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In non-perturbative non-Markovian open quantum systems, reaching either low tempera-
tures with the hierarchical equations of motion (HEOM) or high temperatures with the
Thermalized Time Evolving Density Operator with Orthogonal Polynomials (T-TEDOPA)
formalism in Hilbert space remains challenging. We compare different manners of model-
ing the environment. Sampling the Fourier transform of the bath correlation function, also
called temperature dependent spectral density, proves to be very effective. T-TEDOPA
(Tamascelli et al. Phys. Rev. Lett. 123, 090402 (2019)) uses a linear chain of oscillators
with positive and negative frequencies while HEOM is based on the complex poles of an
optimized rational decomposition of the temperature dependent spectral density (Xu et
al. Phys. Rev. Lett. 129, 230601 (2022)). Resorting to the poles of the temperature
independent spectral density and of the Bose function separately is an alternative when
the problem due to the huge number of the Bose poles at low temperature is circumvented.
Two examples illustrate the effectiveness of the HEOM and T-TEDOPA approaches: a
benchmark pure dephasing case and a two-bath model simulating dynamics of excited elec-
tronic states coupled through a conical intersection. We show the efficiency of T-TEDOPA
to simulate dynamics at a finite temperature by using either continuous spectral densities
or only all the intramolecular oscillators of a linear vibronic model calibrated from ab initio
data of a phenylene ethynylene dimer.

I. INTRODUCTION

Increasing temperature in the multidimen-
sional wave function formalism or decreasing
it in an open quantum system described by
a reduced density matrix is a challenge giv-
ing rise to many methodological developments.
In the Hilbert space, the wave function is a
priori at zero Kelvin. In the Liouville space,
the reduced density matrix describes the main

a)Electronic mail: michele.desouter-lecomte@universite-
paris-saclay.fr

degrees of freedom providing the observations
of interest. It is obtained by tracing all the
surrounding degrees of freedom. The environ-
ment is present in the master equation only
via statistical temperature dependent correla-
tion functions. This is particularly well adapted
to treat thermal bosonic baths at room or higher
temperatures. In this work, we focus on two
methods: the Hierarchical Equations of Motion
(HEOM)1–4 in Liouville space and the discrete
chain mapping T-TEDOPA algorithm (Ther-
malized Time Evolving Density Operator with
Orthogonal Polynomials)5–7 in Hilbert space.
We survey some recent methods to optimize the
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computation at low temperature with HEOM
and we compare with the T-TEDOPA approach
to enlighten its performance at high tempera-
ture.

HEOM is a reference method for non-
perturbative non-Markovian dynamics8, i.e.,
when the system is strongly coupled to the
surrounding and when the characteristic life-
time of the dynamics in both spaces is of the
same order of magnitude. The HEOM are ex-
act for baths with Gaussian statistics (harmonic
baths)1–4,9. The method is essentially based on
a parametrization of the bath two-time correla-
tion function in terms of a sum of complex de-
caying exponential functions. Each term deter-
mines an artificial mode that can absorb or emit
energy. The algorithm consists in an ensemble
of coupled equations among auxiliary density
operators (ADOs) having the same dimension
as the system reduced matrix. Each ADO is as-
sociated with a given occupation number in the
effective modes representing the thermal reser-
voir. The ADOs are coupled when they may
exchange one quantum to increase or decrease
the excitation. The ADO hierarchy is infinite
in principle but truncated in practice by lim-
iting the maximum occupation number. Re-
viewing in extenso the wide range of algorithms
aimed at enhancing HEOM performance is out-
side the scope of this work. For instance, algo-
rithms concern the filtering of the ADOs to re-
duce their number9,10 or the consideration of an
initial system-bath correlation when the initial
total density matrix cannot be factorized into
a system matrix and a Boltzmann equilibrium
bath density11,12. Here, we tackle the prob-
lem of the low temperature regime when HEOM
would require a huge number of modes9,13–16.

A wide variety of possibilities exists to choose
artificial modes in the time or frequency do-
mains by acting directly on the correlation
function14,17–24 or on its Fourier transform. The
latter is the product of the temperature in-
dependent spectral density giving the system-
bath coupling strength as a function of the fre-
quency and the temperature dependent Bose
function25,26. The product may be called the
temperature dependent spectral density. We

compare three types of artificial decay modes
for HEOM. First, the correlation function is
parametrized in terms of the poles in the com-
plex plane of both the spectral density and the
Bose function. Second, following a more re-
cent procedure proposed by M. Xu et al. we use
the poles of the temperature dependent spec-
tral density directly. This method is called FP-
HEOM (Free-Pole HEOM)16,27. It is based on
the barycenter representation28 of this temper-
ature dependent spectral density approximated
by a rational fraction. This extension of HEOM
has also been successfully applied to fermionic
baths29. Finally, we consider a sampling of the
spectral density on the real frequency axis with
undamped oscillators,

In the Hilbert space, finite temperature
was introduced in various ways, for instance
by sampling initial conditions over a Wigner
distribution30 or using stochastic thermal wave
function in the MCTDH (Multi Configura-
tion Time Dependent Hartree) or ML-MCTDH
(Multi-Layer MCTDH) simulations31. Thermo-
Field dynamics has also been coupled with
MCTDH32,33, Davidov ansatz34,35 or propa-
gation with the matrix product state (MPS)
representation36,37. Recently the T-TEDOPA
algorithm5–7,38 was found to succeed in simu-
lating a thermal environment with wave func-
tions at 0 K propagated with MPS39. The ther-
mal environment is mapped on a linear chain
of oscillators38,40. The temperature dependent
spectral density spanning the axis of negative
and positive frequencies is then the main tool
to determine the different couplings. Using of
the temperature dependent spectral density is
a common point between FP-HEOM and T-
TEDOPA. However, FP-HEOM uses poles in
the complex plane and a "star model" in which
each mode is coupled to the system whereas
T-TEDOPA is based on a "chain model". In
this case, the system is interacting with a single
mode that is the first mode of a chain of coupled
neighboring oscillators41–46. We do not consider
here the reaction coordinate mapping method
where one or two main modes are included in
the active system47–51. Both HEOM and T-
TEDOPA methods benefit from implementing
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with the MPS representation, which reduces the
computational resources and is a good candi-
date to handle the curse of dimensionality52–58.

The paper is organized as follows. In Sec. II,
we define the main tools in open quantum dy-
namics: the bath correlation function, the spec-
tral density in frequency domain and the tem-
perature dependent spectral density. We give
an introduction to HEOM method in the con-
ventional implementation and in the MPS rep-
resentation. We then define three kinds of arti-
ficial decay modes involved in the expansion of
the bath correlation function in HEOM. Section
III presents the sampling of the temperature de-
pendent spectral density for T-TEDOPA. Nu-
merical details for HEOM or T-TEDOPA prop-
agation are gathered in Sec.IV. The simula-
tions are compared in Sec.V A through a bench-
mark case involving a qubit in a pure dephas-
ing environment for which an analytical solu-
tion exists25. Section V B illustrates a two-
bath case with strong system-bath coupling and
non-Markovian dynamics. One bath is cou-
pled diagonally making fluctuate the energies
of the system while the other one is coupled
off-diagonally altering the inter-state coupling.
This situation is typical of a conical intersec-
tion between two excited electronic states. The
model is calibrated here from an ab initio inves-
tigation of a phenylene ethynylene dimer (1,3-
bis(phenylethynyl)benzene) by B. Lasorne et
al.59,60. We compare dynamics at a finite tem-
perature in condensed phase with continuous
spectral densities or using only the intramolec-
ular vibrators of the ab initio linear vibronic
coupling (LVC) model. Finally section VI gives
some concluding remarks.

II. ARTIFICIAL DECAY MODES IN HEOM

We set ℏ = 1 and we adopt mass weighted
coordinates throughout the paper. The generic
Hamiltonian of a complex system is usually split
into three parts

H = HS + HSB + HB . (1)

HS describes the central system containing the
main active degrees of freedom. The environ-
mental Hamiltonian

HB = 1
2
∑Nbath

α

∑Nα

j
ω2

αjq2
αj (2)

is a collection of harmonic oscillators possibly
separated in different Nbath baths. The system-
bath coupling is

HSB =
∑Nbath

α=1
SαBα (3)

where Sα is an operator in the system space

Bα =
∑Nα

j
cαjqαj (4)

is a collective bath coordinate built with the
system-bath couplings cαj . The latter are the
vibronic couplings when the partition concerns
an electronic system and the vibrational mo-
tions. For sake of simplicity, we give the follow-
ing relations by considering a single bath, thus
dropping the α index. The generalization does
not pose any major difficulties. The main tool
of a non-Markovian master equation simulating
an open quantum system with Gaussian statis-
tics is the two-time correlation function of the
thermal bath C(t) = ⟨B(t)B(0)⟩eq where B(t)
is the Heisenberg representation of the operator
and ⟨�⟩eq denotes the average over a Boltzmann
distribution at temperature T . The correlation
function is related to the spectral density by the
following relation:

C(t) = 1
π

∫ ∞

−∞
dωJ(ω)(1 + nβ(ω))e−iωt (5)

where

nβ(ω) = 1/(eβω − 1) (6)

is the Bose function with β = 1/kBT and kB is
the Boltzmann constant. J(ω) is the tempera-
ture independent spectral density specifying the
coupling to the environment at each frequency.
By assuming a continuous distribution in fre-
quency, it reads

J(ω) = π

2

∫ ∞

−∞

c2(ω′)
ω′ δ(ω − ω′)dω′. (7)
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This expression satisfies the relation J(−ω) =
−J(ω). The power spectrum of C(t)

Jβ (ω) = J(ω)(1 + nβ(ω)) (8)

is the temperature dependent spectral density.
The central point in HEOM is the expansion of
C(t) and of its complex conjugate C̄(t) as a sum
of contributions. The more popular expression
is a sum of decaying exponential functions

C(t) =
∑K

k=1
αkeiγkt (9)

with complex coefficients αk and γk = Ωk +iΓk.
Each term corresponds to a bath artificial de-
cay mode with positive or negative frequency
Ωk and positive decay rate Γk. Different expan-
sions have also been proposed14,17–20,22,61.

The choice of the modes is crucial since the
computational cost may dramatically increase
with the total number K as we discuss be-
low. We first summarize the generic struc-
ture of the HEOM coupled equations used in
a conventional implementation or in the MPS
format33,52–54,57,58 to show how the complex-
ity increases with K and with the strength of
the system-bath coupling. We then survey three
possible choices of decay modes involving poles
of J(ω) or Jβ(ω) to get around the dimension-
ality problem by some efficient procedures. The
particular operational equations are given in the
Supplementary Material.

The initial total density operator

ρtot(t = 0) = ρS(t = 0) ⊗ ρB,eq (10)

is assumed to be factorized into the product of
an arbitrary system density operator ρS and
a thermal equilibrium bath density operator
ρB,eq = e−βHB /TrB

[
e−βHB

]
. Correlated ini-

tial states may also be considered11,12. The in-
teraction with the bath is treated by a time local
system of coupled equations among ADOs or-
ganized in a hierarchical structure. Each ADO
has the dimension of the system density ma-
trix and is labelled by a global index vector
m = (m1, .., mk, ..., mK) giving the number of
occupation in each artificial mode. The equa-

tions take the form:

ρ̇m(t) = LSρm(t) + i

K∑
k=1

mkγkρm(t)

− i

[
S,

K∑
k=1

ρm+
k

(t)
]

− i

K∑
k=1

mk

(
αkSρm−

k
(t) − α̃kρm−

k
(t)S

)
(11)

where m±
k = {m1,..., mk ± 1, ..mM } are the in-

dex of ADOs for which the occupation num-
ber has changed by one unit. The hierarchy
is thus structured in layers characterized by a
given total occupation number. Each level in-
teracts only with the two neighboring layers.
The hierarchy is schematized in Fig.1(a) for a
simple example with a two-dimensional system
matrix n = 2, three artificial modes K = 3
and a truncation at level L = 2 where L des-
ignates the maximum excitation in each decay
mode. The equations contain the parameters
of the expansion of C(t) [Eq.(9)]. The defini-
tion of the α̃k for the different choices of the
artificial modes are given in the Supplemental
Material. When the hierarchy is truncated at
a given level L, the number of ADOs estimated
without any filtering procedure9,10 may become
dramatically large. The maximum level L is
intimately linked to the strength of the system-
bath coupling that favours extensive energy ex-
change between the system and the K artifi-
cial modes. For a n−dimensional system, the
standard implementation without any filtering
requires the storage of

Nst
HEOM = n2(L + K)!/L!K! (12)

complex matrix elements.
A promising alternative is the HEOM imple-

mentation with the MPS format33,52–54,57,58 for
which we now summarize the main expressions.
Each matrix of dimension n × n is transformed
into a n2 vector. The full multi-dimensional ar-
ray ρm becomes a super vector ρ̃m on which act
the superoperators corresponding to the differ-
ent terms of the master equation (11) that is
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FIG. 1. (a) Schematic representation of a HEOM
hierarchy for an open system with dimension n = 2,
three artificial modes K = 3 and a truncation at
level L = 2 corresponding to a Fock space N = 3 for
each mode. (b) Representation of the supervector
containing the system matrix and the ADOs in the
MPS format by assuming a bond r = 2.

written now ˙̃ρm(t) = Lρ̃m(t) with

L = LS +
K∑

k=1

(
Lk + L+

k + L−
k

)
(13)

where Lk is the damping term involving the
complex γk rates, L+

k and L−
k concern the terms

involving the upper hierarchy level or the lower
one respectively. We consider a generic case
with matrices n × n and K artificial modes
for which the maximum occupation number is
nmax leading to a local Fock space of dimen-
sion N = nmax + 1 = L + 1. ρ̃m is built as
a train of K + 1 cores that are three dimen-
sional arrays. The dimension of a core Ak is
rk × N × rk′ where rk and rk′ are the kth and
k′th bonds that must be carefully calibrated.
We choose rk = r for all k ∈ [[1, K]]. The first
(A0) and the last (AK) cores have different di-
mensions 1 × n2 × r and r × N × 1 respectively.
The tensor train format of the example given in
Fig.1(a) is illustrated in Fig.1(b) by assuming
that the bond is r = 2. A given element J = ij
of the supervector corresponding to a given ma-

trix with m = (m1, .., mk, ..., mK) is expressed
as:

ρ̃J
m1,..,mk,..,mK

=
∑
j1

∑
j2

..
∑
jk

..
∑
jK

A0(J, j1)

× A1(j1, m1, j2)...Ak(jk, mk, jk+1)...
× AK(jK , mK). (14)

To explicit the different Liouvillian operators,
we define a n × n identity matrix In, K N × N
identity matrices INj

and a supervector In2 . We
also introduce three N × N matrices Mk, M′

k

and M′′

k defined after the different operators.
These are written with the Kronecker product
symbol ⊗ as follows:

LS = −i (HS ⊗ In − In ⊗ HS) ⊗
K∏

j=1
INj

(15)

Lk = iγkIn2 ⊗
k−1∏
j=1

INj
⊗ Mk ⊗

K∏
j=k+1

INj
(16)

with a diagonal matrix (Mk)l,l = l − 1,

L+
k

= −i (S ⊗ In − In ⊗ S)

⊗
k−1∏
j=1

INj ⊗ M
′

k ⊗
K∏

j=k+1
INj (17)

with only the first upper diagonal
(

M′

k

)
l,l+1

=
1,

L−
k

= −i (αkS ⊗ In − α̃kIn ⊗ S)

⊗
k−1∏
j=1

INj ⊗ M
′′

k ⊗
K∏

j=k+1
INj (18)

with only the first lower diagonal
(

M′′

k

)
l,l−1

=
l. When the cores have the same bond dimen-
sion r as assumed here, the MPS format involves

NMP S
HEOM = r2N(K − 1) + r(n2 + N) (19)

complex elements.
We now summarize three strategies to make

the number K of artificial modes in HEOM ap-
plications as small as possible by acting on the
spectral density.
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A. Modes from the poles of J(ω)

This strategy consists in considering sepa-
rately the spectral density J(ω) and the Bose
function of the C(t) power spectrum [Eq.(5)].
The poles in the complex plane allow the com-
putation of the integral (5) by the residue the-
orem. Fitting J(ω) by some functions provides
analytical expressions for the αk and γk coeffi-
cients. The antisymmetry of J(ω) and the fact
that it is real on the frequency axis leads to some
structure in the distribution of the poles, which
occur in conjugated pairs. The poles of the Bose
function, also called Matsubara frequencies, are
also known exactly and located on the imagi-
nary axis at ω = 0.

An early method reviewed in references62,63

consists in fitting J(ω) by a Drude-Lorentz
function1,2 or by a combination of Nl Tannor-
Meier (TM) Lorentzian functions64,65

JT M ≈
Nl∑
l=1

plω[
(ω + Ωl)2 + Γ2

l

] [
(ω − Ωl)2 + Γ2

l

] .

(20)
These non-symmetrical functions are well
adapted to describe a linear behavior at low en-
ergies of an Ohmic spectral density. They are
also called Ohmic-Lorentzian functions. More-
over they effectively fit highly structured spec-
tral densities obtained when some environmen-
tal modes are strongly coupled to the system
leading to sharp peaks. The extension to super-
Ohmic Lorentzian functions behaving as ω3 at
low frequencies is given in Ref.66. Each Ohmic-
Lorentzian function labelled with subscript l
has four single poles as schematized in Fig.2.
The contour for the residue theorem lies along
the whole real ω axis and is closed in the upper
half-plane so that only two poles provide two
artificial decay modes with opposite frequencies

γT M
l1 = Ωl + iΓl

γT M
l2 = −Ωl + iΓl. (21)

The corresponding αk complex coefficients of

FIG. 2. Schematic representation of the four poles
of a Tannor-Meier Lorentzian function [Eq.(20)] in
the complex plane. The poles of the Bose func-
tion on the imaginary axis are red circles. The con-
tour for the calculation of the correlation function
[Eq.(5)] by the residue theorem is in dotted line.

Eq.(9) are then:

αT M
l1 = pl

8ΩlΓl

[
coth

(
β

2 (Ωl + iΓl)
)

− 1
]

αT M
l2 = pl

8ΩlΓl

[
coth

(
β

2 (Ωl − iΓl)
)

+ 1
]

.

(22)

The low temperature problem comes from the
infinite number of Matsubara frequencies that
are the poles of the Bose function on the imag-
inary axis

γT M
n = iνn (23)

where νn = 2πn/β with n an integer. The cor-
responding αT M

k coefficients for the Matsubara
frequencies on the positive imaginary axis are

αT M
n = 2iJT M (iνn)/β = 2iJT M (γT M

n )/β.
(24)

The correlation function [Eq.(9)] can be rewrit-
ten as the sum of the contributions from the two
kinds of poles

CT M (t) ≈ CLor(t) + CMatsu(t) (25)



7

with

CLor(t) =
∑

j=1,2

Nl∑
l=1

αT M
lj eiγT M

lj t (26)

and

CMatsu(t) =
∑Ma

n=1
αT M

n e−νnt (27)

where Ma is infinite in principle. Fortunately,
the infinite series may be drastically truncated
at high temperature by retaining only very few
Ma Matsubara terms. The total number of arti-
ficial modes in this TM parametrization is then

KT M = 2Nl + Ma. (28)

This explains the efficient utilization of HEOM
at room temperature. However, decreasing the
temperature readily requires hundreds of terms
to get convergence. To circumvent this difficulty
another expansion of the Bose function near
zero temperature has been proposed in terms
of Fano spectrum decomposition67. Recently,
N. Lambert et al.14 suggested to fit the Mat-
subara contribution of the correlation function
[Eq.(9)]. This function CMatsu(t) [Eq.(27)] is
real and negative and may be fitted by a sum of
a small number of real exponential functions:

Cfit
Matsu(t) ≈

Mfit∑
k=1

ak × e(−bkt). (29)

This approach will be denoted in our study
as TM&FIT (Tannor-Meier with Fitted Mat-
subara modes). The total number of artificial
modes is then

KT M&F IT = 2Nl + Mfit (30)

with Mfit << Ma.

B. Modes from the poles of Jβ(ω)

Recently, a very interesting procedure has
been proposed by M. Xu et al.16 by using only
the poles the temperature dependent Jβ (ω) to

compute the Fourier transform [Eq.(5)]. The
density is approximated by a the barycentric
representation of a rational function

JF P
β (ω) ≈

mp∑
n=1

wnJβ(Ωn)
ω − Ωn

/

mp∑
n=1

wn

ω − Ωn
(31)

where wn are real or complex weights. Jβ(ω) is
not antisymmetric as is J(ω). The pole dis-
tribution loses its symmetry for positive and
negative frequencies. However, as Jβ(ω) is
real on the real axis, the poles still occur in
conjugated pairs. Starting from a large sam-
pling of Jβ(ω), the number of terms in Eq.(31)
is optimized iteratively from mp = 1 to a
value according to a tolerance for the error
of the fit. The optimization uses the Adap-
tive Antoulas-Anderson (AAA) algorithm28

and the BARYRAT algorithm68 with Python
packages69,70. This rational barycentric inter-
polation provides a small number of accurate
poles Pk = ΩF P

k + iΓF P
k of Jβ (ω) that are de-

termined as roots of a polynomial. The expan-
sion of the correlation function is obtained by
contour integration [Eq.(5)] using the optimized
Mp = mp/2 poles Pk in the upper half-plane.
Their frequencies ΩF P

k are real-valued and the
rates ΓF P

k are positive. The minimum number
of poles is fixed by computing the correlation
function [Eq.(9)] until a characteristic time of
the dynamics. The number of artificial modes
involved in FP-HEOM is

KF P = 2Mp (32)

including for each mode of frequency ΩF P
k a

mode with frequency −ΩF P
k . The decay rates

of a pair are

γP k1 = ΩF P
k + iΓF P

k

γP k2 = −ΩF P
k + iΓF P

k (33)

and the corresponding αP k values are

αF P
k1 = 2iRes[Pk]

αF P
k2 = ᾱF P

k1 (34)
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where Res[Pk] is the residue at each selected
pole. Then, Eq.(9) writes

C(t) ≈
∑

j=1,2

Mp∑
k=1

αF P
kj eiγF P

kj t. (35)

C. Discretization of J(ω)

Discretization of the continuous spectral den-
sity J(ω) to map the total system onto a spin-
Boson model with discrete undamped modes
is a common practice in multidimensional
MCTDH wave function simulations but is used
also in HEOM applications52,54,62, with the gen-
eralized quantum master equation71 or in semi-
classical simulation72. The first clear distinc-
tion is based on the mapping of J(ω), for in-
stance in MCTDH applications30,73–75 or sparse
grid method76 versus Jβ(ω) in the T-TEDOPA
method discussed in Sec.III. The second main
difference concerns the resulting discrete model
that is a star model when all the modes are di-
rectly coupled to the system or a chain model
when they form a hierarchical chain of coupled
neighboring modes as schematized in Fig.3. In
this section devoted to HEOM simulations de-
noted by D-HEOM, we consider the mapping of
J(ω) on a star model. The discretized spectral
density is then written:

JD(ω) = π

2

M∑
m=1

cD2
m

ωD
m

δ(ω − ωD
m). (36)

There are obviously different discretization
strategies to obtain the cD

m and ωD
m, see for

instance references42–44,77,78. The objective is
to work with as few modes as possible and
to obtain a correct representation of the cor-
relation function at least until a relevant time
cutoff7. We have tried the technique early used
in MCTDH73 with regular spacing and a cou-
pling strength weighted by the local state den-
sity but the convergence of C(t) was slower
than with a non-uniform spacing discretization

of J(ω) suggested in Ref.78. This procedure en-
sures that all modes contribute to the same frac-
tion of the reorganization energy

λ = 1
π

∫ ∞

0

J(ω)
ω

dω. (37)

This results in a semi-logarithmic sampling
commonly used with an Ohmic behavior and
an efficient description of the peaks of a struc-
tured spectral density. This sampling was also
extended to use the correlation function ob-
tained by semi-classical simulation directly72,78.
Methods based on an orthogonal polynomial
strategy41,77,79,80 are used more commonly in
the linear chain mapping as discussed in Sec.III.
A unitary transformation towards the star
model77 would be possible but this approach
has not been explored for the HEOM applica-
tions.

We now summarize the main lines of the
adopted discretization procedure for D-HEOM.
The approximate value of the renormalization
energy with M discrete modes is

λM = 1
2

M∑
m=1

cD2
m

ωD2
m

. (38)

The contribution per mode is then

ε = 1
M

∫ ωmax

0

J(ω)
ω

dω = πλM

M
(39)

where ωmax is a cutoff frequency. The selected
frequencies are determined by the constraint

1
ε

∫ ωmax

0

J(ω)
ω

dω = m − 1
2 (40)

and the corresponding coefficient is given by

cD2
m = 2

π

ωD
mJD(ωD

m)
ρ(ωD

m) = 2
π

ωD2
m ε (41)

where ρ(ω) =
∑
m

δ(ω − ωD
m) is the state density.

Each discrete selected frequency ωD
m selected

on the real frequency axis leads to two artifi-
cial modes in Eq.(9) with complex frequencies
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γk here becoming real positive and negative fre-
quencies:

γD
m1 = ωD

m

γD
m2 = −ωD

m. (42)

The corresponding coefficients are:

αD
m1 = cD2

m

2ωD
m

(
1

eβωD
m − 1

)
αD

m2 = cD2
m

2ωD
m

(
eβωD

m

eβωD
m − 1

)
. (43)

The relation between αD
m1 and αD

m2 satisfies the
fluctuation-dissipation rule. This leads to write
Eq.[9) as

C(t) ≈
∑

j=1,2

M∑
m=1

αD
mjeiγD

mjt. (44)

The total number of artificial modes in this dis-
crete mapping used in D-HEOM is

KD
HEOM = 2M (45)

with the same number of positive and negative
frequencies in the star model as schematized in
Fig.3(a).

III. DISCRETE MODES IN T-TEDOPA

A. Chain model from Jβ(ω)

The T-TEDOPA approach treats the dynam-
ics of both the open quantum system and the
environmental selected modes in the Hilbert
space at a finite temperature by the outstanding
T-TEDOPA method5,6,38,40. This very efficient
strategy replaces the initial thermalized mixed
state by the pure state of the environment at
0 K. The initial total density operator [Eq.(10)]
assumed to be factorized into the system density
operator and the thermal equilibrium bath den-
sity operator is superseded in the T-TEDOPA
algorithm by

ρtot(t = 0) = ρS(t = 0) ⊗ |0...0⟩ ⟨0...0| (46)

FIG. 3. (a) Discrete modes in the HEOM or T-
TEDOPA simulations. The star model of HEOM is
built with modes sampling J(ω) with ω > 0 and the
bath correlation function [Eq.(9)] involves an equal
number of positive and negative frequencies with
weights given in Eq.(43). (b) The discrete modes of
T-TEDOPA samples Jβ(ω) with a minimum cutoff
ωmin leading to a dissymetric number of modes with
positive or negative frequencies. A unitary transfor-
mation replaces the star model to a chain model of
coupled oscillators.

where |0...0⟩ is the pure state of the environ-
ment with all the modes in their ground state.
The equivalence is ensured by considering an
extended frequency range, comprising negative
frequencies and by sampling not the usual spec-
tral density J(ω) on the positive frequency axis
as done in Sec.II C but the temperature depen-
dent Jβ(ω) [Eq.(8)] on the extended axis. For
finite temperatures, Jβ(ω) is asymmetrical with

Jβ(−ω) = exp(−βω)Jβ(ω). (47)

This allows to fix a minimum cut-off frequency
ωmin on the frequency negative axis and in prin-
ciple a lower number of negative frequencies.

The second main difference consists in work-
ing with a linear chain model38,41,46,80 as
schematized in Fig.3(b). This procedure is
based on the theory of orthogonal polynomi-
als. The bath Hamiltonian of a star model
[Eq.(2)] becomes after unitary transformation
of the modes the transformed Hamiltonian of
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the chain model:

H̃B = 1
2
∑Nbath

α

∑Nα

j
ω̃2

αjx2
αj

+
∑Nbath

α

∑Nα

j
tαjxαjxα(j+1) (48)

with ω̃αj the frequency of the jth chain mode
xαj and tαj its nearest-neighbour coupling co-
efficient. The coupling between the system op-
erators Sα and the bath involves the first mode
xα1 of the chain only

H̃SB =
∑Nbath

α
Sα ⊗ tα0xα1. (49)

We refer the reader to other works detail-
ing the theory and how to obtain the fre-
quencies ω̃αj and the coefficients tαj from
Jβ(ω)41,80. The general configuration of the
chain model is shown in Fig.4(a). Ensuring
convergence of C(t) within a finite timescale
as suggested recently to systematically coarse
grain an environment7 is a relevant condition
for truncating the chain. However, due to the
linear form of the environment, excitation emit-
ted by the system will diffuse into the chain.
The length of the chain must be set up in order
to avoid the return of the excitation to the sys-
tem, which would perturb it without physical
meaning. The total number of artificial modes
in T-TEDOPA is illustrated in Fig.4(b) and is
given by the optimized truncated chain of Nch

modes:

KD
T EDOP A = Nch (50)

The T-TEDOPA method propagates the full
many body system-environment wave function
in the MPS format that is particularly efficient
for discretized and linearized baths. The system
and each mode of the chain is a site or core of
the MPS. The bond dimension usually denoted
D in this MPS context81 will be called r here
as in the HEOM applications53. By assuming
a constant bond dimension r, Nch modes and
a dimension d for each Fock space, the storage
requires

NT EDOP A = Nchdr2 (51)

System

ω̃(α)1 ω̃(α)2 ω̃(α)3

t(α)0 t(α)1 t(α)2 . . .

Bath α

(a)

Coefficients :

(b)

Dimensions :

1

n
d d d

r r r . . .

FIG. 4. (a) T-TEDOPA tensor configuration for
the example of a unique bath α interacting with
a system. The coefficients are obtained with the
orthogonal polynomial method. (b) Dimensions of
the MPS. Chain tensors of local Fock space d are
bounded with the bond dimension r. Only the first
chain tensor is interacting with the system of di-
mension n.

complex elements. Note that d corresponds to
the level L in HEOM (d = L + 1). The chain
tensors of local Fock spaces is schematized in
Fig.4(b).

B. Discrete ab initio vibrators

The discrete modes of the initial star model
before the transformation into the chain model
may be the molecular vibrators of a LVC model
calibrated from ab initio data. The discrete co-
efficients cm [Eq.(36)] are then obtained from
the gradients of the energies or of the interstate
coupling at the reference geometry of the baths
at equilibrium. Dynamics at a finite tempera-
ture then involve modified coefficients c

(β)
m by

using:

c(β)2
m = c2

m (1 + nβ(ωm)) (52)

The ensemble of modes is extended to include
some negative frequencies (ωm and −ωm) ac-
cording to the value of the Bose function on the
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negative axis. The distribution of the frequen-
cies is therefore asymmetrical. The oscillator
chain is then built by the procedure based on
the orthogonal polynomials41,81.

IV. NUMERICAL METHODS

The numerical investigation is carried out
with HEOM in conventional or MPS implemen-
tation and with T-TEDOPA. HEOM [Eqs.(11)]
are solved with each kind of artificial decay
modes presented in Sec.II. The detailed equa-
tions for each case are summarized in the Sup-
plementary Material. The equations with stan-
dard storage of the matrices are solved using
the Runge–Kutta 4 (RK4), Cash–Karp (RK4-
5) with adaptative step-size or Arnoldi algo-
rithms. Some dynamics may be driven only
with the MPS format33,52–54,57,58 for which we
use the projector-splitting KSL scheme82–85 im-
plemented in the ttpy package (tt.ksl.ksl)86.
The method is based on the dynamical low-rank
approximation which is equivalent to the Dirac-
Frenkel time-dependent variational principle. It
consists in using an approximate low-rank ten-
sor with fixed ranks instead of getting a solu-
tion with a high rank tensor and then truncate
it with singular value decomposition (SVD). To
reach this goal, the derivative of the approxi-
mate low-rank tensor is obtained by projecting
the derivative of the tensor on the tangent space
of the approximate low-rank tensor at its cur-
rent position. Time-integration is then obtained
by a splitting scheme (second order in this work)
of the projector82–85. An adaptive bond di-
mension r is necessary during the propagation
as proposed in Refs.87,88. We have adopted
a mixed strategy. The standard Runge-Kutta
integrator (written with TT algebra available
with the ttpyl package) is run after 10 time
steps to allow the increase of the rank during
the propagation.

In the T-TEDOPA method, the MPS is
propagated using one-site time-dependent vari-
ational method (1TDVP). With this time-
evolution method, the most costly operation has
a complexity of O

(
r2d2w2 + r3dw + r3d2) with

w the bond dimension of the time-evolution
operator38,89. Although not used in these simu-
lations, 1TDVP includes an important suitabil-
ity for bosonic environments as it also allows
an adaptive bond dimension87,88. All of the
T-TEDOPA simulations were carried out using
the Julia package MPSDynamics90.

V. ILLUSTRATIVE SIMULATIONS

A. Pure dephasing model

We consider a pure dephasing spin-Boson
model (SB) for which an analytical solution
exists25, allowing for straightforward calibra-
tion of the number of artificial modes. The
model is schematized in Fig.5. The system
Hamiltonian is HS = (∆E/2)σz where σz is a
Pauli matrix. ∆E = (ϵ2 − ϵ1) = 0.002 Hartree.
The system is diagonally coupled to the bath
with a coupling operator S = σz/2. This model
corresponds to two excited electronic states in
which the equilibrium positions of the oscilla-
tors are displaced in opposite directions with
respect to that of the ground state bath, indi-
cating anti-correlation between the baths91.

The decoherence function D(t) = |ρS12(t)| is
the modulus of the off-diagonal element of the
reduced system density matrix. It evolves as:

D(t)
D(0) = e

−
∫∞

0
J(ω)

ω2 coth( βω
2 )(1−cos(ωt))dω

. (53)

After the mapping with M discrete modes, the
decoherence function becomes:

D(t)
D(0) = e

−
M∑

j=1

c2
j

ω3
j

coth
( βωj

2

)
(1−cos(ωjt))

. (54)

The spectral densities of the two examples are
displayed in Fig.6(a). They are Tannor-Meier
functions [Eq.(20)] with similar renormalization
energy (λ1 = 1.64 × 10−3 Hartree for J1(ω) and
λ2 = 1.49 × 10−3 Hartree J2(ω)) giving a ratio
λ/∆E around 0.75 that corresponds to a strong
coupling regime. The parameters pl, Ωl and
Γl [Eq.(20)] are gathered in the Supplementary
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FIG. 5. Spin-Boson model for a pure dephasing
case. The system Hamiltonian HS is expressed in
the eigen basis set of the local electronic Hamil-
tonian. The two energies correspond to a Franck-
Condon transition towards uncoupled excited elec-
tronic states. The equilibrium position of each os-
cillator in HB is set q = 0 where q is a generic vibra-
tional coordinate. The HSB coupling is due to the
displacement of the oscillator equilibrium position
in each excited state inducing an energy gradient.
In this example, the baths are anti-correlated since
the displacements are in opposite directions.

Material. The corresponding correlation func-
tions are given in Fig.6(b) for T = 10 K and
T = 298 K.

Figure 7 shows the fitting of Jβ1(ω) and
Jβ2(ω) by the barycentric expansion for T = 10
K and T = 298 K. The free poles (FP) in the up-
per half-plane are also given. We add the poles
of the Tannor-Meier function of J1(ω) or J2(ω)
[Eq.(20)] and the four γk values used for fitting
the Matsubara contribution to the correlation
function [Eqs.(27), (29)]. They are represented
by cross symbols. We use four real exponen-
tial functions (the parameters are given in the
Supplemental Material).

Figure 8 gives the decoherence function D(t)
for J1(ω) and J2(ω) at T = 298 K in panels (a)
and (b) respectively and at T = 10 K in panels
(c) and (d) computed by the three HEOM meth-
ods (FP-HEOM, TM&FIT, undamped discrete
modes D-HEOM) and by T-TEDOPA. The an-
alytical expression [Eq.(53)] (ANA) is the refer-

FIG. 6. (a) Spectral densities J1(ω) and J2(ω) used
in the pure dephasing SB model. The parameters
pl, Ωl, Γl of the Tannor-Meier Lorentzian functions
[Eq.(20)] are given in the Supplementary Material.
(b) Modulus of the corresponding correlation func-
tions [Eq.(5)] at 10 K and 298 K.

ence to check the convergence. J1 leads to an
overdamped situation with a monotonous de-
cay. The decoherence in the J2 example ex-
hibits small oscillations, typical of a transitory
non-Markovian behavior. Indeed, the decoher-
ence function of the SB model is closely re-
lated with a measure of non-Markovianity given
by the volume of accessible states for the sys-
tem. Any bump in the volume or in this case in
the decoherence function is a signature on non-
Markovianity, indicating a transitory flow back
from the reservoir to the system92–94. This is
closely linked to the oscillation of the collective
bath mode95.

In both HEOM and T-TEDOPA strategies,
we determine the minimum number of modes
to reach convergence of the coherence for a
timescale τ = 500 fs. The number of modes
can be difficult to compare. The criterion of
the convergence of the bath correlation func-
tion for the selected timescale τ must be sat-
isfied in each method. However, the increase
rate of the number of modes K with τ is not
necessarily the same. It depends on the char-
acteristics of the propagation along the chain
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FIG. 7. Temperature dependent spectral densities Jβ1(ω) (a), (b) and Jβ2(ω) (c), (d) at 10 K and 298 K in
solid lines [Eq.(8)] and their fits by the barycentric expansion [Eq.(31)] in dashed lines. The lower panels
give the corresponding free poles (FP) (full circles) and the poles of the Tannor-Meier (TM) parametrization
[Eq.(20)] in the upper half-plane Γ > 0 (crosses). The four decay rates γk used in the fitting of the Matsubara
contribution to C(t) [Eqs.(27), (29)] are also indicated (crosses on the imaginary axis). For comparison,
the spread in frequencies is [−0.001, 0.018] a.u. at 10 K and [−0.003, 0.018] a.u. at 298 K for T-TEDOPA.
It is [−0.014, 0.014] a.u. in D-HEOM.

in T-TEDOPA. For very short τ , K may be
smaller in T-TEDOPA than in HEOM but this
may change for longer simulation times. The
comparison is here for a timescale τ = 500 fs
(see Fig.8) and it does not permit a generaliza-
tion to many others situations. This interesting
question could be examined in a further work.
An illustration of the convergence of the coher-
ence for D-HEOM and T-TEDOPA is included
in the Supplementary Material. Table I gives
the number of modes and the number of com-
plex elements required in each numerical sim-
ulation. In the D-HEOM case, the number of
modes is larger for the more non-Markovian ex-
ample with J2(ω) and it increases with decreas-
ing temperature. In the T-TEDOPA simula-
tion, the temperature dependent spectral densi-

ties Jβ(ω) are asymmetric with a negative cutoff
frequency of -0.001 Hartree at 10 K and -0.003
Hartree at 298 K. The positive cutoff is 0.018
Hartree for every case. Concerning the J2(ω)
spectral density, the number of modes Nch is
expected to increase with T . However, the mi-
nor difference in the negative cutoff frequen-
cies for both temperatures leads to very simi-
lar chains. The propagation of the excitation
along the chain depending on the length, the
difference at 10 K and 298 K is negligible for
J2(ω)40,96.

Although the situation is similar concerning
negative cutoff frequencies, the Ohmic shape at
low frequency of J1(ω) results in a different be-
havior. Figure 9 shows the dynamics of the av-
erage chain mode population ⟨n⟩ for the whole
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chain at both temperatures. One can see that
excitation is injected in the chain at each time
step. At T = 10 K, the chain length is based
on the return of the first excitation to the sys-
tem. Due to the specific Ohmic shape of J1(ω),
excitation can reach the system (coupled to the
chain mode 1) at T = 298 K without much ef-
fects up to one point. Such process would in-
stead lead to discrepancies against the analyt-
ical result within our convergence criteria for
the T = 10 K case. Fringes are also visible in
Fig.9, due to excitation crossings in the chain.
The result concerning T = 298 K means that
excitation injected in the chain at early time
is no longer important for the system once it
reaches it. This illustrates an interesting way
to circumvent the common sampling criterion
for such environments, usually based on avoid-
ing excitation returns as in the T = 10 K ex-
ample. It might also play a role for Markovian
closures97. The observation made in this ex-
ample may be model dependent. Our example
only represents an interesting observation for
this specific case which does not imply gener-
ality. We would have to look at several types of
spectral density and system-bath couplings to
result in something global.

All the simulations merge with the analyti-
cal solution each having its distinct advantages
and disadvantages, particularly at low temper-
atures. (i) At low temperature, the number of
Matsubara terms [Eq.(27)] is too high so that
the TM parametrization is possible only by fit-
ting of the Matsubara contribution [Eq.(29)]14.
This procedure is particularly effective. The
FP-HEOM strategy also reveals its efficiency in
this application since few poles of Jβ(ω), only
2 × 10 terms, are necessary for low tempera-
ture . The fact that TM&FIT is particularly
interesting here is due to the shape of the spec-
tral density involving a single peak. It is obvi-
ous that highly structured densities with greater
renormalization energy requires more TM func-
tions and high hierarchy level L leading to a
larger number of ADOs. (ii) The discrete map-
ping used in D-HEOM involves a larger num-
ber of modes making implementation with stan-
dard encoding prohibitive. Only the MPS for-

FIG. 8. Decoherence function D(t) = |ρS12 (t)| of
the pure dephasing SB model with the spectral den-
sities J1(ω) (panels (a) and (c)) and J2(ω) (panels
(b) and (d)). The benchmark is the analytical ex-
pression [Eq.(53)] (ANA). The number of discrete
modes (DM) is fixed by converging the discrete
mapping [Eq.(54)]. A very good accuracy is reached
for the HEOM methods (FP-HEOM, TM&FIT, D-
HEOM) and for the T-TEDOPA simulation at high
temperature (a) and (b) and at low temperature (c)
and (d).

mat is efficient in this example. T-TEDOPA
working with wave functions instead of density
matrices requires fewer resources and confirms
its outstanding efficiency when compared to D-
HEOM.

B. Two-bath model

We now consider a more demanding sim-
ulation with a SB model in which the sys-
tem is coupled diagonally and off-diagonally to
baths in a strong coupling regime. In chemical
physics, this model describes a conical intersec-
tion between two excited states98,99 by parti-
tioning a local electronic Hamiltonian coupled
to two manifolds of vibrational modes of differ-
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Method
T J(ω) D-HEOM TM&FIT-HEOM FP-HEOM T-TEDOPA

10 K J1
K 80 2 + 4 20 100

Nst
HEOM 367,524 336 7,084

NMP S
HEOM 284,640 18,240 68,840

NT EDOP A 3,600
J2

K 260 2 + 4 20 110
Nst

HEOM 13,415,584 336 7,084
NMP S

HEOM 932,640 18,840 68,840
NT EDOP A 3,960

298 K J1
K 80 2 + 4 20 60

Nst
HEOM 367,524 336 7,084

NMP S
HEOM 284,640 18,840 68,840

NT EDOP A 2,160
J2

K 200 2 + 4 20 110
Nst

HEOM 6,351,944 336 7,084
NMP S

HEOM 716,640 18,840 68,840
NT EDOP A 3,960

TABLE I. Number of artificial modes K, (Eqs. (45) for D-HEOM, (30) for TM&FIT-HEOM, (32) for
FP-HEOM and (50) for T-TEDOPA) used in the simulation of the pure dephasing qubit. The number of
estimated complex elements in the storage is indicated (Eqs.(12) for the HEOM standard implementation
without ADOs filtering, (19) for the MPS representation, and (51) for T-TEDOPA). The HEOM level is L
= 3. In the simulations made in the MPS format, the maximum bond dimension is rmax = 30 (it should
be noted that r may be smaller than rmax during the propagation) and the tolerance is 10−10. In the
T-TEDOPA simulation, the Fock space has dimension d = 4 and bond dimension r = 3.

ent symmetries (symmetrical or antisymmetric
with respect to the symmetry group at the refer-
ence equilibrium position of the ground state).
A generic scheme is given in Fig.10. HS =
ε1 |1⟩ ⟨1| + ε2 |2⟩ ⟨2| corresponds to the elec-
tronic diabatic energies and inter-state coupling
at the Franck-Condon transition. As recalled
below, a diabatic representation is defined up
to a unitary transformation. We work in the
basis corresponding to the eigenstates at the
Franck-Condon geometry where the electronic
coupling vanishes. Such a partition has already
been proposed100,101 and leads to a highly non-
Markovian behavior requiring a high HEOM
hierarchy level. Baths diagonally coupled to
the system make fluctuate the energies and are

sometimes called tuning baths. They gather the
symmetrical modes. To reduce the number of
baths, we assume that these diagonal baths are
correlated91, i.e. the equilibrium positions of
the excited states are displaced in the same di-
rection from the reference equilibrium position.
One may then consider a single spectral den-
sity Jd(ω) (with subscript d for diagonal) and
the corresponding system-bath coupling opera-
tor then writes SBd

= |1⟩ ⟨1| + α |2⟩ ⟨2|. The
other bath (also called the coupling bath) is
formed by the antisymmetric modes. It is cou-
pled to the off-diagonal elements by the opera-
tor SBod

= |1⟩ ⟨2| + |2⟩ ⟨1|. The interstate cou-
pling cancels at the reference point and takes a
finite value when the coupling bath modes os-
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FIG. 9. Dynamics of the averaged chain mode pop-
ulations ⟨n⟩. The system is coupled to the first
chain mode. Dashed black arrows are guide eyes
to follow the first excitation propagation. (a) J1
chain at T = 10 K in which the length is regulated
with the first excitation reaching the system. (b)
J1 chain at T = 298 K where the first back and
forth propagation does not perturb the system sig-
nificantly, which allows a shorter chain.

cillate. The corresponding spectral density is
Jod(ω) (with subscript od for off-diagonal). The
model is calibrated from the ab initio data LVC
model of a phenylene ethynylene dimer (1,3-
bis(phenylethynyl)benzene) computed by La-
sorne et al.59,60,102. The simulations with the
intermolecular vibrational modes (III B) use the
parameters of the LVC model (gradients of the
energies and of the interstate coupling at the
minimum of the ground electronic state) given
in the Supplemental Information of Ref.60. The
tuning and coupling baths gather 35 and 34
symmetrical (A1) or antisymmetric (B2) respec-
tively. In order to account for a surrounding,
the delta distribution in the spectral density
[Eq.(36)] is broadened by a Lorentzian smooth-
ing function

δ(ω − ωm) → 1
π

Γ
(ω − ωm)2 + Γ2

(55)

leading to a continuous spectral density with
the same renormalization energy. In this work,

FIG. 10. Spin-Boson model of a conical intersec-
tion between two excited states of a molecular sys-
tem. Two correlated baths (HBd ) are diagonally
coupled to the local electronic system Hamiltonian
and one bath (HBod ) is off-diagonally coupled to
the inter-state coupling. The reference equilibrium
position of the bath oscillators is that of the ground
state. HS = ε1 |1⟩ ⟨1| + ε2 |2⟩ ⟨2| corresponds to the
diabatic energies at the Franck-Condon transition
where the inter-state coupling vanishes. The tuning
HBd and coupling HBod baths gather the symmetri-
cal or antisymmetric vibrational modes denoted qs

and qas respectively.

we used Γ = 160 cm−1. The excited manifold is
not coupled to the ground state by inter-state
coupling but only radiatively.

Figure 11 shows the Jβd(ω) (a) and Jβod(ω)
(c) spectral densities of the tuning HBd and
coupling HBod baths at 10 K. The poles (cir-
cles) of the barycentric expansions [Eq.(31)] in
the upper half-plane Γ > 0 are displayed in
panels (b) and (d) respectively. To compare
with the TM&FIT method, Jd(ω) and Jod(ω)
are fitted by three TM Lorentzian functions.
The poles of these TM functions in the upper
half-plane and the rates used in the Matsubara
fitting procedure [Eqs.(27) and (29)] are super-
imposed (crosses) in Fig.11. The parameters
[Eqs.(20) and (29)] are gathered in the Supple-
mental Material.

Figure 12 presents the dynamics in the ex-
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FIG. 11. Temperature dependent spectral densi-
ties Jβd(ω) (a) and Jβod(ω) (c) and there fit by the
barycentric expansion [Eq.(31)] at 10 K. Panels (b)
and (d) give the corresponding free poles (FP) (cir-
cles), the poles of the TM parametrization [Eq.(20)]
in the upper half-plane Γ > 0 (crosses) and the two
decay rates γk used in the fitting of the Matsubara
contribution to C(t) [Eq.(29)] (crosses on the imag-
inary axis).

cited states at 10 K and 298 K with an ini-
tial condition in the upper excited state |2⟩
(panel (a)) or in a superposition of the two ex-
cited states (|1⟩ + |2⟩)/

√
2 (panel (b)). Table II

gives the number of modes used in HEOM or
T-TEDOPA simulations and the corresponding
number of complex elements. The HEOM level
and the MPS parameters r and d are gathered
in the caption. (i) Continuous case. The MPS
format reveals its efficiency in HEOM since it al-
lows the computation with a maximum tensor-
train rank rmax = 60 while in the standard
storage at the level L = 8, the TM&FIT and
the FP-HEOM applications should need a pro-
hibitive number of complex matrix elements, as
shown in Table II. T-TEDOPA confirms its
performance by requiring fewer resources as ex-
pected. It succeeds in reaching room temper-
ature quite easily by increasing the number of
modes by 50%. (ii) LVC case. The simulation

FIG. 12. Population evolution at 10 K and 298 K
in the two-bath model computed by HEOM (FP,
TM&FIT), T-TEDOPA with discrete modes ex-
tracted from continuous spectral densities or using
the ab initio LVC parameters (T-TEDOPALV C).
(a) The initial condition is the upper excited state
|2⟩, (b) preparation in a superposition of the two
excited states (|1⟩ + |2⟩)/

√
2.

with all the discrete modes of the LVC model
succeeds with the T-TEDOPA method only.
We have not been able to carry it out with D-
HEOM in this discrete case. Unlike the pure de-
phasing example, numerical instabilities occur
in the D-HEOM propagation in this strongly
coupled system, requiring L = 8. The early dy-
namics with the molecular LVC data merges the
predictions of the continuous model for about
forty femtoseconds, which corresponds to two
oscillation periods of the main high frequency
modes. Temperature has very few effects in this
simulation. One observes more damping at 298
K but the average populations are quasi similar.
The temperature effect is more obvious in the
continuous case.

Dynamics shown in Fig.12 deserves some
comments. The evolution of the populations
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Method
T J(ω) TM&FIT-HEOM FP-HEOM T-TEDOPA T-TEDOPALV C

10 K Jd

K 6 + 2 14 60 35
Jod

K 6 + 2 14 60 34
Nst

HEOM 2,941,884 121,041,360
NMP S

HEOM 486,780 875,580
NT EDOP A 76,800 276,000

298 K Jd

K 6 + 2 14 90 70
Jod

K 6 + 2 14 90 68
Nst

HEOM 2,941,884 121,041,360
NMP S

HEOM 486,780 875,580
NT EDOP A 115,200 552,000

TABLE II. Number of modes for each bath of the two-bath model given by Eqs.(30) for TM&FIT-HEOM,
(32) for FP-HEOM and (50) for T-TEDOPA. The total number K is the sum of the modes of each bath
for estimating the number of complex elements given by Eqs.(12) (without ADOs filtering) and (19) for
TM&FIT-HEOM and FP-HEOM, (51) for T-TEDOPA. For HEOM, the level is L = 8, rmax = 60 (it
should be noted that r may be smaller than rmax during the propagation) and the tolerance is of 10−10.
For T-TEDOPA with sampling of the continuous densities, r = 8 and d = 10. The cutoff is -0.01 Hartree
at 298 K and 0 Hartree at 10 K. For the LVC case, r = 20 and d = 10. Only the positive frequencies are
used at 10 K since the Bose function is negligible. All the corresponding frequencies on the negative axis
are added at 298 K.

seems very similar after the early ultra fast de-
cay of the upper excited state leading to a tran-
sitory equal population in both excited states
(panel (a)) as in the case of an initial superpo-
sition with equal weights (panel (b)). The weak
oscillation pattern is the same and the popula-
tion becomes almost constant after about 150 fs.
However, with the initial condition |2⟩ there is
no coherence between the two states during the
process while the electronic coherence of the ini-
tial superposition persists for some time in the
second case. This leads to a different behav-
ior when the electronic system is analyzed in
another diabatic representation. Figure 13(a)
schematizes the initial diabatic representation
used for the propagation by showing in solid
lines a 1D cut in the potential energy surfaces
and in the interstate coupling along an antisym-
metric mode qa for an arbitrary value of the
symmetrical modes that does not coincide with

the conical intersection geometry (ϵ1 ̸= ϵ2). The
electronic diabatic basis being defined at an ar-
bitrary unitary transformation, the orthogonal
transformation by a rotation matrix R of π/4,
one obtains the interesting representation dis-
played in Fig.13(b) in terms of two right-left
wells59,102. The electronic interstate coupling
that is antisymmetric in the first basis becomes
symmetrical in the new one. Obviously both
representations leads to the same adiabatic ba-
sis represented in dashed lines in Fig.13(a) and
(b). Working in this new representation also
requires the transformation of the system-bath
coupling HSB .

The initial superposed state (|1⟩ + |2⟩)/
√

2
corresponds to the preparation in one or the
other well |L⟩ or |R⟩ according to the sign of
the superposition. Figure 14(a) gives the evo-
lution of the coherence |ρS12 | of the initial su-
perposition (|1⟩ + |2⟩)/

√
2. The electronic co-
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FIG. 13. 1D cut in diabatic (solid lines) and adi-
abatic (dashed lines) potential energy surfaces and
interstate coupling along an antisymmetric mode
qas. (a) Diabatic basis in which the interstate cou-
pling is antisymmetric and vanishes in the electronic
system Hamiltonian HS at the reference Franck-
Condon position; (b) Diabatic basis after transfor-
mation by a rotation matrix of π/4.

herence persists during 1 ps at 10 K and 350 fs
at 298 K. Figure 14(b) presents the population
in the two |R⟩ or |L⟩ states of the rotated ba-
sis. The damped Rabi oscillation between these
two states persists as long as the coherence sur-
vives. The slight dephasing between the results
in HEOM and T-TEDOPA may be due to a lack
of convergence in HEOM at long time due to a
too small level (level L = 8 in HEOM versus a
Fock space dimension d = 10 in T-TEDOPA).

VI. SUMMARY AND CONCLUDING
REMARKS

HEOM and T-TEDOPA are advanced sim-
ulation methods for treating non-Markovian
open quantum systems with structured environ-
ments. This challenging regime is often encoun-
tered in simulations of models calibrated from
molecular dynamics48,72,103 or LVC ab initio
models in molecular systems81,104,105, and in
many domains of quantum technology. In this
work, our goal is to bring together different
algorithms to tackle the temperature problem
in open quantum systems in strong interac-
tion with structured environments. The central
point that we want to illustrate is the effort in

FIG. 14. (a) Modulus of the coherence |ρS12 (t)|
between the excited states when the system is pre-
pared in a superposed state (|1⟩ + |2⟩)/

√
2 at 10

K and 298 K computed by HEOM or T-TEDOPA.
(b) Population in the |R⟩ and |L⟩ electronic states
of the rotated diabatic representation. The HEOM
and the T-TEDOPA results are in thick lines and
thin lines respectively. In each case, the population
in |R⟩ or |L⟩ are in solid or dashed lines.

the opposite direction to decrease or increase
the temperature depending on whether the dy-
namics is treated by HEOM or by the multi-
dimensional wave packet approach T-TEDOPA.
We illustrate different ways of choosing the
artificial modes that are the essential tool of
the expansion of the two-time bath correla-
tion function C(t) in HEOM. Directly fitting
the complex correlation function in terms of
exponential functions is possible by different
algorithms14,17–24. However, common meth-
ods start from the spectral density J(ω) or the
Fourier transform of C(t) that is the tempera-
ture dependent spectral density Jβ(ω), in par-
ticular in FP-HEOM or in T-TEDOPA. The
two illustrating examples differ by the shape
of the spectral density and by the strength of
the system-environment coupling for a given
timescale. This brings qualitative insight on
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the resources required in each method. How-
ever, this cannot be generalized easily. Further
investigation is necessary to analyze the role of
the simulation duration and of the spectral den-
sity complexity.

In the HEOM method, the three investigated
approaches have strong and weak points de-
pending on the shape of the spectral density and
on the coupling strength. The parametrization
of J(ω) by Lorentzian functions is interesting
only when there are few emerging peaks linked
to some underdamped strongly coupled vibra-
tional modes. This is frequently the case in or-
ganic molecules. For simulations at low tem-
perature, the drawback posed by the poles of
the Bose function may be effectively addressed
by fitting their contribution to the bath corre-
lation function. The effective number of modes
and then the resources involved in the TM&FIT
strategy can remain competitive. The very in-
teresting advance based on the fit of Jβ(ω) by
the barycentric method (FP-HEOM) bypasses
the problem of Matsubara terms and is un-
doubtedly a promising method by involving a
small number of artificial modes. In the exam-
ples covered here, TM&FIT demands a little
less resources than the FP-HEOM strategy. It
is likely that FP-HEOM may become more effi-
cient for more structured densities or in super-
Ohmic cases as in solid phase. Then, in the ex-
tension of the TM parametrization with super-
Ohmic Lorentzian functions, each function in-
volves four-poles in the upper complex plane
Lorentzian instead of two, which doubles the
number of modes66. The D-HEOM strategy
based on the sampling of J(ω) with undamped
modes has proven to be ineffective in our strong
coupling example implying high hierarchy lev-
els.

In both illustrations presented here, the T-
TEDOPA method is the most efficient with re-
spect to the storage resources and the computa-
tional time even when the number of modes is
larger than in some HEOM strategies. Further-
more, the method may bring a more detailed in-
formation on the bath dynamics by transform-
ing back from the chain model to the star model.
HEOM gives more global statistical informa-

tion about the bath distribution60,62,95,101,106.
The T-TEDOPA algorithm may benefit from
an asymmetrical frequency range for the sam-
pling. The truncation of the correlation func-
tion after a typical timescale of the dynamics
before the Fourier transforming coupled with
the chain mapping seems to be an outperform-
ing strategy of T-TEDOPA7,77. Furthermore,
the shorter chain length for a higher temper-
ature in the Ohmic-like spectral density pure
dephasing example brings interest and we hope
to investigate it more deeply in future work.

SUPPLEMENTAL MATERIAL

The Supplementary Material gives the de-
tailed HEOM equations with the different ar-
tificial modes (TM, FP-HEOM and D-HEOM).
It gathers the parameters of the TM functions
fitting the different spectral densities and all
the parameters of the exponential functions fit-
ting the contribution of the Matsubara terms to
the bath correlation functions at low tempera-
ture. We also illustrate the convergence of the
number of undamped discrete modes for the D-
HEOM and T-TEDOPA simulations in the pure
dephasing qubit.
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