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Abstract

• Purpose – This work proposes a general methodology to handle multi-material filtering for density-
based topology optimization containing periodic or anti-periodic boundary conditions, which are ex-
pected to reduce the simulation time of electrical machines. The optimization of the material distribution
in a permanent magnet synchronous machine rotor illustrates the relevance of this approach.

• Design/methodology/approach – The optimization algorithm relies on an augmented Lagrangian
with a projected gradient descent. The 2D finite element method computes the physical and adjoint
states to evaluate the objective function and its sensitivities. Concerning regularization, a mathematical
development leads to a multi-material convolution filtering methodology that is consistent with the
boundary conditions and helps eliminate artifacts.

• Findings – The method behaves as expected and shows the superiority of multi-material topology
optimization over bi-material topology optimization for the chosen test case. Unlike the standard
approach that uses a cropped convolution kernel, the proposed methodology does not artificially reflect
the limits of the simulation domain in the optimized material distribution.

• Originality/value – Although filtering is a standard tool in topology optimization, no attention has
previously been paid to the influence of periodic or anti-periodic boundary conditions when dealing
with different natures of materials. The comparison between the bi-material and multi-material topology
optimization of a permanent magnet machine rotor without symmetry constraints constitutes another
originality of this work.
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1 Introduction
Topology optimization (TO) is a set of methods that automatically design technical objects without parameterizing
an existing geometry. Since the seminal work of Bendsøe and Kikuchi, 1988 that focuses on homogenization,
many different sensitivity-based approaches have been proposed, such as the popular density methods (Bendsøe,
1989), evolutionary strategies (Xie and Steven, 1993), phase-field approach (Wang and Zhou, 2004), or the
level-set method, based either on shape (Allaire, Jouve, and Toader, 2004) or on topological derivatives (Amstutz
and Andrä, 2006). Driven by the development of additive manufacturing during the last decade (Liu et al., 2018),
TO has become mature enough to handle large-scale problems with more than a billion variables (Aage et al.,
2017), as well as coupled physics (Feppon et al., 2021) and several different materials (Bruyneel, 2011). In
the field of electromagnetic actuators, Dyck and Lowther, 1996 first applied a density method on a magnetic
bearing, which was further extended to rotors of electrical machines, including synchronous reluctant machines
(J. Lee, Seo, and Kikuchi, 2010); see Lucchini et al., 2022 for a recent overview. The optimization of the rotors of
Permanent Magnet Synchronous Machines (PMSM), as in (C. Lee and Gwun, 2022), or their stators (Cherrière,
Laurent, et al., 2022), involve Multi-Material Topology Optimization (MMTO) that density-based approaches
can handle. The main idea is to extend the dimension of the interpolation domain by considering vector density
fields that encode the intermediate materials. The interpolation can be constructed either with a product-based
approach (Sigmund, 2001) or by using shape functions on a hypercube (Bruyneel, 2011) that associates each
vertex of the interpolation domain with a candidate material. The advantage of hypercube domains is that the
projection of the optimization variables onto them is trivial. However, this class of domains is restrictive and does
not suit all problems, such as multiphased stator optimization. To overcome this limitation, interpolation domains
can be further extended to all convex polytopes denoted as D (Cherrière, Laurent, et al., 2022) in which each
position interpolates the material properties between candidate materials located at its vertices. The density-based
optimization problem on a design domain Ωd then reads

find ρρρopt = arg min
ρρρ:Ωd→D

f (ρρρ). (1)
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The optimal solution of (1) may contain intermediate "gray" materials that are located inside D and not at its
vertices, which are associated with proper materials. A solution to eliminate the intermediate materials is the
penalization of the material interpolation, which makes the optimization problems non-convex (Abdelhamid and
Czekanski, 2022) and leads to "noisy" results that are local optima. Moreover, other numerical artifacts such as
checkerboards (Sigmund and Petersson, 1998) are commonly encountered, so density methods are generally paired
with a regularization procedure. One of the most standard is density filtering, which solves the Helmholtz equation
(Lazarov and Sigmund, 2010), or uses convolution filters (Bourdin, 2001). These methodologies have been
frequently used in the case of single materials. In the case of periodic boundary conditions (PBC) or anti-periodic
boundary conditions (APBC), the convolution kernel can be extended on the opposite side of the design domain
Ωd by wrapping, as illustrated in Figure 1. In the case of single and bi-material problems, this technique has been
applied in mechanical engineering to rectangular design domains regularly meshed (Clausen and Andreassen,
2017; Wallin et al., 2020) and extended to irregular meshes by Kumar and Fernández, 2021.

Figure 1: Illustration of a wrapped kernel (Source: Authors’ own work).

In the multi-material case, however, an additional difficulty is that the materials’ nature may change through the
boundary Ωd , affecting polarized magnetic materials and electrical conductors. In the field of electrical machines,
this difficulty is not addressed in the literature to the best of our knowledge. Among the work dealing with
topology optimization of rotor poles, filtering schemes are nevertheless applied, without being detailed. Symmetry
with respect to the d axis is generally imposed (C. Lee and Gwun, 2022; Korman et al., 2022). In this case, the
material continuity through the (anti-)periodic boundaries can not be satisfied (except in special cases when the
magnetization is orthogonal to the boundary). However, symmetry constitutes an unnecessary restriction, since
optimized designs can present natural asymmetry as shown by Cherrière, Hlioui, Laurent, Louf, Ben Ahmed,
et al., 2022; Gauthey, Hassan, et al., 2024. When symmetry is not imposed, the boundary conditions are either
not discussed (Cherrière, Vancorsellis, et al., 2023), or the entire machine is simulated (Gauthey, Gangl, and
Hage Hassan, 2022), leading to low resolution to keep an acceptable computing time. Recently, Cherrière, Hlioui,
Laurent, Louf, Ahmed, et al., 2024 includes the anti-periodic boundary condition consideration in the case of
stator optimization, considering only iron and conductors.

Considering any material, this work proposes a rigorous and systematic extension to apply convolution filtering
to MMTO with (anti-) periodic boundary conditions in a magnetostatic or any other physical context. First,
Section 2 recalls the MMTO framework. Then, Section 3 explains mathematically the different steps of boundary
management in the filtering process. Section 4 applies the methodology to optimize a PMSM rotor and compares
it with alternative approaches. Finally, Section 5 synthesizes the main results and draws some possible prospects
from this work.

2 Multi-material topology optimization framework

2.1 Extended density-based approach
Let us consider the following 2D magnetostatics problem (Cherrière, Vancorsellis, et al., 2023) on a simulation
domain Ω, which contains a design domain Ωd :

−∇ · (∇a) = µ0 j+∇ ·
(
my(bbb)−mx(bbb)

)
, (2)

where z is the out-of-the plane axis, a the z component of the magnetic vector potential, j is the z component of
the current density, mmm =

[
mx my 0

]
the magnetic polarization, and bbb =

[
dya −dxa 0

]
is the flux density.
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The principle of density-based approaches is to interpolate the material properties of (2) between the different
candidate materials with a so-called density field ρ ∈L ∞(Ωd) (Cherrière, Laurent, et al., 2022). When dealing
with M > 2 materials, the density can be extended as a vector field ρρρ : Ωd → D ⊂ Rn, where D is a convex
polytope with nm vertices, such that each candidate material i is associated with the coordinate vvvi of the i-vertex
of D . In this formalism, the physical properties of the candidate material i are matched when ρρρ = vvvi, and
intermediate density values describe fictive isotropic mixtures of the candidate materials. The interpolations of the
material properties can be constructed from a set of shape functions {ωi : D → [0,1]}i∈J1,nmK that are identified as
generalized barycentric coordinates of D (Warren et al., 2006). Such functions also satisfy:

Lagrange property: ∀(i, j) ∈ J1,nmK2, ωi(vvv j) = δi j, (3a)

Linear precision: ∀ρρρ ∈D ,
nm

∑
i=1

ωi(ρρρ)vvvi = ρρρ. (3b)

This paper uses the shape functions proposed by Wachspress, 1975, computed with the code provided by
Cherrière and Laurent, 2022. Figure 2a shows the interpolation domain used for the PMSM rotor optimization
problem, and Figure 2b draws a shape function associated with a 180◦ magnet orientation.

(a) Color-scaled interpolation domain (b) Values of a shape function

Figure 2: Example of a 3D interpolation domain D with a shape function for a MMTO problem containing 12
different magnet directions, steel, and air (Source: Authors’ own work).

It is also common in TO to penalize the material interpolations in order to eliminate intermediate materials
(Bendsøe and Sigmund, 1999), using penalization functions Pm : [0,1] → [0,1]. In this paper, we use a rational
penalization scheme proposed by Stolpe and Svanberg, 2001:

Pm :

{
[0,1] → [0,1]

ω 7→ ω

1+ pm(1−ω)
, (4)

with pm a variable coefficient that will be detailed later. Since j = 0 in Ωd , the only interpolation concerns the
magnetic polarization:

mmm :


D×R2 → R2

ρρρ,bbb 7→
M

∑
i=1

Pm
(
ωi(ρρρ)

)
mmmi(bbb),

(5)

that is then injected into (2). After discretization on a mesh with 12443 nodes and 24327 elements using the finite
element method, one obtains the non-linear magnetostatic system:

K ·aaah = s
(

j,mmm(ρρρh, bbbh)
)
, (6)

where K is the so-called "stiffness" matrix, ah is the vector of degrees of freedom, s is the right-hand side, which
depends on the discretized density field ρρρh and the flux density bh through (5).
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2.2 Optimization problem
The objective is to maximize the average torque ⟨T ⟩ computed on 121 angular positions with the Arkkio, 1987
method. To obtain meaningful optimized designs, the Permanent Magnets (PM) volume should be limited to
an imposed value Vm, otherwise PMs occupy the full rotor. Other constraints, such as torque ripple, mechanical
strength, or manufacturability, are possible but omitted for simplicity.The optimization can be conducted by
adjusting the density vector ρρρT ⊂ ρρρh on each element T , so that the PMSM optimization problem reads under
the standard form

min f (ρρρhhh) =−
〈

T
(
ah(ρρρhhh)

) 〉
,

s.t.: (i) ρρρ
T ∈D , T = 1, ...,N,

(ii) K ·aaah− s
(
mmm(ρρρh, bh), j(ρρρh)

)
= 0,

(iii) g(ρρρh) =
1
|Ωd |

∫
Ωd

∑
i∈Im

ωi(ρρρh)−Vm = 0,

(7)

with N the number of mesh elements in Ωd , Im the set of indices related to PM vertices, Vm the imposed PM
proportion relative to the volume of the optimization zone |Ωd |. This optimization problem includes three different
constraints: (i) is related to the definition domain of the optimization variables; (ii) ensures the physical consistency
of the problem; (iii) imposes the PM volume.

2.3 Optimization algorithm
A gradient-based optimization is adopted to solve (7). To handle the global constraint (iii), a classical approach is
to define the following augmented Lagrangian function (Nocedal and Wright, 2006):

L (ρρρh,λ ) = f (aaah(ρρρh))+λg(ρρρh)+
µ

2
g2(ρρρh), (8)

where f is the objective function, g is the constraint (iii), λ is the associated Lagrange multiplier initially set to 0,
and µ = 104 is a penalization coefficient, so that (7) is solved by finding

(ρρρh,λ ) = max
λ∈R

min
ρρρh∈DN

L (ρρρh,λ ), (9)

i.e., by solving a sequence of unconstrained subproblems min
ρρρh∈DN

L (ρρρh,λ ) in which λ is fixed. Within this

subproblem, a Projected Gradient Descent (PGD) detailed in Cherrière, Laurent, et al., 2022 handles the constraint
(i). The constraint (ii) is naturally imposed by using the Adjoint Variable Method (AVM, Cea, 1986), which is
an efficient method to compute dρρρh f satisfying (ii). In parallel with ρρρh, which constitutes the main optimization
variables, the phase shift ψ of the current feeding is also controlled to avoid local optima as in Cherrière, Hlioui,
Laurent, Louf, Ahmed, et al., 2024. The initial ψ is set to 0◦; changing this value leads to a rotation of the
optimized rotor with few changes in the overall geometry. The subproblem is solved on sub-cycles of 50 iterations,
illustrated in Figure 3, at the end of which λ is updated following

λ ← λ +µg(ρρρh). (10)

To eliminate intermediate materials, the penalization factor pm used in (4) increases gradually from 0 to 4
every 10 iterations and is reset to 0 at the beginning of a new sub-cycle. These values are a trade-off between the
computation time and the stability of the algorithm: the longer a sub-cycle is, the better it converges. Note that the
design obtained at the end of a sub-cycle constitutes the initial situation of the next one.

Concerning the regularization, the density vector is filtered twice per sub-cycle, which is enough to remove the
artifacts. This value is also a compromise between too many filterings leading to blurry boundaries and disturbing
the convergence, and not enough that does not remove artifacts efficiently. Note that filtering associated with a
high penalization value pm > 2 may lead to instability. The detailed progress of a subproblem is given in Figure 3,
and the global optimization algorithm is summarized in Figure 4.
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Figure 3: Details of an optimization sub-cycle (Source: Authors’ own work).

The convolution filtering should be consistent with the boundary conditions and is detailed in the next section.

Figure 4: Simplified flowchart of the global optimization algorithm. For the sake of clarity, the update of pm is not
represented; see Figure 3 for the detailed subproblem progress (Source: Authors’ own work).
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3 Multi-material filtering

This section details the mathematical considerations to apply multi-material filtering consistent with periodic or
anti-periodic boundary conditions. This formalism is not specific to the problem (7), and can be applied as well in
other fields where (anti)periodic boundary conditions are required.

3.1 Issues of (anti-)periodic boundary conditions

Convolution filtering is often used in TO to introduce a minimal length scale, which eliminates unwanted numerical
artifacts (checkerboard patterns) and noisy local optima, as well as ensures the mesh independence of the optimized
results (Sigmund and Petersson, 1998). The principle is to smooth the density field by associating the mesh
element T with the average density of its neighborhood (the kernel), denoted as K T :

ρ̃ρρ
T =

1
|K T |

∫
K T

ρρρ dω. (11)

When Ωd contains PBC or APBC, the kernel should be extended through one side of Ωd to its opposite side, as
illustrated in Figure 5.

(a) Standard convolution (b) Cropped kernel (c) Wrapped kernel

Figure 5: Illustration of convolution kernel. Red denotes periodic boundaries (Source: Authors’ own work).

However, the material properties in the extended kernel might differ from those on the opposite side of Ωd ,
leading to a transformation of the associated density field. The following subsections describe this transformation
and provide some examples. For the sake of conciseness, only the APBC case is addressed, the extension to PBC
being straightforward.

3.2 Transformations of physical fields

APBC are useful for simulating only a single pole of an electrical machine. Therefore, the design domain Ωd is
part of an entire disk Ωd with an angular opening θmax that contains physical fields, e.g. the flux density bbb.

Definition 3.1 (Physical field extension). The extension of a physical field u defined on Ωd to Ωd is a linear
application that reads for all cylindrical coordinates (r,θ) in Ωd , as:

û(r,θ) = (−1)nθ u(r,θ − τθmax) if u is scalar,
ûuu(r,θ) = (−1)nθ R(τθmax)uuu(r,θ − τθmax) if uuu is vector, (12)

where τ = ⌊θ/θmax⌋ is the floor value of θ/θmax and R(θ) the rotation matrix by an angle θ .

Such extensions described are illustrated on the upper and lower adjacent domains Ω
+
d and Ω

−
d in Figure 6.
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Figure 6: Extension of physical fields in adjacent domains with APBC (Source: Authors’ own work).

We now assume that the radius of the convolution kernel is small enough so that we can restrict ourselves to Ωd ,
Ω

+
d and Ω

−
d , without considering the full domain Ωd .

Definition 3.2 (Physical field transformations). For all physical field u defined on Ωd , we note

u+ : (r,θ) 7→ û(r,θ +θmax) the corresponding field in Ω
+
d , (13a)

u− : (r,θ) 7→ û(r,θ −θmax) the corresponding field in Ω
−
d . (13b)

The transformations □+ and □− are linear, norm preserving, and inverse of each other. For the sake of
conciseness, we consider only the properties of □+ in what follows, but the results extend without difficulty to the
transformation □− by replacing + by − and vice versa.

3.3 Transformations of materials

This paragraph aims to define the nature of materials in Ω
+
d where, compared to Ωd , all the physical fields have

been transformed by □+.

Definition 3.3 (Material property). A material property κ is a function that maps a physical field to another:

κ :
{

Rd → Rd , d = 1 or dim(Ωd),
u 7→ κ(u).

(14)

Definition 3.4 (Material). A material M is an ordered list of nκ material properties, with κk being the k-th of
those properties:

M = (κk)k∈J1,nkK. (15)

We consider a material M+ obtained from the material M located in Ωd , and transformed by □+ applied to all
the physical fields in Ωd , as illustrated in Figure 6. The transformation of a material property κ could be defined
as follows.

Definition 3.5 (Transformation of a material property). Let us consider κ a material property in the sense of
Definition 3.3 and u a physical field. Therefore, we have

κ
+ : u 7→ (κ(u−))+. (16)

The transformations □+ and □− applied to material properties remain linear and inverse of each other. Next,
we introduce the material stability.

Definition 3.6 (Material stability). A material is □+-stable when each of its properties is unchanged by □+.
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Theorem 3.7 (Stability criteria). A material is □+-stable if and only if each of its properties κk commutes with
□+, i.e. for all physical field u:

∀k ∈ J1,nmK, κ
+
k = κk ⇔ κk(u+) = (κk(u))+. (17)

Proof. Using Definition 3.5:

• ⇒ Assuming (κ(u+)) = (κ(u))+, one gets κ+(u) = (κ(u−))+ = κ((u−)+) = κ(u);

• ⇐ Assuming κ+ = κ , one gets κ(u+) = κ+(u+) = (κ((u+)−))+ = (κ(u))+.

■

One can show that □+ and □− stabilities are equivalent, so we refer to the material stability property regardless
of the transformation considered. The question is now to determine which materials are stable regarding APBC and
which are not. Theorem 3.7 helps discriminate the stable from the unstable materials, as shown in the following
examples:

• Non-polarized magnetic materials are stable. Indeed, their magnetic polarization mmmb is defined with
respect to the flux density bbb as mmmb : bbb 7→ ξ (|bbb|)bbb, with ξ a scalar function:

mmmb(bbb
+) = ξ (|bbb+|)bbb+ = (ξ (|bbb|)bbb)+ = (mmmb(bbb))+; (18)

• Ideal hard magnetic materials are not stable, since their magnetic polarization is a constant mmmb =M ∈Rn:

mmmb(bbb
+) = M ̸= (mmmb(bbb))+ = M+. (19)

Usual materials and their APBC transformations are listed in Table 1.

M M+ M−

Air Air (stable)
Anhysteretic steel Anhysteretic steel (stable)

Electric conductor (phase ϕ) Electric conductor (phase ϕ +180◦)
PM oriented in

θm direction
PM oriented in

θm +θmax +180◦ direction
PM oriented in

θm−θmax +180◦ direction

Table 1: Examples of material transformations with APBC (Source: Authors’ own work).

The stability concept can be extended to unordered sets of materials.

Definition 3.8 (Stability of a material set). A material set {Mi}i∈J1,nmK is □+-stable when {M+
i }, also denoted

as {Mi}+, contains the same materials as {Mi}.

Again, □+ and □− stabilities are equivalent, we therefore refer to the stability of {Mi} without specifying the
transformation. While a set containing stable materials is obviously stable, other stability cases exist. For instance,
a set of two electrical conductors with opposite signs {A+,A−} is also stable since {A+,A−}+ = {A−,A+}
contains the same materials (their order does not matter). To express the filtered density ρ̃ as a linear combination
of the candidate materials, the chosen set of candidate materials should be stable. The following subsection shows
the converse of this condition by explicitly constructing ρ̃ from a stable material set.

3.4 Transformation of density
In the general case, the application of □+ to an ordered list of materials (Mi) from a stable set of materials {Mi}
can modify the order of its elements. Using the formalism detailed in Section 2, where D denotes a convex
polytope with nm vertices, the combination of D and (Mi) forms an interpolation space E = (D ,(Mi)) that
indicates the placement of each material Mi on the vertices of D .
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Proposition 3.9 (Permutation of the materials). If {Mi} is stable, then E + = (D ,(Mi)
+) corresponds to a

material placement on D which has undergone a permutation Π+:

∀i ∈ J1,nmK, {Mi}+ = {Mi} ⇒ ∃Π+,(Mi)
+ = (MΠ+(i)). (20)

Proof. The two lists (Mi) and (Mi)
+ contain the same elements due to the stability of {Mi}. The orderings of

their elements may differ, and the bijection between them defines Π+. ■

Π+ is also unique if (Mi) contains no duplicate. Let us denote κE (ρρρ) a material property interpolated on
E = (D ,(Mi)), with {Mi} a stable material set. Recalling (5), the general expression of an interpolated material
property reads

∀ρρρ ∈D ,∀u, κE (ρρρ,u) = ∑
i∈J1,nmK

P(ωi(ρρρ)) ·κi(u), (21)

where u is a physical field, P is a penalty function, ωi is the shape function associated with the vertex i of D , and
κi is the property associated with the material Mi. Let E + = (D ,(Mi)

+) = (D ,(MΠ+(i))). Applying □+ to κE ,
we obtain by linearity:

∀ρρρ ∈D ,∀u, κ
+
E (ρρρ,u) = ∑

i∈J1,nmK
P(ωi(ρρρ))κ

+
i (u) = ∑

i∈J1,nmK
P(ωi(ρρρ))κΠ+(i)(u), (22)

or, written differently:
∀ρρρ ∈D ,∀u, κ

+
E (ρρρ,u) = κE+(ρρρ,u). (23)

In other words, for the same ρρρ value, the transformed material properties can be expressed naturally in the
transformed interpolation space E +. However, this is still incompatible with filtering, i.e., a linear combination of
variables expressed in the untransformed space E . The objective is to perform the inverse operation:

for a fixed ρρρ ∈D , find ρρρ
+ ∈D , such that κE (ρρρ

+) = κE+(ρρρ), (24)

which is illustrated in Figure 7.

Figure 7: Illustration of the density transformation for a square interpolation domain (Source: Authors’ own work).

The existence of Π+ guarantees the existence of ρρρ+, which verifies by definition:

∀ρρρ ∈D ,∀u, ∑
i∈J1,nmK

P(ωi(ρρρ
+)) ·κi(u) = ∑

i∈J1,nmK
P(ωi(ρρρ)) ·κΠ+(i)(u), (25)

By changing the order of the terms with Π+ without changing the value of the left sum and taking each term of
the sum to be equal, we obtain the following sufficient condition:

∀i ∈ J1,nmK, ωΠ+(i)(ρρρ
+) = ωi(ρρρ). (26)
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We then use the linear precision property (3b) fulfilled by the shape functions ωi, that when applied to ρρρ+

gives
ρρρ
+ = ∑

i∈J1,nmK
ωi(ρρρ

+)vvvi = ∑
i∈J1,nmK

ωΠ+(i)(ρρρ
+)vvvΠ+(i). (27)

We finally obtain the explicit expression of ρρρ+ by injecting (26) into (27).

Theorem 3.10 (Density transformation). Let us consider a stable material set {Mi}i∈J1,nmK, an interpolation
space E = (D ,(Mi)) and a permutation Π+, such that we have (Mi)

+ = (MΠ+(i)). The transformed density
ρρρ+ ∈D defining the material interpolated by ρρρ ∈D reads as

ρρρ
+ = ∑

i∈J1,nmK
ωi(ρρρ)vvvΠ+(i). (28)

4 Numerical applications
This section illustrates the relevance of the presented filtering methodology on MMTO problems. It also shows the
superiority of multi-material approaches compared to standard iron-air optimizations when dealing with a PMSM
rotor. In all the numerical experiments, the current density is sinusoidal with an amplitude of J = 10A/mm2,
and the magnets are assumed to be ideal with a remanent flux density Br = 1T. The BH curve of the magnetic
steel saturates around 2 T and can be found in Cherrière, Vancorsellis, et al., 2023. The initial structure is
a homogeneous mixture of all candidate materials, and the filter kernel is a disk with a 2 mm radius. Since
the optimization method is deterministic and the problem is not convex, it results in local optima. Additional
numerical tests have shown a dependence on the initial situation. For the sake of simplicity, the initialization is a
homogeneous mixture of all the materials.

4.1 Reference: bi-material optimizations
The chosen reference is adapted from the BMWi3 machine (Staton and Goss, 2017), and shown in Figure 8a. The
associated mesh and boundary conditions, which will be used for all numerical experiments, are drawn in Figure
8b. With a PM volume ratio of 16.42 % of the rotor, the reference design produces a normalized average torque of
2169Nm/m.

(a) Reference design (b) Mesh and boundary conditions

Figure 8: Reference design adapted from the BMWi3 PMSM (Staton and Goss, 2017) and associated mesh
generated with GMSH (Geuzaine and Remacle, 2009) (Source: Authors’ own work).
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The reference contains iron on the PMs’ sides for mechanical integrity, that are magnetic short-circuited. Since
the numerical experiments in this article consider only magnetic performance, we assess our MMTO method with
structures obtained with a magnetic-only iron-air TO technique (Cherrière, Hlioui, Laurent, Louf, Ben Ahmed,
et al., 2022) to keep a fair comparison. The magnets are fixed and not part of the optimization.

Two different kinds of structures can be obtained. When considering both the motor and generator working
points, the optimized rotor shown in Figure 9a is similar to the symmetric reference and produces a torque of
2471Nm/m. When considering only the motor working point, an asymmetric rotor shown in Figure 9b is obtained
and produces a torque of 2638Nm/m. We keep these torque values as benchmarks for assessing our MMTO
approaches in the next subsection.

(a) Optimized symmetric rotor (b) Optimized asymmetric rotor

Figure 9: Optimized structure with a iron/air material approach (Source: Authors’ own work).

4.2 Multi-material optimizations
In this subsection, we apply MMTO formalism given in Section 2.1 and the optimization algorithm detailed in
Section 2.3 to the optimization problem (7) in three different cases:

• without filtering in Section 4.2.1;

• with filtering and cropped kernel on the boundaries in Section 4.2.2;

• with filtering and wrapped kernel using Theorem 3.10 in Section 4.2.3.

The total number of iterations of the optimization algorithm is set to 1000, which represents 20 sub-cycles.
The PM volume constraint is set to the reference equal to 16.42 % of the rotor volume. The convergence curves
are given with the optimized structures, and the performances are then discussed and compared. In the results
that follow, the PMs are drawn in color according to the scale provided in Figure 2a, and the orientation for each
magnet is indicated by arrows added for the sake of clarity.

4.2.1 No filtering

First, the algorithm described in Section 2.3 is applied to solve (7) without any filtering. We note on the
convergence curve plotted in Figure 10a that the final structure produces 2468 Nm/m, which is less than the
torques of both symmetric and asymmetric designs obtained with a iron/air material optimization. In addition,
the PM volume is only 14 % instead of the imposed 16.42 %, which shows that the convergence is not reached.
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As a result, the final structure drawn in Figure 10b contains many artifacts, such as checkerboards and other
microstructures, along with gray materials.

(a) Convergence curves (torque and PM volume) (b) Final design

Figure 10: MMTO results without filtering (Source: Authors’ own work).

This result is not satisfactory and lacks a regularization procedure. Periodic filtering is applied in the following
subsections to resolve this issue.

4.2.2 Cropped kernel

In this section, the convolution filtering is cropped at the anti-periodic boundaries. Compared to the results
obtained without filtering in Section 4.2.1, the convergence plotted in Figure 11a is improved. Indeed, the average
torque reaches 2879 Nm/m, which is significantly higher than what can produce the machines optimized with an
iron/air TO. Moreover, the PM volume is 16.28 %, making a relative error on the volume constraint less than 1 %,
so this optimized design can be directly compared to the reference.

Most artifacts and intermediate materials have vanished within the resulting structure drawn in Figure 11b, and
the magnet zones are clearly defined. However, the boundary of the optimization domain, plotted in the dashed
line, seems to disturb the shape of the magnet arc, since it coincides exactly with the material discontinuity circled
in yellow.
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(a) Convergence curves (torque and PM volume) (b) Final design

Figure 11: MMTO results with filtering and a cropped kernel (Source: Authors’ own work).

Thus, a cropped convolution kernel introduces a bias in the optimization by neglecting the boundary conditions.
The wrapping technique developed in Section 3 should be employed to eliminate this bias.

4.2.3 Wrapped kernel

Compared to a cropped kernel, using a wrapped kernel leads to a similar convergence curve plotted in Figure 12a.
The torque reaches 2878 Nm/m, and the PM volume is 16.16 %, almost the same value as the ones obtained with
a cropped kernel. However, the wrapping technique removes all artificial boundaries, resulting in the optimized
rotor drawn in Figure 12b. This design seems more natural and is what would have been obtained by optimizing
the full rotor instead of just a single pole.

(a) Convergence curves (torque and PM volume) (b) Final design

Figure 12: Optimization results with filtering and a wrapped kernel (Source: Authors’ own work).
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4.3 Discussion
While filtering appears to improve the optimized structures, some artifacts remain in Figure 11b and Figure
12b, located at some of the boundaries between magnets. This phenomenon can happen since filtering remains
a heuristic procedure. In particular, applying any filtering while having a highly penalized interpolation leads
to numerical instabilities. Other stabilization procedures can be found in the literature, for example, material
projection using a smoothed Heaviside function (Guest, Prévost, and Belytschko, 2004). This work does not cover
this technique, which requires further research in order to be generalized to multi-material approaches using shape
functions.

Apart from this phenomenon, the third column of Table 2 shows the clear superiority of the designs obtained
with MMTO approaches over the iron/air TO with fixed PM. The first two columns also exhibit better convergence
when using filtering, which leads to higher torques and helps to satisfy the PM volume constraint. Note that even
if the torque obtained using a wrapped kernel is slightly lower than the one obtained with a cropped kernel, the
torque/PM ratio is slightly higher for the first one. Therefore, we conclude that an MMTO approach making
use of a filtering procedure consistent with the boundary condition can produce better designs with less initial
information than traditional TO procedures.

Table 2: Performances comparison of the final designs (Source: Authors’ own work).
Rotor type Average Torque PM volume Torque / PM volume
Reference 2173 Nm/m 16,42 % 132 Nm/m/%

Symmetric TO
(fixed magnets, Sec. 4.1 ) 2471 Nm/m 16,42 % 150 Nm/m/%

Asymmetric TO
(fixed magnets, Sec. 4.1) 2638 Nm/m 16,42 % 160 Nm/m/%

MMTO
(no filter, Sec. 4.2.1) 2468 Nm/m 14,04 % 175 Nm/m/%

MMTO
(cropped filter, Sec. 4.2.2) 2879 Nm/m 16,28 % 177 Nm/m/%

MMTO
(wrapped filter, Sec. 4.2.3) 2878 Nm/m 16,16 % 178 Nm/m/%

The torque ripple plays an important role in the machine design. From Figure 13, one can evaluate the relative
torque ripple of the optimized design from Section 4.2.3 to 25 %. Interestingly, this value is lower than the 35 %
ripple of the reference machine from Figure 8a, even without considering the torque ripple in the optimization.
This value could be further reduced by including the ripple in the optimization and will be addressed in future
work.

Figure 13: Evolution of the instant torque with the rotor angle (Source: Authors’ own work).

15

https://doi.org/10.1108/COMPEL-10-2023-0546
https://hal.science/hal-04634402


Théodore Cherrière, Sami Hlioui, François Louf, , Luc Laurent. Multimaterial filtering applied to the topology optimization of a permanent magnet synchronous
machine. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 43(4), pp. 852-870, 2024.

doi: 10.1108/COMPEL-10-2023-0546, hal: hal-04634402

5 Conclusion
This work presents a convolution filtering framework, which MMTO problems that include periodic or anti-
periodic boundary conditions. Indeed, a naive filtering technique that crops the convolution kernel outside of
the simulation domain leads to artificial boundaries on the resulting designs. Consequently, the filtering may
introduce a bias in the optimization, as shown on a PMSM rotor. To avoid such an artifact, the present work shows
that the set of candidate materials should be carefully chosen: this set must be stable by rotation of any multiple
of the angular opening of the simulation domain. Under this assumption, a general wrapping technique that is
consistent with the boundary conditions can be applied. The designs optimized with this technique are smoother
than the unfiltered results and contain no artificial boundaries, demonstrating the efficiency and unbiasedness of
this method. Moreover, a comparison with iron/air TO shows that MMTO approaches are superior for the PMSM
rotor test case.

The framework presented here can be extended to continuous approaches, such as Helmholtz-type filtering,
suitable to 3D problems (Lazarov and Sigmund, 2010). The boundary conditions on the upper border Γ+ and the
lower one Γ− should then respect the following constraints

(r,θ) ∈ Γ
+⇔ ρρρ(r,θ) = ρρρ

+(r,θ −∆θ), (29a)

(r,θ) ∈ Γ
−⇔ ρρρ(r,θ) = ρρρ

−(r,θ +∆θ). (29b)

This formalism can also be applied in other physics, such as mechanics or thermal. In addition to density, the
methodology can be extended to sensitivity filtering, where the material consistency should be applied not to
the density field but to its differentiation. Concerning possible other applications, the filtering presented in this
paper can be applied to many other MMTO problems currently out of the range of the MMTO literature, such as
hybrid-excited machines (Zhu and Cai, 2019).
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