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Where are we?

Vercors
2



Why these wandering computers?

Interactive autonomous systems

➢ Multi-modal
➢ Perceive, Act, & React
➢ Impact on people

Learning-based components

➢ High-cost real data
➢ Limited on-line computation

Need for preparation/adaptation
3



DVAE

Dynamical 
Variational 

AutoEncoders
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Today!

SFR

Successor Feature 
Representation 

Learning

SPRING

Social Robotic 
Experiments in a 
Day-care Hospital

Apologies in advance for the equations ;)

https://docs.google.com/file/d/1tVo4EwDxC660SighT7_3t5ND6aW4-t-i/preview


Dynamical Variational Autoencoders[1]

5[1] L. Girin, et. al., (2021), Foundations and Trends on Machine Learning.
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Latent-variable models

Probabilistic models approximate the data distribution with a parametric proxy.

Interest of latent variables: model hidden phenomena with probabilities.

Clean speech // Noisy speech    Ball position // Detection



How to work with (deep) LVM?

7

Latent variables add spice to learning: how to maximise[2,3,4] the log-likelihood?

[2] A.P. Dempster, et. al., (1977), Journal of the Royal Statistical Society.
[3] M. I. Jordan, et. al., (1999), Machine Learning.
[4] D. Kingma, et. al., (2013), International Conference on Learning Representations.

Step 1: Define the model Step 2: Learning and inference



Maximise a lower bound:

From what we've defined:

VAEs learn a probabilistic representation with latent non-linear dependencies:
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Variational auto-encoders[4]

[4] D. Kingma, et. al., (2013), International Conference on Learning Representations.
Image credit medium.com (https://medium.com/@rushikesh.shende/autoencoders-variational-autoencoders-vae-and-%CE%B2-vae-ceba9998773d)
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Fundamental limitation of VAE: frame-wise modeling

From a VAE perspective, these two speech signals are exactly the same:



Model sequences of observations & latent variables:
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Dynamical VAEs



As in VAEs, the posterior needs to be approximated. Simplified using D-separation.[5]

11

DVAEs: learning & inference

[5] Bishop, C. M., (2006).
[1] L. Girin, et. al., (2021), Foundations and Trends on Machine Learning.

Learning is performed by maximising the "temporal" ELBO.[1]



Mixtures of DVAEs for
unsupervised multi-source tracking[6]

12[6] X. Lin, et. al., (2023), Transactions on Machine Learning Research.
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Motivation: multi-source trajectory modeling

    Trajectories @ t-1 Observations @ t Desired output



Multiple tracks: track-detection assignment latent variable.
Tracks not observed directly: object position is a latent variable.
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MixDVAE Intuition

GMM
(Multi-source
No dynamics)

Kalman
(1-source

Linear dyn.)

DVAE
(1 source

Non-linear)

MixDVAE
(Multi-source
Non-linear)

MixKalman
(Multi-source
Linear dyn.)



15

MixDVAE algorithm

Pre-trained DVAE (synthetic data) + Variational Expectation Maximisation (VEM)



Let us recall de GMM update and the Kalman update:
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Quick discussion

The MixDVAE update looks like:

Experiments in multiple object tracking, and sound source separation.

Ongoing: adapting non-linear model, complexity, learning from noisy data, …



Multimodal DVAEs
for audio-visual speech modeling[7]

17[7] S. Sadok, et. al., (2024), Neural Networks.
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Can DVAEs model multi-modal data?

VAE DVAE MVAE



Affective audio-visual speech[8]
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What should we model?

➢ �Static AV
(ID, emotion)

➢ �Dynamic AV 
(lip-audio corr.)

➢ �Dynamic Audio
(pitch, tone)

➢ �Dynamic Visual 
(eye AUs)

[8] K. Wang, et. al., (2020), European Conference on Computer Vision.



Multimodal DVAE (MDVAE)
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What should we model?

➢ �Static AV
(ID, emotion)

➢ �Dynamic AV 
(lip-audio corr.)

➢ �Dynamic Audio
(pitch, tone)

➢ �Dynamic Visual 
(eye AUs)

Sounds Images

Static AV

Dynamic AV
Dynamic Audio Dynamic Video
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Quantization helps!

[9] A Van Den Oord, et al., (2017), Neural Information Processing Systems.

MDVAE works better coupled with quantisation[9]
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Qualitative results (1)

Same visual dynamics Same audio-visual dyn.
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Qualitative results (2)

Emotion interpolation Appearance interpolation

https://docs.google.com/file/d/15le3IiXWym0Xp5_HolGfaqz_sYCx_41k/preview
https://docs.google.com/file/d/1SVMK0ua1Z-Z4s342FKbFcAHFFsp0sRO-/preview
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Successor Feature Representations[10]

[10] C. Reinke, et al., (2023), Transactions on Machine Learning Research.



Motivation
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Teach a humanoid robot to join a group of people
➢ Combine audio, visual and optimal motion? 
➢ Deep Reinforcement Learning?

https://docs.google.com/file/d/1tVo4EwDxC660SighT7_3t5ND6aW4-t-i/preview


Markov decision process:
- state space,
- action space,
- transition probability,
- reward function,
- discount factor.

26

Basics of value-based RL



At least two issues: data-greedy and reward design.

Dependency of the reward function on these features.

27

Let's use features

Distance
to objects

Distance
to people

Robot
speed



Problem: even if the case of feature-based rewards, we need lots of training data.

Can we re-use what we learn thanks to these feature-based rewards?

28

Long training for every new task!



First paradigm was linear[11] dependencies: 
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Transferring knowledge? 

...

...

re
w
ar
d

steps

re
w
ar
d

steps

re
w
ar
d

steps

re
w
ar
d

steps

[11] A. Barreto, et al., (2017). Neural Information Processing Systems.



How does the action-state value function write?

30

The linear case

Definition
of "Q"

Task-policy separation
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Re-using knowledge?

...

Generalised policy improvement: 
A cumulative greedy policy...

…cannot be too far away.



Reward does not always depend linearly on the features: we need an extension.

32

Limited to linear dependencies

Task-policy separation
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Linear vs. non-linear

Linear Non-linear

The generalised policy improvement (greedy cumulative policy) holds for both.

What are we missing so far? The learning operators!



34

The learning operators

For a given transition

Where is the task/environment in the feature-based learning operators?
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A few results
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Socially Pertinent Robots in 
Gerontological Healthcare[12]

[12] X. Alameda-Pineda, et al., (2024), International Journal of Social Robotics, Under review.

(a lot of people)
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H2020 SPRING[13]

Goal: to develop socially assistive robots with the capacity of performing 
multi-person interactions and open-domain dialogue.

Experiments at gerontological day-care 
Broca hospital (AP-HP) 

[13] https://spring-h2020.eu/
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Data Protection & Ethics

Ethics compliance

Phase 1 (CER Paris Université):

- Ethnographic study
- Living lab simulated study

Phase 2 (CPP):

- Day-care hospital waiting room



More than 50 software modules interconnected using ROS

39

Software architecture



Acceptability and usability were measure with standard questionnaires:

Comments:

- Scales for consumer products (so proxy).
- Outstanding results for an experimental platform.
- Improvement after taking feedback into account… and including LLMs.
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Results

Wave (#pers) First (20) Second (49)

Acceptability[14] (max 10) 3.96 ± 0.05 6.17 ± 0.33

Usability[15] (max 10) 4.79 ± 2.40 5.70 ± 2.30

[14] J-A Micoulaud-Franchi, et al. Psychiatry Research, 2016.
[15] J. Brooke, Usability Evaluation In Industry, 1996.



➢ Deep is nice, useful, performance, etc. 
But it's great to ground things with mathematical models.

➢ Fusing multiple modalities helps representing each other.

➢ Very challenging to deploy models in robotic platforms.

➢ Beyond limited computation, there scientific challenges linked
to data distribution shifts.

➢ Complete software architectures required combined specific expertises.

➢ When experimenting with social robots (and hence with humans)
one must be very careful: what is the impact on the user?

41

Conclusions



All RobotLearn-ers and collaborators!

The funding programs supporting our research:

And you for listening. Question (and answer?) time!

I am available for longer discussions: I would like to hear about your topic(s)!!! 
42

Thanks


