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Abstract—Similar to autonomous driving on the road, auto-
mated and autonomous train operation also offers many advan-
tages. These include relieving the burden on train drivers, as well
as a possible increase in line capacity or the redevelopment of
previously unprofitable route sections. One of the most important
tasks of an autonomous train control system is to monitor the
surroundings and, above all, the route to be traveled. This must
be continuously monitored for possible obstacles in the train’s
path, just as a human train driver does. In order to perform
this task, sensors are required that record data about the train’s
surroundings. Such sensors in autonomous systems are usually
cameras, radar or lidar sensors. To detect obstacles on the track,
the critical zone must first be identified. For trains, this area
is called the clearance gauge and describes the space that the
train occupies when traveling on a track. In complex scenes with
switches, the section of track that the train travels through –
the ego track – must be determined depending on the status of
the switches. This paper presents an image-based approach for
embedded on-board ego track determination, combining track
and switch information in order to achieve a more robust ego-
track prediction.

Index Terms—On-Board Railway Track Detection, Machine
Learning, Computer Vision, Robustness

I. INTRODUCTION

Rail transportation is considered as a safe and energy-
efficient mode of transport. But the technology needs to
evolve to cope with increasing demands for traffic density and
flexibility. Requests to channel more trains in closer sequence
on the same network infrastructure and the interweaving of
long distance and regional passenger traffic with cargo trans-
portation creates new challenges for control and protection
systems, and for train drivers and other involved personnel.
On-board systems for driver assistance and systems enabling
automated train operation are elements helping to respond to
these challenges.

Funded by the German Federal Ministry of Education and Research
(BMBF) (Grant Number 01IS22029C), within the scope of Project ’Certifiable
machine learning based controls for safety-critical applications (CertML)’ as
part of the program ’KI4KMU - Research, Development and Use of Artificial
Intelligence Methods in SMEs’.

Such systems shall either support the driver in their key
operative duties, or even replace the driver and fully assume
these tasks. One of the key capabilities required for such
systems is the safe and reliable detection of obstacles on the
train path. The obstacle detection performance required must
be at a level similar or better compared to that of human train
drivers. Consequently, the systems must be able to cover a
range of several hundred meters distance (direct line of sight),
operating conditions that include different light conditions
such as shadows, rain and fog, backlight, and dawn. Safety
integrity levels (SIL) for the covered functions can be derived
through the analysis of use cases and associated hazards.

Railway track topology includes switches that connect
individual railway tracks (either merging or splitting), and
crossover points where individual tracks cross each other. In
general, obstacles may be detected on any of the tracks in front
of a vehicle. Taking all these into account would potentially
lead to many ”false positive” detection events, leading to un-
necessary alarm or braking reactions and rendering the system
unusable. Instead, the system should be able to understand
which path the vehicle will actually take considering switch
positions and crossings (the ”ego track”), and to take only
those obstacles into account that are situated on the ego track.

In principle, ego track detection could be based on a com-
bination of train localization information, track topology data,
time table and route planning information. Yet, each of these
information elements may be either not accurate enough or
not up-to-date. E.g., track-exact localization by GNSS (Global
Navigation Satellite System) is extremely difficult to realize
and infrastructure-based localization means are not available
everywhere. Therefore, ego track detection must be either
completely based on or at least substantiated by on-board
means.

In order to perform both, ego path detection and obstacle
detection, sensors are required that observe the railway in-
frastructure in front of the train. On-board perception systems
usually use combinations of daylight and/or infrared cameras,

1

https://orcid.org/0000-0001-7129-3339
https://orcid.org/0000-0003-0461-2058


and sometimes additional detection means such as LiDAR
or radar sensors. Based on the acquired sensor information,
the ego path is identified taking into account the sensed
track topology (potentially including all visible railway tracks),
switches and crossings, switch positions, and railway signals.
Such ego track then may be considered as region-of-interest
that may be subsequently scanned for obstacles or other
anomalies.

In this paper we present an approach for ego track detection
based on combining deep neural networks (DNNs) for track
detection and switch detection, thereby implementing a two-
step approach involving plausibility checks that enhance its
robustness considering complex track topologies. In the fol-
lowing sections, we first present related work and explain the
need and the challenge of robustly identifying the ego track as
a precondition for safe obstacle detection. In the next section,
we explain our approach that is based on combining two
specialized neural networks to detect tracks and switches, and
to combine the detection results to properly identify the ego
track. Further we present experimental results for the different
approach variants implemented and provide our conclusions.

II. RELATED WORK

Compared to the automotive sector, less research has been
carried out in the field of advanced driver support systems
and autonomous driving in the railway sector. Yet, during the
last years, the subject has started to attract a lot of attention.
Railway operators invest into these topics, state funding is
being made available, and several large research consortia
have been established like ”Railenium” in France and ”Digitale
Schiene” in Germany. Momentum has been established that led
to a considerable number of approaches and initial solutions
in this area.

Several studies that have examined the importance and
necessity of autonomous trains for our society, as well as the
related risks and challenges, e.g. Trentesaux et al. [1]. Hyde
et al. [2] and others worked out that obstacle detection is
necessary for trains with a higher grade of automation (GoA).
Since in those systems the safety-critical monitoring function
of the driver is replaced by a software control system, those
systems need to fulfill safety regulations and requirements.
Safety regulations for automated driving of metros do exist
(EN 62267), whilst the similar regulative framework for main-
line railway – which is a much more diverse and challenging
environment compared to metros – is still under development.
Initial analyses for safety requirements are already available.
One such analysis performed for the German railway authority
focusing on ATO at GoA level 3 determined required safety
integrity levels of SIL0 to SIL2 depending on the task taken
over by the automated system, with SIL3 required in excep-
tional cases [3].

For railway obstacle detection, both classical computer vi-
sion (CV) methods and approaches based on machine learning
(ML) have been presented in the literature. Ristić-Durrant et
al [4] have carried out a comparative literature analysis on
the different approaches. This work and other more recent

work [5] indicate that ML-based methods are better suited
for obstacle detection tasks due to their robustness regarding
complex scenes and diverse operating conditions. On the other
hand, traditional approaches have advantages with respect
to the certifiability for safety-critical applications such as
automated train operation.

In [6]–[10], neural networks are proposed for track detection
as a first task in an obstacle detection pipeline. Semantic
segmentation is used to identify rails or complete tracks, by
assigning each pixel in the image to a semantic class.

Many published obstacle detection approaches do not ex-
plicitly aim to identify the ego track, but rather include
all visible tracks in front of the train as region of interest
for obstacle recognition [11], or compute all possible paths
starting from the track immediately in front of the vehicle
(i.e., excluding all those tracks without a direct connection to
the current train position) [12]. As explained earlier, this may
lead to many ”false positive” identifications of obstacles that
are truly obstacles, but situated on tracks that will actually not
be used by the train.

To identify the ego track in the set of all visible tracks,
switches and switch positions have to be identified. Jahan et
al. [13], e.g., present an object recognition network that can
recognize switches in railroad scenes, including their status.

Identifying the ego track with a single neural network,
extracting the characteristic features for rails and tracks as well
as the features for switches and switch position information is
extremely challenging. Our own experiments in this direction
indicated that the approach works for simple scenarios, but has
difficulties to properly identify the ego track in more complex
rail topologies. Therefore, we propose a different approach
in this paper, combining two specialized neural networks for
the identification of tracks and the detection of switches and
switch positions (see section III-A). However, a paper recently
published by Laurent [14] shows very promising results also
for a single-network ego track detection.

A major challenge for machine learning approaches in the
railroad sector is the availability of annotated training and test
data, as underlined by [4] and many other publications in this
field. Very few datasets in this field are publicly available.
One of the most widely used public datasets is the Railsem19
dataset with 8500 annotated scenes [15]. Other, rather novel
ones are RailSet from the ”Railenium” context with 6600
images [16], and the Open Sensor Data for Rail dataset,
published by the ”Digitale Schiene” initiative and containing
approx. 1500 multi-sensor frames [17].

III. COMBINED EGO TRACK DETECTION APPROACH

A. Approach

As explained in section II, safe and reliable obstacle de-
tection requires a robust approach for the detection of the
ego track. Detecting the ego track with a single network
approach is very challenging and potentially will not achieve
the required detection performance for complex scenes. There-
fore, in this paper we propose to split this task into several
subtasks. The idea behind this is that each of the subtasks
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Fig. 1: Combined Architecture for robust on-board ego track
detection. Blocks with rounded corners represent input and
output data. Rectangular blocks represent architectural ele-
ments.

can be optimally performed with a corresponding specialized
neural network. For detecting the tracks, the widely used
and practice-proven approach of treating rail detection as a
semantic segmentation task is retained. This approach has the
advantage that the image areas in the image that belong to
the track are provided as direct result of such a recognition.
These image areas are also the areas that need to be scanned
for potential obstacles. In typical images containing several
railway tracks, the ego track cannot easily be identified. Only
the operational context of the moving train determines which
of the contained track segments represents the ego track.
Therefore, instead of detecting the ego track, it is convenient
to let the segmentation network detect all tracks contained
in the image. Thus, rail detection is a sub-task of ego track
detection.
In order to be able to decide which of the identified tracks
is the ego track and which tracks are neighboring tracks, it is
necessary to recognize and understand the switches themselves
and their position. By the position of a track we mean the
position of the switch blade, which determines the direction in
which the train will travel at a switch. The second sub-task of
ego track recognition is therefore switch recognition. A switch
can be identified as an object in the image by its characteristic
structure. In this paper, we propose to use a neural network
for object recognition for this sub-task.
Finally, the third sub-task is the extraction of the ego track by
combining the previously generated track and switch recogni-
tion results. In order to better meet existing safety requirements
and objectives, it is advisable to program this task based on
rules and not to solve it with a neural network. This allows
for better testability and thus verifiability of the system’s
safety properties. The resulting architecture of the proposed
combined system for robust on-board ego track detection is
shown in figure 1.

B. Custom Ego Track Detection Dataset

For our work, we used a specifically created dataset that
comprises track data, differentiating ego track and other tracks,
and switch data including switch position data. The images of
the dataset are frames from the ”minute by minute” documen-
tary from the Norwegian Broadcast Corporation, a video from
the driver’s perspective of the railway between Trondheim and
Bodo [18]. An example of a annotated images is displayed in
igure 2, containing track labels and switch labels.
Track labels are segmentation masks which use different labels

Fig. 2: Labelled image. The yellow track is the ego track, red
and green tracks are left and right neighbor tracks. The blue
box is a fork label, the pink box is a merge label.

for ego track, left neighbor track(s) and right neighbor track(s).
Furthermore, rails and trackbed have different labels. These
labels allow for a variety of training scenarios: a neural
network can be trained on the ego track only or include
neighbor tracks as well while taking into account only the
rails or the whole track.
Switch labels are bounding boxes and also provide information
on the type of switch, merge or fork, and the relative direction:
left, right or unknown. The unknown direction is used for
obscured or far off switches, where the direction cannot be
determined.
There are 6802 images with labelled tracks and 2334 images
with labelled switches. The datasets with labelled tracks and
switches have an intersection of 424 images where both, tracks
and switches, are labelled.
To increase the number of images for our experiments, we
additionally used the RailSem19 dataset [15] by adapting
the available labels to our labelling scheme. The resulting
combined dataset contains 15302 images.

C. Neural Networks

a) Rail Detection: We used a MobileNet-SegNet archi-
tecture – which had shown good performance in our earlier
work – as DNN for rail detection It consists of a backbone
network for feature extraction (the encoder) and a decoder
network. The encoder part uses a MobileNet architecture for
extracting features from the input image. The architecture
was described in a paper by Howard et al. [19] and was
developed for computationally efficient image processing in
mobile applications. A SegNet architecture, as described by
Badrinarayanan et al. [20], was used as decoder. Based on the
extracted features, this decoder generates a segmentation mask,
which marks the detected track area. For the implementation
of the network we used the code from Gupta [21].
The described network was trained using stochastic gradient
descent with batch size 8 and learning rate 0.01 for 100 epochs.
For the training process we used the combined dataset of
15302 images described in section III-B which we split into
training (70%), validation (15%), and testing (15%) sets (the
RailSem19 images were used only in the training set).
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We trained the network twice. The first training was done
for direct (single-shot) ego track detection. The network was
trained with the images of the training dataset and masks
marking only the ego track in the image. The resulting DNN is
referred to as MS-ego in the following. For the second training,
the same images were used, but with masks that marked all
tracks in the image. This trained DNN is referred to as MS-all
in the remainder of the paper. In this way, we obtained one
network that tries to detect the ego track directly on the image
and one that tries to detect all the tracks in the image.
Those trained neural networks predict the rails, i.e. the track
area, as a segmentation mask. Such a segmentation mask is
a gray-scale image representing the confidence of the DNN
for every pixel, that it belongs to the track area, which means
black pixels in this image represent background pixels (0%
track) and white pixels (pixel value 255) represent confident
track pixels (100% track). All pixel values in between repre-
sent a respective track confidence. To obtain a binary mask,
which is required for the ego track extraction algorithms, the
segmentation masks need to be preprocessed. In our approach
this included thresholding with threshold 0.5, morphological
closing with kernel size (10,10) and filtering out small contours
with size less than 200 pixels, as those areas are too small to
represent correct track areas.

b) Switch Detection: To detect the switches, we used a
DNN based on the YOLO architecture, which is a well known
architecture for object detection tasks. We used YOLOv8
[22] for object detection. YOLOv8 gives a choice of several
different model sizes (n,s,m,l,x). For our task we used the
largest (i.e., x) of the available models to get more accurate
results.
For training the YOLOv8 switch detection DNN, we used our
previously described switch dataset (see section III-B, split
into training (70%), validation (15%) and testing (15%) set.
We trained the network to recognize the type of the switch
(fork, merge) and also the direction it is set for (left, right,
unknown), resulting in a total of 6 different classes.
To improve the training results, we tuned the training param-
eters using the built-in tuning algorithm from the ultralytics
package. This algorithm automatically mutates the parameters
and tests them to analyse the fitness of the model. This tuning
ran for 300 iterations of 10 epochs each.
We used the patience parameter for the final training. This
parameter allows to set the number of epochs after which the
training will be stopped if there is no significant change in the
training process. For training of the YOLO network, we used
batch size 20 and trained for 600 epochs.
The trained YOLO switch detection DNN predicts switches in
images as a bounding box marking the switch location and a
respective class of the switch describing its attributes.

D. Ego Track Extraction

The task of ego track extraction is to extract the ego track,
i.e., the track that the train will follow, from the prediction
results of the rail and switch detection. For our work, we use
the following characteristics of the ego track:

Fig. 3: Example image with track segments (colored lines with
marked start and endpoint) and ego track (white overlay).

The ego track is always a single track. Consequently, its
mask contains only one contour. For an on-board ego track
detection system with forward-looking sensors, we can
assume that in case multiple track contours are present in the
image, the ego track contour is always the closest one to the
image center at the bottom of the image. This contour covers
the entire area of the track to be traveled. In our approach,
the ego track includes both the rails and the track bed. At
switches, the switch position determines the further course
of the ego track. If a switch position is unknown or if the
switch is set in such a way that the train cannot cross it, the
safely detected ego track ends at this switch. Otherwise, the
ego track continues beyond the switch for the rail section
indicated by the switch position.
The ego track consists of an arbitrary number of track
segments, but at least one. In the following, a track segment
refers to a continuous track section without branches. Such
a segment ends at a switch, i.e. a branching point, and one
or two new segments begin depending on the type of switch.
Figure 3 illustrates these terms in an example picture.

Two different approaches for ego track detection where
implemented during our work. Both algorithms are explained
in detail in the following and compared to each other there
after.

a) Early Fusion Approach: The early fusion approach
aims to extract the ego track directly from the binary
segmentation mask generated by preprocessing of the neural
network output. This approach is based on convexity defects
of the segmentation masks, so only the contours of the
segmentation mask are analyzed. The following steps are
executed:

Step 1 - Determine Contour Containing the Ego Track:
Neighbor tracks without a connection to the ego track may
lead to multiple contours in the image. As described above,
the contour containing the ego track will be the one closest
to center at the bottom of the image. Therefore each contour
close to the bottom of the image is analyzed to determine
the left and right bottom points. The mean of the left and
right bottom points is assumed to be the center bottom point
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Fig. 4: Early fusion: Multiple track segmentation mask with
detected bottom points (center bottom point – blue, left / right
bottom points – red).

4. The contour with the center bottom point closest to the
image contains the ego track.

Step 2 - Find Switches on Ego Track Contour: To find the
switches that are on the ego track contour, the intersection of
the ego track contour and the bounding box of each switch
is calculated. Only if the area of the intersection exceeds a
certain value, the switch is assumed to be on the ego track
contour. If there are no switches on the ego track contour, the
algorithm stops as area of the ego track contour contains only
the ego track. Otherwise the ego track contour is processed
further to separate forking and merging neighbor tracks.

Step 3 - Find Frog Point of the Switch: Usually the contours
of tracks with switches have a significantly deep convexity
defect with the frog point at the farthest point. Curved tracks
also show a convexity defect on the inner side of the curve,
but such defect is relatively shallow compared to its extent.
Therefore only convexity defects with a large depth and a
small extent are considered as frog points. In an ideal case,
were the tracks fork uniformly to the left and right, the frog
point would be at the farthest point of the defect. As this is
not always the case, points with a high curvature within the
convexity defect are added to the possible candidates for the
frog point. From these candidates, the point is selected as the
frog point of the switch, which is closest to

• the top line of the bounding box of the switch, if the
switch is a fork.

• the bottom line of the bounding box of the switch, if the
switch is a merge.

Step 4 - Split Contour at the Switch: To split the contour
at the switch, the other end of the switch – more precisely a
point opposite to the frog point – must be determined. The
other end of a switch is assumed to be at the bottom line of
the fork bounding box or the top line of the merge bounding
box, respectively. Along this line the opposite point is on the
right or left side of the track, depending on the setting of the
switch. The opposite point of the switch is determined by
following the contour until the level of the bottom line of the
fork bounding box or top line of the merge bounding box is
reached while ensuring that the line between the frog point
an the opposite point is completely within the track contour.

Fig. 5: Early fusion: Contour splitting at a left directed fork.

The frog point and opposite point are marked with red and
green dots respectively in Figure 5. The contour is split along
a separation line between the frog point and the opposite point.

These steps are repeated until all neighbor tracks are
separated from the ego track and the algorithm terminates in
step 2 as no more switches can be found on the ego track
contour.

b) Late Fusion Approach: In contrast to the early fusion
approach, the ego track is not determined directly from the
segmentation mask output by the neural network in late
fusion ego track extraction. Instead, the results of the rail
detection are first preprocessed to describe the rail areas as
compactly as possible.
A track is a very simple structure. Its course is determined
exclusively by the two rails. These always have a constant
distance in the real world. This makes it possible to describe
the track along a single centerline. This centerline runs
parallel to the two rails in real world coordinates and has
the same distance to both. In an image, the centerline is not
parallel to the rails anymore due to the perspective of the
camera, but still always is in the middle between both rails.
The idea of the late fusion approach is therefore to determine
the ego track based on the centerlines of the detected track
areas. The procedure for this approach is described below.

Step 1 - Find Centerlines: The first step in this process is to
calculate the centerlines of the segmentation mask. For each
row of the binary images, resulting from the segmentation
mask preprocessing, contiguous sections of white pixels are
determined, and the mean value between the first and last
pixel coordinate of the area is calculated for each of the
sections.
This calculation is performed separately for each contour in
the binary image in order to obtain the centerline for each
track segment individually. If the contour contains a switch,
a Y-shape can be recognized. In this case, the individual
track segments can be separated from each other by splitting
the contour at the point where the number of center points
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Fig. 6: Late fusion: Splitting of segmentation mask into
individual track segments.

changes in between adjacent image rows, i.e. the switch frog
(see Figure 6). If a contour contains multiple switches, this
procedure is applied recursively until all track segments are
separated from each other.

Step 2 -Filter Centerlines: Once the centerlines have been
calculated, they need to be filtered. Due to fuzzy edges
at to top and the bottom in the segmentation masks, very
short centerlines can appear at the beginning and ending of
tracks, as well as outside of the track area. Those erroneous
centerline fragments are filtered out. Furthermore, centerlines
are merged if the upper end of a segment is located very
close to the lower end of another segment. This is done in
order to describe each track segment with only one centerline,
if it was split into multiple individual centerlines due to
irregularities in the contour edges.

Step 3 - Identify Switches in the Rail Detection Results:
Using the centerlines found in this way, it is possible to
identify switches by its characteristic centerline structure
independently of the DNN switch detection results. A switch
is a point, where three centerlines are starting or ending close
to each other. Two centerlines always end at exactly the same
y-level, and a third begins in the adjacent pixel row (see
Figure 7).
The exact arrangement of the centerline ends even allows a
distinction between merging and forking switches. However,
the exact setting of the switch cannot be determined using
the centerlines. This is one of the reasons why the object
detection network is used for switch detection.

Step 4 - Check Plausibility of switches: Since there are now
two switch detection results after step 3, it is obvious to check
their plausibility against each other. Both the switch detection
network and the rail detection network results provide the
position of the switch in the image as well as the switch type.
Therefore, both can be compared with each other. For this
plausibility check, a certain tolerance zone has to be defined
for the switch position based on the detected bounding box
from the object detection, because depending on the position
of the switch in the image, the centerline ends are not always

Fig. 7: Late fusion: Identification of switches in rail detection
results. Colored lines mark detected centerlines. Solid circles
mark segments start and end points. Circles around start/end
points mark a switch detected from rail detection result. Bold
rectangles mark switch detection bounding box results. Narrow
rectangles mark tolerance area around switch bounding box.
The legend below the image shows Element IDs for the
respective colors.

Fig. 8: Late fusion: Track network graph generated from rail
detection and switch detection results for the example image
in fig. 7 .

within the bounding box, but in the immediate vicinity. If
both the position and the type of the switch match, it can be
confidently assumed that the switch is correct. The setting of
the switch can then be taken from the switch detection result.

Step 5 - Create Track Network Graph: Once the rail
segments and switches have been located in the image, the
tracks contained in the image can now be represented in
a network. This is done using a directed graph. The rail
segments are represented as edges and the switches as nodes
of the graph. In addition, start and end nodes are created for
segments that do not start or end at a switch. This graph (see
example in Figure 8) represents the information about the
connection of the track segments.

Step 6 - Find Ego Track Segments: Once a graph of the
track network has been created from the detection results,
it can be used to determine the segments belonging to
the ego track. Using the assumptions on the ego track
position introduced initially in section III-D, the start node
that matches these assumptions best in the graph can be
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determined. Starting from this node, the next node of the
directed graph is searched recursively until an end of the
track is reached. Such an end can either be an end node or
a switch where the track ends. With this procedure, a list of
segments and nodes belonging to the ego track can be created

Step 7 - Determine Spline Points: As can be seen in the
figures for calculating the centerlines (see figures 6 and 7),
the centerline found in the switch area does not describe
the correct course of the two track segments entering or
leaving the switch. For this reason, the centerlines of the
corresponding segments cannot simply be output to create
the ego track centerline. The incorrect centerline is always
located in the section of the switch area that has only one
centerline. This area extends from the switch blade to the
switch frog. Interpolation is required to reconstruct the correct
track centerline there. The entire switch area is defined by the
bounding box that is provided by the switch detection results.
However, in order to keep the interpolated area as small as
possible and thus the interpolation as precise as possible,
not the entire area in the bounding box is interpolated, but
only the area of the single segment from the edge of the
bounding box to the center of the switch. For all other areas,
the centerlines of the segments are assumed to be correct.
For the interpolation, interpolation points are selected at
regular intervals on the y-level from these correct track
segments. For the example image, these interpolation points
are shown in figure 9. This figure also shows the gap between
the interpolation points in the area of the switch.

Step 8 - Interpolate Ego Track Centerline: Finally, spline
interpolation is used to generate the ego track centerline.
With this method, a quadratic function is adapted to the
interpolation points and can then also be evaluated for the
switch areas in order to calculate the correct centerline of
a track. Figure 9 shows the calculated centerline of the ego
track for the example image.

Step 9 - Generate track mask: Based on the centerline,
the mask describing the ego track can be reconstructed
using the track width. In the real world, this track width
is constant. However, since the camera has a perspective
distortion, the track width decreases with increasing distance
from the camera to the back of the image. However, an
examination of the track width for different images has
shown that it decreases linearly over the course of the image.
The corresponding linear function is used to calculate a
corresponding track width for each row in the image. Figure
10 show the reconstructed track area for the example image.

IV. RESULTS

This section presents the experimental results of our
investigation. We compared a direct (single-shot) ego track
detection approach with our proposed combined approach
consisting of rail and switch detection. For both approaches,

Fig. 9: Late fusion: Interpolated centerline using spline inter-
polation shown as red line. For reference spline points used
for the interpolation are shown as well as white dots.

Fig. 10: Late fusion: Generated ego track area. Yellow area
marks track area, red area marks safety area around track
(according to [23] annex 1 to §9). Blue line marks left ego
track edge, red line marks right ego track edge and green line
marks ego track centerline.

a neural network was trained with the presented MobileNet-
SegNet architecture (see section III-C) for rail detection.
For direct ego track detection, this network was trained
with masks containing only the ego track for rail detection.
This approach is referred to as singleshot in the following,
utilizing the MS-ego DNN from section III-C. For the
combined approach, the same network architecture was used,
but trained on masks containing all tracks of the scene
(MS-all from section III-C). For the combined approach,
both proposed ego track extraction algorithms – early and
late fusion described in section III-D – are tested separately.
Table I provides an overview of the individual components
of the approaches described, as well as the test labels which
we use in the following.

For the evaluation of the these approaches, the same test
set of images is used for all variants. This test set consists of
2296 images of the dataset described in section III-B. Since

TABLE I: Approaches to be compared and their characteristics
and labels

Approach Rail Detection
DNN

Switch Detec-
tion DNN

Ego Track Ex-
traction

singleshot MS-ego - -
combined-EF MS-all YOLOv8 Early Fusion

(EF)
combined-LF MS-all YOLOv8 Late Fusion

(LF)
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TABLE II: Fusion algorithm IoU results on ground truth data.

Image set Early Fusion Late Fusion
all scenes 0.972 0.943
switch scenes 0.896 0.921

the proposed combined approach for ego track detection aims
to provide an improvement over the state of the art especially
for complex scenes including switches, such scenes are of
particular interest for the evaluation. In the used dataset, there
are significantly more images without switches than with
switches. As a consequence, also the test set contains rather
few images with switches (only 143). This fact later was
identified as problematic (see the result discussion below).
In order to evaluate and compare the different approaches
investigated in this paper, we performed primarily a
quantitative analysis using the Intersection over Union (IoU)
metric, complemented by a qualitative analysis for selected
images. The IoU metric calculates the ratio of correctly
detected areas of a segmentation mask to incorrectly detected
areas. The prediction is always compared to the ground truth
mask. With GT as the segmentation ground truth mask of
the track area and Pred as the predicted mask of the track
area, the IoU is calculated using the following equation:

IoU =
Area of Intersection

Area of Union
=

|GT ∩ Pred|
|GT ∪ Pred|

(1)

First, the two fusion algorithms were tested on the ground truth
data. This data can be considered as ideal recognition results
and should therefore serve to demonstrate how the algorithms
work in the ideal case. Both algorithms perform well on the
ground truth data. The results can be seen in table II.

Looking at all images of the test dataset, i.e. the first row
of the table II, we can see that the early fusion approach
has a significantly higher average IoU, indicating a better
ego track detection performance. However, the test dataset
contains considerably more images without switches than with
switches. On such scenes, the basic functional principle of
this approach performs better than the late fusion approach. In
scenes without switches, the early fusion approach only needs
to select the correct contour belonging to the ego track. This
usually works very reliably, as the test results show. However,
the late fusion approach also shows good overall performance
in ego-track detection across all test data. Reconstruction of
the ego track area from the centerline seems to be generally
feasible. The lower IoU value of the late fusion approach
is mainly due to the use of an approximated track width
to generate the mask from the centerline. As a result, the
predictions are not as accurate as those of the early fusion
approach.
However, the second row of the table shows that the late fusion
approach performs better when only scenes with switches are
considered. Here, the IoU value decreases slightly, but not as
much as with the early fusion approach. The detection of the
convexity defect for the mask splitting seems to be difficult
in some scenes, but the algorithm generally allows a correct

Fig. 11: Late fusion: Incorrect ego track calculation due to
(a) missing spline points (b) partially visible merging switch.
Green areas=True Positive, Yellow areas=False Negative, Red
areas=False Positive. White rectangles represent results of the
switch detection network.

(a) (b)

Fig. 12: Positive Examples of ego track detection for (a) Early
Fusion algorithm (b) Late Fusion algorithm. color meanings
as in Figure 11.

detection of the ego track, as indicated by an IoU of almost
0.9. Also for the late fusion approach, the switch scene IoU is
lower than that for all scenes. This can be explained by scenes
such as the one shown in figure 11. If a merging switch is only
partially shown at the bottom of the image because the train
has already entered the switch area, the rail detection results
will produce a contour that is wider than a single track. In the
late fusion approach, the centerline is found and the ego-track
mask is generated based on the approximated track width. In
this case, however, the centerline no longer runs along the
correct course of one of the two track segments leading into
the switch, but between them. Since these problem areas are
always located at the lower edge of the image, the resulting
incorrect areas are quite large and therefore have a major
impact on the IoU. As indicated in section V, we intend to
improve the late fusion algorithm for handling these specific
scenes.

Still, the average IoUs of both algorithms are quite high
for the ground truth data, i.e., assuming optimal input from
the network predictions. With these positive initial validation
results, we consider both algorithms as being able to detect the
ego track from a fusion of the detection results of the rail and
switch detection and to generate a corresponding mask. Figure
12 shows positive examples for both algorithms for reference.

In the following, we tested the algorithms using the actual
recognition results of the two neural networks.
Unexpectedly, the results of the generated ego track

8



(a) (b)

Fig. 13: Negative Examples of MobileNet-SegNet all-tracks
detection results. color meanings as in Figure 11.

predictions indicate that the singleshot approach, which
employs a single network to detect the ego track, yields
the most favorable outcomes (see table III). The singleshot
approach exhibits a remarkably high IoU of approximately
0.94 across the entire test set and across all subsets examined.
Additionally, the network’s predictions are remarkably
consistent, as a comparable average IoU value is achieved for
scenes with and without switches. Investigating the reasons
for this unexpected result, we found three problematic areas
regarding our experiments.

Firstly, the MS-all network results shown in table III
demonstrate that – in comparison to direct ego track detection
– the task of detecting all tracks in the image presents a
considerable challenge for the MobileNet-SegNet DNN. The
image areas to be detected are larger in this case, and as the
neighboring tracks are more likely to be at the edges of the
image, there is also a greater distortion caused by the camera.
Especially high-complexity scenes are challenging for the
MS-all network. For these scenes, it occasionally produces
incomplete or inaccurate predictions, including holes in the
predicted masks and incorrectly recognized contours outside
the actual track area (see figure 13). As both ego track
extraction algorithms are predominantly geometry-based,
their IoU value is considerably impacted by a low IoU of the
MS-all network due to those irregularities.
Secondly, the switch detection DNN performs less well than
expected. In the entire test set, there are 143 images with
switches that were labeled in the ground truth data. Of these,
only 126 images (i.e., 88%) were properly identified by
the switch detection network. The performance gap may be
attributed to the rather small size of the training data set.
As the combined approaches strongly depend on the switch
detection correctly identifying switches and their direction,
the performance gap likely has a strong impact on the results.
Thirdly, it is important to note that the excellent recognition

results achieved by the singleshot approach may be to some
extent attributable to the fact that the test set predominantly
comprises relatively simple scenes. The number of switches
in the scenes is small, with the majority of the ego track
switches leading to a straight continuation of the ego track.
It is therefore possible that the MS-ego network may have
learned this fact as a result of overfitting. This is exemplified
by a qualitative analysis of switch scenes in which the ego

TABLE III: Mean IoU results of the fusion algorithms com-
pared to the ego track detection network. GT switch scenes are
all scenes with labelled switches. Pred. switch scenes are all
scenes with predicted switches from switch detection network.
The results of the MS-all DNN are given for reference in the
last column, since the combined approaches are based on these
results.

Image set singleshot combined-
EF

combined-
LF

MS-all

all scenes 0.945 0.939 0.916 0.937
GT switch
scenes

0.941 0.859 0.833 0.907

Pred.
switch
scenes

0.943 0.867 0.846 0.912

(a) (b) (c)

Fig. 14: Examples of ego track detection errors of the
singleshot approach. a) shows singleshot output, b) shows
combined-EF output and c) shows combined-LF output re-
specitvely for the same input images. color meanings as in
Figure 11.

track takes a turn at a switch (see figure 14). In the second
row of this figure, it can be observed that the singleshot
approach utilizing the MS-ego network selects the incorrect
track segment that emerges from the switch. In the first row,
the singleshot approach fails to detect the ego track shortly
after a merging switch. In contrast, the combined approaches
manage to detect the ego track correctly in both scenes. It
can therefore be assumed that the detection performance of
the singleshot approach would decrease on more complex
scenes than those primarily included in the test data set.

Despite these identified problem areas, both combined
approaches demonstrate a performance on the actual DNN
recognition results that is not significantly below that of the
segmentation ground truth data used for initial algorithm
validation. We found the combined ego track extraction
algorithms being capable of detecting the ego track also on
these non-optimal segmentation masks. On the actual DNN
recognition results, the combined-EF approach is slightly
superior to the combined-LF approach as indicated by the
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slightly higher IoU. From table III it is also evident, that the
detection results of the switch detection play a significant
role in both approaches.

V. CONCLUSION

In this paper, we have proposed two algorithms that are
able to identify the ego track by combining the neural network
detection results for track detection and switch detection.

Our current evaluation of detection performance of these
two approaches in comparison to a direct approach utilizing
a single neural network indicates that the singleshot approach
achieves good results in the analysis of low-complexity scenes.
We assume that for higher complexity scenes, the combined
approaches presented in this paper are more robust. Whilst
qualitative analysis of typical complex scenes supports this
assumption, we were not yet able to quantitatively substantiate
this assumption due to limitations of the dataset (being still
too small and containing primarily low-complexity scenes).

As our analysis has shown, the performance of the two
fusion algorithms depends very much on the quality of the
recognition results of both DNN, for track segmentation and
for switch detection. Therefore, the training of the neural
networks must be improved in the future. Our main task
in this area will be to develop a larger image database for
both training and evaluation. In particular, more images with
labeled tracks (ego track and all tracks) and more complex
scenes need to be obtained. Also the fusion algorithms must be
further amended to counteract their susceptibility to error. With
these future improvements, we expect the combined algorithms
to perform at a similar or better level than the singleshot
approach.

Since – in light of the safety requirements for autonomous
train operation – our ultimate aim is a provably safe approach
towards ego track detection, we consider the use of an
explicitly defined algorithm for detection result combination
as an advantage, as such explicit algorithm can be developed
according to traditional software safety regulations such as EN
50657. In addition, the combined approaches – specifically
the combined-LF approach – offer more possibilities to
check the plausibility of the predictions during operation.
Some of these possibilities have been presented in this paper,
others we will investigate in more detail in the future. Thus,
in our view, the presented combined approaches to ego
track detection are more suitable for use in safety-critical
applications supporting autonomous train operation than
singleshot approaches, provided that comparable ego track
detection performance can be achieved.
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