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ABSTRACT
Clustering is an important data mining task which is widely spread
in various domains such as biology, finance, marketing, healthcare,
and social sciences. It allows the end user to discover, through
built clusters, relationships within data. Many non-expert users
perceive clustering as an "easy" task because it always produces a re-
sult. However, choosing a clustering algorithm at random, without
proper parameter tuning, often leads to poor results. In particu-
lar, an important choice when applying a clustering algorithm to
a specific dataset is the similarity measure. Since clustering algo-
rithms rely on similarities between data points to build clusters,
the chosen similarity measure should fit the data as accurately as
possible in order to form the best clusters. Mixed Data are data
that are characterized by numerical as well as categorical attributes.
When clustering mixed data, the same similarity measure cannot
be used for the two attribute types. Commonly a pair of similarity
measures is used, one dedicated to numerical attributes and one
dedicated to categorical attributes. The choice of these two most
appropriate similarity measures is very important in mixed data,
as it significantly affects the clustering performance.

In this paper, we challenge to recommend the best pairs of simi-
larity measures to end-users, regardless of their experience, when
applying a specific clustering algorithm to a mixed dataset to maxi-
mize a specific performance measure. The proposed recommenda-
tion process relies on knowledge extracted from a meta-model built
by an automated machine learning (AutoML) approach. To evaluate
the relevance of the recommendation process, experiments are con-
ducted with two well-known clustering algorithms: K-Prototypes
and Hierarchical Clustering. Our results show that the recommen-
dations can positively help users select the most appropriate pairs
of similarity measures depending on their use cases (i.e. clustering
algorithm, dataset, and performance measure). These recommenda-
tions outperform the traditionally used similarity measures in the
literature, particularly for datasets where the choice of the similarity
measures has a significant impact.
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1 INTRODUCTION
When performing clustering, we have to make multiple choices
about the clustering algorithm, parameter values, similarity mea-
sures, etc. Since these choices highly impact the quality of obtained
clustering, important efforts have been made in the literature to
support data scientists in tasks such as clustering algorithms recom-
mendation for numeric data [8, 13, 14, 24], parameters recommen-
dation such as the number of clusters for K-Means algorithm [25],
and similarity measures recommendation for categorical data [3].
These works mainly focus on data with only one type. However,
many recent real-world applications generate data that contain
mixed numeric and categorical attributes known as mixed data
[2]. In this study, we tackle the problem of Similarity Measures
Recommendation (SMR) when clustering mixed data.

Defining similarity measures able to deal with mixed numeric
and categorical attributes is one of the main challenges for mixed
data clustering (MDC) algorithms, remaining an ongoing research
challenge because of the diverse nature of the two data types [2, 4].
The adopted strategy in most MDC algorithms is to use a specific
similarity measure for each data type (such as Euclidean distance
for numeric attributes and Hamming distance for categorical ones)
and then combine the two measures to define a global similarity for
mixed data [2]. The selection of an appropriate pair of numeric and
categorical similarity measures is fundamental for these algorithms
to obtain good clustering results [6, 10]. No need to say there is "no
free lunch", i.e. there is not a universal similarity measure pair that
performs optimally across all datasets. Additionally, the effective-
ness of the similarity measure pairs varies depending on the specific
MDC algorithm being used. What works well for one algorithm
with a particular dataset may not yield satisfactory results with
another algorithm [10]. Hence, it is important to select similarity
measure pairs based on the considered dataset and its character-
istics, as well as the MDC algorithm being used. In practice, the
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selection of the similarity measure pair is often done independently
of the dataset by using default similarity measures like Euclidean
distance and Hamming distance, or the similarity measures used
in the literature for the considered MDC algorithm. However, ac-
cording to the considered dataset, these measures might not be
appropriate, leading to poor clustering performances [10]. Another
alternative is to evaluate several possible similarity measure pairs
to identify the most suitable ones (trial-and-error). However, the
diversity of similarity measures for each data type and the high
number of corresponding pairs (number of possible combinations)
make this strategy too costly.

To fill this gap, we propose an approach based on meta-learning
[27] to create a recommendation system able to recommend, for
a given algorithm, suitable similarity measure pairs according to
the considered dataset. The idea of this approach is to exploit the
knowledge we get from evaluating a given MDC algorithm on
various mixed datasets with different similarity measure pairs to
train a model named meta-model that learns the relationships be-
tween the datasets’ characteristics called meta-features and the
performances of the similarity measure pairs. So, for a new dataset,
the proposed system only computes its meta-features and uses the
trained meta-model to recommend suitable similarity measure pairs
for this dataset. The main contributions of this work are as follows:

(1) This is the first attempt, to the best of our knowledge, to
automatically recommend couples of similarity measures for
mixed data clustering.

(2) We extend meta-learning to the context of mixed data while
previous approaches focus on algorithm selection or homo-
geneous datasets (i.e. numerical or categorical).

(3) Motivated by the context of MDC, in order to capture specific
geometry of mixed datasets, we propose additional meta-
features to complete those existing in the literature.

(4) We validate the proposed approach on two commonly used
MDC algorithms, K-Prototypes and Hierarchical Clustering.
Our experiments show that the similarity measure pairs
recommended for these two algorithms perform better than
the baseline pairs, especially for datasets highly impacted by
the choice of the similarity measure pair.

(5) Finally, we provide the following resources at https://github.
com/AbdoulayeDiop/simrec/tree/simrec-v1
• The code for reproducing the experiments.
• The code for using the created SMR systems with the
already trained meta-models, for K-Prototypes and Hier-
archical Clustering.

• We also provide the meta-datasets used to train the meta-
models so they can be continuously extended with new
datasets faced in practice.

2 RELATEDWORK
Mixed data clustering. One of the main challenges of MDC algo-

rithms is to find innovative ways to define novel similarity mea-
sures for mixed data [2]. Since most existing similarity measures
are defined for data with only one type, a common strategy is to
define similarity for mixed data as a combination of two numeric
and categorical similarity measures. In [23], Philip and Ottaway

extend the hierarchical clustering algorithm to mixed data by us-
ing the Gower similarity [5]. The Gower similarity is a similarity
measure for mixed data defined as a weighted combination of the
Manhattan distance on normalized numeric attributes and the Ham-
ming distance for categorical attributes. In [18], Huang introduced
K-Prototypes which extends the K-Means algorithm with a new
representation of cluster centers and a new definition of similarity.
The similarity is defined as a weighted sum of the squared Euclidean
distance for numeric attributes and the Hamming distance for cat-
egorical ones. Based on the same idea of combining two numeric
and categorical similarity measures, different weighting strategies
and different choices of similarity measures have been proposed
in later studies based on K-Prototypes [1, 17, 20] or using different
clustering algorithms such as K-Medoids [6, 15], Fuzzy C-Medoids
[12], Spectral Clustering [22], and Density-Based Clustering [9, 11].

Other strategies to define similarity for mixed data have also
been considered such as distance hierarchies [16] and graph-based
dissimilarity [31]. However, creating distance hierarchies for cate-
gorical attributes requires domain knowledge and computing graph-
based dissimilarity can be time intensive. Recently, strategies based
on deep representation learning [33] and clustering with deep neu-
ral networks [21] have been proposed. However, despite their repre-
sentation abilities, the inherent weakness of deep learningmodels in
terms of interpretability may limit their applications, especially for
clustering-based data exploration, data understanding, knowledge
acquisition, and so on.

Meta-Learning. Meta-learning methods have been widely stud-
ied in the field of algorithm selection as support tools for machine
learning practitioners [8, 25]. These methods use prior learning
experience to learn to predict algorithm performances according to
datasets’ meta-features [29] (in our case we are interested in similar-
ity measures selection instead of algorithm selection, but the prin-
ciple remains the same). The first step is to identify meta-features
that may impact the performances of considered algorithms. The
second step is to accumulate the knowledge we get from running
the considered algorithms on various datasets. This knowledge is
represented as a new dataset, named meta-dataset. Each record
of the meta-dataset corresponds to one dataset and contains its
meta-features (which represent the predictive attributes) and the
performances of the different algorithms on that dataset (which
represent the target attributes). Finally, a standard machine learning
model, named meta-model, is trained on the meta-dataset to learn
to predict the performances of the different algorithms according
to the meta-features of the datasets.

The first application of meta-learning to clustering is from [8],
in the context of clustering algorithm selection. Given a dataset,
the proposed approach provides a ranking of the 7 candidate algo-
rithms. They used 8 meta-features based on statistical measures
and evaluated their framework using 32 micro-array datasets about
cancer gene expression. Their results suggest that the proposed
approach performs better than a baseline based on average ranking.
Later studies have mainly worked on designing new meta-features
to enhance predictive capability. In [13], a new set of meta-features
based on the distribution of similarity between observations is pro-
posed to extract more information about the internal structure of
the datasets. Vukicevic et al. [29] introduce meta-features based on
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Figure 1: Overview of the proposed meta-learning approach for the recommendation of similarity measures for MDC

internal cluster evaluation metrics. Pimentel and de Carvalho [24]
proposed new meta-features based on correlation and dissimilarity
measures. In [25], meta-learning is used for recommending the
number of clusters for the K-Means algorithm. New meta-features
based on density distribution are introduced since they may convey
information about the number of clusters.

In [3], meta-learning is used for similarity measures recommen-
dation for clustering categorical data. The authors used statistical
meta-features about the datasets and their attributes. They con-
sidered 10 similarity measures for categorical data and validated
their approach using one clustering algorithm (Hierarchical Clus-
tering) and 60 synthetic datasets. Zhu et al. [34] propose a meta-
learning approach to recommend similarity measures for clustering
numeric data. Besides statistical meta-features, they also use struc-
tural information-based and distance-based (distribution of the
Euclidean distance between pairs of observations) meta-features.
They considered 9 similarity measures for numeric data and val-
idated their approach using two clustering algorithms (K-Means
and CURE) and 199 datasets.

More recently an interesting survey [26] provides a taxonomy of
existing works on automated machine learning methods for cluster-
ing. It underlines that cited work are applied on datasets where all
attributes are homogeneous (i.e. either numerical or categorical).

Furthermore, when dealingwithmixed data, we show in [10] that
existing clustering algorithms for mixed data are mainly based on
two strategies: the homogenization strategy where all attributes
are converted to a single type and the mixed strategy where
similarity measures for the different data types are combined to
define a similarity measure for heterogeneous data. Furthermore,

the experiments showed that the mixed strategy outperforms the
homogenization strategy.

In this context, we introduce in next sections, our proposal for
recommending similarity measure pairs for MDC algorithms based
on the mixed strategy.

3 META-LEARNING BASED SIMILARITY
MEASURES RECOMMENDATION FOR MDC

3.1 Overview
Let X be the set of mixed datasets and A be the set of MDC al-
gorithms that define similarity for mixed data by combining two
numeric and categorical similarity measures. Let S𝑛 and S𝑐 be the
sets of existing numeric and categorical similarity measures respec-
tively. Let S = {𝑠 𝑗 }𝐾𝑗=1 ⊂ S𝑛 × S𝑐 be a finite subset of similarity
measure pairs. Given an algorithm 𝐴 ∈ A, the proposed meta-
learning-based SMR system contains two modules (figure 1.b): a
Meta-Features Extraction Module and a Ranking Module. The
meta-features extraction module extracts a vector representation
of the input dataset. This vector contains the meta-features of the
dataset. The ranking module contains a machine learning model
(the meta-model) that takes as input the vector representation of the
dataset and predicts from this vector the ranking of the similarity
measure pairs 𝑠 𝑗 ∈ S according to their performances on the input
dataset when using 𝐴. To build such a system, we follow two main
steps (figure 1.a - Learning phase):

(1) Creation of themeta-dataset. Themeta-dataset is a knowl-
edge database containing results of prior evaluations of the
considered MDC algorithm 𝐴 on various datasets with the
different similarity measure pairs 𝑠 𝑗 ∈ S. Let us consider
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that we have access to a set of mixed datasets {𝑋𝑖 }𝑁𝑖=1. For
each dataset 𝑋𝑖 , the meta-dataset stores a tuple (𝑥𝑖 , 𝑦𝑖 ) such
that 𝑥𝑖 = (𝑓𝑚 (𝑋𝑖 ))𝑀𝑚=1 is the meta-features vector of 𝑋𝑖
with {𝑓𝑚 : X → R}𝑀

𝑚=1 being the considered meta-features,
and 𝑦𝑖 = (𝑦𝑖, 𝑗 )𝐾𝑗=1 is a performance vector containing the
performances of the similarity measure pairs 𝑠 𝑗 on 𝑋𝑖 . Meta-
features are described in section 3.2

(2) Training of themeta-model. In this step, the created meta-
dataset is used to train themeta-model in the rankingmodule.
The meta-model is described in section 3.3.

Once the training is done, for a new dataset𝑋𝑛𝑒𝑤 , the system first
computes its meta-features vector 𝑥𝑛𝑒𝑤 . Then the meta-features
vector is given as input to the learned meta-model, which predicts
the corresponding ranking of the similarity measure pairs.

3.2 Meta-features
Our main hypothesis is that the performances of the similarity
measure pairs on a given dataset depend on the meta-features of
the dataset. So, it is crucial to definemeta-features that describe well
the datasets and embed useful information for accurate prediction
of the performances of the similarity measure pairs.

3.2.1 Meta-features selected from the literature. Although several
meta-features have been proposed in the literature [8, 13, 24, 25,
29], we consider only meta-features based on statistical measures
about the datasets and their attributes (table 1). This is because
other meta-features based on similarity, density, and clustering
evaluation have been designed for homogeneous (numerical) data
and cannot be directly applied to mixed data. Furthermore, they are
computationally more intensive and need a predefined similarity
measure, which is not trivial in the context of SMR.

3.2.2 Proposed meta-features. To complete the meta-features se-
lected from the literature, we propose 30 new meta-features (in
table 2) that extract information about diverse notions exploited by
the similarity measures.

Let 𝑋 be a mixed dataset with 𝑝 numeric and 𝑞 categorical at-
tributes. We denote 𝐴𝑛

𝑗
, 1 ≤ 𝑗 ≤ 𝑝 the 𝑗𝑡ℎ numeric attribute and

𝐴𝑐
𝑙
, 1 ≤ 𝑙 ≤ 𝑞 the 𝑙𝑡ℎ categorical attribute. The first 10 meta-features

are based on squared numeric attributes since several similarity
measures for numeric data like Euclidean distance and squared Eu-
clidean distance use squared attribute values. For each numeric
attribute 𝐴𝑛

𝑗
of the considered dataset, we compute the mean and

standard deviation of its squared values: {𝑢2 : 𝑢 ∈ 𝐴𝑛
𝑗
}. Then,

the meta-features are defined using the 𝑚𝑖𝑛, 𝑞1, 𝑚𝑒𝑎𝑛, 𝑞3, and
𝑚𝑎𝑥 values of the computed mean and standard deviation over
all numeric attributes. Based on the same idea, the next 10 meta-
features consider the internal products of numeric attribute values
({𝑢.𝑣 : 𝑢, 𝑣 ∈ 𝐴𝑛

𝑗
}).

The next 5 meta-features are based on the frequency of categori-
cal attribute values. The aim is to provide some information about
the balance between categories within the same attribute. This can
give important insights about frequency-based similarity measures.
Given a categorical attribute 𝐴𝑐

𝑙
, we compute the frequency of each

category (𝑢) within the attributes { #𝑢
𝑐𝑎𝑟𝑑 (𝐴𝑐

𝑙
) : 𝑢 ∈ 𝑠𝑒𝑡 (𝐴𝑐

𝑙
)}, where

#𝑢 is the number of occurrences of 𝑢 in 𝐴𝑐
𝑙
. Then, we use the stan-

dard deviation of these frequencies to estimate the balance between
the categories. Finally, the meta-features are defined as the 𝑚𝑖𝑛,
𝑞1,𝑚𝑒𝑎𝑛, 𝑞3, and𝑚𝑎𝑥 values of the standard deviations across all
categorical attributes. The last 5 meta-features are based on the
mutual information between categorical attributes. They provide
information about the relationships between the categorical at-
tributes (in terms of shared information) and can give important
insights for co-occurrence based similarity measures. We compute
the mutual information [7], 𝐼 , between all pairs of categorical at-
tributes {𝐼 (𝐴𝑐

𝑘
, 𝐴𝑐
𝑙
) : 1 ≤ 𝑘 < 𝑙 ≤ 𝑞}. Then, the meta-features are

defined as the𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3, and𝑚𝑎𝑥 of the computed mutual
information values.

3.3 Meta-Model
Our objective is to learn a meta-learning model able to predict the
ranking of the similarity measure pairs according to the datasets’
meta-features. This problem is known as label ranking in the litera-
ture [32]. We implemented two types of meta-models.

3.3.1 Regression-based meta-model. For this meta-model, we trans-
form the label ranking task into a multi-output regression task
where the goal is to predict the performances of the similarity mea-
sure pairs. The predicted performances are then used to create the
ranking. Let 𝑓𝜃 : R𝑀 → R𝐾 be the meta-model and {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 be
the meta-dataset. We recall that𝑀 is the number of meta-features
and 𝐾 is the number of similarity measure pairs. The regression-
based meta-model is trained by solving the following problem:

min
𝜃

1
𝑁

𝑁∑︁
𝑖=1

∥ 𝑓𝜃 (𝑥𝑖 ) − 𝑦𝑖 ∥22 (1)

𝑓𝜃 can be any regression model that supports multiple outputs.
We tested several models including k-Nearest Neighbors (KNN),
ELasticNet, Decision Tree, Random Forest, and Neural Networks
with different architectures. In this paper, results are shown only
for the KNN model which gave the best results.

3.3.2 Pairwise-Preference meta-model. The main drawback of the
regression loss is that a prediction can have an important loss while
preserving the ranking of the target vector. Inversely, a prediction
can have a small loss and not align with the ranking of the target
vector. In the pairwise-preference approach [19], the label ranking
task is transformed into multiple binary regression tasks. For each
couple of similarity measure pairs (𝑠𝑘 , 𝑠𝑙 ), a specialised model 𝑓 𝑘,𝑙

𝜃𝑘,𝑙
:

R𝑀 → [−1, 1] is trained to predicts the difference between the
performances of 𝑠𝑘 and 𝑠𝑙 :

min
𝜃𝑘,𝑙

1
𝑁

𝑁∑︁
𝑖=1

∥ 𝑓 𝑘,𝑙
𝜃𝑘,𝑙

(𝑥𝑖 ) − (𝑦𝑖,𝑘 − 𝑦𝑖,𝑙 )∥
2

2
(2)

Finally, the global model 𝑓𝜃 is obtained using a voting strategy:

𝑓𝜃 =

(
𝑓 𝑘
𝜃𝑘

)𝐾
𝑘=1

with 𝑓 𝑘
𝜃𝑘
(𝑥𝑖 ) =

∑︁
𝑙≠𝑘

𝑓
𝑘,𝑙

𝜃𝑘,𝑙
(𝑥𝑖 ) (3)

For the specialized regression models 𝑓 𝑘,𝑙
𝜃𝑘,𝑙

, we use Decision Trees
since they gave the best results among all tested models. The meta-
model is called Pairwise Decision Tree (PR-DTree) in the following.
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Table 1: Meta-features extracted from the literature

Name Description Variants

Samples Number of samples (𝑁 ) -
Attributes Number of attributes (𝑑) -
Dim Dimensionality (𝑑/𝑁 ) -
NumAtt Number of numerical attributes (𝑝) -
CatAtt Number of categorical attributes (𝑞) -
NumOnCat 𝑝/𝑞 -

MeansNumAtt Means of numerical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥
StdNumAtt Standard deviations of numerical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥
Covariance Covariance between numerical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥

CardCatAtt Cardinal of categorical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥
EntropyCatAtt Entropy of categorical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥

Table 2: Proposed Meta-features

Name Description Variants

MeansSqNumAtt Means of squared numerical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥
StdSqNumAtt Standard deviations of squared numerical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥
MeansIntProdNumAtt Means of internal product of numerical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥
StdIntProdNumAtt Std of internal product of numerical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥

StdFreqCatAtt Std of frequencies of categorical attribute values 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥
MutualInfoCatAtt Mutual information between categorical attributes 𝑚𝑖𝑛, 𝑞1,𝑚𝑒𝑎𝑛, 𝑞3,𝑚𝑎𝑥

4 EXPERIMENTS
4.1 Clustering algorithms and clustering

evaluation
To validate the proposed approach, we consider the K-Prototypes
[18] and H-AVG [23] (Hierarchical Clustering with average linkage)
algorithms. We chose these two algorithms since they are well
known and are among the most impacted by the choice of the
similarity measure pair according to [10]. For H-AVG, as suggested
in [10], we replace the Gower similarity by the following similarity
measure:

𝑠 (𝑥𝑖 , 𝑥 𝑗 ) = (1−𝑤) · 𝑠𝑛 (𝑥𝑛𝑖 , 𝑥
𝑛
𝑗 ) +𝑤 · 𝑠𝑐 (𝑥𝑐𝑖 , 𝑥

𝑐
𝑗 ) with𝑤 ∈ [0, 1] (4)

Where 𝑥𝑖 and 𝑥 𝑗 are two observations. 𝑥𝑛
𝑖
and 𝑥𝑐

𝑖
are the numeric

and categorical parts of 𝑥𝑖 respectively. 𝑠𝑛 and 𝑠𝑐 are two numeric
and categorical similarity measures respectively. The main parame-
ters of these algorithms are the number of clusters and the combina-
tion weight of the numeric and categorical similarity measures. For
the number of clusters, we use the number of classes in the ground
truth. The combination weight is determined using a grid search
strategy. Clustering performance is evaluated with the clustering
accuracy (CA) [2], one of the most commonly used clustering eval-
uation metrics. Let (𝑦1, ..., 𝑦𝑁𝑋 ) and (𝑦1, ..., 𝑦𝑁𝑋 ) be respectively
the obtained cluster labels and the ground truth labels for a given
dataset 𝑋 , with 𝑁𝑋 = |𝑋 |. Let 𝑘 be the number of clusters. The

clustering accuracy is defined by:

𝐶𝐴 = max
𝜎

1
𝑁𝑋

𝑁𝑋∑︁
𝑖=1

1 (𝜎 (𝑦𝑖 ) = 𝑦𝑖 ) (5)

Where 𝜎 is a permutation of {1, ..., 𝑘} that maps each cluster label to
a corresponding class label in the ground truth. 1 (𝜎 (𝑦𝑖 ) = 𝑦𝑖 ) = 1
if 𝜎 (𝑦𝑖 ) = 𝑦𝑖 , 0 otherwise. The accuracy score takes values in
[0, 1], and greater values indicate a better match between the found
clusters and the ground truth labels.

4.2 Similarity measures
We consider the same similarity measures used by Diop at al. [10]
in their study on the impact of similarity measures on MDC. There
are ten similarity measures for numeric data and twelve for categor-
ical data resulting in 120 similarity measure pairs. The similarity
measures for numeric data are Euclidean distance, Manhattan
distance, Chebyshev distance, Squared Euclidean distance, Canberra
distance, Mahalanobis distance, Cosine dissimilarity, Pearson dis-
similarity, Loretzian distance and Divergence distance. The simi-
larity measures for categorical data are Hamming distance or
Overlap similarity, Eskin, Occurrence Frequency, Inverse Occurrence
Frequency, co-occurence based similarity, Jaccard, Dice, Klusinski,
Rogerstanimoto, Russellrao, Sokalmichener, and Sokalsneath. Please
refer to [10] for a more detailed description of these measures.
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Table 3: Original datasets description: for each statistic, we
show its minimum and maximum values as well as its three
quartiles

# of attributes # of samples
# of numeric
attributes

# of categorical
attributes

# of classes

min 3 50 1 2 2
25% 9 235 3 3 2
50% 17 1.3K 7 6 2
75% 33 9.8K 17 15 5
max 1.6K 1.5M 1.6K 137 48

4.3 Datasets
We have selected various mixed datasets from the OpenML platform
[28]. We only considered mixed datasets without missing values
that have already been used for clustering and having ground truth
labels. It is important to note that labels are not used during the
clustering process. They are only used to evaluate the clustering
results. We manually filtered redundant datasets and ended with
84 datasets. Table 3 presents some descriptive statistics about them.
Due to computational constraints, original datasets with a large
number of observations are down-sampled to a maximum of 2000
observations. Furthermore, to have a more representative meta-
dataset and improve the generalization performances of the meta-
models on new and unknown datasets, we generated for each of
the 84 original datasets, 10 augmented datasets by down-sampling
on row and columns (while keeping at least one numeric and one
categorical attribute).

It is important to note that the augmented datasets are
used only for training the meta-models not for testing. More-
over, when a dataset is in the test set, all its augmentations
are removed from the training set to avoid overfitting.

Finally, since it is not relevant to evaluate clustering perfor-
mances using a ground truth that does not reflect any structural
information about the considered dataset or fails to align with any
achievable partitioning by the considered clustering algorithm, we
consider for each clustering algorithm, only datasets for which at
least one similarity measure pair achieves high accuracy (𝐶𝐴 ≥ 0.7).
As a result, we have 404 datasets for H-AVG (36 original + 368 aug-
mented) and 342 for K-Prototypes (31 original + 311 augmented).

4.4 Baselines
We compare the proposed SMR system to the following baselines:

• Random Baseline (RB): This baseline uses a random simi-
larity measure pair.

• Literature Baseline (LB): This baseline uses the similarity
measure pair used in the literature for the considered clus-
tering algorithm and can be considered as the default choice
of a data scientist when there is no tool to select suitable
similarity measures automatically. For K-Prototypes [18],
the pair (Squared Euclidean, Hamming) is used. For H-AVG,
the Gower similarity used in [23] is equivalent to the pair
(Manhattan, Hamming).

• Average Ranking Baseline (ARB): This baseline ranks the
similarity measure pairs according to their average accuracy
on all datasets in the meta-dataset.

4.5 Evaluation Metrics
Let 𝑠𝜋1 ≻ ... ≻ 𝑠𝜋𝐾 and 𝑠𝜋1 ≻ ... ≻ 𝑠𝜋𝐾 be respectively the ranking
predicted by the SMR system and the true ranking of the similarity
measure pairs on a given dataset𝑋 , where 𝜋 and 𝜋 are two permuta-
tions of the set {1, .., 𝐾}. 𝑠𝑘 ≻ 𝑠𝑙 indicate that the similarity measure
pair 𝑠𝑘 is better than 𝑠𝑙 . We consider two evaluation metrics:

• top-𝑘 accuracy: it evaluates the quality of the 𝑘 top-ranked
similarity measure pairs.

top-𝑘 =
max𝑘

𝑗=1𝐶𝐴(𝑋, 𝑠𝜋 𝑗 )
𝐶𝐴(𝑋, 𝑠𝜋1 )

(6)

Where 𝐶𝐴(𝑋, 𝑠 𝑗 ) denotes the accuracy of the similarity pair
𝑠 𝑗 on dataset 𝑋 for the considered clustering algorithm.

• NDCG (Normalized Discounted Cumulative Gain): A met-
ric based on the notion of Discounted Cumulative Gain
(DCG), which evaluates the quality and the ranking of the
top-ranked similarity measure pairs. The DCG at rank 𝑘 is
defined by:

𝐷𝐶𝐺@𝑘 =

𝑘∑︁
𝑗=1

𝑟𝑒𝑙 (𝑋, 𝑠𝜋 𝑗 )
𝑙𝑜𝑔2 ( 𝑗 + 1) , 𝑟𝑒𝑙 (𝑋, 𝑠 𝑗 ) =

(
𝐶𝐴(𝑋, 𝑠 𝑗 )
𝐶𝐴(𝑋, 𝑠𝜋1 )

)𝛼
, 𝛼 > 0

(7)
𝑟𝑒𝑙 (𝑋, 𝑠 𝑗 ) is the relevance of 𝑠 𝑗 for 𝑋 . 𝛼 is a positive number
that controls how the relevance decreases when the perfor-
mance of 𝑠 𝑗 decreases relative to the performance of the best
pair. We use 𝛼 = 4 in the experiments. The NDCG is then
defined by normalizing the DCG with the Ideal DCG (IDCG),
which corresponds to the DCG of the true ranking:

𝑁𝐷𝐶𝐺@𝑘 =
𝐷𝐶𝐺@𝑘
𝐼𝐷𝐶𝐺@𝑘

(8)

4.6 Results
To train and evaluate the meta-models, we consider a leave-one-
out (LOO) procedure. We realize 𝑁𝑂𝐷 (the number of original
datasets) iterations, such that at each iteration, one original dataset
is selected for testing while all remaining datasets (original and
augmented) except the augmentations of the selected dataset are
used for training. During the training, the hyper-parameters of
the different meta-models are defined using a grid search cross-
validation strategy and keeping the set of hyper-parameters that
maximize the mean top-1 accuracy.

Table 4 shows the mean and standard deviation (std) of the top-𝑘
accuracy on the original datasets for different values of 𝑘 . The meta-
models outperform the baselines for the different values of 𝑘 . For
the H-AVG algorithm, the KNN model outperforms the PR-DTree
model for 𝑘 = 1, while the latter performs better for higher values
of 𝑘 . For the K-Prototypes algorithm, the PR-DTree model yields
the best performances for the different values of 𝑘 . Interestingly,
for 𝑘 = 10 both models yield a mean top-𝑘 accuracy close to or
higher than 0.95 for the two algorithms, showing the ability of the
meta-models to identify top-performing similarity measure pairs.

Table 5 shows for different values of 𝑘 , the 𝑁𝐷𝐶𝐺@𝑘 (mean
and std) of the ranking predicted by the meta-models compared
to the 𝑁𝐷𝐶𝐺@𝑘 of the ARB. The two meta-models outperform
the ARB for the different values of 𝑘 indicating that the model
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Table 4: Mean and std of the top-𝑘 accuracy for different values of 𝑘

H-AVG K-Prototypes

Method top-1 top-5 top-10 top-1 top-5 top-10

LB 0.937±0.08 - - 0.837±0.13 - -
RB 0.929±0.08 - - 0.853±0.09 - -

ARB 0.924±0.1 0.933±0.1 0.945±0.09 0.874±0.12 0.930±0.11 0.936±0.11

KNN 0.960±0.06 0.969±0.06 0.977±0.05 0.894±0.11 0.922±0.11 0.944±0.08
PR-DTree 0.953±0.06 0.971±0.06 0.987±0.03 0.905±0.1 0.936±0.09 0.956±0.08

Table 5: Mean and std of the 𝑁𝐷𝐶𝐺@𝑘 metric for different values of 𝑘

H-AVG K-Prototypes

Method NDCG@5 NDCG@10 NDCG@20 NDCG@5 NDCG@10 NDCG@20

ARB 0.786±0.26 0.787±0.24 0.801±0.21 0.703±0.25 0.717±0.24 0.724±0.21

KNN 0.831±0.2 0.837±0.19 0.856±0.17 0.717±0.25 0.741±0.23 0.760±0.19
PR-DTree 0.840±0.18 0.849±0.17 0.864±0.15 0.721±0.22 0.723±0.21 0.738±0.18

Table 6: 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 of the Wilcoxon signed-rank tests

H-AVG K-Prototypes
top-1 accuracy 𝑁𝐷𝐶𝐺@10 top-1 accuracy 𝑁𝐷𝐶𝐺@10

LB RB ARB ARB LB RB ARB ARB
KNN 0.012 0.004 0.024 0.014 0.029 0.007 0.084 0.383

PR-DTree 0.434 0.016 0.052 0.005 0.015 0.011 0.124 0.307

better identifies the top-performing pairs and better predicts their
corresponding ranks.

To confirm the previous observations, we use the Wilcoxon
signed-rank test [30] to test if the superiority of the meta-models
over the baselines is statistically significant. The Wilcoxon signed-
rank test is a non-parametric statistical hypothesis test used to com-
pare two related paired samples. For clarity, we only consider the
top-1 accuracy and the 𝑁𝐷𝐶𝐺@10 metrics. For each pair (M, B) of
a meta-model M and a baseline B, we test the alternative hypothesis
𝐻1 = "M is better than B" at the 0.05 level of significance. The
𝑝_𝑣𝑎𝑙𝑢𝑒𝑠 are shown in table 6. For H-AVG, the 𝑝_𝑣𝑎𝑙𝑢𝑒𝑠 obtained
with the KNN meta-model are less than the significance level (0.05)
for all baselines. So, we can conclude that the KNN meta-model is
significantly better than all baselines for the H-AVG algorithm. For
K-Prototypes, the two meta-models perform significantly better
than the literature and random baselines (𝑝_𝑣𝑎𝑙𝑢𝑒 ≤ 0.05). How-
ever, for the ARB, the 𝑝_𝑣𝑎𝑙𝑢𝑒𝑠 are greater than 0.05.

To further analyze the results, we introduce the notion of the
"difficulty" of a dataset. We consider a dataset 𝑋 as difficult when
a randomly chosen pair has a low probability of being close in
accuracy to the best pair. This means that the average value 𝛿𝑎𝑣𝑔
(equation 9) of the accuracy difference 𝛿𝑘 between any given pair
𝑠𝑘 and the best pair for that dataset is large. Inversely, the dataset
is considered easy when 𝛿𝑎𝑣𝑔 is small (i.e. all similarity measure
pairs have similar accuracy to the best pair). The more the dataset is
difficult, the more it is important to choose the similarity measure

pair correctly.

𝛿𝑎𝑣𝑔 =
1
𝐾

𝐾∑︁
𝑘=1

𝛿𝑘 , where 𝛿𝑘 = 1 − 𝐶𝐴(𝑋, 𝑠𝑘 )
max𝐾

𝑗=1𝐶𝐴(𝑋, 𝑠 𝑗 )
(9)

For each clustering algorithm, we divide the values of 𝛿𝑎𝑣𝑔 into
three intervals of equal number of datasets. Figure 2 shows, for each
interval, the mean top-1 accuracy and the mean 𝑁𝐷𝐶𝐺@10 of the
datasets in the interval. As expected, for small values of 𝛿𝑎𝑣𝑔 , the
meta-models and the baselines yield similar results. However, when
𝛿𝑎𝑣𝑔 increases, i.e. when the choice of the similarity measures pair
is more important, the meta-models outperform the baselines and
the difference also increases with 𝛿𝑎𝑣𝑔 . So, the proposed approach
seems even more interesting for datasets for which the choice of
the similarity measure pair really matters.

Finally, to analyze the impact of the additional meta-features, we
evaluate the performance of the meta-models when using the meta-
features from the literature only compared to the performances
when we add the proposed meta-features to those used in the lit-
erature. Tables 7 and 8 show the obtained results for KNN and
PR-DTree meta-models respectively. For PR-DTree, adding the pro-
posed meta-features improves the mean top-1 accuracy and the
mean 𝑁𝐷𝐶𝐺@10 for the two clustering algorithms compared to
using the literature meta-features only. For KNN, adding the pro-
posed meta-features leads to better or worse results depending on
the clustering algorithm and the evaluation metric. This indicates
that the proposed meta-features extract useful information about
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Figure 2: Mean top-1 accuracy and mean 𝑁𝐷𝐶𝐺@10 according to 𝛿𝑎𝑣𝑔. The values of 𝛿𝑎𝑣𝑔 are divided into 3 intervals. For each
interval, the mean top-1 accuracy and mean 𝑁𝐷𝐶𝐺@10 of the datasets in this interval are represented.

Table 7: Performances of KNN according to the considered meta-features

H-AVG K-Prototypes

Meta-features top-1 accuracy NDCG@10 top-1 accuracy NDCG@10

Literature 0.954±0.07 0.84±0.18 0.91±0.11 0.717±0.21
Literature + Proposed 0.960±0.06 0.837±0.19 0.894±0.11 0.741±0.23

Table 8: Performances of PR-DTree according to the considered meta-features

H-AVG K-Prototypes

Meta-features top-1 accuracy NDCG@10 top-1 accuracy NDCG@10

Literature 0.949±0.07 0.834±0.17 0.869±0.12 0.691±0.23
Literature + Proposed 0.953±0.06 0.849±0.17 0.905±0.1 0.723±0.21

the datasets, but a meta-feature selection may be needed to identify
the optimal subset of meta-features from the proposed ones and
those taken from the literature.

5 DISCUSSION
Our experiments demonstrate that the proposed approach can be
used as an effective solution for similarity measures recommen-
dation in the context of MDC. We discuss here some important
aspects of this work.

First, one might initially perceive meta-learning as a costly solu-
tion since the construction of the meta-dataset during the learning
phase needs prior evaluations of the considered clustering algo-
rithm on all datasets using all similarity measure pairs (with a
search of the optimal combination weight). For indication, the total
computation time for these evaluations is about 8 hours for the
Hierarchical Clustering algorithm and 5 days for the K-Prototypes
algorithm using parallel execution over the datasets on a platform
with 16 CPUs Intel Xeon Gold 6226R CPU@2.90GHz. Note that this
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difference between the two algorithms is because distance matri-
ces are used for the Hierarchical Clustering algorithm. So even if
each numeric or categorical similarity measure is present in several
similarity measure pairs, its distance matrix can be computed only
once. It is essential to note that these evaluations are computed
only once and the associated computational cost is not a major
problem since they only concern the learning phase. Moreover,
once the meta-models are trained, their use in practice (inference
phase) helps avoid expensive trial-and-error strategies, leading to
significant time and energy savings.

Second, this study complements existing studies to support ma-
chine learning practitioners in their classical tasks such as algo-
rithm selection, algorithm parameter setting, similarity measures
selection, and so on. Our work focuses on this latter task. Once
the user has selected a clustering algorithm, our recommendations
allow to drastically reduce the needed effort to find suitable simi-
larity measure pairs. Nonetheless, the search for optimal algorithm
parameters remains necessary.

It is also important to note that despite utilizing labeled datasets
during training (labels were used for evaluation purposes to train
the meta-models to identify suitable similarity measure pairs), our
approach is designed for an unsupervised setting, as the meta-
features used by the meta-models do not incorporate labels.

Finally, we think important improvements can be made, particu-
larly for the meta-features by understanding how they are involved
in the meta-models’ predictions and identifying the most important
ones. Also, there is a lack of meta-features adapted to the context of
SMR for mixed data in the literature. Future works in this direction
will be of high interest.

6 CONCLUSION
In this paper, we proposed a meta-learning approach for similarity
measures recommendation in mixed data clustering. This approach
exploits the experience we get from evaluating a given clustering
algorithm on various mixed datasets with different similarity mea-
sure pairs to learn to predict the ranking of the similarity measure
pairs according to the datasets’ characteristics. We validated the
approach on two commonly used mixed data clustering algorithms:
K-Prototypes and Hierarchical Clustering. Our experiments show
that the recommended similarity measure pairs for these two al-
gorithms, perform better than the considered baselines (including
classically used similarity measure pairs in the literature), especially
for datasets highly impacted by the choice of the similarity measure
pair.

For future works, we plan to conduct more in-depth studies
about the meta-features to identify and design meta-features that
better characterize mixed datasets or end-user tasks.
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