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RIGID CASE

Notations are all defined in the main text. In the ab-
sence of wall deformation, the fluid flow is governed by
the incompressible Stokes equation in the lubrication ap-
proximation, which reads:

Uzz = Px . (1)

The fluid gap profile can be approximated by a parabola,
as:

H(X,T) = A(T) + [X = Xa(T)]? . (2)

Invoking no-slip boundary conditions, U(X,Z = 0,T) =
0and U(X,Z = H,T) = X¢ + ©, the Stokes equation
can be solved, leading to the horizontal velocity profile:

U:P—XZ[Z—A—(X—X(;)Q] _~_(XL®)ZQ .
2 A+ (X - Xq)
(3)
Volume conservation reads:
H
BTH+8X/ dZU =0. (4)
0

Integrating the latter, and assuming a vanishing lubrica-
tion pressure P at X — +oo, gives:
3A +2(0 — X¢)(X — Xq) )
— > .
[A + (X - Xg)?

P =

The pressure-induced drag force (per unit length) along
Z is given by:
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The pressure-induced drag force (per unit length) along
X is given by:

> 0-X
D, = —@[ dX (X — Xg)P = W\/ET/QG :
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The shear-induced drag force (per unit length) along X
is given by:
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ELASTIC CORRECTION

The fluid gap profile becomes:
H(X,T)~A(T) + [X — Xa(T))> + kP(X,T) . (9)

The new no-slip boundary conditions are: U(X,Z

—kP,T) = 0 and U(X,Z = H — kP,T) = Xqg + O.
Volume conservation now reads:

H—-rP

8TH+8X/ dZU =0, (10)
—kP

which leads to the Reynolds equation:

12A—24(X — Xg) X +126P = [H?’PX —6(Xc +©)H|
(11)

We now invoke a perturbation analysis at first order in
K, as:

P~ p0) 4, p0)
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~ (00)
pll = Dy + KD

The first-order correction to the Reynolds equation then
reads:
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(13)
From the previous section, one has:
plo0) _ _ 3A +2(0 — Xg)(X fQXG) ’
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Do) _ 37 A

p,L T 2 A3/2° (14)

(00) _ 0 — Xg
DP,H = 71v2¢ N

(00) _ ©
DJ,H - _W@Al/Q :



Solving Eq. with vanishing P19 at X — 400 leads
to:

which leads to the Reynolds equation:
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p 2 S8AT7/2 2A5/2 » (15)  We now invoke a perturbation analysis at first order in
.. . . a, as:
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VISCOELASTIC CORRECTION
Dy1 = DY+ [ DS — aDl!}]
The fluid gap profile becomes: ’ (19)
. DP:H ~ D( H) + K |:D(1H0) D()llz‘L)} 9
H(X,T) =~ A(T)+[X = Xa(T)*+xP(X,T)-BP(X,T) . " "
(16) Doy = DYY + 5 [ DI — aDl)]
The new no-slip boundary conditions are: U(X,Z = ' ’ '
—KkP + BP,T) = 0 and U(X,Z = H — kP + P, T) =
X¢ + ©O. Volume conservation now reads:
H—xP+BP Solving Eq. at first order in o, with vanishing P(11)
orH + GX/ - dzZU =0, (17) at X — 400, leads to:
—kP+BP |
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NUMERICAL INTEGRATION

In order to solve Egs. (11), (12), and (13) of the
main text, we use the DifferentialEquations.jl li-

(

brary from the open-source software for Scientific Ma-



chine Learning (SciML) collection in Julia. This choice
was motivated by the strong variable coupling in our
problem, which requires the use of the mass-matrix for-
malism. Moreover, stiffness was expected due to the
third-order time derivative terms. Therefore, we em-
ployed the Rosembrock method of fifth order (Rodas5P).
It is an A-stable method which is compatible with the
mass-matrix formalism and has a stable adaptative time
step. However, there were still some need for fine tuning
the solver’s tolerances, mainly around 1e-8 for both ab-
solute and relative tolerances. Finally, we noted that the

solver fails to simulate the sedimentation behaviour at
long times. This is likely due to A flipping sign when ap-
proaching zero, because of the limitations on the smallest
step size available.
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