulence. The discrete law of motion intrinsically eliminates
all uniform translation and rotation solutions and is not equivalent at all. The latter equation
only takes accelerated motion into account, which is an essential difference from classical theories.

The reasons for the disagreement between the result obtained from the Navier-Stokes equa-
tions on pressure (28) and from discrete mechanics (35) are given below. Note already the
inconsistency of the solution deduced from the Navier-Stokes equations where the pressure de-
pends on the polar angle θ whereas the problem is axially symmetric.

4. Taylor-Green vortex

The flow described in this section is much more complex, involving the decay of energy by a
vortex-scale cascade in a turbulent motion known as a Taylor-Green vortex; it is an emblematic
case used in turbulence physics and to validate simulation codes based on the Navier-Stokes
equations. Unlike the previous analytical case, the conclusions drawn from the comparison with
discrete mechanics are more difficult to interpret. However, apart from discretisation errors, all
the results obtained by different authors from the Navier-Stokes equations are identical and,
similarly, the solution obtained from discrete mechanics is perfectly convergent. If there are any
notable differences, they are due solely to the physical model adopted.

The case of the Taylor-Green vortex defined by the velocity field V = U(x, y, z) ex +
V (x, y, z) ey, the initial 3D Taylor-Green vortex in the domain L3 = [0, 2π]3:
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(37)

where v0 is a constant chosen here equal to unity. The equilibrium pressure field deduced from
the equation of motion is written as:

p =
ρ v20
16

Å

cos

Å

2 x

L

ã

+ cos

Å

2 y

L

ãã Å

cos

Å

2 z

L

ã

+ 2

ã

+ p0. (38)
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From this initial condition imposed for the solution of the Navier-Stokes equations with
periodic boundary conditions in the three directions of space, the observation of the velocity and
pressure fields successively shows the birth of large-scale structures which then lead to a decrease
in the scales of the turbulence due to the cascade of energy created by the finest structures. The
flow typology does not change much from a Reynolds number of Re = 1000, at least for the
largest vortex structures; a large number of articles, including [35, 3, 31, 11, 43, 13, 33, 34, 1, 32]
describe the results obtained from the point of view of the phenomenology of turbulence or
the numerical aspects linked to the resolution of the Navier-Stokes equations. Time integration
is performed over a time interval equal to T = [0, 20], sufficient to observe all the phases of
turbulence decay due to viscous effects. From the velocity and pressure fields, statistics are
calculated as a function of time, such as the mean turbulent kinetic energy Ek and the enstrophy
Ω. Figure 4 shows the result of the mean kinetic energy scaled by the unit value obtained as a
function of time for a Reynolds number of Re = 1600 for the Navier-Stokes (N.S.) model.

Figure 4: Taylor-Green vortex at Re = 1600; simulations provides the evolution of dimensionless values of kinetic
energy Ek for the Navier-Stokes model (N.S.) and for the discrete mechanics model (D.M.).

The kinetic energy decreases very slowly in the first instants, approximately until a time t ≈
5s, when the structures generated by the energy cascade are small enough to generate perceptible
viscous effects. This decay of Ek over time is observed by all authors without exception; the
kinetic energy eventually decreases exponentially beyond a time equal to t ≈ 15.

This case is taken up by the discrete mechanics model [9] with the same parameters. The
vortex structures observed differ very little from those obtained previously, but the evolution of
the energies, in particular the mean kinetic energy Ek calculated from those obtained on each
segment Γ of the primal geometric structure in Figure (1) (D.M. model) is very significantly
different. The kinetic energy first increases up to a time t = 4.5, then decreases slightly before
showing a change in the nature of the flow at tc = 5 s. Before this transition, the flow can be
considered inviscid, and the simulations in this case, ν = 0, show a behaviour very close to the
case Re = 1600. The change in nature at this time tc is concomitant with the appearance of a
very localised vortex bursting phenomenon in certain zones of the flow. Previously, for t < tc
the motions were similar to the vortex-stretching phenomenon where each vortex undergoes
elongation and possibly compression. For t > tc, interactions between vortices of different sizes
favour viscous dissipation and the kinetic energy decreases according to a linear law as a function
of time, then according to an exponential law for t > 15. All these phenomena are described in
detail in reference [9]. The energy spectrum Ek(k) as a function of the wavenumber is consistent
with Kolmogorov’s theory where the energy decreases with a slope equal to −5/3 in the inertial
equilibrium zone. These results are qualitatively confirmed for the temporal behaviour of a
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single filament; in particular, we find the stretching and bursting phases of the vortex in the
Taylor-Green case.

The evolution of the mean kinetic energy is linked to the way in which the statistics are
carried out. In classical mechanics, it is defined as the average of the quantity ρV|2/2 over the
physical domain Ω; considering the inviscid fluid, the Navier-Stokes equations multiplied scalar
by the velocity can be used to obtain its evolution over time:

d

dt

ˆ

Ω

ρ
|V|2

2
dv = −

ˆ

∂Ω
pV · n ds = 0, (39)

if the boundary conditions satisfy the condition V · n = 0 or if they are periodic. Thus, in the
absence of viscous effects, the mean kinetic energy should remain constant over time. This is
indeed what is observed in the many simulations based on these equations. It is therefore not
a result of post-processing but an essential feature of the physical model. It should be noted
that the boundary term disappears because of the weak formulation adopted. From a physical
point of view, this amounts to considering that the distant boundary conditions influence the
characteristics of the turbulence, which is essentially a local phenomenon.

In discrete mechanics, the kinetic energy is defined locally on each segment Γ of the primal
structure, ek = (v · v/2) t. The law of motion multiplied by the velocity v allows us to write:

d

dt

ˆ

Γ

|v|2

2
dl = −

ˆ

Γ

v · ∇φ dl, (40)

where v · v as well as v · ∇φ are defined on the same segment because v and ∇φ are themselves
associated with this support, they are scalars linked to the oriented segment. The integral to
the second member of the relation (40) has, except in special cases, no reason to be zero. The
mean value Ek(t) obtained over all the segments from the local kinetic energies ek is perfectly
identifiable as the kinetic energy of the flow, a non-conservative quantity. Only the total energy
characterised by the intrinsic acceleration γ is conserved, the kinetic and potential energies are
not a priori.

Figure 5: Energy spectrum as a function of the wave number Ek(k).

Equation (17) is a local law of conservation of acceleration, i.e. energy per unit mass and
length. The acceleration, velocity, gradient of scalar potential −∇φ and viscous term −∇⊗(ν∇×
v) are projected onto the segment Γ of Figure 1; the intrinsic acceleration becomes the simple
sum of the contributions relating to the scalar potential and viscosity. In the absence of viscous
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effects, Bernoulli’s theorem predicts, for a steady flow, that the pressure difference (potential)
between two points is equal to the difference in the quantity |v|2/2; this result applies between the
two vertices a and b of the segment Γ. Unfortunately the interactions in the dynamic regime do
not allow us a priori to translate all the inertial interactions on the local kinetic energy ek in the
zone of production of turbulence; its integration on all the segments Γ leads to a behaviour of the
turbulent kinetic energy in Ek ∝ −t2 in this production zone. Furthermore, if the characteristic
length is L, we can find the overall energy Ek for the viscous zone,



















dek
dt

= −v · ∇φ ⇒ Ek ∝ −t2,

dek
dt

= −v · ∇ ⊗ (ν ∇× v) ⇒ Ek ∝ exp(−(ν/L2) t),

(41)

which shows, at the first instants, that the global kinetic energy increases, which compensates
for the decrease in global pressure observed in the simulation. On the other hand, by removing
the pressure contribution, the evolution of ek for the dissipation zone can be obtained by local
integration over Γ ; this leads to a time evolution of the type ek ∝ exp(−ν t/dh2) for the
dissipation zone where dh is the length of this segment. In this case, the interactions are linear
and the local ek and global Ek kinetic energies evolve identically in time, although the values
of ek obviously depend on the position of Γ in space. The behaviour observed in the results of
the numerical simulation in the physical domain on the global kinetic energy Ek is illustrated in
Figure 4. In the transfer zone, the simulation gives an evolution of the type Ek(t) ∝ −t in time
and a decay of Ek(k) ∝ k−5/3 in the spectral domain [19]. This result obtained by Kolmogorov
from the dimensional analysis reproduces in Figure 5 the energy cascade described by Richerdson
for the self-similar part in which the energy diffuses mainly from the larger scales to the smaller
ones. While the behaviour of the mean kinetic energy in Ek(t) ∝ −t2 in the production zone
differs from that obtained from the Navier-Stokes model, the energy decay corresponds well to
Kolgomorov’s theory in the inertial zone. Solutions of the discrete law of motion are strong
solutions, whereas solutions of the Navier-Stokes equations are often sought as weak solutions.
In the case of moderate constraints, the solutions coincide, but for turbulent flows, the events
that characterise the transitions between the different regimes are local and have no connection
with the limits.

The N.S. and D.M. models diverge significantly on the evolution of the kinetic energy in the
first instants, whereas the analysis of the instantaneous velocity fields shows that they are very
close. This is the only problem to date that has led to a divergence between the two models.
All the other numerous analytical solutions or those derived from numerical simulations give the
same results, apart from a few methodological errors, including for compressible or two-phase
flows. Limiting the analysis of the behaviour of Ek for the moment to times less than t = tc, we
find that it remains constant for N.S. and increases for D.M. when the flow can be considered as
non-viscous. It is not possible a priori to decide directly one way or the other.

So what is the right solution? The answer to this question is not only characterised by changes
in kinetic energy, because kinetic energy is not a conserved quantity, only total energy is. The
pressure and velocity fields (37) and (38) injected into the Navier-Stokes equation correspond to
a solution that reflects the initial equilibrium. In the absence of viscous effects, or at the first
instants of the simulation when they are negligible, the sum of the kinetic and pressure energies
must be constant over time and therefore, if the pressure energy decreases, which is the case for
the simulation carried out with this equation, the kinetic energy must increase; this argument
is intrinsic and does not refer to the discrete model. In fact, none of the authors cited mention
this behaviour and, moreover, none are interested in the pressure energy to know whether the
total energy is conserved. The pressure seems to be considered as an adjustment variable, a
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simple Lagrangian, to satisfy the Navier-Stokes equations. The form of inertia used in classical
mechanics does not seem to correctly account for the exchange between kinetic and pressure
energies in rotating flows. Inertia in its form V · ∇V or in its equivalent form ∇(|V|2/2)−V×
∇×V inhibits the natural transformation of energies introduced by initial conditions alone. The
drop in pressure at the first instants is not compensated for by the increase in kinetic energy.
In conclusion, we can say that in this case, the Navier-Stokes equations do not conserve total
energy.

The physical analysis of this Taylor-Green flow and that of the superposition of two elemen-
tary flows form the basis of the discussion on the completeness of the Navier-Stokes equations.

5. Discussion

The Navier-Stokes equations have an excellent representativity over a wide range of flows.
The aim is not to question the solutions obtained when the formal framework is the one used
to derive these equations, but to show that they are not complete in the sense that solutions of
physical interest escape their acceptance. The most striking example is their inability to trans-
late relativistic motion, since these equations are not invariant under a Lorentz transformation.
Attempts to make the Navier-Stokes equations relativistic are hampered by the application of
Einstein’s equation formalism [15, 42]. Even if the field of application of the theory of relativity
is unrelated to that of the Navier-Stokes equations, it will become necessary to establish physical
laws that are sufficiently complete to deal with problems of a different nature. The flows encoun-
tered in astrophysics require certain properties that are not included in the equations of classical
fluid mechanics. The formalism of discrete mechanics solves this problem by abandoning the
concepts of classical mechanics, including the notion of mass, to derive a law of motion in the
form of a wave equation, whatever its nature - gravitational waves, acoustic waves or light. This
law is fundamentally relativistic. This non-relativistic character and some other objections to
the Navier-Stokes equations are discussed in detail in [7].

The main issue dealt with here relates to what is sometimes called the objectivity or material
frame-indifference, introduced by Truesdell and Noll [40, 36, 37, 38, 39] to express the fact
that the stresses in a material do not depend on a global rotation of the physical system. This
problem arises mainly in continuum mechanics for solids, where derivatives such as Jaumann’s are
supposed to solve the problem [21]. According to the authors, there are different interpretations
of the objectivity and the material frame-indifference, which are of a different nature according
to [29]. In fact, this is a broader problem involving the notion of Galilean invariance; this notion
attached to an inertial frame of reference in uniform motion at constant velocity is not sufficient
to describe the isotropy of space at the origin of the conservation of angular momentum, in
application of Noether’s theorem [22]. In physics, rotation symmetry, or invariance by rotation,
is the property of a physical theory or system that it is not modified by any rotation of space.
When the system is invariant to any rotation of space, it is said to be isotropic, in which case all
directions of space are equivalent. This property is not satisfied by the Navier-Stokes equations,
as the simple example given above clearly shows. The transformation of the viscous term ∇ · σ
where σ is the strain rate tensor into a rotational form ∇ × (µ∇×V) makes it rotationally
invariant [7]. But there are still all the other terms that are not invariant by a continuous
rotation, including inertia and source terms. Although any rotation about any direction can be
decomposed into a combination of rotations about the three axes (Ox,Oy,Oz), the existence of
preferred directions makes it difficult to demonstrate invariance by global rotation, especially for
non-linear terms.

The solution consists of two motions U = a/r er and W = ω r eθ reveals a lack of repre-
sentativeness of the Navier-Stokes equations for pressure, even though it is perfectly admissible
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physically. This is one of the only simple solutions found that calls these equations into question.
The pressure, p/ρ = −a2/2 r2 + ω2 r2/2 − 2 a ω θ + cte, shows not only that it grows towards
infinity as the radius increases, but also that it depends linearly on the polar angle θ even though
the problem is axially symmetrical. The cause of this difficulty is directly linked to the form of
the inertia and in particular to the Lamb vector [23]. A large number of publications deal with
the use of the Lamb vector [20, 24, 25, 17, 18, 12, 28, 27], the most recent reporting difficulties in
the numerical calculation of forces for aerodynamic profiles due to the existence of an arbitrary
pole. However, the form of inertia including the Lamb vector is legitimate since it is strictly equal
to the form V · ∇V, the discussion is not so much about the Lamb vector itself as about the
meaning of inertia in the context of continuum mechanics. This is because the Lamb vector L is
defined in the orthogonal plane associated with ∇×V; it is then calculated at each point within
the framework of continuum mechanics where all quantities are defined at a point and projected
onto the three axes of an orthonormal reference frame. This sequence of operations during its
evaluation results in a loss of precision for its use. In addition, the constraints imposed by the
general framework of classical mechanics can lead to inconsistencies. For example, for the inertia
vector to be zero ∇(|V|2/2)−V×∇×V = 0, its three components must be zero simultaneously,
which means that the Lamb vector must also be the gradient of a potential; this is the case for
Poiseuille flow, for example. When solving the Navier-Stokes equations for cases with analytical
solutions, certain solutions are discarded a priori for physical reasons, for example if they tend
towards infinity in a certain parameter domain. This could be the case for W(r) in the simple
example given, but the problem posed has the solution presented; if it must be excluded, it is
because of the discrete law of motion itself.

So why is there a difference between the 2D and 3D formulations of the result of applying
the curl operator to the Navier-Stokes equations? The reason is that the notion of curl reveals
a conceptual difficulty within the framework of classical mechanics, where all quantities are
assigned to a point. Stokes’ theorem requires the definition of an exterior normal n for a surface
bounded by a well-defined contour; a rotational associated with a single point has, intrinsically, no
precise meaning. The Lamb vector, like the curl vector, therefore only exists in two dimensions
of space, for a surface whose normal can be defined. A number of theoretical difficulties in
continuum mechanics are linked to this ambiguity: the curl operator has an indisputable meaning
in discrete space, whereas in continuum mechanics it is simply a mathematical device derived
from mathematical analysis. To recover coherence, it is therefore necessary to assign the Lamb
vector to a plane whose normal n is that of the direction of ∇× v.

Discrete mechanics solves the shortcomings of conventional Lamb vector mechanics by propos-
ing an inertia κ as the sum of a gradient of the inertia potential φi and the dual curl of the vector
inertia potential ψi = φi n, a formal Helmholtz-Hodge decomposition. The result is independent
of the dimension of the space considered. The inertia vector κ = −∇φi +∇⊗ψi oriented along
t, the unit vector of the segment Γ, is independent of the orientation of the basis vectors which
define the tangent plane t,m). This vector κ physically represents the mean curvature of the
inertial potential; if it is zero, the flow is non-inertial even if each of its two components κ is not.
The intrinsic properties of the Helmholtz-Hodge decomposition and those of discrete mechanics
in general lead to the elimination of the artefacts of the equations of classical mechanics by
abandoning the traditional notions of a Galilean frame of reference, mass, force and so on. The
example of simple motion defined by the superposition of the solutions u = a/r t and w = ω rt
and w = ω rt t makes it possible to exclude from the outset the effects of rigid rotation on the
solution of the scalar potential φo (pressure). The experiment carried out in a uniformly rotating
system does not depend on the position of the observer. The velocity and pressure fields in
Figure (3) clearly show that they depend on the observer’s position when the problem is solved
using the Navier-Stokes equations.
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So what is the correct interpretation, using a classical Galilean frame of reference, a rotating
reference frame or Maxwell’s reference frame? The answer seems obvious if we take the point of
view of an observer in mechanical equilibrium performing this experiment. For him, the motion is
strictly radial and axisymmetric and the scalar potential is also axisymmetric; he cannot perceive
that he is in uniform rotational motion. The interpretations of the Navier-Stokes equations for
a fixed or moving reference frame (including the fictitious Coriolis and centrifugal forces) are
erroneous; the observer cannot perceive the rotational motion. The experiment carried out in
a geostationary satellite rotating around the Earth, itself rotating around the Sun, must be
interpreted in a local frame of reference that excludes uniform rotational motions. The notion
of an inertial reference frame in classical mechanics and the theory of relativity is not sufficient
to exclude all non-accelerated motion. Furthermore, in these two contexts, uniform rotation is
considered to be accelerated motion, which is not the case in Maxwell’s frame of reference. The
choice of a fixed frame of reference is an illusion of reality that leads to results that depend on
the point of view. Discrete mechanics abandons any attempt to represent distant phenomena
by a fixed frame of reference or by a change of frame of reference, especially since these events
belong to the past, whereas the equations of mechanics claim to predict the near future.

What then is the impact of the choice of a Maxwell M reference frame and of discrete
mechanics for fluid mechanics? First of all, it should be noted that the solutions of the Navier-
Stokes equations and the law of discrete motion are the same, with two exceptions: (i) the
example of two elementary motions and (ii) the decay of turbulence for the Taylor-Green flow.
The perception fixed by Maxwell’s reference frame profoundly modifies the modelling of the
various physical phenomena of classical mechanics closely associated with the frame of reference
R
3(x, y, z). The local law of discrete motion (1) has only two unit vectors t and n, which makes

it possible to apply Stokes’ theorem and transfer the interactions between translational and
rotational motion. Maxwell’s frame of reference also makes it possible to replace Lamb’s vector
by a dual curl vector and to write inertia in the form of a Helmholtz-Hodge decomposition. This
decomposition is not only a mathematical device for separating curl-free and divergence-free
terms, but it also introduces a symmetry that is compatible with Noether’s theorem.

The Taylor-Green flow [9] is analysed in the light of the elements presented on the simple
example and on the Lamb vector. The results of the Navier-Stokes equations and discrete
mechanics on this turbulent flow show a significant divergence in the evolution of the mean
kinetic energy over time. In discrete mechanics, the translational kinetic energy |v|2/2 assigned
to the vertices of the primal structure and the rotational kinetic energy calculated on a facet
and associated with its unit vector, |v|2/2 n, are nested in such a way as to facilitate their
exchange. The transfer of kinetic energies between them is a complex mechanism because the
two corresponding accelerations, ∇(|v|2/2) and ∇⊗(|v|2/2n) are orthogonal and cannot a priori
directly exchange energy. The phenomenon must necessarily be time-dependent to allow energy
transfer. From a physical point of view, the total energy injected into the periodic cavity of the
Taylor-Green problem at the initial instant is made up of potential energy in the form of pressure
and kinetic energy associated with the vortices. Only the total energy is conserved when the
flow is non-viscous; in all cases, at the first instants (t < 5) of motion, each of the potential and
kinetic energies can vary in time while respecting the conservation of the total energy. While the
Navier-Stokes equations predict an almost constant kinetic energy, discrete mechanics assumes
an increase in kinetic energy. As the mean pressure decreases in this phase, it is natural for
the kinetic energy to increase. The pirouettes performed by an ice-skater rely on her ability to
modify her moment of inertia to increase her rotational velocity, represented by ∇ × v, while
maintaining her angular momentum. In the Taylor-Green case, the fluid filaments are subjected
to the phenomenon of vortex stretching, where the elongation of the filaments is compensated for
by faster rotation. The proposed explanation for the divergence between the two models is based
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on the difficulty of the Lamb inertia term in transforming translational motion into rotation.
The nature of the Lamb vector is indeterminate, whereas the corresponding term in discrete
mechanics is the dual curl of the inertial potential. In the latter case, the intrinsic acceleration
can be transformed without hindrance from the form of kinetic energy into potential energy, or
vice versa.

From a theoretical point of view, the evolution of the mean kinetic energy Ek resulting from
the weak formulation (39) removes the term −V ·∇p from the adopted boundary conditions. The
weak formulation of the Navier-Stokes equations is widely used to obtain a numerical solution
whose existence and uniqueness can be proved in the context of functional analysis. For very
complex problems such as turbulence developed in fluids, it can be risky to use this concept
because the stability of vortices subjected to vortex-stretching and vortex-bursting phenomena
is no longer directly linked to the boundary conditions of the domain. In discrete mechanics,
the evolution of kinetic energy (40) is expressed by a local law dek/dt = −v · ∇φ established on
a single segment Γ. This is a strong solution which does not violate the conservation of total
energy per unit mass, i.e. intrinsic acceleration, the sum of potential and kinetic energies; the
term −v ·∇φ is made up of two contributions carried by the same segment; in general, this term
is not equal to zero.

A more technical aspect also helps to explain the discrepancies between the results of the
Navier-Stokes equations and those of the discrete formulation. The notion of a continuous
medium means that quantities defined by partial derivatives in space are assigned to a point.
The way in which the operators are reconstructed from these partial derivatives influences the
result, not only quantitatively, but also in terms of the physical behaviour of the solution. Abrupt
transitions in certain variables or properties are denatured by the spatial averaging required to
transform the initial problem into an approximation of the continuous problem. The discrete
formulation is characterised by the abandonment of any spatial approximation in order to federate
compression and rotation contributions on the same segment of the local Maxwell frame of
reference. The four discrete differential operators are used to construct the law of motion on
this single segment. It’s not quite the same thing to define a rotation by vertex for later use on
a face or a cell, or to position the rotation directly on a face. In addition, the potential vector
ψ = ν∇×v is uniquely constructed as the energy per unit mass; the quantities ν and ∇×v are
inseparable. The influence of these averages may be negligible for certain simple solutions but
becomes important for complex turbulent flows where they can introduce a degree of rigidity,
particularly in the transfer of translational energy into rotational energy.

All these arguments do not invalidate the Navier-Stokes model itself, since these equations
are unanimously accepted to represent real flows over a very wide range of parameters. The
alternative discrete model makes it possible to recover, to within numerical errors, the solutions
of simulations carried out with the classical model by correcting certain shortcomings of the
latter. For example, the discrete law of motion is relativistic and satisfies the results of the
theory of special and general relativity. In fact, it is not so much the Navier-Stokes equations
that are at issue as the very concept of a continuous medium. The Lamb vector, the calculation
of the mean kinetic energy and the obligation to use spatial interpolations are all notions that
are made inescapable by the notion of a continuous medium and a global Galilean frame of
reference. The Navier-Stokes equations, like other physics equations based on the notion of a
continuous medium, involve the same difficulties, but they are amplified by the highly non-linear
nature of this equation, which is emblematic of fluid mechanics. The redefinition of inertia
in the form of a Helmholtz-Hodge decomposition as the curvature of the Bernoulli potential
makes the interactions between translation and rotation phenomena more flexible. In addition,
the extension of Galilean invariance to uniform rotation frees the observer from any external
interaction.

In summary, two significant results call into question the validity of the complete Navier-
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Stokes equations. The first is the superposition of two simple movements, a rotational motion
and a radial injection; the solution obtained shows that the pressure field is not axisymmetric.
The second example is the Taylor-Green vortex, a flow emblematic of turbulence decay; in this
case, it is the total energy that is not conserved for an inviscid flow. This observation on the
completeness of the Navier-Stokes equations is not only based on the analysis of these two results,
but confirms the objections that have already been made to them. The observed faults are mainly
related to inertia and rotation, two main characteristics of turbulent flows.
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