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RIGID CASE

Notations are all defined in the main text. In the ab-
sence of wall deformation, the fluid flow is governed by
the incompressible Stokes equation in the lubrication ap-
proximation, which reads:

UZZ = PX . (1)

The fluid gap profile can be approximated by a parabola,
as:

H(X,T ) ≃ ∆(T ) + [X −XG(T )]
2 . (2)

Invoking no-slip boundary conditions, U(X,Z = 0, T ) =
0 and U(X,Z = H,T ) = ẊG + Θ̇, the Stokes equation
can be solved, leading to the horizontal velocity profile:

U =
PX

2
Z
[
Z −∆− (X −XG)

2
]
+

(ẊG + Θ̇)Z

∆+ (X −XG)
2 .

(3)
Volume conservation reads:

∂TH + ∂X

∫ H

0

dZ U = 0 . (4)

Integrating the latter, and assuming a vanishing lubrica-
tion pressure P at X → ±∞, gives:

P = −3∆̇ + 2(Θ̇− ẊG)(X −XG)[
∆+ (X −XG)

2
]2 . (5)

The pressure-induced drag force (per unit length) along
Z is given by:

Dp,⊥ =

∫ ∞

−∞
dX P = −3π

2

∆̇

∆3/2
. (6)

The pressure-induced drag force (per unit length) along
X is given by:

Dp,∥ = −
√
2ϵ

∫ ∞

−∞
dX (X −XG)P = π

√
2ϵ

Θ̇− ẊG

∆1/2
.

(7)
The shear-induced drag force (per unit length) along X
is given by:

Dσ,∥ = −
√

ϵ

2

∫ ∞

−∞
dX UZ |Z=H = −π

√
2ϵ

Θ̇

∆1/2
. (8)

ELASTIC CORRECTION

The fluid gap profile becomes:

H(X,T ) ≃ ∆(T ) + [X −XG(T )]
2 + κP (X,T ) . (9)

The new no-slip boundary conditions are: U(X,Z =
−κP, T ) = 0 and U(X,Z = H − κP, T ) = ẊG + Θ̇.
Volume conservation now reads:

∂TH + ∂X

∫ H−κP

−κP

dZ U = 0 , (10)

which leads to the Reynolds equation:

12∆̇−24(X−XG)ẊG+12κṖ =
[
H3PX − 6(ẊG + Θ̇)H

]
X

.

(11)
We now invoke a perturbation analysis at first order in
κ, as:

P ≃ P (00) + κP (10) ,

Dp,⊥ ≃ D
(00)
p,⊥ + κD

(10)
p,⊥ ,

Dp,∥ ≃ D
(00)
p,∥ + κD

(10)
p,∥ ,

Dσ,∥ ≃ D
(00)
σ,∥ + κD

(10)
σ,∥ .

(12)

The first-order correction to the Reynolds equation then
reads:{[

∆+ (X −XG)
2
]3

P
(10)
X + 3

[
∆+ (X −XG)

2
]2

P (00)P
(00)
X

−6
(
ẊG + Θ̇

)
P (00)

}
X

= 12P
(00)
T .

(13)

From the previous section, one has:

P (00) = −3∆̇ + 2(Θ̇− ẊG)(X −XG)[
∆+ [X −XG]

2
]2 ,

D
(00)
p,⊥ = −3π

2

∆̇

∆3/2
,

D
(00)
p,∥ = π

√
2ϵ

Θ̇− ẊG

∆1/2
,

D
(00)
σ,∥ = −π

√
2ϵ

Θ̇

∆1/2
.

(14)
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Solving Eq. (13) with vanishing P (10) at X → ±∞ leads
to:

D
(10)
p,⊥ =

45π∆̈

16∆7/2
− 63π∆̇2

8∆9/2
+

3π(Θ̇− ẊG)
2

8∆7/2
,

D
(10)
p,∥ =

√
ϵ

2

[
23π∆̇(Θ̇− ẊG)

8∆7/2
+

π(ẌG − Θ̈)

2∆5/2

]
,

D
(10)
σ,∥ =

√
ϵ

2

[
π(Θ̈− ẌG)

4∆5/2
+

π∆̇ẊG

2∆7/2
− 19π∆̇Θ̇

8∆7/2

]
.

(15)

VISCOELASTIC CORRECTION

The fluid gap profile becomes:

H(X,T ) ≃ ∆(T )+[X−XG(T )]
2+κP (X,T )−βṖ (X,T ) .

(16)
The new no-slip boundary conditions are: U(X,Z =
−κP + βṖ , T ) = 0 and U(X,Z = H − κP + βṖ , T ) =
ẊG + Θ̇. Volume conservation now reads:

∂TH + ∂X

∫ H−κP+βṖ

−κP+βṖ

dZ U = 0 , (17)

which leads to the Reynolds equation:

12∆̇−24(X−XG)ẊG+12κṖ−12βP̈ =
[
H3PX − 6(ẊG + Θ̇)H

]
X

.

(18)

We now invoke a perturbation analysis at first order in
α, as:

P ≃ P (00) + κ
[
P (10) − αP (11)

]
,

Dp,⊥ ≃ D
(00)
p,⊥ + κ

[
D

(10)
p,⊥ − αD

(11)
p,⊥

]
,

Dp,∥ ≃ D
(00)
p,∥ + κ

[
D

(10)
p,∥ − αD

(11)
p,∥

]
,

Dσ,∥ ≃ D
(00)
σ,∥ + κ

[
D

(10)
σ,∥ − αD

(11)
σ,∥

]
.

(19)

Solving Eq. (18) at first order in α, with vanishing P (11)

at X → ±∞, leads to:

Dp,⊥ = −3π

2

∆̇

∆3/2
+ κ

 45π∆̈

16∆7/2
− 63π∆̇2

8∆9/2
+

3π
(
Θ̇− ẊG

)2
8∆7/2

− β

[
45π

...
∆

16∆7/2
− 567π∆̇

32∆9/2

(
∆̈− ∆̇2

∆

)

+
21π∆̇

32∆9/2

(
−6Ẋ2

G − Θ̇2 + 7ẊGΘ̇
)
+

3πΘ̈

2∆7/2

(
Θ̇

4
− 7ẊG

8

)
+

3πẌG

2∆7/2

(
3ẊG

2
− 7Θ̇

8

)]
,

(20)

Dp,∥ = π
√
2ϵ

Θ̇− ẊG

∆1/2
+ κ

√
ϵ

2

[
23π∆̇(Θ̇− ẊG)

8∆7/2
+

π(ẌG − Θ̈)

2∆5/2

]
− β

√
ϵ

2

[
−21π∆̇2

4∆9/2

(
Θ̇− 7ẊG

4

)

−9πẊG

8∆7/2
(Θ̇− ẊG)

2 +
π∆̈

16∆7/2
(43Θ̇− 73ẊG) +

π∆̇

16∆7/2
(23Θ̈− 53ẌG) +

π

2∆5/2
(
...
XG −

...
Θ)

]
,

(21)

Dσ,∥ = −π
√
2ϵ

Θ̇

∆1/2
+ κ

√
ϵ

2

[
π(Θ̈− ẌG)

4∆5/2
+

π∆̇ẊG

2∆7/2
− 19π∆̇Θ̇

8∆7/2

]
− β

√
ϵ

2

[
21π∆̇2

32∆9/2
(7Θ̇− 5ẊG)

+
9πẊG

16∆7/2
(Θ̇− ẊG)

2 − π∆̈

4∆7/2

(
11Θ̇− 29

4
ẊG

)
− π∆̇

4∆7/2

(
Θ̈− 19

4
ẌG

)
− π

4∆5/2
(
...
XG −

...
Θ)

]
.

(22)

NUMERICAL INTEGRATION

In order to solve Eqs. (11), (12), and (13) of the
main text, we use the DifferentialEquations.jl li-

brary from the open-source software for Scientific Ma-
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chine Learning (SciML) collection in Julia. This choice
was motivated by the strong variable coupling in our
problem, which requires the use of the mass-matrix for-
malism. Moreover, stiffness was expected due to the
third-order time derivative terms. Therefore, we em-
ployed the Rosembrock method of fifth order (Rodas5P).
It is an A-stable method which is compatible with the
mass-matrix formalism and has a stable adaptative time
step. However, there were still some need for fine tuning
the solver’s tolerances, mainly around 1e-8 for both ab-
solute and relative tolerances. Finally, we noted that the

solver fails to simulate the sedimentation behaviour at
long times. This is likely due to ∆ flipping sign when ap-
proaching zero, because of the limitations on the smallest
step size available.
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