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ABSTRACT: Among all the operations carried out un-
der general anesthesia worldwide, some patients have had
the terrible experience of Accidental Awareness during
General Anesthesia (AAGA), an unexpected awakening
during the surgical procedure. The inability to predict
and prevent AAGA before its occurrence using only con-
ventional measures, such as clinical signs, leads to the
use of brain activity monitors. Given AAGA patients’
first reflex to move, impeded by neuromuscular-blocking
agents, we propose using a new Brain Computer Interface
with Median Nerve Stimulation (MNS) to detect their
movement intentions, specifically in the context of gen-
eral anesthesia. Indeed, MNS induces movement-related
EEG patterns, improving the detection of such intentions.
In this article, we compared MNS effects on the motor
cortex before and during surgery under general anesthe-
sia. Then, a Riemannian Minimum Distance to the Mean
classifier achieved 97% test balanced accuracy in distin-
guishing awake and anesthetized states. Additionally, we
observed how the classifier’s response evolves with anes-
thesia depth, in terms of distance to the awake class cen-
troid. This distance appears to track the patients’ aware-
ness level during surgery. This holds promises for devel-
oping a future one-class classifier using only awake EEG
data, as anesthesia EEG data are usually unavailable for
classifier training, to detect AAGA.

INTRODUCTION

Accidental Awareness during General Anesthesia
(AAGA) is an unexpected awakening during surgery
that can be a truly traumatic experience for the patients.
It occurs in about 1% of high-risk interventions [1],
although the incidence remains controversial as it is a
subjective experience that may be underestimated in
the absence of the necessary questionnaires to follow
the patients [2]. During an AAGA, the patient may
experience pain, and recall events related to the surgery,
which can lead to potentially devastating psychological
sequelae, such as Post-Traumatic Stress Disorder (PTSD)

[3]. The risk of AAGA is higher with Total Intravenous
Anesthesia (TIVA), such as propofol, in comparison
to volatile-based anesthesia [4]. In addition, the use
of Neuromuscular-Blocking Agents (NMBAs) further
increases this risk [2]. The first reaction to noxious
stimulation when anesthesia depth is insufficient is
the patient’s movement, which may act as a potential
detector of AAGA, but this response is suppressed by
NMBAs, which paralyze the patient [5]. Besides, tradi-
tional clinical signs like hypertension, tachycardia and
lacrimation are also unreliable indicators of anesthesia
depth [5]. As a result, electroencephalography (EEG)
has been used to monitor the depth of anesthesia [6], but
awareness may still occur with current monitors [7, 8].

Since the first reflex of a patient experiencing AAGA is to
attempt to move to prevent what is happening [2], using a
Brain-Computer Interface (BCI) based on motor imagery
could be relevant [9, 10]. Indeed, the power variations
within the mu and beta frequency bands, called Event-
Related Desynchronizations (ERD) and Event-Related
Synchronizations (ERS) could be useful markers for de-
tecting whether the patient is experiencing AAGA [11].
Interestingly, Median Nerve Stimulation (MNS) is a pain-
less stimulation of the median nerve that generates a sim-
ilar ERD/ERS pattern to the one induced by an intention
to move (MI) [12]. Combining both MI and MNS has a
significant impact on the patterns generated by the MNS,
resulting in a better classification accuracy in MI detec-
tion [9, 13]. Also, MNS intrinsically provides a trigger
to know when to analyze the signal [14], which leads to
better classification (+18%) results than those obtained
with asynchronous BCI [9]. The originality of this BCI
paradigm is to exploit this MNS induced phenomenon
to accurately detect the patient’s motor intention during
an AAGA. In preliminary results, we have shown that
propofol sedation (at 0.5 µg/ml and 1 µg/ml) has no nega-
tive impact on the ability of an MNS-based BCI to detect
movement intention. Concretely, at relatively low propo-
fol concentrations, ERD/ERS patterns are still present in
the sensorimotor cortex [15, 16]. However, it appears that



high doses of propofol strongly affect the oscillatory ac-
tivity generated by the MNS [17], which makes it difficult
to detect MI under anesthesia.
Current BCIs require a subject-specific calibration due
to large between-subject variabilities. However, before
a surgery, patients’ EEG examples of MNS during anes-
thesia are not available. In the long term, we thus need
to develop new machine learning tools that can detect MI
under anesthesia without any EEG example from this pa-
tient. With this future objective in mind, in this paper, we
first propose to use a Riemannian Minimum Distance to
the Mean (MDM) classifier [18] to differentiate the EEG
activities induced by the two types of stimulations: pre-
operative MNS when the patient is awake (MNS-awake),
from intraoperative MNS when the patient is under differ-
ent stages of general anesthesia (MNS-anesthesia). Our
findings suggest that an MDM classifier is indeed capa-
ble of distinguishing between these two classes with high
accuracy. Additionally, the distance to the MNS-awake
class centroid (which does not require data under anes-
thesia) varies according to the concentration of propo-
fol throughout the surgery. These results are promising
for the future development of a one class MNS based-
BCI that detects AAGA, as EEG covariance matrices ap-
pear to contain information related to the patients’ level
of awareness throughout the surgery under propofol.

MATERIALS AND METHODS

Participants: 13 volunteers (7 females; 50±7.39 years
old) were enrolled for surgery at the CHU Brugmann,
Brussels, Belgium, and accepted to participate in this
protocol. This study was approved by the ethical com-
mittee of the CHU Brugmann (CE 2021/225) and was
registered at EUDRACT (2021-006457-56). The study
protocol [14] was also registered on ClinicalTrials.gov
(NCT05272202) and follows the principles of the Dec-
laration of Helsinki and the Medical Research Involving
Human Subjects Act [19]. Subjects 1, 2, and 5 were
excluded either due to technical issues or because the
surgery was canceled, resulting in only 10 subjects being
included. 2 of them (subjects 10 and 11) were stimulated
on the right median nerve, and the remaining 8 on the
left. This was due to difficulties in placing the electrodes
on the left median nerve and limited time in order not to
delay the surgical intervention.

Protocol: The patients were equipped with a TMSi
64-channel EEG cap covering the entire scalp, and the
signals collected through an eego mylab system (ANT
Neuro) at 4096 Hz. MNSs consisted of square electrical
pulses of 0.2 milliseconds of duration, and were gener-
ated by Micromed device SD Ltm Stim Energy and de-
livered through a pair of grass gold cup electrodes (cath-
ode [-] placed proximally) to the right/left median nerve
at the wrist [12]. The intensities were adjusted to elicit
visible small thumb twitches, below 15 mA [14].
First, a preoperative EEG recording session (approxi-
mately 1 hour) was conducted by stimulating the median
nerve of the awake patient during 1 or 2 runs. This was

followed by a second intraoperative session recorded dur-
ing the entire surgery under general anesthesia; the dura-
tion and number of runs depended on the length of the
surgery (from 3 to 10 runs, depending on the subject).
One run consisted of 150 stimulations, spaced by 3 to 4
seconds. The anesthesia protocol was left at the anes-
thesiologist’s discretion, except for the loss of conscious-
ness, which was achieved using propofol with a Target-
Controlled Infusion (TCI) pump with the Schnider phar-
macokinetic model designed to predict propofol concen-
tration at the effect-site [20]. If necessary, NMBA agents
were used (patients n°4, 6, 7, 8, 11, 13). Data collec-
tion of the target propofol concentration administered to
the patients was directly recorded alongside the EEG sig-
nals. After the surgery, sedation was discontinued, allow-
ing the patient to recover and to be monitored afterward
in the post-anesthesia care unit.

Time-frequency EEG analyses: Time-frequency analy-
ses to identify the differences in MNS patterns between
preoperative and intraoperative sessions were performed
using the EEGLAB toolbox [21] and MATLAB R2023a
(The MathWorks Inc). EEG signals have very low am-
plitudes and are thus susceptible to external interference.
For example, the use of electrocautery during a surgery
produces visible noise in the EEG signals [22]. In order to
clean these electrocautery-related artifacts, all trials were
visualized and those affected were rejected. Then, EEG
signals were downsampled to 128 Hz and epoched into
4.5 s windows (1.5 s before and 3 s after MNS).
Because Event Related Spectral Perturbation (ERSP)
time-frequency analyses are conducted at the group level,
it is essential for the subjects to have homogeneity, mean-
ing they should be stimulated in the same hand. There-
fore, ERSP time-frequency analyses were averaged only
across the 8 participants where the left median nerve was
stimulated, the electrode of interest being C4 (Fig. 1).

Classification: Offline BCI performances for MNS-
awake vs. MNS-anesthesia classification were analyzed
to determine if the MNS pattern might be used to track
the patient awareness level throughout surgery. Classifi-
cations were performed using the MNE [23], Scikit-learn
[24] and pyRiemann [25] packages in Python 3.10. EEG
signals, with trials affected by electrocautery-related ar-
tifacts rejected, were downsampled to 128 Hz, band-pass
filtered (8-30 Hz), and epochs for MNS-awake and MNS-
anesthesia were extracted from 250 to 1000 ms after the
stimulation. Epochs do not start at time 0 ms to avoid
MNS-induced electrical artifacts. All 64 electrodes were
used for the classification, and since the algorithm cali-
bration is subject-specific, all 10 subjects were included.
A Riemannian MDM [18, 26] was used, as Riemannian
classifiers are currently the state-of-the-art in EEG-based
BCIs [27, 28]. Each EEG trial X is represented by a
covariance matrix P ∈ Rn×n, with n the number of elec-
trodes, s the number of sampled time points in each trial
and the superscript T as matrix transposition:

P =
XXT

s−1
(1)
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Figure 1: Grand average Event-Related Spectral Perturbation (ERSP) time-frequency analysis across 8 subjects for both conditions:
preoperative (left figure) and intraoperative (central figure) median nerve stimulation, for electrode C4. The flash icon indicates the
beginning of the stimulation. Statistical differences at a significance level of 0.05 are shown on the right figure. Red color corresponds
to a strong ERS and blue to a strong ERD.

Such matrices are symmetric-positive definite matrices,
that can be manipulated using Riemannian geometry, and
compared using a dedicated Riemannian geodesic dis-
tance δR:

δR(P1,P2) = ||log(P−1/2
1 P2 P−1/2

1 )||F (2)

where ||A||F is the Frobenius norm of a matrix A. For al-
gorithm training, the MDM algorithm first estimates the
mean covariance matrix Pk

G for each class k (here, MNS-
awake or MNS-anesthesia). This is performed using the
covariance matrices of the I ≥ 0 training EEG signals
from class k, as follows:

Pk
G = argmin

Pk

I

∑
i=1

δ
2

R(Pk,Pk
i ) (3)

These two mean covariance matrices, one for each class,
can then be used as class centroids. For algorithm test-
ing, covariance matrices are also estimated for each trial.
Thus, the class k̂ of an unseen EEG covariance matrix P
is determined based on the nearest centroid’s class:

k̂ = argmin
k

δR(P,Pk
G) (4)

The number of training and testing trials differs among
subjects, depending on the quantity of clean trials
recorded preoperatively or during their surgery. The clas-
sifier was trained with the first half of preoperative trials
for the MNS-awake class (65 to 148 trials), and the first
half of deep-anesthesia intraoperative trials for the MNS-
anesthesia class (113 to 535 trials). It was then tested on
the remaining trials (279 to 1192 trials). Standard cross-
validation was not used to remain realistic and more sim-
ilar to an actual online use, where no future data would be
available for cross-validation. Employing this technique
might lead to an overestimation of the accuracy [29].

RESULTS

Impact of general anesthesia on ERD/ERS induced by
MNS: During the preoperative condition (i.e., before the
general anesthesia), the ERSP analysis (Fig. 1) revealed
the usual EEG pattern associated with median nerve stim-
ulation [9, 30]. In particular, immediately after the MNS,
a powerful ERS appears between 0 and 250 ms, in the
whole 8 to 30 Hz frequency band. For the remainder of
this article, this very first ERS will be referred to as the
post-stimulation rebound (PSR; see [9, 30]) and could be
due partially to an electrical artifact. The PSR is followed

by an ERD period of approximately 500 ms in both the al-
pha and beta frequency bands (8-30 Hz). Finally, a post-
movement beta rebound (PMBR) occurs in the beta fre-
quency band (18-23 Hz) about 500 ms after stimulation
and lasts 1 s. According to a permutation test comparing
the two surgical conditions, for p≤ 0.05 with a correction
for false discovery rate for multiple comparisons, both
ERD and PMBR seem to disappear significantly during
the intraoperative condition.

MNS-awake vs MNS-anesthesia classification: The
MDM algorithm is able to correctly distinguish the pre-
operative MNS pattern (MNS-awake) from the intraoper-
ative pattern (MNS-anesthesia), with an average test set
balanced accuracy of 97% (Fig. 2). The test set balanced
accuracy for each subject is never below 85%, which is
not surprising given the clear difference in the MNS pat-
tern between these two sessions (Fig. 1).

Distances to the MNS-awake class centroid: The dis-
tances to the MNS-awake class centroid of the test tri-
als of subjects S6, S8 and S9 over the whole experiment
are shown in Fig. 3. When a trial is classified as MNS-
awake by the MDM classifier, a bar is presented below
it, beneath the graph. The corresponding test set bal-
anced accuracies of subjects 6, 8 and 9 are 96%, 98% and
86%, respectively, with the latter being the lowest accu-
racy among the 10 subjects. For S6 and S8, the MDM
classifier correctly identified the patients as awake dur-
ing the preoperative session and at the beginning of the
intraoperative session. For S6, this prediction persisted
until the propofol concentration reached approximately
1.5 µg/ml, and for S8 until it reached 3 µg/ml. At the
end of the intraoperative session, S8 was also identified as
awake for a few trials. As for S9, the preoperative session
was accurately labeled. Towards the end of the surgery,
with propofol below 1.5 µg/ml, the subject was identi-
fied as awake, which is consistent with reality, as the pa-
tient was already responding. However, the classifier as-
sociated some trials that were part of the induction (with
propofol concentration between 2 and 8 µg/ml), as part
of the MNS-awake class. The evolution of the distance is
congruent with anesthetic concentration evolution, sug-
gesting that covariance matrices might indeed reflect the
progression of the MNS pattern throughout the surgery.



Figure 2: Riemannian MDM test set balanced accuracy of the
10 subjects, for MNS-awake vs MNS-anesthesia classification,
where the EEG signals were filtered in the mu+beta band (8-30
Hz), and all 64 electrodes were used. The yellow line indicates
the average test set balanced accuracy (97%).

DISCUSSION

According to these results, a Riemannian MDM is in-
deed capable of distinguishing the MNS pattern of an
awake patient from the MNS pattern when the same pa-
tient is under propofol. This distinction varies through-
out the surgery, according to the propofol concentration.
The classifier accurately identifies the patient as awake
during the preoperative session, at the beginning of the
induction and at the end of the emergence phases. Fur-
thermore, trials of deep anesthesia are farther away from
the MNS-awake class centroid than trials corresponding
to induction or emergence. We will suggest a few hy-
potheses that may explain the changes in MNS patterns
between the two sessions and how to make the algorithm
more robust. Additionally, we will discuss the possibility
of evolving this algorithm into a one-class model, as well
as future analyses to be explored.

ERD/ERS differences between preoperative and intra-
operative conditions: As mentioned, sensorimotor mod-
ulations after stimulation are strongly modulated by gen-
eral anesthesia. First, the amplitude of the PSR (i.e., ERS
following the MNS) completely disappears in the pres-
ence of propofol. This is also the case for the post-MNS
ERD and for the PMBR (Fig. 1). Our previous results had
shown that with light propofol sedation (concentrations
below 1.5 µg/ml), ERD/ERS patterns were still present
in the sensorimotor cortex [16]. However, at deepest
concentrations, propofol decreases excitatory inputs from
the thalamus to the cortex [6], leading to a decrease in
the metabolic activity of the central nervous system, thus
making the ERD/ERS disappear after MNS.
In addition to the effects of general anesthesia, other fac-
tors could explain the modulations of ERD/ERS. For ex-
ample, this could be attributed to a change in skin con-
ductance, for instance due to stress. Skin conductance
increases in response to stress [31], as is the case right
before the intervention, and decreases during the surgery
when the patient is no longer conscious. This remains a
hypothesis to be further analyzed. It might also result
from the change in environment between the two ses-
sions, with the preoperative session conducted in a differ-
ent room than the operating one because of the high cost

of the operating rooms. Also, the position of the patient’s
arm was not exactly the same in the two sessions.

Robustness of the classification: The MDM classi-
fier is indeed capable of correctly identifying the periods
when the patient is awake (preoperative session, begin-
ning of induction and end of emergence). It is impor-
tant to note that the MNS-anesthesia class was trained
with trials under deep anesthesia, which are not easily
obtained under clinical conditions. Moreover, for certain
subjects such as S9, it mistakenly classifies some trials
where the patient is at a propofol concentration of 2 to
6 µg/ml as MNS-awake. During this period, some ex-
ternal elements occurred that could explain why these
covariance matrices were closer to the centroid of the
MNS-awake class rather than to the one associated with
MNS-anesthesia. For example, the patient raised an arm,
MNS electrodes were repositioned, the patient was intu-
bated, and the medical team adjusted the patient’s posi-
tion on the operating table. Even though the biggest ar-
tifacts were rejected from the EEG, the signals remained
considerably noisy. Furthermore, there is minimal dif-
ference between S9 and the other subjects, except for its
age of 75, compared to an average of 50. Age-related
variations in the effects of anesthesia on the EEG have
already been shown to impact the effectiveness of EEG-
based monitors [32]. Additionally, S9 had notably fewer
training trials (77 for MNS-awake and 137 for MNS-
anesthesia) compared to S6 and S8, which had 2 to 4
times more trials, making them the subjects with the high-
est number of training trials. Despite this, Spearman’s
correlation revealed no significant relationship between
the number of training trials and accuracies. Thus, while
S9’s lower accuracy compared to S6 and S8 may be due
to its fewer training trials, this explanation cannot be gen-
eralized across all subject’s. Burst suppression, a high-
voltage activity alternating with isoelectric flat EEG [33],
is related to deep levels of general anesthesia [6, 34].
Thus, current depth of anesthesia monitors have a burst
suppression sub-variable to avoid a paradoxical increase
[5]. In our algorithm, we have not yet taken into account
this paradoxical increase in amplitude.

One-class classifier: In a real-world application, the
MNS-anesthesia class trained with deep anesthesia trials
will not be available to calibrate the BCI. Therefore, a
one-class approach [35] calibrated only with MNS-awake
trials will be required. Given that the distance to class
MNS-awake appears to evolve logically in relation to the
anesthesia concentration evolution, one could imagine a
one-class method that only takes into account preopera-
tive data to compute an MNS-awake centroid using a Rie-
mannian distance, as in the MDM algorithm. A threshold
would then be defined, beyond which the trials of the test-
ing set no longer match, meaning the MNS pattern cor-
responds to an anesthetized patient. We will explore this
approach in future works.

Future analyses: To detect the propofol concentration
at which the MNS patterns are no longer visible, we will
further analyze an average time-frequency across subjects
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Figure 3: Distances of each test trial to the MNS-awake centroid, for subjects 6, 8 and 9. The real labels are presented by colors:
green for the preoperative session (MNS-awake) and red for the intraoperative session (MNS-anesthesia). Below, a bar indicates
when the classifier predicted MNS-awake. When propofol reaches the target concentration, a gray line with a label indicating the
corresponding concentration (in µg/ml) is displayed. Each run is differentiated by alternating background colors (white, gray), and
labeled as preoperative (P) or intraoperative (I) runs.

for each concentration. This will allow us to observe the
pattern evolution. An extension of this MNS-based BCI
will also be explored by integrating other EEG features,
still visible under deep levels of propofol. Some of these
features might be the signal entropy, already used in some
monitors [36], functional connectivity or somatosensory
evoked potentials. Further analyses will also aim to iden-
tify the specific frequency band and the most relevant
electrodes to correctly detect the changes in the MNS
pattern when a patient is anesthetized. In order to val-
idate this MNS-based BCI, a protocol will be carefully
conceived to try to simulate an AAGA and observe if the
BCI will indeed be able to detect it.

CONCLUSION

In this paper, we evaluated the feasibility of a new MNS-
based BCI to detect intraoperative awareness during gen-
eral anesthesia by tracking the EEG pattern in the motor
cortex associated to MNS during the surgery. We com-
pared this MNS pattern when the subject is awake (MNS-
awake) with the MNS pattern when the same patient is
undergoing a surgical procedure at different concentra-
tions of propofol (MNS-anesthesia). The two patterns are
indeed very different from each other, more particularly,
the ERD and PMBR present after the stimulation seem
to disappear at deeper concentrations of propofol. A Rie-
mannian MDM was used to differentiate the MNS-awake
and MNS-anesthesia classes. The average test balanced
accuracy was of 97%, which was expected considering
how different the two patterns are. The evolution of the
classifier was further analyzed, by tracking the distance
between the centroid of the MNS-awake class and covari-
ance matrices of other trials throughout the surgery. This

distance is greater during the maintenance phase, under
deeper concentrations of anesthesia, compared to the in-
duction or emergence phases. This indicates that co-
variance matrices associated with the MNS pattern seem
to evolve consistently with the patient’s level of aware-
ness. Hence, a one-class approach only based on MNS-
awake trials, utilizing this distance to detect when the
patient is awake during the surgery might be developed.
Such a one-class method will be necessary, as the MNS-
anesthesia trials will not be available to calibrate the BCI.
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