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David H. Oaknin∗

Rafael Ltd., IL-31021 Haifa, Israel
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The renowned double-slit experiment encompasses some of the deepest mysteries of Quantum
Mechanics: single particles behave as corpuscles, but their statistical behavior corresponds to de-
localized wave packets. Here, we offer a novel, physically intuitive explanation for this dual behavior.
The proposal is based on insight gained from a recently described statistical description of another
renowned experiment: the CHSH-Bell experiment. According to the proposed explanation, while
each particle follows a single path as it goes through the double-slit and into the detector, it also
modifies the physical properties of the vacuum around it by spontaneously breaking its symmetries.
The well-known pattern of interference fringes that appears in statistical analysis of long sequences
of repetitions is then understood as the result of the self-interaction of the propagating particles
with the polarized vacuum they create around themselves. An experimental setup aimed to test the
offered explanation is suggested.

I. INTRODUCTION

The pattern of intensity fringes that emerges in the
classical Young’s double-slit experiment was widely re-
garded at the beginning of the nineteenth century when
the experiment was first performed, as definitive experi-
mental proof of the wave nature of light [1–3]. Maxwell’s
theoretical description of electromagnetic radiation de-
veloped a few decades later [4] and the subsequent experi-
ments performed by Herz [5] solidly established this con-
cept against the alternative corpuscular theory of light
proposed two hundred years earlier by Newton [6]. How-
ever, the discovery at the turn of the twentieth century of
the photoelectric effect [7] and then unexplained features
in the spectrum of the black-body radiation [8] fully re-
opened the issue and laid the foundational stones for the
development of Quantum Mechanics and its mysteriously
precise description of the dual corpuscular/wave nature
of both light and matter at the microscopic level [9].

The modern double-slit experiment [10, 11] is one of
the most striking examples of this mysterious corpus-
cle/wave duality. The experiment is performed with a
source of single microscopic particles (photons, electrons,
neutrons, or even molecules [12]) - rather than the coher-
ent pulses of light used in the classical version of the
experiment, which are sent one by one towards a pair of
nearby narrow slits opened in an opaque wall. The par-
ticles that successfully go through these slits are subse-
quently detected on a screen positioned behind the wall.
While each one of the particles is detected at a single
location on the screen, as would be expected from local-
ized corpuscular objects, when a long sequence of such
events is statistically analyzed, a characteristic pattern of
intensity fringes appears, as it would be expected from
self-interfering delocalized wave-packets [13, 14]. Despite
the precise description of the experiment provided by
Quantum Mechanics, a physically intuitive explanation
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of Nature’s workings in this phenomenon is still lacking
[15].

A prevalent version of the double-slit experiment is
performed with the help of a Mach-Zender interferome-
ter (MZI) [10]. This device consists of two beam splitters
connected one after the other through two imbalanced in-
termediate arms, as shown in Fig 1. Single microscopic
particles enter the device, one at a time, through the in-
put leg of the first beam splitter and are detected as local-
ized objects as they leave the device through either one of
the two exit legs of the second beam splitter. Similarly,
when the particles are tested in separate experiments as
they leave the first beam splitter, they are detected at
either of its exit arms and never at both. Nonetheless,
the probabilities of these single particles being detected
at either one or the other of the two exit legs of the Mach-
Zender interferometer, as measured in statistical analy-
sis of long sequences of repetitions in which many single
particles are recorded, show a very characteristic peri-

odic dependence on the phase shift ∆̃ introduced by the
length imbalance between the two intermediate arms, see
eq. (3) below, as it would correspond to self-interfering
delocalized wave packets advancing at once through both
intermediate arms.

Elaborated versions of this experiment, including
nested Mach-Zender interferometers, have attracted a lot
of attention in recent years, with several teams reporting
their theoretical analysis and experimental results in a
renewed search for novel clues about the physical mecha-
nisms involved in this mysterious dual behavior [16–25].
Yet, while the quantum formalism describes these exper-
iments as precisely as in the case of a single interferom-
eter, no agreed physically intuitive understanding of the
phenomenon has been reached.

This paper proposes a novel, physically intuitive expla-
nation of the mechanisms involved in these experiments.
The proposal is inspired by recent work that shows how
to bypass the constraint imposed by Bell’s theorem to
build a statistical description of the CHSH-Bell experi-
ment in terms of hidden configurations of the maximally
entangled quantum states of two qubits [26–31], and ex-
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ploits the fact that the probabilities of single particles
leaving the Mach-Zender interferometer through either
one of its two exit legs are formally identical to the prob-
abilities to obtain either equal or opposite outcomes in
the two detectors of a CHSH-Bell experiment. Accord-
ingly, the phase shift introduced by the length imbalance
between the two intermediate arms of the Mach-Zender
interferometer plays a role similar to the relative orienta-
tion between the two measuring devices in the CHSH-Bell
experiment.

We follow this observation and build an explicit sta-
tistical model of hidden configurations for the double-slit
experiment on a Mach-Zender interferometer. The pro-
posed model suggests that while each single particle goes
through the device along only one of the two available
paths, it also modifies the physical properties of the idle
path by spontaneously breaking the group of symmetries
of its vacuum state. That is, according to the proposed
explanation, the vacuum and its symmetries, which are
known to play a crucial role in well-understood physi-
cal phenomena like the Casimir effect [32–34] and other
electromagnetic effects [35–38], might also play a crucial
role in unraveling the centuries-old mysteries about the
double-slit experiment.

The paper is structured as follows. In Section II, we
revisit the standard quantum mechanical description of
the double-slit experiment. Section III summarizes our
statistical model for the Bell-CHSH experiment and its
application to the double-slit experiment. In Section IV,
we draw insights from this model. Importantly, in Sec-
tion V, we propose an experiment to test them. We con-
clude in Section VI with a summary of our findings.

II. THE DOUBLE-SLIT EXPERIMENT ON A
MACH-ZENDER INTERFEROMETER: THE

QUANTUM DESCRIPTION

A Mach-Zender interferometer consists of two beam
splitters coupled one after the other through two imbal-
anced arms, as shown in Fig.1. In the experiment un-
der consideration, microscopic particles (either photons,
electrons, neutrons, or even molecules) enter the device
through the input leg of the first beam splitter, BSin,
and leave it through either one of the two exit legs of the
second beam splitter, BSout, where they are recorded one
by one by either one of the two detectors, DA and DB ,
located at their respective ends.

Thus, the operators describing the corresponding
modes at the input and output legs of the device are
related by the linear transformation(

âout,A
âout,B

)
=

1

2

(
1 1
1 −1

)(
1 0
0 ei(Φ+∆)

)
×(

1 1
1 −1

)(
âin,1
âin,2

)
, (1)

where Φ is a phase that needs to be experimentally cali-
brated and ∆ = 2πL/λ is the phase shift introduced by

Single particle
input

DA

BSout

෨∆

DB

BSin

FIG. 1. Schematic set-up for a Mach-Zender interferometer,
consisting of two splitters connected through two imbalanced
intermediate arms and two detectors located at the two exit
legs of the second splitter.

an additional length imbalance between the two interme-
diate arms relative to the calibrated setting. Hence, for
a particle that enters the device through port #1 of the
first splitter,

⟨â2in,1⟩ = 1− ⟨â2in,2⟩ = 1, (2)

the probabilities that it exits through either one of the
two output legs of the second splitter, #A or #B, are
given, respectively, by pA(B) = ⟨â2out,A(B)⟩. That is,

pA =
1

2

(
1 + cos(∆̃)

)
, pB =

1

2

(
1− cos(∆̃)

)
, (3)

where ∆̃ = Φ +∆.
These probabilities are formally identical to the proba-

bilities predicted by quantum mechanics for either equal
or opposite outcomes at the two detectors in the CHSH-
Bell experiment with two maximally entangled qubits,

with the phase shift ∆̃ introduced by the length imbal-
ance between the intermediate arms of the Mach-Zender
interferometer playing a role analogous to the relative
orientation between the two detectors in the CHSH-Bell
experiment.
In a series of recent papers, we have described an ex-

plicit statistical model that reproduces the predictions of
quantum mechanics for the CHSH-Bell experiment [26–
30] and, hence, it also reproduces the predictions for the
double-slit experiment as summarized by eq.(3). This
paper focuses on the physical interpretation of this sta-
tistical model for the latter experiment.

III. A SIMPLE STATISTICAL MODEL FOR
THE DOUBLE-SLIT EXPERIMENT ON A

MACH-ZENDER INTERFEROMETER

Let us consider for any single particle going through
the Mach-Zender interferometer a space of infinitely
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many possible hidden configurations λ ∈ S distributed
over the unit circle S with a density of probability dis-
tribution

g(λ) =
1

4
|sin(λ)| , λ ∈ [−π, π). (4)

Let us now consider a binary response function given by

R(λ) = sign(λ) · sign(λ′), (5)

where

λ′ = −L(λ; ∆̃) ∈ [−π, π), (6)

with

• If ∆̃ ∈ [0, π),

L(λ; ∆̃) =



q(λ) · arc-cos
(
− cos(∆̃)− cos(λ)− 1

)
,

if − π ≤ λ < ∆̃− π,

q(λ) · arc-cos
(
+cos(∆̃) + cos(λ)− 1

)
,

if ∆̃− π ≤ λ < 0,

q(λ) · arc-cos
(
+cos(∆̃)− cos(λ) + 1

)
,

if 0 ≤ λ < ∆̃,

q(λ) · arc-cos
(
− cos(∆̃) + cos(λ) + 1

)
,

if ∆̃ ≤ λ < +π,

(7)

• If ∆̃ ∈ [−π, 0),

L(λ; ∆̃) =



q(λ) · arc-cos
(
− cos(∆̃) + cos(λ) + 1

)
,

if − π ≤ λ < ∆̃,

q(λ) · arc-cos
(
+cos(∆̃)− cos(λ) + 1

)
,

if ∆̃ ≤ λ < 0,

q(λ) · arc-cos
(
+cos(∆̃) + cos(λ)− 1

)
,

if 0 ≤ λ < ∆̃ + π,

q(λ) · arc-cos
(
− cos(∆̃)− cos(λ)− 1

)
,

if ∆̃ + π ≤ λ < +π,

(8)

and

q(λ) = sign((λ− ∆̃)mod([−π, π))).

Here, the function y = arc-cos(x) is defined in its main
branch, such that y ∈ [0, π] while x ∈ [−1,+1]. This
coordinates transformation implies, in particular, that

λ = −L(λ′; ∆̃), (9)

and, moreover,

dλ g(λ) = dλ′ g(λ′), (10)

so that both coordinates λ and λ′ are distributed with
the same density of probability over the unit circle. As

we will discuss in further detail in the next section, we in-
terpret these two coordinates, λ and λ′, as describing two
phases propagating, respectively, along each of the two
intermediate arms of the Mach-Zender interferometer.
The response function (5) determines whether the par-

ticle shall leave the interferometer through exit leg #A
or through exit leg #B according to the following rule,

exit =

{
#A, if R(λ) = +1,
#B, if R(λ) = −1.

(11)

It is then straightforward to obtain that the respective
probabilities are given by

pA = 1− pB = 1− 2

∫ ∆̃

0

dλ g(λ) =
1

2

(
1 + cos(∆̃)

)
,

(12)
which exactly reproduces the probabilities predicted
by quantum mechanics, eq. (3) for this experiment.
Nonetheless, there are obvious questions regarding the
physical interpretation of this model that need to be ad-
dressed, and we do so in the coming section.

IV. DISCUSSION

One should wonder how can the phase shift ∆̃ associ-
ated with the length imbalance between the two interme-
diate arms of the Mach-Zender interferometer affect the
results of the described experiment, given that the col-
lected evidence clearly shows that every single particle
goes through either one or the other of the two interme-
diate arms, but never through both of them at once [10].
This question might be regarded as the ultimate mystery
about the double-slit experiment.
In the statistical model presented in the previous sec-

tion, the phase shift ∆̃ enters the description of the
experiment through the transformation (6),(9) that re-
lates the pair of angular coordinates λ and λ′, which in
turn determine the exit leg through which the particle
leaves the interferometer according to the response func-
tion defined by (11) and (5). We then advanced that
this pair of coordinates must be interpreted as describ-
ing two phases propagating, respectively, along the two
intermediate arms of the interferometer. In other words,
our model suggests that even though each single particle
propagates along only one of the two available interme-
diate arms, it also polarizes the vacuum state of the
second idle arm. Indeed, if quantum states accept a sta-
tistical description in terms of hidden configurations, the
vacuum state must not be an exception. As noticed in
[39], the vacuum must be understood as a ”dielectric”
medium that can get polarized.
As we noticed in previous papers, where this statistical

model was already discussed in the context of the Bell-
CHSH experiment, the relationship (10) may be associ-
ated with the spontaneous breaking of a phase rotational
symmetry. Here, we interpret it as indicating that this
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symmetry gets broken along both intermediate arms of
the interferometer, the one carrying the particle and the
idle one. In fact, the hidden configurations along the arm
carrying the particle and along the other, idle arm must
both be characterized by the exact ’conserved charges’
(mass and momentum, electric charge, etc, ...) that iden-
tify the particle and the vacuum, respectively. In modern
physics, conserved charges are determined by how physi-
cal objects transform under corresponding symmetry op-
erations. Thus, the hidden configurations describing the
polarization of the vacuum must not carry actual charges
- that is, they must be invariant under the corresponding
symmetry operations - unless the symmetry is sponta-
neously broken.

The role of the vacuum (and its symmetries) in ex-
plaining a wide range of physical phenomena has been
recognized since long ago [32]. For example, breaking
the translational symmetry due to boundary conditions
is responsible for the measurable Casimir forces experi-
enced between two conducting plates facing each other
at very short distances [33, 34]. The effects of boundary
conditions on the symmetries of the quantum vacuum
are also responsible for shifts in the atomic energy lev-
els, changes in the atomic spontaneous emission times,
and modifications in the anomalous magnetic moment of
the electron [35–38]. At a much larger scale, symmetry-
breaking vacuum fluctuations are also widely believed to
have seeded the development of the large-scale cosmo-
logical mass structures of the Universe [40, 41]. Accord-
ing to the discussion presented in this paper, symmetry-
breaking vacuum fluctuations might also play a funda-
mental role in explaining the long-standing mysteries
about the physical mechanisms involved in the double-
slit experiment.

V. AN EXPERIMENTAL TEST

Let us start with the experimental setup described in
Fig.2. A coherent pulse of light enters the device through
the input beam splitter S0, where it is split into two co-
herent pulses of half intensity each. These two pulses
are then headed toward beam splitters S1 and S2, re-
spectively, where they are evenly split again. One pulse
emerging from splitter S1 and one emerging from split-
ter S2 are then fully recombined into a single pulse and
directed to detector D. At the same time, the other two
pulses are brought to interfere with each other at split-
ter Sf . The results of their interference are measured by

detectors DA and DB as a function of the phase shift ∆̃
introduced between the two pulses.

A modified version of the above setup is described in
Fig.3. In this version, a source emits single pairs of co-
herent photons, γ1 and γ2, and sends them toward the
beam splitters S1 and S2, respectively. After them, the
experimental setup is identical to the one discussed in
Fig.2, except for the detectors, which now can measure
incoming single photons and time-correlate their respec-

Source
Beam

1


D DB

S1

S2

Sf

S0 ෨∆

D’

1, ext

1, int

2, ext

2, int

St

FIG. 2. Schematic description of an experiment setup with a
modified Mach-Zender interferometer: a coherent input pulse
is evenly split into two at splitter S0, as it enters the device;
the two emerging pulses are directed to splitters S1 and S2,
respectively, where they are evenly split again; finally, two
of the four pulses, one emerging from each secondary split-
ter, are brought together to interfere at splitter Sf , while the
other two pulses are merged into a single one; the three final
pulses are headed to detectors where they are measured. An
interference pattern is expected at detectors DA and DB as

a function of the phase shift ∆̃ between the two interfering
pulses if they have kept their coherence.

Source

1


D DB

S1

S2

Sf

෨∆

D’

1, ext

1, int

2, ext

2, int

St

FIG. 3. Schematic description of the setup for the proposed
experiment: instead of a coherent pulse split into two, as
described in Fig.2, we consider a source of pairs of coherent
photons, γ1 and γ2, produced simultaneously. In this setup,
the detectors can detect incoming single photons and time-
correlate their arrivals.
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tive measurements.
Let us say we perform a long sequence of repetitions

of this last experiment, with many pairs of twin photons
recorded, and post-select only those events in which one
photon is detected at detector DA while the other photon
is detected at detector D. We shall call these events the
post-selected collection of events.

We may now ask the following question regarding the
post-selected collection of events: do we expect the num-
ber of counters at detectors DA to show a pattern of

interference as a function of a phase imbalance ∆̃ intro-
duced in one of the inner arms, similar to the pattern
expected when coherent pulses were considered? Quan-
tum Mechanics tells us that an interference pattern is
indeed expected, see appendix A. If so, we would have
experimental evidence of the interaction of one of the
photons with the polarized vacuum created by the other
photon.

VI. CONCLUSION

We have presented a statistical model that successfully
reproduces the experimentally confirmed predictions of
Quantum Mechanics for the double-slit experiment on a
Mach-Zender interferometer. The proposed model sug-
gests that even though every single particle goes through
the device along only one of the two available paths, it
also polarizes the vacuum along the second idle path.
Our model thus offers a long-sought physically intuitive
explanation to an experiment which, according to many,
encloses the deepest of all the mysteries about the physi-
cal reality underlying the quantum formalism [9]. An ex-
perimental setup that might test this proposal was also
suggested.
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Appendix A: Quantum mechanical description of
the proposed experimental set-up

In this section, we discuss the quantummechanical pre-
dictions for the experimental set-up discussed in Section
V and shown in Fig.3.

The initial pair of photons γ1, γ2 is described by the
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wavefunction

|Ψ⟩ = |ψ⟩1 ⊗ |ψ⟩2 . (A1)

The notation highlights that the two photons share the
same frequency and polarization but are distinguishable.
For example, they may be produced with orthogonal po-
larizations and then rotated to share the same polariza-
tion after being located in their respective arms of the
optical device.

After passing through the beam splitters S1 and S2

at the entrance of the device, the pair of photons is de-
scribed by the wavefunction

|Ψ′⟩ = 1√
2

(
i |0⟩1,int ⊗ |1⟩1,ext + |1⟩1,int ⊗ |0⟩1,ext

)
⊗

1√
2

(
|0⟩2,ext ⊗ |1⟩2,int + i |1⟩2,ext ⊗ |0⟩2,int

)
(A2)

where the lower labels |⟩i,int and |⟩i,ext, i = 1, 2, denote,

respectively, the internal and external exit legs of each
one of the two splitters according to the notation used
in Fig.3, and |1⟩ and |0⟩ denote, respectively, quantum
states for which the propagating mode along the corre-
sponding leg is either filled or empty.

This wavefunction can be rewritten as

|Ψ′⟩ = 1

2

(
i |0⟩1,int ⊗ |1⟩1,ext ⊗ |0⟩2,ext ⊗ |1⟩2,int
− |0⟩1,int ⊗ |1⟩1,ext ⊗ |1⟩2,ext ⊗ |0⟩2,int
+ |1⟩1,int ⊗ |0⟩1,ext ⊗ |0⟩2,ext ⊗ |1⟩2,int

+ i |1⟩1,int ⊗ |0⟩1,ext ⊗ |1⟩2,ext ⊗ |0⟩2,int
)
. (A3)

After introducing a phase shift ∆̃ along the internal
leg of one of the splitters with respect to its external leg,
we bring the pair of photons into the state

|Ψ′′⟩ = 1

2

(
i |0⟩1,int ⊗ |1⟩1,ext ⊗ |0⟩2,ext ⊗ |1⟩2,int
− |0⟩1,int ⊗ |1⟩1,ext ⊗ |1⟩2,ext ⊗ |0⟩2,int

+ ei∆̃ |1⟩1,int ⊗ |0⟩1,ext ⊗ |0⟩2,ext ⊗ |1⟩2,int
+ i ei∆̃ |1⟩1,int ⊗ |0⟩1,ext ⊗ |1⟩2,ext ⊗ |0⟩2,int

)
. (A4)

This wavefunction can be written as a linear superposi-
tion of three terms:

|Ψ′′⟩ = i√
2
|Ψ′′⟩int,ext −

1

2
|Ψ′′⟩ext,ext +

ei∆̃

2
|Ψ′′⟩int,int

(A5)
where the first term

|Ψ′′⟩int,ext =
1√
2

(
|0⟩1,int ⊗ |1⟩1,ext ⊗ |0⟩2,ext ⊗ |1⟩2,int

+ ei∆̃ |1⟩1,int ⊗ |0⟩1,ext ⊗ |1⟩2,ext ⊗ |0⟩2,int
)
(A6)

describes events in which one of the two photons, either
γ1 or γ2, exits its splitter through the internal arm while
the other photon exits its splitter through the external
arm; the second term

|Ψ′′⟩ext,ext = |0⟩1,int ⊗ |1⟩1,ext ⊗ |1⟩2,ext ⊗ |0⟩2,int
(A7)

describes events in which both photons exit through the
external arms of their respective splitters, so they both
are detected either at detector D or D′; and the third
term

|Ψ′′⟩int,int = |1⟩1,int ⊗ |0⟩1,ext ⊗ |0⟩2,ext ⊗ |1⟩2,int
(A8)

describes events in which both photons exit their
respective splitters through their internal arms, so they
both are detected either at detector DA or DB .

The first term (A6) is the focus of our interest for rea-
sons that will become clear below. Let us rewrite this
term as:

|Ψ′′⟩int,ext =
1√
2
(|HD⟩int ⊗ |D⟩ext + |HD′⟩int ⊗ |D′⟩ext)

(A9)

where

|D⟩ext =
1√
2

(
|1⟩1,ext ⊗ |0⟩2,ext + i |0⟩1,ext ⊗ |1⟩2,ext

)
(A10)

and

|D′⟩ext =
1√
2

(
|1⟩1,ext ⊗ |0⟩2,ext − i |0⟩1,ext ⊗ |1⟩2,ext

)
(A11)

are the orthogonal eigenstates corresponding, respec-
tively, to the photon traveling through the external arms
being detected either at detector D or D′ after going
through the splitter St, while

|HD⟩int =
1√
2

(
|0⟩1,int ⊗ |1⟩2,int − iei∆̃ |1⟩1,int ⊗ |0⟩2,int

)
(A12)

and

|HD′⟩int =
1√
2

(
|0⟩1,int ⊗ |1⟩2,int + iei∆̃ |1⟩1,int ⊗ |0⟩2,int

)
(A13)

are the states upon which the photon traveling through
the internal arms gets projected when the external pho-
ton is detected, respectively, at detector D or D′.
The conditional probabilities for the photon traveling

along the internal arms being detected either at detector
DA or detector DB after going through splitter Sf , given
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that that the photon traveling through the external arms
was detected at detector D are given, respectively, by

pA = |int⟨HD|DA⟩int|
2
=

1

2

(
1 + cos ∆̃

)
(A14)

pB = |int⟨HD|DB⟩int|
2
=

1

2

(
1− cos ∆̃

)
(A15)

where

|DA⟩int =
1√
2

(
|0⟩1,int ⊗ |1⟩2,int − i |1⟩1,int ⊗ |0⟩2,int

)
,

(A16)

|DB⟩int =
1√
2

(
|0⟩1,int ⊗ |1⟩2,int + i |1⟩1,int ⊗ |0⟩2,int

)
,

(A17)

are the corresponding eigenstates for the internal pho-
ton being detected after going through the splitter Sf at
detector DA or detector DB , respectively.

According to eq. (A14), in a long sequence of repeti-
tions of the experiment in which many pairs of photons
are tested, we should observe an interference pattern as

a function of the phase shift ∆̃ in the number of photons
detected at device DA when we post-select those events
in which the other photon is detected at detector D.


