
HAL Id: hal-04634303
https://hal.science/hal-04634303v1

Submitted on 3 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Clock Glitch Fault Injection Effects on a
RISC-V Microcontroller

Ihab Alshaer, Ahmed Al-Kaf, Valentin Egloff, Vincent Beroulle

To cite this version:
Ihab Alshaer, Ahmed Al-Kaf, Valentin Egloff, Vincent Beroulle. Modeling Clock Glitch Fault Injection
Effects on a RISC-V Microcontroller. 2024 IEEE 30th International Symposium on On-Line Testing
and Robust System Design (IOLTS), Jul 2024, Rennes, France. �10.1109/IOLTS60994.2024.10616064�.
�hal-04634303�

https://hal.science/hal-04634303v1
https://hal.archives-ouvertes.fr

Modeling Clock Glitch Fault Injection Effects on a
RISC-V Microcontroller

Ihab Alshaer∗, Ahmed Al-kaf∗,Valentin Egloff∗, Vincent Beroulle∗
∗Univ. Grenoble Alpes, Grenoble INP1, LCIS, 26000 Valence, France

Abstract—Embedded systems face security concerns, vulner-
able to physical attacks like fault injection. RISC-V processors
are increasingly favored for their open-source architecture. In
this article, we present practical fault models operating at the
instruction encoding level, which effectively elucidate numerous
observed faulty behaviors arising from clock glitch campaigns
conducted on a 32-bit microcontroller (MCU) embedding a
RISC-V core. We demonstrate that, owing to the variable-length
encoding of instructions, the impact of these models at the execu-
tion level varies. Nevertheless, the proposed models consistently
maintain their applicability irrespective of the encoding length.
Furthermore, we illustrate that some of the observed faulty
behaviors are comparable to those obtained when targeting Arm
Cortex-M-based MCUs. In addition, we present new models that
can explain new faulty behaviors. The presented models are able
to explain more than 90 % of the observed faulty behaviors.

Index Terms—fault injection attack, RISC-V, fault model

I. INTRODUCTION

Recently, the adoption of RISC-V architectures for embed-
ded systems has captured the attention of numerous entities
within the design community. This is due to its openness, effi-
ciency, simplicity, extensibility, and stability [1]–[3]. Yet, it is
crucial to consider security, especially given the advancements
in attack techniques and equipment. Fault injection is a major
threat to embedded systems among physical attacks.

Understanding fault effects is essential to protect embedded
systems. Fault models abstractly represent these effects across
system abstraction levels, aiding hardware designers and
software developers in identifying vulnerabilities. Accurate
models enable the development of effective countermeasures,
ensuring a balanced cost-performance ratio. Conversely, inac-
curate models may lead to excessive or inadequate protections.

Several studies [4]–[9] focused on analyzing the fault in-
jection effects at the instruction set architecture (ISA) level.
As a result, they proposed various fault models including:
instruction skip [7], [9], [10], instruction replay [7], [9],
instruction corruption [4], [6], [8], and register corruption
[5], [6], [8]. These models are rather generic and fail to
accurately depict the true impact of fault injection. The term
“corruption” lacks specificity in conveying the fault’s effect,
making it challenging to pinpoint vulnerabilities based solely
on this information. Consequently, this leads to developing
either inappropriate protections. Regarding works focused on
RISC-V, [11] performed EM campaigns on a RISC-V 32-
bit MCU. However, similarly to aforementioned works, they
described the fault effect as instruction(s) corruption or skip.

1Institute of Engineering Univ. Grenoble Alpes

In [12], [13], authors analyzed clock and voltage glitch
effects on 32-bit MCUs embedding Arm Cortex-M3 and -M4
cores. They showed how memory alignment influences faults.
As a result, they introduced two fault models: Skip and Skip
and repeat a specific bit of binary encoding. This number of
bits relate to flash memory access size. These models allowed
explaining many observed faults. However, applicability on
MCUs with cores other than Cortex-M remains uncertain.

In this article, clock glitch campaigns have been conducted
on a RISC-V MCU. As a result, we confirm that Skip and Skip
and repeat fault models are also applicable to the obtained
faulty behaviors from these campaigns. Moreover, we show
that other faulty behaviors may occur and cannot be explained
using these two models. Hence, additional models are pro-
posed, at encoding level, to describe these behaviors. These
models are Replace 16 bits, and Combination. To validate
the inferred models, we utilized an approach akin to that of
previous works in [14]–[16], in which, the results of physical
injections and simulations are compared to confirm an inferred
model.

II. EXPERIMENTAL SETUP

Two clock glitch campaigns have been conducted, targeting
the programs in Listings 1 and 2. Both listings show the
target programs instructions along with their encoding in
hexadecimal format. Both programs are the same, except in
the second Listing, a 16-bit NOP instruction has been added
to make the code misaligned. All other instructions are 32-
bit instructions. These instructions are selected, as examples,
to simplify the analysis and allowing the detectability of any
faults that may occur.

1 ADDI x28, x28, 0x3b // 0x03be0e13
2 ADDI x29, x29, 0xa // 0x00ae8e93
3 ADDI x7, x7, 0x27 // 0x02738393
4 ADD x6, x28, x31 // 0x01fe0333
5 ADDI x6, x6, 0x6 // 0x00630313
6 ADDI x31, x31, 0xd // 0x00df8f93

Listing 1. Target program with its encoding in hex. format

The target device is a SiFive 32-bit MCU that embeds
an E31 RISC-V core [17]. E31 core is based on RISC-
V architecture and supports the RV32IMAC instruction set.
Supporting the Compressed (C) extension makes RV32I a
variable-length instruction set that offers two encoding lengths:
16 and 32 bits. The flash memory access size is 32 bits,
allowing for the retrieval of different configurations of 32 bits
as elaborated in [12].

1 0x0e130001
2 0x8e9303be
3 0x839300ae
4 0x03330273
5 0x031301fe
6 0x8f930063
7 0x000100df

Listing 2. Misaligned code target program in hex. format, where each
line is composed of 32 bits.

In this work, ChipWhisperer [18] environment has been
employed to perform the clock glitch. In this setup, three
parameters need to be configured: Width, Shift, and Delay.
Two delay values were used, while 12 was used for Width,
and −13 was used for Shift. For each combination of Shift,
Width, and Delay, the experiments are repeated 10 000 times.
Thus, the number of executions for each campaign is 20 000.
The reasons for choosing such parameters are two-fold: firstly,
maximizing the quantity and the diversity of the observed
faulty behaviors. On the other hand, this is aiming at faulting
different locations within the target program.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The outcome of an injection in an execution leads to either
Silent, Crash, or a Faulty output. Table I presents the obtained
percentages for each class for both campaigns.

TABLE I
PERCENTAGE OF SILENT, CRASH, AND FAULT OVER THE TWO CAMPAIGNS.

Class
Campaign on aligned code misaligned code

Silent 99.42 % 99.345 %
Crash 0.005 % 0.005 %
Fault 0.575 % 0.65 %

Referring to the encoding depicted in Listing 1 and List-
ing 2, the observed faulty behaviors are explained by the
following inferred fault models:

• Skip 32 bits: the 32 bits at line i are skipped and the
execution resumes from line i+1. For more details, we
refer the reader to [12].

• Skip and repeat 32 bits: the 32 bits at line i+1 are
skipped and the 32 bits at line i are repeated. Listing 3
shows an example for this model.

4 ...

5 MUL x6, x6, x7 // 0x02730333

6 ADD x6, x6, x6 // 0x00630333
7 ...

Listing 3. Observed execution as a result of skipping line 5 and
repeating line 4 in Listing 2.

• Replace 16 bits: the most significant or least significant
16 bits at line i are replaced with either the corresponding
16 bits at line i-1, or the corresponding 16 bits at line
i+1. Listing 4 shows an example for this model.

1 ADDI x0, x0, 0x0 // 0x0001

2 ADDI x28, x2, 0x0 // 0x00010e13
3 ...

Listing 4. Observed execution as a result of replacing the least half
at line 2 with the corresponding half at line 1 in Listing 2.

• Combination: the observed faulty behavior is modeled by
a combination of a single fault model or a combination
of two different models from the above.

• Other: the observed faulty behavior cannot be modeled
by the aforementioned fault models.

Table II shows the percentage of the observed faulty be-
haviors concerning each fault model over all obtained faults.

TABLE II
PERCENTAGE OF THE CLASSIFICATION OF THE OBSERVED FAULTY BEHAVIORS

UNDER THE INFERRED FAULT MODELS FOR EACH CAMPAIGN

Fault model
Campaign on aligned code misaligned code

Skip 32 bits 0.87 % 1.54 %
Skip and repeat 32 bits 82.60 % 53.08 %
Replace 16 bits 6.96 % 40.76 %
Combination 0.87 % 3.08 %
Other 8.70 % 1.54 %

The aformentioned experimental findings illustrate that the
fault models introduced at the encoding level, namely Skip and
Skip and repeat, as proposed in [12], are not only applicable
to faulty behaviors observed in Cortex-M-based MCUs, but
also extend to RISC-V MCU. However, it became necessary
to propose additional models, specifically Replace 16 bits and
Combination, to account for previously unexplained behaviors.
It has been demonstrated that these models effectively explain
more than 91 % of the observed faulty behaviors, when
the code is aligned, and around 98 %, when the code is
misaligned, as shown in Table II.

The presented faults have been confirmed to have corrupted
the binary encoding of instructions, leading to the execution
of entirely different instructions in certain scenarios. For
example, executing MUL instead of ADD. This provides clear
evidence that many of these faults manifest at the microarchi-
tectural level prior to the Decode stage in the pipeline. Un-
derstanding this could aid in developing appropriate hardware-
level countermeasures, as it restricts the fault analysis at lower
levels of abstraction. Furthermore, this paves the way for
exploring software-level countermeasures, especially at the
compiler level. Finally, clock glitch was used in this study
for fault injection, but the findings can apply broadly to other
techniques that exploit timing violations, such as voltage glitch
and EM fault injection.

IV. CONCLUSION AND FUTURE WORK

In conclusion, more than 90 % of the observed faulty
behaviors were explained by the inferred fault models at
encoding level. It has been shown that already proposed fault
models, applied to Cortex-M MCUs, are also applicable to a
RISC-V MCU. This is important, as it limits the efforts in
designing device-independent protections against such faults.
Nevertheless, other faulty behaviors required proposing new
fault models, namely, Replace 16 bits, and Combination.

In terms of future works, an important perspective would
be to investigate the observed faulty behaviors at hardware
level using RISC-V core description, to make sure that their
origin comes from the Fetch stage. Finally, an important future
work is thinking of cost-effective countermeasures against the
presented faults at hardware and/or software levels.

ACKNOWLEDGMENT

This work has been supported by ARSENE project (PEPR
PP7 ARSENE — ANR-22-PECY-0004) and by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01).

REFERENCES

[1] S. Sharma, “RISC-V Architecture: A Comprehensive
Guide to the Open-Source ISA,” [Accessed: February
28, 2024]. [Online]. Available: https://www.wevolver.com/article/
risc-v-architecture-a-comprehensive-guide-to-the-open-source-isa

[2] ——, “Understanding RISC-V: The Open Standard In-
struction Set Architecture,” [Accessed: February 28,
2024]. [Online]. Available: https://www.wevolver.com/article/
understanding-risc-v-the-open-standard-instruction-set-architecture

[3] D. Banatao, “Driving the Future of Chip Innovation: Top Three
Reasons to Adopt RISC-V,” [Accessed: February 28, 2024].
[Online]. Available: https://www.computer.org/publications/tech-news/
trends/reasons-to-adopt-risc-v

[4] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller,” in 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography, Los Alamitos, CA, USA, August 20, 2013. IEEE
Computer Society, 2013, pp. 77–88.

[5] O. Trabelsi, L. Sauvage, and J.-L. Danger, “Characterization of electro-
magnetic fault injection on a 32-bit microcontroller instruction buffer,”
in 2020 Asian Hardware Oriented Security and Trust Symposium (Asian-
HOST), 2020, pp. 1–6.

[6] N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm using
fault injection,” in 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016, pp. 25–35.

[7] J. Proy, K. Heydemann, A. Berzati, F. Majéric, and A. Cohen, “A
first ISA-level characterization of EM pulse effects on superscalar
microarchitectures: A secure software perspective,” in Proceedings of the
14th International Conference on Availability, Reliability and Security,
ARES 2019, Canterbury, UK, August 26-29, 2019. ACM, 2019, pp.
7:1–7:10.

[8] T. Trouchkine, G. Bouffard, and J. Clédière, “EM fault model character-
ization on socs: From different architectures to the same fault model,”
in 2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC). IEEE, 2021, pp. 31–38.

[9] V. Khuat, J.-L. Danger, and J.-M. Dutertre, “Laser fault injection in a 32-
bit microcontroller: from the flash interface to the execution pipeline,”
in 2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC), 2021, pp. 74–85.

[10] V. Werner, L. Maingault, and M. Potet, “An end-to-end approach
for multi-fault attack vulnerability assessment,” in Workshop on Fault
Detection and Tolerance in Cryptography. Milan, Italy: IEEE, 2020,
pp. 10–17.

[11] M. A. Elmohr, H. Liao, and C. H. Gebotys, “EM fault injection on
ARM and RISC-V,” in 2020 21st International Symposium on Quality
Electronic Design (ISQED), 2020, pp. 206–212.

[12] I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle, and P. Maistri,
“Variable-length instruction set: Feature or bug?” in 25th Euromicro
Conference on Digital System Design. Maspalomas, Spain: IEEE, Aug.
2022, pp. 464–471.

[13] I. Alshaer, “Cross-Layer Fault Analysis for Microprocessor
Architectures (CLAM),” Theses, Université Grenoble Alpes [2020-....],
Oct. 2023. [Online]. Available: https://theses.hal.science/tel-04417620

[14] L. Dureuil, M. Potet, P. de Choudens, C. Dumas, and J. Clédière,
“From code review to fault injection attacks: Filling the gap using fault
model inference,” in International Conference on Smart Card Research
and Advanced Applications, ser. Lecture Notes in Computer Science,
N. Homma and M. Medwed, Eds., vol. 9514. Bochum, Germany:
Springer, 2015, pp. 107–124.

[15] I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle, and P. Maistri, “Mi-
croarchitectural insights into unexplained behaviors under clock glitch
fault injection,” in Smart Card Research and Advanced Applications,
ser. Lecture Notes in Computer Science. Springer Nature Switzerland,
2024, pp. 3–22.

[16] J. Laurent, C. Deleuze, F. Pebay-Peyroula, and V. Beroulle, “Bridging
the gap between RTL and software fault injection,” ACM J. Emerg.
Technol. Comput. Syst., vol. 17, no. 3, pp. 38:1–38:24, 2021.

[17] SiFive, “SiFive E31 core complex manual v2p0,”
https://static.dev.sifive.com/SiFive-E31-Manual-v2p0.pdf, [Accessed:
February 16, 2024].

[18] C. O’Flynn and Z. D. Chen, “Chipwhisperer: An open-source platform
for hardware embedded security research,” in International Workshop
on Constructive Side-Channel Analysis and Secure Design, ser. Lecture
Notes in Computer Science, E. Prouff, Ed., vol. 8622. Paris, France:
Springer, 2014, pp. 243–260.

https://www.wevolver.com/article/risc-v-architecture-a-comprehensive-guide-to-the-open-source-isa
https://www.wevolver.com/article/risc-v-architecture-a-comprehensive-guide-to-the-open-source-isa
https://www.wevolver.com/article/understanding-risc-v-the-open-standard-instruction-set-architecture
https://www.wevolver.com/article/understanding-risc-v-the-open-standard-instruction-set-architecture
https://www.computer.org/publications/tech-news/trends/reasons-to-adopt-risc-v
https://www.computer.org/publications/tech-news/trends/reasons-to-adopt-risc-v
https://theses.hal.science/tel-04417620

	Introduction
	Experimental setup
	Experimental results and analysis
	Conclusion and future work
	References

