
HAL Id: hal-04634560
https://hal.science/hal-04634560v1

Submitted on 4 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theory of electromagnetic probes
Jacopo Ghiglieri

To cite this version:
Jacopo Ghiglieri. Theory of electromagnetic probes. LHCb IFT workshop, Jul 2024, Santiago de
Compostela, Spain. �hal-04634560�

https://hal.science/hal-04634560v1
https://hal.archives-ouvertes.fr


Theory  
of electromagnetic probes

LHCb IFT Workshop, July 1st 2024

Jacopo Ghiglieri, SUBATECH, Nantes



2



• The hard partonic processes in the heavy ion collision produce quarks, gluons and 
prompt photons and dileptons, W and Z bosons. They can tell us about nPDFs, photon-
tagged hadrons and jets

• At a later stage, quarks and gluons form a plasma

• Scatterings of (pre)thermal partons produce QGP photons and dileptons. 
thermalisation, T, hydro

• A jet traveling can radiate jet-thermal photons. Jet quenching

• Later on, hadronization. hadron gas photons and dileptons. T, Tc, hydro

• (Some) hadrons decay into decay photons and dileptons

How EM probes are made 
(and what they tell us)
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• Theoretical description: convolution of microscopic rates over the macroscopic 
(hydro) evolution of the medium

• In this talk

• overview and recent results on the microscopic rates, mostly up to the thermal 
phase

• Photons and dileptons in and before equilibrium from pQCD

In this talk
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• α≪1 implies that photon production is a rare event and that rescatterings 
and back-reactions are negligible: medium is transparent to/not cooled by 
photons

• At leading order in QED and to all orders in QCD the photon and dilepton 
rates are given by 
 
 
 
 
 
 

 density operator,  electromagnetic currentρ J

d�l+l�(k)

dk0d3k
= � ↵2

6⇡3K2

Z
d4XeiK·XTr⇢Jµ(0) J⌫(X)
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How to compute rates
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• Real, hard photon: k0=k≳T

• At one loop (αEM g0): 
 
Kinematically forbidden. Need to kick one of the quarks  off-shell. Works for 
dileptons 

• Leading order photon is αEM g2

• Strength of the kick (virtuality) naturally 
 divides the calculation in the distinct  
 2↔2 processes and collinear processes

Perturbative Analysis

Jµ =
∑

q=uds

eqq̄γ
µq : ✄"✂✁%!

❅

Leading diagram:⟨JJ⟩ = ✄"✂✁%
✬
✫

✩
✪
%✂✁✄"

Timelike K: pair production ✄"✂✁%✟✟
❍❍

kinematically fine

Spacelike K: DIS
✄✂"✁%

✟✟❍❍
also kinematically OK

Lightlike K: on-shell quarks kinematically disallowed!

BNL Photons: 5 December 2011: page 6 of 27
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d��(k)

d3k
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Z
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The basics of pQCD photons
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• Cut two-loop diagrams (αEM g2) 
 
 
 2↔2 processes (with crossings and interferences): 
 
 
 

• Equivalence with kinetic theory: distributions x matrix elements

• IR divergence (Compton) when t goes to zero

LO diagrams:

1 loop O(αEM):

K

Kinematically disallowed for light-like K
(both quarks can’t be on-shell simultaneously)

2 loops O(αEMαs):

K K

LO diagrams
Cut diagrams correspond to:

Compton scattering:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Pair annihilation:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:

D> ∝

∫

Λ2
IR

dq2
⊥

dσ

dq2
⊥

∝ ln

(
k0T

Λ2
IR

)

LO diagrams
Cut diagrams correspond to:

Compton scattering:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Pair annihilation:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:

D> ∝

∫

Λ2
IR

dq2
⊥

dσ

dq2
⊥

∝ ln

(
k0T

Λ2
IR

)

P

P 0

K

K 0

Z

ph. space
f(p)f(p0)(1± f(k0))|M|2�4(P + P 0 �K �K 0)

 processes2 ↔ 2
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• The IR divergence disappears when Hard Thermal Loop resummation 
is performed Braaten Pisarski NPB337 (1990) 
 
 
 
 HTL

K

 processes2 ↔ 2
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• The IR divergence disappears when Hard Thermal Loop resummation 
is performed Braaten Pisarski NPB337 (1990) 
 
 
 
 

• In the end one obtains the result 
 
 
 
Kapusta Lichard Siebert PRD44 (1991) Baier Nakkagawa Niegawa Redlich ZPC53 (1992)

d��

d3k

����
2$2

/ e2g2

log

T

m1
+ C2$2

✓
k

T

◆�

HTL

K

 processes2 ↔ 2
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• These diagrams contribute to LO if small (g) angle radiation/annihilation Aurenche Gelis 
Kobes Petitgirard Zaraket 1998-2000

• Photon formation times is then of the same order of the soft scattering rate ⇒ 
interference: LPM effect

• Requires resummation of infinite number of ladder diagrams 
 
 
 
AMY (Arnold Moore Yaffe) JHEP 0111, 0112, 0226 (2001-02)

g g

Figure 5. Collinear diagrams. In the first case, called the bremsstrahlung diagram, the angle
between the emitted photon and the outgoing emitting fermion is of order g. In the second case,
called the pair annihilation diagram, it is the angle between the annihilating quark and antiquark
that is of order g. The diagrams where the gluon is attached to the other fermionic line are not
show. In both cases the gluon is soft and is scattering on the hard constituents of the plasma, i.e.,
it is an HTL gluon in the Landau cut. In these diagrams the gluon is scattering o↵ light quarks
(the hard lines at the bottom). The corresponding case with gluons is not shown. {fig_collinear}

In terms of the two-point function these processes correspond to diagrams with the

two nearly collinear fermion lines connected with arbitrary number of soft spacelike gluons

with same kinematics as Q. In [14, 15] Arnold, Moore and Ya↵e (AMY) showed that it is

only the ladder-type diagrams shown in Fig. 6 that contribute to leading order calculation;

the factors of g arising from additional vertices are canceled by near on-shell propagators

and large statistical factors arising from the gluonic propagators. The near on-shellness of

the quark lines makes the diagrams sensitive to thermal mass m2
1 ⇠ g2T 2 and the thermal

width � ⇠ g2T of the quark lines, which need to be consistently resummed. Furthermore

AMY showed how these diagrams can be resummed in terms of a Schrödinger equation

type di↵erential equation, and they obtained the complete leading-order results in [15]. In

Sec. 3 we will discuss in detail this equation in the context of the treatment of its NLO

corrections.

d��

d3k

����
coll

= = Re

0

BBBBBBBBB@

1

CCCCCCCCCA

⇤ 0

BBBBBBBBB@

1

CCCCCCCCCA

Figure 6. The uncrossed ladder diagrams that need to be resummed to account for the LPM e↵ect
in the collinear region. The cut shown here corresponds to the interference term on the right-hand
side. The rungs on the l.h.s. are HTL gluons in the Landau cut. On the r.h.s., the crosses at the
lower hand of the gluons represent the hard scattering centers, either gluons or fermions. {fig_lpm}
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Collinear processes
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LO: AMY (2001-02) NLO: JG Hong Kurkela Lu Moore Teaney JHEP0503 (2013) 
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Figure 19. The functions C(k/T ) for Nc = 3, Nf = 3 as in Fig. 18, but for ↵s = 0.05. {plot_c_5_1}
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Figure 20. (a) The di↵erential rate d��/dk relative to the leading order rate as a function of k/T
(or equivalently CLO+NLO/CLO). The full next to leading order rate (LO+NLO) is a sum of the
leading order rate (LO), a collinear correction (coll), and a soft+semi-collinear correction (soft+sc).
The dashed curve labeled LO+coll shows the ratio of rates when only the collinear correction is
included, with the analogous notation for the LO+ soft+sc curve. The di↵erence between the
dashed curves provides a uncertainty estimate for the NLO calculation. (b) The same as (a) but
for larger k/T . {plot_ratio}

large cancellations we observe are rather accidental, and one should thus consider the

curves CLO(k/T ) + �Ccoll(k/T ) and CLO(k/T ) + �Csoft+sc(k/T ) as upper and lower limits

respectively of an “uncertainty estimate” of the NLO calculation.

In Fig. 19 we plot CLO+NLO(k/T ) and CLO(k/T ) for ↵s = 0.05, and Nc = 3, Nf = 3.

For the smaller coupling constant the NLO correction is always negative and rather flat,

and the magnitude of the two largely canceling contributions is also significantly smaller

than in the previous case.

– 37 –

LO
NLO

Small-angle radiation

Wider-angle radiation

QGP photons
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Hadronic photons
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Hadronic photons
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Equilibrium rates

Hadron GasQGP

off-equilibrium    corrections�f

q
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d3q
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2(e+ p)
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Self-energy
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Viscous Photon Emission Rates: General Formalism

6(15)Shen, Paquet et al. (2014) +bremsstrahlung



Hadronic photons
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FIG. 5. Combined pT spectra of photons produced at T >
150 MeV and in the hadronic afterburner stage in Au+Au
collisions at

p
sNN = 200 GeV (left) and Pb+Pb collisions

at
p
sNN = 2.76 TeV (right). Results applying a non-

equilibrium afterburner are denoted with dashed lines, the
low-temperature hydrodynamic description with bands and
the high-temperature hydrodynamic description with dot-
ted lines. The lower panel shows the ratio, normalized to
the high-temperature hydrodynamic description. Note that
the lower and upper limits of the low-temperature hydrody-
namic description are obtained by radiating photons from T =
150 MeV down to T = 140 MeV and down to T = 120 MeV,
respectively. The impact parameter of the event is b = 5 fm,
corresponding approximately to a centrality bin of 10-20%.

approach, v2 is enhanced by up to a factor of 2 in the
presented pT range.

It is important to assess how significant these dif-
ferences remain once combined with the large number
of thermal photons produced in the earlier phase of
the collision. For this, the full in-medium picture is
obtained by combining hadronic photons from both
approaches with the thermal radiation emitted with
T > 150 MeV. In Figs. 5 and 6, the pink dotted lines
show the contribution with T > 150 MeV as obtained
by hydrodynamics. The full photon spectra from the
non-equilibrium afterburner (“setup A”) are denoted
with orange dashed lines; those estimated with hydro-
dynamics and thermal rates at late times (“setup B”)
with wide bands. For readability, Fig. 5 also contains a
ratio plot in the lower panel, where the hydrodynamics
as well as the non-equilibrium contributions combined
with the T > 150 MeV contribution are normalized to
the T > 150 MeV contribution.

It is found that, at RHIC and LHC energies, the
photon pT spectra in Fig. 5 obtained in the non-
equilibrium “setup A” lie within the bands provided by
the local-equilibrium “setup B”. The e↵ect of softer pT
spectra in “setup A”, as observed in Fig. 3, are visible in
the ratios, where at lower pT the “MUSIC + SMASH”
line lies at the upper end of the “MUSIC + MUSIC”

FIG. 6. Combined v2 of photons from the QGP and the
hadronic afterburner stage in Au+Au collisions at

p
sNN =

200 GeV (left) and Pb+Pb collisions at
p
sNN = 2.76 TeV

(right). Results applying a non-equilibrium afterburner are
denoted with dashed lines, the low-temperature hydrody-
namic description with bands, and the thermal photons from
T > 150 MeV with dotted lines. Note that the lower and
upper limits of bands are obtained by radiating photons
from T = 150 MeV down to T = 140 MeV and down to
T = 120 MeV, respectively. The impact parameter of the
event is b = 5 fm, corresponding approximately to a central-
ity bin of 10-20%.

band, and at its lower end for higher pT. Still, a proper
non-equilibrium treatment in the late stages has only
a minor impact on the final photon pT spectra, once
combined with contributions from hydrodynamics at
T > 150 MeV.
In the case of the di↵erential v2 however, some of the dif-
ferences observed in Fig. 4 for the pure afterburner stage
between the non-equilibrium and the local-equilibrium
setups are still apparent once combined with photons
produced above T = 150 MeV. In Fig. 6 it is shown that
the results obtained with the non-equilibrium “setup A”
lie within the bands provided by the local-equilibrium
“setup B” for pT & 1.4 GeV; however, at lower pT,
the di↵erence between the two approaches is clearly
visible. This observation holds for RHIC as well as
for LHC. The fact that the di↵erences found in Fig. 4
are propagated only to low pT can be explained as
follows: at high pT, the vast majority of photons
stem from hydrodynamics at T > 150 MeV, exceeding
contributions from T  150 MeV by multiple orders of
magnitude (c.f. Fig. 3). As a result, the combined v2 is
mostly dominated by contributions from hydrodynamics
at T > 150 MeV, thus drowning the signal coming
from the later stages of the evolution. Moving to
lower pT, the relative contribution of photons produced
in the afterburner stage is, although not dominant,
significantly higher (c.f. Fig. 3). Consequently, the
v2 carried by these photons isn’t as diluted at low pT

Schäfer Garcia-Montero Paquet Elfner Gale 2111.13603

LHCRHIC

+bremsstrahlung



From QGP photons to data
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• The macroscopic expansion of the fireball gives rise to blueshift: the observed inverse 
slope of the direct photon spectrum at low  is not the real temperature 
 
 
 

pT

Figure 7.3: The inverse photon slope parameter Teff = �1/slope as a function of the local fluid cell temperature, from the equilibrium

thermal emission rates (solid green lines) and from hydrodynamical simulations (open and filled circles), compared with the experimental

values (horizontal lines and error bands), for (a) Au-Au collisions at RHIC as measured by the PHENIX collaboration [209] and for (b) Pb-Pb

collisions at the LHC as measured by the ALICE collaboration [207]. Arrows pointing to the right indicate the inverse slopes of the final

space-time integrated hydrodynamic photon spectra: Solid black and red lines correspond to calculations assuming full chemical equilibrium

from the beginning and using thermal equilibrium and viscously corrected photon emission rates, respectively. The dashed black and red

arrows show the same for calculations with delayed chemical equilibration, see [25] for details. Figure adapted from [25].

with temperatures near the quark-hadron phase transition, but that their effective temperature is significantly enhanced

by strong radial flow, see also [212]. This finding, i.e. that a large part of the photons comes from near Tc and the

hadronic phase, is an important step towards solving the so-called ‘v2-puzzle’ which refers to the difficulty to theoretically

describe the large elliptic flow of photons measured in heavy-ion collisions, see for example [213, 214]. Recent comparisons

between experimental data and theory, however, show an agreement within the uncertainties, see for example [215, 216]

and Fig. 7.4.

In Fig. 7.3 the effective temperature as obtained from photon spectra measured by the PHENIX collaboration for

Au-Au collisions [209] and by the ALICE collaboration for Pb-Pb collisions [207], respectively, is compared to the results

obtained in [25] on the effective temperature Teff = �1/slope vs. the true temperature T . The computed spectra include

the thermal rates corrected for shear viscosity effects integrated over the viscous hydrodynamical space-time evolution,

and also the prompt photons resulting from the very early interactions of the partons distributed inside the nucleons.

The green lines in Fig. 7.3 show Teff vs. the true temperature T for the equilibrium photon emission rates as extracted

from an exponential fit. One sees that, due to the phase-space factors associated with the radiation process, the effective

temperature of the emission rate is somewhat larger than the true temperature: at high T , the QGP emission rate goes

roughly as exp(�E�/T ) log(E�/T ) [199], and the logarithmic factor is responsible for the somewhat harder emission

spectrum.

The circles in Fig. 7.3 show the effective temperatures of photons emitted with equilibrium rates (open black circles)

and with viscously corrected rates (filled red circles) from cells of a given temperature within the hydrodynamically

evolving viscous medium. The area of the circles is proportional to the total photon yield emitted from all cells at that

temperature. As the system cools, the effective photon temperature begins to deviate upward from the true temperature.

This is caused by the strengthening radial flow: below T ⇠ 200 MeV, the radial boost effect on Teff overcompensates for

the fireball cooling. We conclude that a robust understanding of the space-time evolution of the heavy-ion collision is

45

area  yield∝
area  yield∝

Shen Heinz Paquet Gale 1308.2440



From QGP photons to data
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• Importance of viscous corrections, i.e. perturbations around partonic equilibrium from 
shear flow

Figure 7.3: The inverse photon slope parameter Teff = �1/slope as a function of the local fluid cell temperature, from the equilibrium

thermal emission rates (solid green lines) and from hydrodynamical simulations (open and filled circles), compared with the experimental

values (horizontal lines and error bands), for (a) Au-Au collisions at RHIC as measured by the PHENIX collaboration [209] and for (b) Pb-Pb

collisions at the LHC as measured by the ALICE collaboration [207]. Arrows pointing to the right indicate the inverse slopes of the final

space-time integrated hydrodynamic photon spectra: Solid black and red lines correspond to calculations assuming full chemical equilibrium

from the beginning and using thermal equilibrium and viscously corrected photon emission rates, respectively. The dashed black and red

arrows show the same for calculations with delayed chemical equilibration, see [25] for details. Figure adapted from [25].

with temperatures near the quark-hadron phase transition, but that their effective temperature is significantly enhanced

by strong radial flow, see also [212]. This finding, i.e. that a large part of the photons comes from near Tc and the

hadronic phase, is an important step towards solving the so-called ‘v2-puzzle’ which refers to the difficulty to theoretically

describe the large elliptic flow of photons measured in heavy-ion collisions, see for example [213, 214]. Recent comparisons

between experimental data and theory, however, show an agreement within the uncertainties, see for example [215, 216]

and Fig. 7.4.

In Fig. 7.3 the effective temperature as obtained from photon spectra measured by the PHENIX collaboration for

Au-Au collisions [209] and by the ALICE collaboration for Pb-Pb collisions [207], respectively, is compared to the results

obtained in [25] on the effective temperature Teff = �1/slope vs. the true temperature T . The computed spectra include

the thermal rates corrected for shear viscosity effects integrated over the viscous hydrodynamical space-time evolution,

and also the prompt photons resulting from the very early interactions of the partons distributed inside the nucleons.

The green lines in Fig. 7.3 show Teff vs. the true temperature T for the equilibrium photon emission rates as extracted

from an exponential fit. One sees that, due to the phase-space factors associated with the radiation process, the effective

temperature of the emission rate is somewhat larger than the true temperature: at high T , the QGP emission rate goes

roughly as exp(�E�/T ) log(E�/T ) [199], and the logarithmic factor is responsible for the somewhat harder emission

spectrum.

The circles in Fig. 7.3 show the effective temperatures of photons emitted with equilibrium rates (open black circles)

and with viscously corrected rates (filled red circles) from cells of a given temperature within the hydrodynamically

evolving viscous medium. The area of the circles is proportional to the total photon yield emitted from all cells at that

temperature. As the system cools, the effective photon temperature begins to deviate upward from the true temperature.

This is caused by the strengthening radial flow: below T ⇠ 200 MeV, the radial boost effect on Teff overcompensates for

the fireball cooling. We conclude that a robust understanding of the space-time evolution of the heavy-ion collision is
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• Competition between expansion and interaction, attractor solution when 
they balance out 
 

• Expansion is driven by the specifics of the heavy-ion collision and the initial 
state, drives the system away from equilibrium. Interaction among the 
constituents tends to isotropize the system.

Bottom-up thermalisation

Baier Mueller Schiff Son (2001) Kurkela Moore (2011)
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“Bottom-up” thermalisation scenario Baier, Mueller, Schi↵, and Son (2001)[10]

Evolution of initially over-occupied hard gluons p ⇠ Qs � ⇤QCD

pz pz pz

pxpxpx

2 $ 2 broadening collinear cascade mini-jet quench

Kurkela and Zhu (2015), Keegan, Kurkela, AM and Teaney (2016), Kurkela, AM, Paquet, Schlichting and Teaney (2018) [6–9]

Aleksas Mazeliauskas aleksas.eu 4 / 19

Motivation: Bottom-up thermalization

Anisotropy

Occupancy

f~α
−1

 P
L
/P

T
~α

f~1f~α
Thermal

Initial condition: Qt~1

Underoccupied Overoccupied

Radiational 
breakup Qt~α−13/5

CGC: Initial condition overoccupied f (Q) ⇠ 1/↵

Expansion makes system underoccupied (f (Q) ⌧ 1) before
thermalizing Baier et. al hep-ph/0009237, AK, Moore 1108.4684

fig. Kurkelafig. Mazeliauskas

Baier Mueller Schiff Son (2001) Kurkela Moore (2011)

• Initially

• strong isotropizing effect of interactions

• gluon-rich system

• Later, bremsstrahlung in the cascade and mini-jet quench
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Pre-equilibrium photons

16

13

Tmin

� = 0

Tpc

� = �hyd

Hydrodynamical evolution EKT

Matching

Prompt Pre-eq. QGP, thermal HRG, thermal 

Figure 10. The schematic timeline for photon production in heavy-ion collisions. The prompt photons are produced in hard
scatterings at the instant of the collision. The pre-equilibrium photons (this work) are radiated during the first ⇠ 1 fm of the
evolution as the QGP is equilibrating. At ⌧hydro the pre-equilibrium production in QCD kinetic theory is smoothly matched
(locally in the transverse plane and event-by-event) to equilibrium (AMY) photon rates in the hydrodynamic phase. The
matching procedure is described in Section V A. Afterwards, thermal photons from the QGP are produced by folding thermal
AMY rates with the hydrodynamic evolution. As the system goes through the cross-over at Tpc = 160MeV, we switch to
hadronic rates, which are the source of emission until the end of the collision evolution at Tmin = 120� 140MeV.

On a more pragmatic note, the ⌘/s used in the match-
ing is taken as an “external” hydro parameter, and not the
⌘/s extracted from EKT for a given coupling constant �.
Here we follow the phenomenological practice [26, 39] of
using the approximate independence of the coupling con-
stant of the EKT evolution when expressed in scaled time
w̃. The physical shear viscosity, which characterizes the
realistic interaction strength of the QGP, is more reliably
extracted from the hydrodynamic model to data com-
parisons [50, 51] than perturbative computations due to
large NLO corrections [52]. For definiteness, we will use
the value ⌘/s = 0.08, which is on the lower side of the
extracted values. Similarly, the normalization constant
of thermal photon production C̃ ideal

� in Eq. (46) can be
taken as an external parameter. However, the NLO cor-
rections to LO thermal photon production is small ⇠ 20%
at ↵s = 0.3 [25]. Therefore in the following we will take
C̃ ideal

� = 0.573, which corresponds to AMY thermal rate
for ↵s = 0.265, which we used for thermal productions
during the hydrodynamic evolution.

The quantity (⌧1/3T )1 sets the physical scale, c.f.
Eq. (43), and we will extract it using the exact formula
at first viscous order

(⌧1/3T )1(xT ) = ⌧1/3hydro

 
Thydro(xT ) +

2

3

⌘/s

⌧hydro

!
. (47)

The next step is to find the rescaled time, w̃ which can
be directly extracted as

w̃(xT ) =
⌧hydroThydro(xT )

4⇡⌘/s
. (48)

Notice that in the above expressions, both the evolution
time w̃ and the local energy scale (⌧1/3T )1 vary across
the transverse plane, due to the xT dependence of the

temperature profiles. We will use a constant ⌘/s, but
more generally transport coefficients in hydrodynamic
simulations can be temperature dependent and therefore
induce further xT dependence5.

Additionally, by varying w̃min, one can explore the sen-
sitivity to the initial time for the photon spectrum. In
practice this is performed by subtracting from the spec-
tra up to the desired minimum universal time. Namely,
this is achieved by substituting the scaling function in
(46) for

N�

 
w̃(xT ),

p
⌘/s pT

(T (xT )⌧1/3)3/21

!
�N�

 
w̃min,

p
⌘/s pT

(T (xT )⌧1/3)3/21

!
.

(49)
In what follows, we apply this matching procedure to
an event-by-event boost invariant (2+1D) hydrodynam-
ical simulations. The realistic event-by-event tempera-
ture profiles in the transverse plane are taken from vis-
cous hydrodynamic simulations tuned to experimental
data. We use the same 200 Pb-Pb events at p

sNN =
2.76TeV corresponding to the 0–20% centrality class as
in Refs. [12, 13]. Hydrodynamics is initialized at ⌧0 =
0.6 fm with the two-component Monte Carlo–Glauber
model [53] and evolved with the VISHNU package [54, 55]
using the default model parameters. In particular, we use
the lattice equation of state6, a constant specific shear
viscosity of ⌘/s = 0.08 and zero bulk viscosity. See
Refs. [12, 13] for further details.

5
In conformal theories, like massless QCD kinetic theory, ⌘/s is

always temperature independent.
6

Lattice QCD simulations gives ⌫eff ⇠ 40 at T ⇠ 400MeV, which

is smaller than ⌫eff = 47.5 in ideal QGP. Therefore matching

temperature in EKT and hydrodynamic simulations results a

small discontinuity in energy density.

15

Figure 11. The differential photon spectra for 0� 20% cen-
trality PbPb collisions at 2.76 TeV. The experimental ALICE
results are shown as points [56, 57]. The solid red lines show
the total computed photon spectra, which consist of prompt
(blue), pre-equilibrium (green) and thermal rates in the hy-
drodynamic phase (yellow).

Figure 12. The ratio of differential photon spectra in ki-
netic+hydrodynamic evolution computed for two matching
times ⌧hydro = 0.6, 1.0 fm. The yellow line is the ratio for
thermal yields, green for EKT yields and red for the sum of
EKT and thermal. The gray band correspond to changes of
5%.

Evolving in time the system cools down and the non-
equilbrium rates smoothly approach their counterparts
in thermal equilibrium.

In addition we showed that photons with high pT are
predominantly produced at the earliest stages of heavy-
ion collisions. In this regime we see a steep fall-off com-
pared to photon production in an idealized expansion due
to a strong quark suppression at this stage of the evolu-
tion. Conversely, the low-pT regime is produced at late
times, where the photon spectra shows a characteristic
power law behavior. The slope of the curve stays the
same for all times although for later times the total con-
tribution in this regime increases. In between an inter-
mediate regime is established, which exhibits a different
power law behavior.

Assuming that the pre-equilibrium evolution of the
QGP can be described in terms of a single scaled time
variable w̃, we showed that the photon spectra satisfies
a simple scaling formula where the momentum is scaled
by (⌘/s)1/2pT /(⌧1/3T )

3/2
1 with an additional overall nor-

malization of 1/(⌘/s)2C̃ ideal
� to the photon spectra. Here

C̃ ideal
� is a constant coming from the thermal photon spec-

tra, if the system is assumed to be in equilibrium for all
times.

The benefit of this universality is that our results can
be applied to estimate the pre-equilibrium photon pro-
duction in realistic simulations of heavy ion collisions.
We applied our formula in event-by-event simulations
and found a smooth matching to hydrodynamic photon
yields. Compared to different sources of photons during a
heavy-ion collision, the pre-equilibrium yield is small and
is dominated by thermal contributions for low momenta
and by prompt photons for the whole considered range of
momenta. Nevertheless above pT ⇠ 2.5GeV, the contri-
bution from pre-equilibrium exceeds the thermal photon
production in the hydrodynamic phase and is almost of
the same order as the prompt contribution.

We implemented our formalism into the initial
state framework KøMPøST [29, 58]. This version,
called ShinyKøMPøST, allows the computation of pre-
equilibrium photon spectra from the energy-momentum
tensor profile at the hydrodynamic starting time ⌧hydro.
Such profiles are naturally generated by KøMPøST prop-
agation, such that our results can be used in future phe-
nomenological studies. Similarly the study of different
initial conditions is left for future works. Although the
pre-equilibrium spectrum will be highly sensitive to the
initial composition of quarks and gluons, this is beyond
the scope of this paper.

Within this work, we computed the pT differential pho-
ton spectrum, which is arguably the simplest photon ob-
servable and is not directly sensitive to the anisotropy of
photon production in early times. Nevertheless, it is con-
ceivable that other observables, such as, e.g., photon v2
or HBT could be more suited to identify the unique fea-
tures of pre-equilibrium production [12]. We leave such
detailed investigations for future work.

Evidently, another logical extension of our formalism

• Two competing effects:

• Quark number suppression and short 
duration of the phase

• Higher energy for the early quarks 

Garcia-Montero Mazeliauskas Plaschke Schlichting 2308.09747

2308.09747
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Figure 11. The differential photon spectra for 0� 20% cen-
trality PbPb collisions at 2.76 TeV. The experimental ALICE
results are shown as points [56, 57]. The solid red lines show
the total computed photon spectra, which consist of prompt
(blue), pre-equilibrium (green) and thermal rates in the hy-
drodynamic phase (yellow).

Figure 12. The ratio of differential photon spectra in ki-
netic+hydrodynamic evolution computed for two matching
times ⌧hydro = 0.6, 1.0 fm. The yellow line is the ratio for
thermal yields, green for EKT yields and red for the sum of
EKT and thermal. The gray band correspond to changes of
5%.

Evolving in time the system cools down and the non-
equilbrium rates smoothly approach their counterparts
in thermal equilibrium.

In addition we showed that photons with high pT are
predominantly produced at the earliest stages of heavy-
ion collisions. In this regime we see a steep fall-off com-
pared to photon production in an idealized expansion due
to a strong quark suppression at this stage of the evolu-
tion. Conversely, the low-pT regime is produced at late
times, where the photon spectra shows a characteristic
power law behavior. The slope of the curve stays the
same for all times although for later times the total con-
tribution in this regime increases. In between an inter-
mediate regime is established, which exhibits a different
power law behavior.

Assuming that the pre-equilibrium evolution of the
QGP can be described in terms of a single scaled time
variable w̃, we showed that the photon spectra satisfies
a simple scaling formula where the momentum is scaled
by (⌘/s)1/2pT /(⌧1/3T )

3/2
1 with an additional overall nor-

malization of 1/(⌘/s)2C̃ ideal
� to the photon spectra. Here

C̃ ideal
� is a constant coming from the thermal photon spec-

tra, if the system is assumed to be in equilibrium for all
times.

The benefit of this universality is that our results can
be applied to estimate the pre-equilibrium photon pro-
duction in realistic simulations of heavy ion collisions.
We applied our formula in event-by-event simulations
and found a smooth matching to hydrodynamic photon
yields. Compared to different sources of photons during a
heavy-ion collision, the pre-equilibrium yield is small and
is dominated by thermal contributions for low momenta
and by prompt photons for the whole considered range of
momenta. Nevertheless above pT ⇠ 2.5GeV, the contri-
bution from pre-equilibrium exceeds the thermal photon
production in the hydrodynamic phase and is almost of
the same order as the prompt contribution.

We implemented our formalism into the initial
state framework KøMPøST [29, 58]. This version,
called ShinyKøMPøST, allows the computation of pre-
equilibrium photon spectra from the energy-momentum
tensor profile at the hydrodynamic starting time ⌧hydro.
Such profiles are naturally generated by KøMPøST prop-
agation, such that our results can be used in future phe-
nomenological studies. Similarly the study of different
initial conditions is left for future works. Although the
pre-equilibrium spectrum will be highly sensitive to the
initial composition of quarks and gluons, this is beyond
the scope of this paper.

Within this work, we computed the pT differential pho-
ton spectrum, which is arguably the simplest photon ob-
servable and is not directly sensitive to the anisotropy of
photon production in early times. Nevertheless, it is con-
ceivable that other observables, such as, e.g., photon v2
or HBT could be more suited to identify the unique fea-
tures of pre-equilibrium production [12]. We leave such
detailed investigations for future work.

Evidently, another logical extension of our formalism

• Two competing effects:

• Quark number suppression and short 
duration of the phase

• Higher energy for the early quarks 
2308.09747

See also  
Churchill Yan Jeon Gale 2008.02902  

Garcia-Montero 1909.12294

Garcia-Montero Mazeliauskas Plaschke Schlichting 2308.09747
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Basic relations from pert. theory [McLerran, Toimela (1995)]
[Gale, Kapusta (1991)]

`

¯̀
K = (!, k)

�?
q̄

q

g

‘hydro cell’ w/ local T, µB

invariant mass:

M =
p
!2 � k2

Emission rate per unit volume, Γℓℓ̄, of an equilibrated QGP

dΓℓℓ̄

dωd 3kkk =
α2

em
∑nf

f=1 Q 2
f

3π3 M 2 (eω/T − 1) × B
( m2

ℓ

M 2

)
× ρV(ω, k)

• Quark charge-fractions: Qf (in units of the electron charge)

• Kinematic factor: B(x) ≡ (1 + 2x)Θ(1 − 4x)
√

1 − 4x

• Spectral function ρV ≡ ρ µ
µ ρµν(ω, k) = Im

[
Πret

µν (ω + i 0+, k)
]
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• Consider non-zero virtuality k0>k≥0.

• Born contribution present, gets larger 
as invariant mass M2=K2 grows 

K
=

K
2

π
2 π

π
2

π

k0

k

⇡T

gT

⇡TgT

pQCD dileptons

d�l+l�(k)

dk0d3k
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• If K2~T2 loop corrections: real and 
virtual (with IR cancellations) 
 
 
 
 
 
 
 
 
NLO results Laine JHEP1311 (2013) extended to spacelike region in Jackson PRD100 (2019)

• Consider non-zero virtuality k0>k≥0. d�l+l�(k)

dk0d3k
= � ↵2
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• If K2≪T2 LPM and/or HTL resummations  
are again necessary, similar to K2=0 
Braaten Pisarski Yuan PRL64 (1990),  
Aurenche Gelis Moore Zaraket JHEP0212 (2002) 

NLO results JG Moore JHEP1412 (2014)

• Finite-k rate available at NLO for all K2≥0  
Ghisoiu Laine JHEP1410 (2014) JG Moore (2014) 
JG Laine, JHEP2201 (2021)
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• Consider non-zero virtuality k0>k≥0.

pQCD dileptons
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dk0d3k
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rate from a static source: dΓℓℓ̄

dM =

∫

k

M√
M2 + k2

dΓℓℓ̄

dω d3k
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• dileptons are a good thermometer!
• ... but a poor “baryometer”

∗ in these, and subsequent, plots: αs = 0.3
14/19
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Churchill Du Gale Jackson Jeon 2311.06951 2311.06675 
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STAR dilepton excess ⌘ (Ndata �Ncocktail)

*see also: [Burnier, Gastaldi (2015)] (LHC energies) 15/19

Connecting pQCD dilepton rates to data
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for large M ≫ T and µB :
dΓℓℓ̄

dM ∝ (MTeff )
3/2 exp

(
− M/Teff

)

⇒ determine Teff from the ‘inverse slope’ of the spectrum

What physics does this effective temperature represent?
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• Look at intermediate masses

• Full stack to connect microscopic 
rates to data

• MC-Glauber IC

• MUSIC hydro

• Freeze-out and hadronic afterburner 
with UrQMD
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... predicted over 40 years ago (!!) [Kajantie, Miettinen (1981)] 18/19

• Linear relation between highest 
temperature in the hydro phase and 
effective temperature in the 
intermediate mass regime

• Predicted in  
Kajantie Miettinen (1981)
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Clearly, one of the main advantages of using this de-
scription is that it guarantees for a smooth matching be-
tween pre-equilibrium and hydrodynamical dilepton pro-
duction, such that the overall spectrum of in-medium
dileptons is virtually independent of the matching time
⌧hydro.

We present our main phenomenological result in Fig. 2,
where we compare the in-medium dilepton production, to
the Drell-Yan (DY) contribution, computed to NLO pre-
cision with the EPPS nPDFs [40] by using the DYTurbo
software [41], where as in previous works [13] the cen-
trality dependence of the nPDFs was neglected and TAA

scaling was assumed. While the top panel of Fig. 2 shows
the total dilepton yield dNl+l−�dMdyQ, the lower panel
shows a break-up of the total yield into DY and thermal
QGP contributions, as well as in the the pre-equilibrium
contribution from ranges of evolution time w̃, and clearly
illustrates how larger invariant masses correspond to ear-
lier production times.

While at higher invariant mass ranges the DY contri-
bution is well constrained and therefore presents small
uncertainties, at low Ms, it presents large error bands,
due to large scale uncertainties. Despite these large the-
oretical uncertainties, we find that the pre-equilibrium
dilepton contribution obtained from realistic event-by-
event EKT+Hydro simulations dominates over both the
DY and thermal QGP background for invariant masses∼ 3 GeV.

Beyond the results obtained from event-by-event
(EByE) simulations, we have also computed the in-
medium dilepton spectra for a coarse grained (CG) de-
scription, where similar to [42, 43] we compute the emis-
sion for a single average event, as well as comparing to
previous obtained results for a simple Bjorken scaling
scenario [13], where transverse dynamics of the QGP is
completely neglected. While the Bjorken scaling under-
estimates the cooling of the QGP, and thus overestimates
the dilepton yield by almost a factor of three, the coarse
grained averaged description provides a very good de-
scription for low invariant masses � 2 GeV. Nevertheless,
the coarse grained description also but underestimates
the high M tails of in-medium dilepton production, which
are more likely produced from local hot spots, and we
therefore conclude from this analysis, that an event-by-
event description is desirable to provide accurate predic-
tions for high and intermediate mass dileptons. This dif-
ference between the EbE and CG descriptions becomes
more important for less central collisions.

Summary and Outlook. We computed the pre-
equilibrium spectrum of dileptons in QCD kinetic theory
and showed that it exhibits a simple universal scaling
in terms of the specific shear viscosity ⌘�s and entropy
density (T ⌧1�3)∞. Such scaling functions are powerful
tools as they allow for event-by-event calculations of the
corresponding spectra by matching ⌘�s and (T ⌧1�3)∞ to
realistic values of a heavy-ion collision. By performing

Figure 2. (Upper panel) Comparison of the in-medium dilep-
ton spectrum for 0−5% centrality Pb-Pb collisions at

√
sNN =

5.02 TeV to their corresponding Drell-Yan contribution. The
in-medium contributions are shown for three different cases
(transversely homogeneous Bjorken expansion (data taken
from [13]), realistic EbE ICs, and smooth initial conditions,
the average of the latter). (Lower panel) Relative contribution
of the different contributions to the total yield (in-medium +
Drell-Yan). The EbE pre-equilibrium has been split into dif-
ferent w̃ ranges for better comparison.

realistic event-by-event simulations of pre-equilibrium,
thermal QGP and Drell-Yan dilepton production for√
sNN = 5.02 TeV Pb-Pb collisions, we find that the pre-

equilibrium production dominates over the irreducible
background for invariant masses ∼ 3 GeV. However, this
result only serve as an illustrative example and in or-
der to make full use of our results for phenomenological
applications, we have included the pre-equilibrium scal-
ing functions into the initial state framework KøMPøST.
This version including photons and dileptons is called
ShinyKøMPøST and is publicly available under [44].

Since the pre-equilibrium scaling in Eq. (12) can be
derived on rather general grounds, it can also be ex-
tended to fully differential dilepton observables, which
is highly beneficial for the development of a Monte-Carlo
generator to facilitate the detection of pre-equilibrium
dileptons in present and future heavy-ion experiments.
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FIG. 1. Illustration of the typical kinematic configuration of
leading-order dilepton production from the Drell-Yan process
(left) and from the quark-gluon plasma in the pre-equilibrium
stage (right). The dotted arrow represents the longitudinal z-
axis, parallel to the beam line. The polar angle in the Collins-
Soper frame is labeled ✓.

large enough [21, 22] that it has prevented the observa-
tion of dilepton emission from the plasma so far. In prin-
ciple, however, it can be isolated by measuring the slight
displacement, by a fraction of a millimeter (or in the mil-
limeter range at forward rapidity, thanks to the Lorentz
boost), of the vertex of the weak decay relative to the
primary vertex of the collision [22]. The upgrades of AL-
ICE (largely motivated by this measurement) and LHCb,
which took high-luminosity heavy-ion data for the first
time in 2023, provide improved detector performances
that should allow first yield measurements. Further im-
provements are expected along with the detector projects
LHCb Upgrade 2 [23] and ALICE 3 [24], and a su�cient
rejection of the charm background should be within reach
in a decade.

The kinematics of lepton pair production can be used
to probe the anisotropy of the quark momentum distri-
bution, which itself reflects the pressure anisotropy in
the quark-gluon plasma [25]. The leading-order process
is qq̄ ! l+l�, where l� and l+ denote the lepton and
its antiparticle. In the center-of-mass frame, if one ne-
glects the lepton mass (which is an excellent approxima-
tion for both muons and electrons in the considered in-
variant mass range), the distribution of leptons per solid
angle is proportional to 1 + cos2 ✓, where ✓ denotes the
angle between quark and lepton momenta.2 Therefore,
emission parallel to the quark is more probable by a fac-
tor two than perpendicular to the quark. The Drell-Yan
process, where quark momenta are mostly longitudinal,
will therefore result in preferential emission of longitudi-

2 This is due to the fact that the interaction is mediated by a
spin-1 particle, hence the term of “polarization” traditionally
used to characterize this e↵ect [26], even though it refers to the
unpolarized cross section.

nal leptons, while pre-equilibrium emission in the quark-
gluon plasma, where quark momenta are mostly trans-
verse in the rest frame of the fluid, will result in prefer-
ential emission of transverse leptons. This is illustrated
schematically in Fig. 1.
The natural observable to quantify this e↵ect is the

distribution of the angle between the positive lepton and
the z-axis in the rest frame of the dilepton. This axis cor-
responds to the beam direction3. The defined angle is re-
ferred to as the polar angle of the Collins-Soper reference
frame [27], which we denote by ✓. Neglecting the lepton
masses, the cosine of this angle is computed from the
momenta p3 and p4 and energies E3 = p3 and E4 = p4
of l+ and l� in the laboratory frame using the standard
formula:

cos ✓ =
pz4
|p4|

����
CS frame

=
2 (E3pz4 � E4pz3)

M
p
M2 + p2T

, (1)

where pT in the denominator denotes the transverse mo-
mentum of the dilepton, pT ⌘ |pT3 + pT4|. This angular
distribution has been measured in fixed-target 158A GeV
In-In collisions by NA60 [28] demonstrating the principle
measurement feasibility. At these collision energies, the
space-time picture used here is however not applicable.
We first evaluate the distribution of cos ✓ for dilep-

tons emitted by the quark-gluon plasma, including the
pre-equilibrium stage. This calculation is done along the
lines of our previous works [17, 29]. We then carry out a
similar calculation for the Drell-Yan process. We finally
present our results for the sum of these two contributions,
and show how it evolves as a function of the invariant
mass M .

Dilepton emission by the quark-gluon plasma. — We
calculate the production rate of dileptons to leading order
in perturbation theory, that is, the rate of quark-anti-
quark annihilation, without any additional gluon in the
initial or final stage. We denote by fq(p1, x) and fq̄(p2, x)
the phase-space distributions of quarks and anti-quarks,
where p1 and p2 are their momenta, and x denotes the
space-time coordinate where annihilation occurs. The
production rate of a lepton pair with momenta p3 and
p4 is obtained by summing the cross section over p1 and
p2 :

dN

d4xd3p3d3p4
=

e4

M4

P
q2f

(2⇡)3(2p3)(2⇡)3(2p4)

⇥
Z

d3p1

(2⇡)3(2p1)

d3p2

(2⇡)3(2p2)
fq(p1)fq̄(p2)

⇥ lµ⌫⇧
µ⌫(2⇡)4�(4) (p1 + p2 � p3 � p4) ,

(2)

3 In general, the two colliding beams are not exactly collinear, and
the ”beam direction” is defined as the bisector between the two
beams.
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FIG. 3. Quadrupole moment of the angular distribution of leptons, defined as 1
2

⌦
3 cos2(✓)� 1

↵
, for quark-gluon plasma

production and Drell-Yan, as a function of the invariant mass M of the dilepton pair. Left: default scenario with no quarks
initially present. Right: assuming quark chemical equilibrium at all times.

a prolate distribution and negative values to an oblate
distribution. The extreme values are 1, corresponding to
all leptons emitted along the z axis, and � 1

2 , correspond-
ing to all leptons emitted in the transverse plane. Note
that if dN/d cos ✓ / 1 + cos2 ✓, which is the maximal
angular dependence that one would expect from quark-
antiquark annihilation, the quadrupole moment defined
by Eq. (4) is only 1

10 . If the same distribution is rotated
by an angle ⇡/2, corresponding to emission by purely
transverse quarks, the quadrupole moment is � 1

20 . One
therefore expects the quadrupole moment to lie between
�0.05 and 0.1, that is, in a range ten times smaller than
the mathematically-allowed interval between �0.5 and 1.

Fig. 3 displays the variation of the quadrupole moment
with the invariant mass M for both processes individu-
ally, as well as for the sum. For quark-gluon plasma
production, the quadrupole moment is negative as ex-
pected, corresponding to an oblate distribution. It goes
to zero for small values of M , which are produced at late
times when the pressure is isotropic.4 As M increases,
it rapidly approaches the lower bound �0.05. The varia-
tion with ⌘/s scales with (⌘/s)M2, as expected by dimen-
sional analysis [29]. If quarks are in chemical equilibrium
(Fig.3 right), the asymptotic limit �0.05 is approached
somewhat faster.

For Drell-Yan production, the quadrupole moment is
positive, corresponding to a prolate distribution, and
varies weakly with M . Note that it is smaller by a factor
⇠ 2 than the upper bound 1

10 .
If one sums the contributions of quark-gluon plasma

production and Drell-Yan before evaluating the asym-
metry, one finds that the asymmetry is negative for the

4 Note, however, that our calculation, which neglects transverse
flow, is not reliable for small M [26], typically below 2 GeV.

lower values of M , where Drell-Yan is negligible, and be-
comes positive for larger values of M , where Drell-Yan
dominates. The value of M for which the transition oc-
curs depends on ⌘/s. The smaller ⌘/s, the more copi-
ously the quark-gluon plasma produces lepton pairs, and
negative asymmetries are observed up to M ⇠ 4 GeV.
If quarks are in chemical equilibrum (Fig.3 right), dilep-
ton production in the quark-gluon plasma dominates over
Drell-Yan production up to M ⇠ 7� 8 GeV [17], so that
the asymmetry remains negative.

In summary, we have introduced a new observable, the
quadrupole moment of the angular distribution of lep-
tons, which is negative for dileptons produced in the
quark-gluon plasma, and positive for Drell-Yan dilep-
tons. Measurement of this observable in future LHC ex-
periments will provide the first experimental proof that
the pressure tensor of the quark-gluon plasma is oblate
at early times, and provide a first direct experimental
constraint on the isotropization time of the quark-gluon
plasma.
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• Theoretical description: convolution of microscopic rates over the macroscopic 
(hydro) evolution of the medium

• Many theory advancements in connecting the two and in pre-equilibrium 
emission

• Pre-eq. photon and dileptons overtake thermal radiation at some point

• Linear relationship between highest temperature and effective temperature for 
dileptons

• Angular structure of dileptons could shed light on their origin

Conclusions
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• What is measured directly is the Euclidean correlator 
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• Analytical continuation  
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• If k>0 spf describes DIS (k0<k), photons (k0=k) and dileptons (k0>k)

0 2 4 6 8 10
ω / T

0.0

0.4

0.8
ρ V

 / 
ω

T
NLO + LPMLO, µ = µopt

NLO + LPMLO, µ = 2 µopt

NLO + LPMNLO, µ = µopt

T = 1.1Tc, Nf = 0

k 
= 

2.
09

4T

k 
= 

4.
18

9T

k 
= 

6.
28

3T
0.0 0.1 0.2 0.3 0.4 0.5

τ T

0.2

0.4

0.6

0.8

1.0

G
V

 / 
G

no
rm

,V

NLO + LPMLO, µ = µopt

NLO + LPMLO, µ = 2 µopt

NLO + LPMNLO, µ = µopt

T = 1.1Tc, Nf = 0

k = 2.094T

k = 4.189T

k = 6.283T

Figure 2. Results for ρV (left) and GV (right) at T = 1.1Tc for N
f
= 0, the latter normalized to

eq. (4.6). LPMLO refers to results from secs. 3.2 and 3.3, employing the two scale choices µ̄ = µ̄opt
and µ̄ = 2µ̄opt (cf. eq. (4.4)). The notation LPMNLO indicates that the contribution from ref. [22] has

been added; in this case we use µ̄ = µ̄opt. The black squares are lattice results from ref. [33]. The

spectral function can become negative at very small ω due to the subtraction of ρ00 (cf. eq. (4.5)); the

related physics is discussed in more detail around eq. (5.1).

Let us stress again that the spectral functions corresponding to GV and GH agree on the light

cone but are substantially different away from it (cf. fig. 2(left) vs. fig. 3(left)).

Again a comparison between perturbative and lattice results requires relating physical

scales. According to eq. (3.1) of ref. [54], Tc ≃ 167(25) MeV, with units set through r0 =

0.503(10) fm [55]. Adopting a community average from ref. [56], viz. r0ΛMS ≈ 0.75(10), yields

Tc/ΛMS ≃ 0.56 for Nf = 2, but with substantial ∼ 25% uncertainties. For the comparison, a

susceptibility is needed as well; we employ the recent continuum extrapolation χ = 0.88(1)T 2

from ref. [53], consistent with classic expectations [57].

The spectral function ρH is shown in fig. 3(left), and the corresponding imaginary-time

correlator GH in fig. 3(right). Like in fig. 2(right), the lattice correlators fall in general below

the perturbative curves. The uncertainties of the perturbative imaginary-time correlators, as

reflected by the scale dependence and the difference between LPMLO and LPMNLO resumma-

tions, are relatively speaking larger for Nf = 2, a manifestation of the fact that the dominant

vacuum UV tail is absent and therefore the data is more sensitive to IR physics. Nevertheless

it is comforting that the qualitative pattern remains similar. The conclusions drawn from

the comparison are discussed in sec. 5.

– 12 –

• Plots and spectral function from Jackson Laine JHEP1109 (2019) 
Quenched lattice from JG Kaczmarek Laine F.Meyer PRD94 (2016)
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Fitting to the lattice
• Main idea: assume a fitting form for the spf, relying 

on Ansätze

• Get the Euclidean correlator from this ansatz spf 
and fit the spf coeffs to the lattice data

• Two approaches so far

• Quenched, continuum extrapolated lattice data, 
standard vector spf ρV=2ρT+ρL 

• Convolution dominated by (well-understood) 
vacuum physics at ω≫k 
JG Kaczmarek Laine F.Meyer PRD94 (2016)
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Figure 3: The spectral functions corresponding to fig. 1 (nmax = 0). The vertical bars locate the

light cone. The “best estimate from pQCD” is based on refs. [17, 18, 20], and has been constructed

as explained in footnote 3. The AdS/CFT result comes from ref. [28], and has been rescaled to agree

with the non-interacting QCD result at large ω/T . (This rescaling choice is rather arbitrary.)

the perturbative ones. The goal now is to test whether the discrepancy could be explained

by modifications of ρV in the domain of small frequencies, as explained in sec. 3.

With the ansatz of eq. (3.2), a good representation of the data can indeed be obtained.

This is illustrated in fig. 1 and more quantitatively in fig. 2, which shows the dependence of

χ2 on the matching point ω0. In the following, we fix ω0 =
√

k2 + (πT )2, which is close to

the local minimum of χ2. Similarly small χ2 could be obtained with ω0 = k, where the curves

start, but we prefer to use the minimum that is deeper in the perturbative domain, because

then we have more reasons to trust the perturbative prediction.

The corresponding results for the spectral function are illustrated in fig. 3. Barring the

possibility of large non-perturbative effects at M >∼πT , it appears plausible from fig. 3 that

the pQCD spectral functions have too much weight in the spacelike domain. This is in

qualitative agreement with the discussion in secs. 2.3 and 2.4, and suggests the gradual onset

of hydrodynamics-like behaviour. That the fit lies below the perturbative curves at k <∼ 3T

is also consistent with the expectation that the diffusion coefficient D of a strongly coupled

system should be smaller than the result of a leading-order weak-coupling analysis [39].

The value of the spectral function at the photon point, normalized as ρV(k,k)T/(2χqk), is

shown in fig. 2 (lower panels) and in fig. 4. More precisely, in order to accommodate data
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Fitting to the lattice
• Main idea: assume a fitting form for the spf, relying 

on Ansätze

• Get the Euclidean correlator from this ansatz spf 
and fit the spf coeffs to the lattice data

• Two approaches so far

• Nf=2 continuum extrapolated, modified spf 
ρMainz=2ρT-2ρL

• Vacuum contribution vanishes identically  
(Lorentz invariance). ρMainz(ω=k)=ρV(ω=k) 
Brandt Francis Harris H.Meyer Steinberg 
1710.07050 Cè Harris H.Meyer Steinberg Toniato 
PRD102 (2020)
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FIG. 4. Representative spectral functions obtained from lat-
tice QCD data for three di↵erent spatial momenta. They are
compared to the spectral functions of non-interacting quarks
and of the strongly coupled SYM theory.

functions of the momentum. We consider two polynomial
forms in our analysis,
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with � = 1 or 2 and where kmin is the smallest momentum
in the group.

Since the covariance matrix C of the data points is size-
able, we have used the regularized matrix C̃, constructed
according to5
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We have studied the stability of our results with respect
to the regularization parameters x, y and found little de-
pendence on them around the values we chose [30]. For
instance, both x and y were set to 0.95 for the second
momentum group. The importance of preserving corre-
lations among the input data points when addressing the
inverse problem has been emphasized previously [31].
For each momentum group, we performed a scan

in the six-dimensional space of non-linear parameters
(a0,a2,b0,b2,W0,W2), while, at each momentum, the pa-
rameter B is determined by imposing the sum rule (10)
and the linear parameter A by minimizing the �

2. The
number of fit parameters is thus given by 6 + Nk, and
the number of degrees of freedom for each of the three
momentum groups is 12, 24 and 36 respectively. We cal-
culate the p-value of each set of parameter values and
consider that it provides a satisfactory description of the
correlator whenever p > 0.32. If the condition is satisfied,
the corresponding De↵(k) are marked as being compat-
ible with the lattice data, and the associated p-value is
recorded.

Before describing our results for De↵(k), we briefly
present the outcome of our procedure when applied to
mock Euclidean data generated from known spectral
functions. For these tests, we have used the spectral
functions of non-interacting quarks as well as those of
the strongly coupled SYM theory. In order to be realis-
tic, we re-use the covariance matrix of our lattice QCD
data, rescaled so as to achieve the same relative error on
the correlator. In both cases, we find that the correct
value of De↵(k) is one of those having a p-value above
0.32. The output spectral functions yielding the highest
p-value tend to have a somewhat larger value of De↵(k).

Our final results for the De↵(k) values yielding a p-
value above 0.32 for the QCD correlator at T = 254MeV
are displayed in Fig. 3. We show results for both the lin-
ear and the quadratic dependence on k, � = 1 and 2. We
observe that for the third momentum group, containing
momenta above 1.0GeV, the values of De↵(k)·GeV cover
the interval [0, 0.7] and are thus compatible both with
the leading-order weak-coupling prediction [28] and the
strongly-coupled SYM prediction [26], which lie between
0.3 and 0.5. Moreover, the weak-coupling prediction is
among those values with the highest p-value. In the sec-
ond momentum group, the range of acceptable De↵(k)
values covers a range up to about twice the strongly-
coupled SYM value (for the ansatz quadratic in k), while

5 No summation convention is applied in Eq. (17)
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lations among the input data points when addressing the
inverse problem has been emphasized previously [31].
For each momentum group, we performed a scan

in the six-dimensional space of non-linear parameters
(a0,a2,b0,b2,W0,W2), while, at each momentum, the pa-
rameter B is determined by imposing the sum rule (10)
and the linear parameter A by minimizing the �

2. The
number of fit parameters is thus given by 6 + Nk, and
the number of degrees of freedom for each of the three
momentum groups is 12, 24 and 36 respectively. We cal-
culate the p-value of each set of parameter values and
consider that it provides a satisfactory description of the
correlator whenever p > 0.32. If the condition is satisfied,
the corresponding De↵(k) are marked as being compat-
ible with the lattice data, and the associated p-value is
recorded.

Before describing our results for De↵(k), we briefly
present the outcome of our procedure when applied to
mock Euclidean data generated from known spectral
functions. For these tests, we have used the spectral
functions of non-interacting quarks as well as those of
the strongly coupled SYM theory. In order to be realis-
tic, we re-use the covariance matrix of our lattice QCD
data, rescaled so as to achieve the same relative error on
the correlator. In both cases, we find that the correct
value of De↵(k) is one of those having a p-value above
0.32. The output spectral functions yielding the highest
p-value tend to have a somewhat larger value of De↵(k).

Our final results for the De↵(k) values yielding a p-
value above 0.32 for the QCD correlator at T = 254MeV
are displayed in Fig. 3. We show results for both the lin-
ear and the quadratic dependence on k, � = 1 and 2. We
observe that for the third momentum group, containing
momenta above 1.0GeV, the values of De↵(k)·GeV cover
the interval [0, 0.7] and are thus compatible both with
the leading-order weak-coupling prediction [28] and the
strongly-coupled SYM prediction [26], which lie between
0.3 and 0.5. Moreover, the weak-coupling prediction is
among those values with the highest p-value. In the sec-
ond momentum group, the range of acceptable De↵(k)
values covers a range up to about twice the strongly-
coupled SYM value (for the ansatz quadratic in k), while

5 No summation convention is applied in Eq. (17)
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Figure 4: Lattice results for Deff defined in eq. (5.2) (data points), compared with the NLO pertur-

bative prediction from ref. [17] (continuous curves). The lattice errors have been obtained by carrying

out fits with nmax = 1 to the bootstrap ensemble. The data points at k = 0 (cf. appendix A) have been

slightly displaced for better visibility. For comparison note that the heavy-quark diffusion coefficient,

determined with different methods, has been estimated as DT ∼ 0.6...1.1 at T ∼ 1.5Tc [40], and the

light-quark value as DT ∼ 0.2...0.8 at T = 1.1Tc and DT ∼ 0.2...0.5 at T = 1.3Tc [37]. The predic-

tions of ref. [17] are only reliable for k ≫ gT , but LO perturbative values at k = 0 can be obtained

by dividing the results of ref. [39] through the lattice susceptibility according to eq. (2.9), yielding

DT ≈ 2.9 at T = 1.1Tc and DT ≈ 3.1 at T = 1.3Tc. The AdS/CFT value is DT = 1/(2π) [27].

both at k = 0 and at k > 0, we define

Deff(k) ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρV(k,k)

2χqk
, k > 0

lim
ω→0+

ρii(ω,0)

3χqω
, k = 0

. (5.2)

According to eqs. (2.9) and (2.11), limk→0Deff(k) = D. Even though the evidence for a

continuous behaviour is not overwhelming in fig. 4 due to the large systematic uncertainties

at small k <∼ 3T , it is not excluded either. We recall that according to the discussion in

sec. 2.4, hydrodynamic behaviour is expected to set in for k <∼ 1/D, which according to the

k = 0 results in fig. 4 roughly speaking corresponds to k <∼ 2T .

As already alluded to, our analysis contains systematic as well as statistical uncertainties.

In order get an impression about their magnitudes, the following tests have been carried out:

• We have tested the dependence of the results on the order of the fitted polynomial,

parametrized by nmax in eq. (3.2). Obviously, given the ill-posed nature of the inversion
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• Define • In the hydro limit k≪T Deff→D

in the non-interacting limit [16],

ρV(ω,k) =
NcTM2

2πk

{

ln

[

cosh(ω+k
4T )

cosh(ω−k
4T )

]

−
ω θ(k − ω)

2T

}

, (2.7)

where Nc = 3. This “Born” or “thermal Drell-Yan” rate provides for a reasonable approxi-

mation at large invariant masses, M ≫ πT . However for zero invariant mass the Born rate

vanishes, and the leading-order (LO) result is proportional to αsT 2.

The determination of the correct LO result poses a formidable challenge [10]. However

there is a logarithmically enhanced term that can be worked out analytically [7, 8],

ρV(k,k) =
αsNcCFT 2

4
ln

(

1

αs

)

[

1− 2nF(k)
]

+O(αsT
2) , (2.8)

where nF is a Fermi distribution and CF ≡ (N2
c − 1)/(2Nc). The non-logarithmic terms are

only known in numerical form [9,10]. Recently, these results have been extended to O(α3/2
s T 2)

both at vanishing [11] and non-vanishing photon masses (|M |<∼ gT , where g ≡
√
4παs) [17].

In the following we make use of the results of ref. [17].

If the photon mass is large, M ≫ g1/2T , then there is a “crossover” to a different type of

behaviour [17, 18]. For M ∼ πT the NLO corrections are suppressed by αs and numerically

small [19, 20]. For M ≫ πT , the spectral function goes over into a vacuum result [21] which

is known to relative accuracy O(α4
s ) [22, 23] and can directly be taken over for a thermal

analysis [20,24]. Such precisely determined results play an essential role in our investigation.

2.3. Hydrodynamic regime

A special kinematic corner in which it is possible to make statements about ρV beyond

the weak-coupling expansion is given by the so-called hydrodynamic regime, parametrically

ω, k <∼α2
sT . This is the regime in which the general theory of statistical fluctuations [25]

applies. Then the properties of ρV can be parametrized by a diffusion coefficient, denoted

by D, and by a susceptibility, denoted by χq. The susceptibility determines the value of the

conserved charge correlator at zero momentum, χq ≡
∫ β
0 dτ

∫

x
⟨V 0(τ,x)V 0(0)⟩, whereas D

can be defined through a Kubo formula as

D ≡
1

3χq
lim

ω→0+

3
∑

i=1

ρii(ω,0)

ω
. (2.9)

The electrical conductivity is a weighted sum over these quantities,

σ = e2
Nf
∑

f=1

Q2
f χqD , (2.10)

where the disconnected contribution has been omitted thanks to
∑

f
Q

f
= 0.

3

JG Kaczmarek  
Laine F.Meyer

4

FIG. 2. The observable R(x0, k) (see Eq. (13)) for x0 = �/3 in
Nf = 2 QCD at T = 254MeV, compared to its prediction for
non-interacting fermions and for the strongly coupled SYM
theory.

times larger in the former theory. It is thus interesting
to ask how R(x0, k) behaves in QCD at the temperature
of 254MeV. The observable is displayed in Fig. 2. The
QCD values lie less than 20% above the non-interacting
values.

IV. ANALYSIS OF THE SPECTRAL FUNCTION

To obtain a global picture of the spectral function with-
out committing to any specific functional form, in [27]
we applied the Backus-Gilbert method to our data. The
results confirm the theoretical expectation that most of
the spectral weight is contained in the spacelike region
!
2
< k

2.
A second method [27], which we now pursue further,

consists in applying an explicit fit ansatz for the spectral
function,

⇢(!, k) =
A(1 +B!

2) tanh(!�/2)

[(! � !0)2 + b2][(! + !0)2 + b2][!2 + a2]
.

(14)
The ansatz satisfies the expected large-! behavior (9).
We always determine the parameter B in terms of
(!0, a, b) by imposing the sum rule (10) and require
B � �1/k2 to satisfy the spectral positivity condition
for !

2
< k

2. Thus, for a single momentum k, Eq. (14)
amounts to a four-parameter fit. The Euclidean correla-
tor resulting from the spectral function (14) can be ex-
pressed as a linear combination of Lerch transcendents
�(e±2⇡ix0 , 1, 1

2 + i
!p

2⇡ ), where !p are the frequency poles
of ⇢(!, k)/ tanh(!�/2).

We impose the following physically motivated con-
straints on the parameters. Spectral positivity implies

FIG. 3. Lattice results for the e↵ective di↵usion coe�cient
De↵(k), defined by Eqs. (6) and (12). The color-coded ver-
tical bars represent those values of De↵ for which a spectral
function of the form (14) exists that has a p-value above 0.32.
The colors indicate the smallest �2/d.o.f. found for a given
value of De↵ . Shaded areas identify the momentum groups
that are fitted simultaneously; for each momentum, results are
shown both for the � = 1 and � = 2 parametrizations of the
k-dependence of the nonlinear parameters. Analytical results
from perturbative QCD [28] and from the strong-coupling
limit of N = 4 super-Yang-Mills theory [26] are shown for
comparison.

A � 0 and B � �1/k2. Furthermore, since there can-
not be arbitrarily long relaxation times in the system, we
impose the condition

Im(!p) > min(Dstrongk
2
, D

�1
weak) (15)

on the poles, where Dstrong = 1
2⇡T is the di↵usion coe�-

cient of the strongly coupled SYM theory and D
�1
weak the

inverse QCD di↵usion coe�cient at leading-order in the
perturbative expansion, which we set to 0.46T based on
the results of [29]. This condition reflects the fact that
Dk

2 is the rate of dissipation of a perturbation in the
charge density, while D

�1 provides an estimate of the
relaxation rate of a homogeneous current.
In order to increase the discriminative power of our fits,

we simultaneously fit data at di↵erent momenta. The
correlators have been computed for all spatial momenta
~k = ⇡ T

2 ~⌫ for ~⌫ 2 Z3 and n ⌘ |~⌫|2  16. We found
it convenient to split the set of available momenta into
three groups, 1  n  3, 3  n  8 and 8  n  14,
which contain respectively Nk = 3, 5 and 7 momentum
values. The number of data points entering a fit is thus
given by NkNt, the number Nt of Euclidean times being
seven in our data set. Within a momentum group, we
parameterize the momentum dependence of ansatz (14)
by expressing the nonlinear parameters a, b and !0 as

Cè Harris H.Meyer  
Steinberg Toniato



• If k>0 spf describes DIS (k0<k), photons (k0=k) and dileptons (k0>k)

• Plots and spectral function from Jackson Laine JHEP1109 (2019)  
Lattice from Cè Harris H.Meyer Steinberg Toniato PRD102 (2020)
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Figure 3. Results for ρH (left) and GH (right) at T ≃ 1.2Tc for Nf
= 2. The black squares are lattice

data from refs. [35, 53], multiplied by a factor 2χ/T 2, where χ ≈ 0.88T 2 [53], in order to convert to

our units. The notations LPMLO and LPMNLO and the scale choices are as in fig. 2.

5. Conclusions

Motivated by a comparison with lattice data, unresummed NLO (2-loop) vector spectral

functions have recently been extended into two new domains [38]: below the light cone

(ω < k), and to a longitudinal polarization that vanishes at the light cone but is non-zero

elsewhere. Even if the spacelike domain, corresponding to deep inelastic scattering off a

thermal medium, sounds academic, it is essential for a comparison with lattice data, given

that imaginary-time measurements get a large contribution from this region (cf. eq. (1.3)).

The longitudinal polarization, in turn, is useful in the UV domain, as it permits to subtract

the short-distance singularities from the lattice measurement (cf. eq. (3.3)) [35].

With the 2-loop results at hand, they can be resummed close to the light cone as specified

in eq. (4.1) (parametrically, this is needed for |ω − k|<∼αsT
2/k). Making use of methods

developed in ref. [34], this resummation has been worked out to NLO by now [21, 22], implying

in this context corrections suppressed by
√
αs. We have incorporated the latter corrections

in our results, switching them off away from the light cone when they lose their validity.

The comparison of the imaginary-time correlators following from the resummed NLO spec-

tral functions against lattice data can be viewed as the inspection of many separate “sum

rules”, one for each τ . Put together, this constrains the spectral function in a non-trivial way.

In particular, we find that the correlators are affected by the choice of the renormalization

scale of αs (cf. figs. 2 and 3). Reasonable agreement is obtained by scale choices reminiscent
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• Backus-Gilbert method: linear map 
from the space of functions in the 
time domain, G, to the space of 
functions on the frequency domain, 
ρBG 

• It is exact for constant spfs and 
advantageous for a slowly varying 
spf

• The Mainz spf might indeed be 
slowly varying, or at least much 
slower than the vector one

The latter linear combination vanishes identically in the vacuum and is highly suppressed in the ul-
traviolet. Here we concentrate on the case � = �2; in the future, we plan to also analyze the case
� = 0, which should yield consistent photon rates, thus providing a powerful cross-check. At the end,
the spectral functions with � = 0 and � = �2 can be recombined in order to predict the dilepton rate.
The importance of removing UV divergences from Euclidean correlators to estimate thermal real-time
observables has also been discussed in ref. [12].
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Figure 1. The spectral function ⇢�(!, k) computed in tree-level continuum perturbation theory, illustrating the
improved UV behaviour of the � = �2 spectral function (solid lines) versus the standard divergent choice � = 1
(dashed line).

Figure 1 illustrates the e↵ect of the cancellation on the tree-level spectral function in the solid
lines. The standard correlation function (� = 1) is shown for the lowest momenta in the dashed line,
which diverges as !2 at large frequencies. The spectral function with � = �2 on the other hand is
very suppressed for ! > k, thus making this channel very sensitive to the infrared physics of interest.
Note that the spectral function evaluated on the photon mass-shell (at the kink), and thus the photon
rate, vanishes at this order in perturbation theory. If one thinks of the inverse problem as resulting in a
‘smearing’ of the actual spectral function, as is explicitly the case in the Backus-Gilbert method, then
this represents a di�culty, since the spectral weight is of order unity for ! . k.

2 Continuum limit

We have generated a series of ensembles to take the continuum limit at a single temperature, ap-
proximately T = 250 MeV, above the crossover to the chirally symmetric phase, and an additional
ensemble at a single lattice spacing deep in the deconfined phase, approximately T = 500 MeV;
see table 1. We use the non-perturbatively O(a)-improved Wilson action [13] with Nf = 2 Wilson
fermions and the Wilson gauge action. The parameters were chosen using the running of the coupling
and quark masses as determined by the CLS collaboration [14]. The lattice with N⌧ ⌘ �/a = 16 at
T ⇡ 250 MeV, where � = T�1 is the inverse temperature, has been used for our previous studies, see
refs. [15–17].

In order to control the continuum limit we measured the two-point correlation functions of the
vector current using both local and exactly-conserved discretizations of the current. Furthermore, in
the case of the local-conserved correlation function, there are two discretizations of the � = �2 linear
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