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Abstract

Disasters, both natural and man-made, pose significant challenges to healthcare systems,
particularly in managing blood supply chains effectively. Ensuring an adequate and timely
supply of blood products becomes crucial during these crises to save lives and mitigate the
impact of catastrophic events. This paper develops two-stage and multi-period risk aversion
models for the blood supply chain in disaster management, focusing on mean-CVaR and
worst-case criterion measures. We leverage advanced algorithms based on Benders decom-
position and column-and-row generation techniques to produce practical solution methods
which enable solving large-scale problem instances effectively. Numerical results demonstrate
that these methods not only reduce the computational burden but also significantly enhance
the solver’s ability to explore feasible solutions efficiently. Our computational experiments
show that a coarse approximation of uncertainty is more effective than a fine approximation
and that good preparation enables a more effective response to an emergency. Our find-
ings provide insights for policymakers, healthcare practitioners, and logistics professionals
to improve blood supply chain management strategies in disaster response and preparedness
efforts.

Keywords— Blood supply chain; Disaster management; Risk measurement; Two-stage robust opti-
mization.

1 Introduction

Since the 1950s, both the number and magnitude of disasters triggered by natural hazards have continu-
ously increased, with the number of affected people rising proportionally (Boonmee et al., 2017). In 2023,
339 such disasters were registered by the Emergency Event Database EM-DAT with a massive impact on
the populations: 81,576 people were killed, 277,382 injured, and 76.52 million people affected. Economic
damages from these disasters were estimated at US$295 billion (Beinsure, 2023).

Email addresses: komlanvi-parfait.ametana@u-bordeaux.fr, boris.detienne@u-bordeaux.fr,
francois.clautiaux@u-bordeaux.fr, laurent.facq@u-bordeaux.fr, olga.battaia@kedgebs.com,
mehdi.amiri-aref@kedgebs.com

1



Disasters present unique challenges to blood supply chains that differ significantly from normal op-
erations, including sudden demand surges, infrastructure damage, donor availability issues, and the per-
ishability of blood products (Van Denakker et al., 2023). In the context of disasters like earthquakes,
the blood supply chain plays a crucial role, and studying it is essential for several reasons. Primarily, a
resilient and well-coordinated blood supply chain can save lives and mitigate the impact of disasters, as
the demand for blood often surpasses regular stock due to injuries and trauma. To meet this critical need,
optimizing resource allocation is key—such as determining optimal locations for blood collection centers
and medical facilities, developing models to balance supply and demand while minimizing wastage, and
creating strategies for efficient transportation and distribution in damaged areas. Additionally, blood
products have specific characteristics that require specialized management. Analyzing past disasters and
developing blood supply chain models also enhances overall disaster preparedness (see Asadpour et al.
(2022) for more details).

In this study, we focus on establishing optimal locations for blood collection facilities to minimize
unmet demand. We employ a two-stage, multi-period model to address the problem, considering hospital
blood demand as the uncertain parameter. From a mathematical perspective, demand uncertainty for
rare events like earthquakes is often modeled through a discrete set of blood demand scenarios (Jab-
barzadeh et al., 2014). However, questions remain about the suitability of optimization model under
uncertainty in life-or-death situations. Traditional facility location problems typically prioritize economic
performance indicators, but such criteria may not be ethically appropriate in humanitarian contexts. On
the other hand, their proximity and accessibility to the demand points can ensure more efficient disaster
management operations (UNOCHA, 2018).

To mitigate the potential catastrophic loss of life, we propose an optimization model that integrates
blood collection operations into strategic facility location decisions, aiming to minimize the number of
people left unsaved in affected areas. This study seeks to provide blood collection facility solutions that
aid decision-makers in navigating the uncertainties of post-disaster scenarios. Additionally, this paper
contributes to the broader discussion on ethically appropriate optimization in disaster management by
comparing various risk-averse objective functions and analyzing their impact on the estimated number
of lives saved. Key contributions include:

• A comprehensive evaluation of risk-averse models for the blood supply chain, utilizing mean-
CVaR and worst-case risk measures to address uncertainties.

• Development of a novel mathematical model prioritizing humanitarian goals while balancing supply
chain costs.

• Implementation of advanced decomposition techniques (Benders Decomposition and Column-and-
Constraint Generation) to solve large-scale instances efficiently.

• Comparison of the efficiency of the results obtained with coarse and fine uncertainty approximations
in the studied context.

• Managerial insights on the budget management and on the importance of the preparation phase
for practitioners.

These contributions aim to enhance emergency blood supply chain management, integrating human-
itarian priorities while maintaining economic and operational resilience.

We applied our proposed mathematical model to the city of Paris, France, as a hypothetical case study
for a potential future catastrophic event, highlighting the critical need for an immediate and effective
humanitarian response plan in the region. The analysis identifies population centers and their respective
populations, along with currently available hospitals, as the foundation of the numerical study. Population
data is utilized to estimate potential blood demand and supply, while hospital locations serve as clustering
reference points. The results provide valuable insights for policymakers, healthcare professionals, and
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logistics experts, offering guidance to enhance blood supply chain management strategies in disaster
preparedness and response efforts.

Our study presentation is organized as follows: We analyze the relevant literature in section 2. In
section 3, we formally introduce the considered optimization problem. In section 4, we present different
mathematical models for risk aversion evaluated in this study. We propose advanced methods for solving
these large MILP models in section 5.

We describe the methodology used to compare the models on an out-of-sample set in section 6 and
the procedure used to generate the data in section 6.2. The results are analyzed in section 7. A conclusion
of the study is presented in section 8.

2 Literature review

The specificity of the blood supply chain lies in its complexity and sensitivity, which result from the
critical and vital nature of blood products. Each stage of this chain, from the blood collection from
the donor to its transfusion to the recipient, requires careful management to respect strict regulations
designed to ensure blood products’ safety, quality, and traceability. Its sensitivity also stems from its
dependence on voluntary donors and the need to maintain sufficient stocks to meet demand, especially
in the case of disasters triggered by natural hazards.

2.1 Blood supply chain management

In addressing the dynamic challenges of the blood supply chain during crises such as disasters triggered by
natural hazards and pandemics, it becomes imperative to ensure its flexibility and responsiveness, as high-
lighted by Tirkolaee et al. (2023). In such circumstances, the demand for blood products surges, requiring
swift mobilization of resources and efficient coordination with humanitarian organizations, hospitals, and
emergency services. In practice, the management of the blood supply chain is a complex process includ-
ing several interdependent planning tasks (Meneses et al., 2023) which have to be addressed at strategic,
tactical, and operational decision-making levels (Pirabán et al., 2019).

At the strategic level, the most studied problem concerns strategic network design for the blood supply
chain (Chaiwuttisak et al., 2016; Bruno et al., 2019). At the tactical level, inventory management and
planning are the most frequently considered in the literature (Hemmelmayr et al., 2010; Zahiri et al., 2018;
Rajendran and Ravi Ravindran, 2019; Samani and Hosseini-Motlagh, 2019; Ahmadimanesh et al., 2020).
Shih and Rajendran (2020) developed inventory models for the blood supply chain including hospitals
and blood centers taking into account the platelet demand and supply uncertainty while considering two
types of demand at the blood center: regular demand from the hospitals and the emergency demand when
hospitals experience a shortage. Zhao et al. (2021) compared centralized and decentralized strategies for
inventory management in the blood supply chain amid fluctuations in supply and demand. Finally, at
the operational level, the response to the disaster is managed. A more detailed description of different
planning levels and corresponding modeling approaches can be found in two recent comprehensive reviews
of optimization models for blood supply chain management published by Pirabán et al. (2019) and
Meneses et al. (2023). In the following, we focus on the studies considering the uncertainty in the design
of the blood supply chain.

2.2 Blood supply chain under uncertainty

Jabbarzadeh et al. (2014) pioneered work on the emergency blood supply chain, studying the case of
an earthquake. In their work, they used a solution robustness and model robustness approach, which is
a way of looking at robustness introduced by Mulvey and Vanderbei (1995). A solution is said to be
solution robust if the value of the objective function remains close to the optimal value associated with
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each scenario (as obtained when solving the deterministic model with one scenario). A solution is said
to be model robust if feasible for any scenario. The authors proposed a two-stage robust model where
the decisions were related to determining the number and location of permanent and temporary blood
collection facilities, the allocation of these facilities to blood donors and the blood inventory levels at
each period. The planning horizon was divided into several periods characterized by its own decisions.
The objective was to minimize the expectation of the network cost plus a factor times the network cost
variance corresponding to the solution robustness described below. Another objective was to minimize
a factor (penalty) multiplied by the expectation of the unsatisfied demand corresponding to the model
robustness. The authors applied their model to an earthquake in Iran.

Fahimnia et al. (2017) presented a stochastic mathematical model for designing a supply chain to
minimize total costs and maximize suppliers’ social and environmental scores in the face of disruptions.
The decisions concerned the determination of the number of permanent and temporary blood collection
facilities, the quantity of blood to be collected and transported, the blood inventory levels, and the
quantity of blood transported between facilities. Uncertain parameters in the study included the demand
for blood, the supply of donors, and the fixed and operational costs associated with the blood supply
chain.

Zahiri and Pishvaee (2017) developed a bi-objective mathematical programming model for optimizing
the blood supply chain network to minimize its total cost and maximize demand satisfaction according
to blood group compatibility. The decisions concerned the location of temporary and permanent blood
collection sites, selecting blood testing laboratories, and assigning donors and blood products to demand
zones with perish time considerations. The mathematical model was based on a robust possibilistic
programming approach to address uncertain input parameters such as moving facilities, locating centers,
establishing labs, transportation costs, blood demand, perishability, and blood group compatibility.

Ghatreh Samani et al. (2018) proposed a tri-objective model using a possibilistic programming ap-
proach while considering uncertainty on all the parameters and the perishability of blood products. They
took into account in their model the establishment of blood collection facilities and regional blood centers,
and the assignment between the different facilities of the network. They manage also the flow of blood
in the network. The objective function is composed of the economic cost, the maximum unmet demand,
and the time span between blood production in regional blood centers and demand nodes.

Salehi et al. (2019) studied a two-stage multi-period stochastic model, considering the uncertainty
about blood demand and the potential transfusion of different blood groups based on medical needs. The
objective was to minimize the total costs associated with the blood supply chain network, considering the
average and the cost variability. The decision-making process integrated strategic and tactical decisions
such as the location of temporary and permanent blood collection facilities, the capacity of temporary
blood collection facilities, assignment of donors to facilities, inventory, and backlogging.

Fazli-Khalaf et al. (2019) considered a stochastic tri-objective model based on possibilistic linear
programming tackles parameters such as blood demand in hospitals, transportation time, and laboratory
testing reliability. The first objective was to minimize the total supply chain costs, the second targeted
the minimization of total transportation time between facilities, and the third aimed to maximize the
total reliability of the tested blood at the laboratories. The decisions in the proposed mathematical model
included the location of temporary and permanent blood collection facilities and testing laboratories, the
distribution of blood units to hospitals, and the selection of transport modes for blood delivery.

Shih and Rajendran (2020) proposed a stochastic mixed-integer linear programming model for the
blood supply chain to manage blood supply under uncertainty in demand and supply. The decisions
included the ordering policy for platelet units by hospitals, the number of platelet units procured by the
blood center, the number of units shipped to hospitals, and the inventory and shortage of platelet units
at hospitals. The objective was to minimize the total cost incurred over the blood supply chain.

Khalilpourazari and Hashemi Doulabi (2023) introduced a two-stage multi-period stochastic model
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based on fuzzy programming for designing an emergency blood supply chain network, emphasizing the
potential impact of natural disasters like earthquakes. The model considered uncertain parameters related
to blood demand, derivatives, and medical transfusions. The decisions included strategic preparedness
and operational response, as in the papers cited above, addressing issues like the location of temporary
and permanent blood collection facilities, the capacity of temporary blood collection facilities, assign-
ment of donors to facilities, selection of transport modes for blood delivery, procurement, inventory, and
backlogging. The objective was to minimize the supply chain’s total costs and reduce transportation
time.

In the literature, uncertainty has been modeled in two ways. The first is scenario modeling, where
several possible scenarios are developed to form a discrete set of uncertainties. The second approach is
possibility distribution, a concept used in fuzzy logic and possibilistic modeling to represent uncertainty
differently from classical probability distributions. Whereas probability distributions quantify the likeli-
hood of various events occurring, possibility distributions measure the possibility of an event occurring.
Models based on a discrete set of uncertainties are two-stage adaptive models with variables that can be
adapted to the scenarios. In contrast, models based on possibility distributions are static, deterministic
models based on fuzzy programming. To guarantee the feasibility of solutions, they use the random
constraint approach coupled with a possibility programming measure that evaluates the certainty degree
(Inuiguchi and Ramík, 2000).

Risk measures have been used in objective functions to guide the direction of optimization and to
evaluate models. A risk measure is a quantitative indicator that assesses the uncertainty or variability
associated with a decision. It enables the estimation of potential losses and assists in management and
planning decisions. A measure is risk-neutral if it does not give any particular preference to the level of
risk associated with different options. In other words, it considers all sources of risk equally and frequently
considering the average value of the objective function over all scenarios. A risk-averse measure reflects an
aversion to risk, indicating a preference for less risky situations. A less risky situation refers to a context
or circumstances where uncertainty and the probability of loss are minimized. Thus, in the previous
studies, primarily risk-neutral measures (mean value of the objective function) were used in models based
on a discrete uncertainty set or fuzzy programming, except Zahiri and Pishvaee (2017) and Salehi et al.
(2019), which used a risk-averse measure to evaluate the unsatisfied demand and the supply chain cost,
respectively. The first minimizes the unsatisfied demand for the highest possible value of uncertainty.
The second minimizes the maximum regret, where the regret of a scenario is the difference between the
cost of the solution found while considering all scenarios and the cost of the solution of the deterministic
model with the considered scenario.

For more on this subject, refer to the work of Asadpour et al. (2022), which presents a comprehensive
literature review on the blood supply chain in a disaster context. Their study thoroughly examines the
various layers involved in the blood supply chain, the different objectives studied, the solution methods
used, and the types of uncertainty considered. They also present the different features that have been
analyzed and suggest future research perspectives.

The comparison of our study with the previous research is summarized in Table 1.
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Articles Objective Risk Uncer- Solution Method
Cost Demand tainty

Jabbarzadeh et al. (2014) Yes No neutral scenarios B&B
Fahimnia et al. (2017) Yes No neutral scenarios LR

Zahiri and Pishvaee (2017) Yes Yes averse fuzzy number B&B
Ghatreh Samani et al. (2018) Yes Yes averse fuzzy number B&B

Salehi et al. (2019) Yes No averse scenarios B&C
Fazli-Khalaf et al. (2019) Yes No neutral fuzzy numbers B&B

Shih and Rajendran (2020) Yes No neutral scenarios B&B
Khalilpourazari and Hashemi Doulabi (2023) Yes No neutral fuzzy numbers B&B

This research No Yes averse scenarios B&B, CCG, Benders
B&B : Branch and Bound; B&C : Branch and Cut; CCG : Column and Constraint Generation; LR : Lagrangian relaxation; He:Heuristic/Meta-heuristic

Table 1: Comparison of the present and previous studies in Blood Supply Chain

As can be seen from the literature review, such well-known risk-averse measures as the min-max
criterion (worst case optimization) and the combination of Conditional Value at Risk (CVaR) with the
mean have not been considered yet in the blood supply chain design. The min-max robust optimization
involves optimizing the worst-case objective over an uncertainty set. However, min-max models are
often criticized for their over-conservative nature, favoring an excessively cautious approach. In contrast,
CVaR, a risk measure widely used in finance, represents the average loss above a certain risk level. In
our study, we conduct an original evaluation of these risk-averse measures to advise decision-makers on
which one best satisfies the demand for blood in disaster management. Given the original contribution
of this analysis within the context of blood supply chains, we subsequently examine the application of
risk aversion measures as utilized in other contexts within the literature.

2.3 Risk-averse measures

Two risk-averse measures are commonly employed in optimization under uncertainty: the robust worst
case (min-max) and mean-CVaR combination of CVaR with the expected value. As with the solution
robustness and model robustness approaches, these risk-averse measures provide solutions that are feasible
in any scenario (model robustness) but do not use the same selection criteria in the set of feasible solutions.
In particular, the min-max criterion is oriented to minimize the losses in the worst case over an uncertainty
set.

Ni et al. (2018) proposed a min-max robust model for optimizing facility location, emergency inven-
tory pre-positioning, and relief delivery operations in a disaster relief network. The model considered
uncertainties in demands, usable proportions of pre-positioned inventories, and road link capacities. The
objective was to minimize the first- and worst-case second-stage costs among all possible realizations of
the uncertain parameters falling into the uncertainty set. A case study of the Yushu earthquake was used
to demonstrate the application and advantages of the proposed model.

Chen et al. (2022) proposed a min-max robust optimization framework for energy management in
combined cooling, heating, and power systems. The authors established an integrated demand response
(IDR) model for day-ahead scheduling and intra-day real-time regulation, focusing on uncertainties in
renewable energy output and electric, cooling, and heating load. The two-stage robust scheduling opti-
mization model incorporated the cost and constraints of IDR resources, aiming to enhance the system’s
resilience to uncertain risks and improve the economy and self-sufficiency of micro-energy grids.

Najafi et al. (2022) presented a novel linear max–min–max robust optimization tool for operators in
multi-energy systems. This tool accounted for electricity market prices and wind generation uncertain-
ties, incorporating a power-to-gas storage system. The study introduced an uncertainty budget model,
enhancing system robustness against various forecasting uncertainties. The study’s primary objective was
to minimize the total operational cost of procuring energy carriers while meeting short-term demands
through a robust optimization model. This approach was designed to ensure feasibility under various
uncertainty scenarios and provide optimal solutions for worst-case parameter realizations.
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Zhang et al. (2023) addressed optimizing relief kit assembly and distribution in post-disaster scenarios
using a min-max robust model. The key objectives were to minimize total costs and maximize demand
satisfaction, considering uncertainties in both demand and travel time. The proposed model encompassed
facility location and relief kit assembly in the first stage, followed by relief kit distribution in the second
stage. The study validated the model through computational experiments and a case study based on
earthquakes in Yunnan Province, demonstrating its effectiveness in achieving cost efficiency and meeting
demand in post-disaster relief operations.

Nevertheless, min-max models frequently draw criticism for their excessively conservative nature,
often adopting an overly cautious approach. CVaR exhibits less conservatism than the worst-case ap-
proach, accounting for risks in extreme scenarios. Widely applied across various studies, CVaR proves
to be more pertinent than conventional risk measures like expectation in certain contexts.

Noyan et al. (2022) studied risk-averse two-stage stochastic programming with CVaR as the risk
measure for disaster management and developed decomposition algorithms for solving such problems.
The model focused on determining response facility locations and inventory levels of relief supplies amidst
demand and damage level uncertainties.

Yu et al. (2017) addressed an uncapacitated facility location problem incorporating random facility
disruptions with independent and correlated disruption scenarios. The objective was to minimize the
expected costs, including setup, day-to-day transportation, and penalties. CVaR and absolute-semi-
deviation risk measures were used to express the associated risks. As a result, the model was designed to
control transportation cost risks under facility disruptions while optimizing facility location and customer
assignments. Numerical results showcased the superiority of risk-averse models in enhancing reliability
over classic risk-neutral counterparts.

The CVaR risk measure can be found in many other works on various issues (see, for example Pisciella
et al. (2016); Bushaj et al. (2022); Afsari et al. (2024) ).

In this study, we opt for scenario-based uncertainty modeling and implement the CVaR and worst-
case risk measures for the supply chain design problem described in the next section. As shown in Table 2,
our contribution involves integrating the routing problem with the specificities of the blood supply chain
(donor supply) while focusing on the humanitarian objective. We also used decomposition algorithms to
improve the handling of large-scale instances.

Articles Objective Worst CVaR Disaster BSC Facility Routing Solution Method
Eco. Hum. Case

Ni et al. (2018) Yes No Yes No Yes No Yes No Benders
Chen et al. (2022) Yes No Yes No No No No No CCG
Najafi et al. (2022) Yes No Yes No No No No No B&B
Zhang et al. (2023) Yes No Yes No Yes No Yes No B&B
Noyan et al. (2022) Yes No No Yes Yes No Yes No B&C

Yu et al. (2017) Yes No No Yes Yes No Yes No B&C, LD
This research No Yes Yes Yes Yes Yes Yes Yes B&B, CCG, Benders

B&B : Branch and Bound; B&C : Branch and Cut; CCG : Column and Constraint Generation; LD : Lagrangian decomposition

Table 2: Comparison of the present and previous studies that used risk-averse measure

3 Problem description

This work focuses on developing a strategic plan for managing blood supply-chain logistics during natural
disasters, particularly earthquakes. The primary objective of this supply chain is to transport blood from
donors to hospitals where patients require blood transfusions. Blood is collected from two types of
facilities: fixed collection centers and mobile collection facilities. Fixed collection centers operate within
a specific location and collect blood from nearby donors, while mobile collection facilities can be moved to
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different places during the response phase. Since the number of patients requiring treatment is unknown
until the disaster occurs, we employ a two-stage approach. In the preparedness phase, we set up permanent
blood collection centers in specific locations and created initial blood stocks in hospitals. In the response
phase, hospitals receive patients who require treatment on an ongoing basis. We decide where to dispatch
mobile collection facilities and the amount of blood each facility delivers to each hospital for each period.

In the remainder, we make the following assumptions:

• We consider a two-stage setting where the uncertain parameters related to all periods are revealed
simultaneously. Lead time for the order processing is assumed to be negligible.

• We do not consider individual donors but donor groups, each associated with a possible location
and a deterministic blood supply. A single blood type is considered.

• We assume that hospitals and blood collection centers have limited storage capacity. The perishable
aspect of blood is not taken into account.

• The Health Insurance Portability and Accountability Act (HIPAA) regulations imply that each
hospital can receive blood only from a designated blood center and cannot share or procure blood
from other hospitals.

To define the problem, we model the time horizon T as a set of T`1 discrete periods t0, . . . , T u, where
the preparedness phase occurs at period 0, and the response phase takes place during T ˚ :“ T zt0u. We
denote by H the set of hospitals where patients are treated and by I and J the set of donor groups and
the set of potential locations for fixed blood collection facilities, respectively. We also define E Ď I ˆ J
as the set of pairs pi, jq such that blood of donor group i can be collected at location j (i.e., the two
locations are close enough).

During the preparedness phase, two types of costs are considered: fj , the cost of opening a fixed
blood collection site at j P J , and ch, the cost of maintaining each unit of blood in stock at hospital
h P H during the preparedness.

During the response phase, the cost of collecting one unit of blood from donor group i P I at a (fixed
or mobile) facility located at j P J is oi,j . Additionally, aj,h is the transport cost from blood collection
site j P J to hospital h P H and ch is the cost of storing one unit of blood at hospital h P H during
one time period. Finally, moving one mobile collection facility from location j P J to another location
j1 P J , at the beginning of period t P T ˚, costs bj,j1,t. The deterministic parameters of the problem are
summarized in Table 3.
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Symbol Value
H set of hospitals
I set of donor groups
J set of potential locations for blood collection facilities
Di,j , Di,h distance between locations i P I and j P J or h P H
d maximum acceptable distance for assigning a donor group to a location
E set of pairs pi, jq such that j P J can collect blood from i P I, E “ tpi, jq P I ˆ J : Di,j ď du

T the latest response period
T time horizon (T “ t0, ..., T u)
ρi supply of donor group i P I
γh capacity for blood inventory of hospital h P H
γ̄h maximum blood inventory before the response phase of hospital h P H
β capacity for blood inventory of each fixed collection facility
δ capacity for blood inventory of each mobile collection facility
ch unit blood storage cost at h P H during the response phase
ch unit blood storage cost at h P H before the response phase
bj,j1,t cost of moving a mobile collection facility from j P J to j1 P J at the beginning of t P T ˚

fj cost of opening a fixed blood collection facility at j P J
aj,h blood unit transport cost from j P J to h P H
oi,j blood unit collection cost from i P I at j P J
B available budget

Table 3: Deterministic parameters

We consider the quantity of blood needed in hospitals to make treatments as uncertain input data
of our problem. A realization of the uncertain parameters is a vector ξ in R|H|ˆ|T ˚

|

` , where ξh,t is the
quantity of blood needed during period t P T ˚ to treat patients at hospital h P H under realisation ξ.
Let Ξ be the set of all possible realizations for the uncertain parameters. The uncertain parameters of
the problem are summarized in Table 4.

Symbol Meaning
Ξ Uncertainty set
ξ P Ξ realisation of the uncertainty
ξh,t blood demand for hospital h at period t in uncertainty realization ξ

Table 4: Uncertain data

We will now introduce the problem we are considering using the abovementioned notations. In the
preparedness phase, we decide on the location of the fixed collection facilities and the amount of initial
bloodstock in each hospital before the demand for blood is known. The initial stock at each hospital h is
limited to γ̄h. The total cost of preparedness comprises the cost of the opened fixed collection facilities
and the cost of maintaining the initial stock at hospitals.

In the response phase, which begins once the blood demand ξ is revealed, we determine the location
of each mobile collection facility at each period, the assignment of donor groups to collection facilities,
the quantity of blood to collect from donors, and the quantity of blood to send to each hospital. The
capacity γh of each hospital h P H to store blood must not be exceeded at any time. Additionally, each
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fixed (resp. mobile) facility cannot collect more blood than its capacity β (resp. δ). Donor group i P I
can give blood at any facility located at site j P J if pi, jq P E . The total amount of blood collected
from donor group i during the entire response phase must not exceed its supply ρi. Finally, at most one
collection facility can be assigned to location j P J during a period.

The cost incurred by the response phase is related to the movements of mobile collection facilities,
blood collection and transportation costs, and the maintenance of the stocks. The total cost of the network
and its operation, including preparation and response costs, must not exceed the available budget of B.

The objective of this optimization problem is to minimize the unfulfilled blood demand during the
response period T ˚. This is a stochastic problem: the evaluation of a design solution depends on the
realized uncertain parameter ξ P Ξ. The next section discusses different risk measures and the associated
mathematical programming models.

4 Mathematical programming models

In this section, we discuss several mathematical programming models that are designed to solve the blood
supply chain design problem. Specifically, we present a model that minimizes a risk measure, a robust
model, and a model from the literature. We begin by presenting in section 4.1 modeling blocks for the
preparedness and response phases common to all our models. To account for the stochastic nature of the
problem, we then provide in section 4.2 three two-stage models for specific variants of our problem under
uncertainty.

4.1 Basic modeling blocks

4.1.1 The preparedness phase

Decisions in the preparation phase are modeled by variables x and s̄:

• for each location j P J , the binary variable xj is equal to 1 if a fixed collection facility is built at
j, and 0 otherwise.

• for each hospital h P H, s̄h P R` represents the initial blood supply in h. It is limited to s̄h ď γ̄h,
h P H.

In the following, we denote by X the set of valid decisions from the preparation phase, i.e., X “

tpx, s̄q P t0, 1u|J | ˆ R|H|

` : s̄h ď γ̄h,@h P Hu.

4.1.2 The response phase

The response phase problem is parameterized by the decisions px, s̄q made in the preparedness phase and
by the random realization ξ P Ξ. We denote the value of the associated optimal response as Qpx, s̄, ξq.
To manage the mobile collection facilities and blood flow in the response phase, we use four types of
variables:

• The binary variable yj,j1,t is equal to 1 if and only if a mobile blood collection facility located at
j P J at the end of period t´ 1 moves to location j1 P J and is ready to serve at period t ą 1. For
the special case of t “ 1, we set yj,j1,1 “ 0 for j1 ‰ j, while variable yj,j,1 is equal to 1 if and only
if a mobile facility is present in j at the first period. Only those facilities present at some location
during the first time can be used in the rest of the response phase.

• The real variable qi,j,h,t P R` defines the amount of blood to be collected at time t from donor
group i P I at location j P J , for pi, jq P E , to supply hospital h P H.

• The real variable sh,t P R` defines the amount of blood stored in hospital h P H in period t.

• The real variable θh,t P R` defines the unsatisfied blood demand for hospital h P H in period t.
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Given a first-stage solution px, s̄q P X and a specific ξ P Ξ, the response phase problem is represented
by equations (1)-(13).

Qpx, s̄, ξq :“ min
ÿ

tPT ˚

ÿ

hPH
θh,t (1)

The objective function (1) minimizes the unsatisfied demand during the response phase, where θh,t

represents the blood shortage at hospital h P H in period t P T ˚.

ÿ

jPJ
fjxj `

ÿ

hPH
chsh`

ÿ

tPT ˚

¨

˝

ÿ

jPJ

ÿ

j1PJ
bj,j1,tyj,j1,t`

ÿ

hPH
pchsh,t`

ÿ

pi,jqPE

paj,h ` oi,jqqi,j,h,tq

˛

‚ď B (2)

Constraint (2) ensures that the total network costs (facility installation, initial storage, mobile facility
movement, hospital storage, and blood transportation) do not exceed the available budget B.

xj `
ÿ

j1PJ
yj1,j,t ď 1 @j P J , t P T ˚ (3)

Constraints (3) specify that only one collection facility (fixed or mobile) can be present at a given
location at a given time.

ÿ

j1PJ
yj1,j,t´1 “

ÿ

j1PJ
yj,j1,t @j P J , t P T ˚zt1u (4)

Constraints (4) ensure the continuity of mobile collection facility movement: a mobile facility can
leave location j at the end of period t only if it was present there during that period.

ÿ

iPI:
pi,jqPE

ÿ

hPH
qi,j,h,t ď βxj `

ÿ

j1PJ
δyj1,j,t @j P J , t P T ˚ (5)

Constraints (5) limit the amount of blood collected at a facility in each period to its capacity, which
depends on the type of facility (fixed or mobile).

ÿ

jPJ :
pi,jqPE

ÿ

hPH

ÿ

tPT ˚

qi,j,h,t ď ρi @i P I (6)

Constraints (6) ensure that the maximum blood supply for each donor group is not exceeded.

ÿ

pi,jqPE

qi,j,h,1 ` sh ` θh,1 “ sh,1 ` ξh,1 @h P H (7)

Constraints (7) guarantee the conservation of blood flows in hospitals for the first period.

ÿ

pi,jqPE

qi,j,h,t ` sh,t´1 ` θh,t “ sh,t ` ξh,t @h P H, t P T ˚zt1u (8)

Constraints (8) guarantee the conservation of blood flows in hospitals for subsequent periods.

sh,t ď γh @h P H, t P T (9)
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Constraints (9) ensure that the blood storage capacity in hospitals is not exceeded.

yj,j1,t P t0, 1u @pj, j1q P J ˆ J , t P T ˚ (10)

qi,j,h,t P R` @pi, jq P E , h P H, t P T ˚ (11)

sh,t P R` @h P H, t P T ˚ (12)

θh,t P R` @h P H, t P T ˚ (13)

The domains of variables in the response phase are defined by constraints (10)-(13).

4.2 Discrete scenario-based two-stage models

We first present the general problem considered.

4.2.1 General mathematical model

Our focus is on minimizing the impact of the disaster on the population’s chances of surviving in good
health, given a financial constraint dictated beforehand by exogenous considerations. Since human lives
are at stake, we employ a risk-averse strategy. As mentioned in Section 2, the model developed by
Jabbarzadeh et al. (2014) optimizes a linear combination of the average unserved demand (through
model robustness) and the average and variance of the economic cost (via solution robustness). Hence,
this approach is risk-neutral regarding humanitarian considerations: it does not differentiate between a
solution that performs well across all scenarios and one that performs exceptionally in some cases but
could result in numerous casualties in others. Also, the risk-averse component of the objective function
employed for the economic criterion does not constitute a coherent risk measure in the sense of Artzner
et al. (1999). Indeed, it does not satisfy the monotonicity property: a solution with small variability in
the cost might be preferred to another solution whose cost is smaller in all scenarios and possesses larger
variability.

We elected the conditional value-at-risk as our preferred risk measure to model our aversion to
humanitarian risk. Given a probability threshold α P p0, 1q, the conditional value at risk α of a random
variable X can be intuitively interpreted as the expected value of X in the 100p1´αq% largest outcomes1.
Formally, the conditional value-at-risk is defined as:

CVaRαpXq “ inf
ηPR

"

η `
1

1´ αEωrX ´ ηs`q

*

.

Besides, CVaRpossesses nice theoretical properties, as its objective satisfies the axioms of a coherent
risk measure. Additionally, it has favorable computational properties, as a linear formulation of the model
is readily available. However, optimizing CVaRonly would completely discard the most favorable out-
comes from the evaluation of preparedness solutions, leading to potentially severely suboptimal strategies
in many scenarios. To mitigate this undesirable effect, we combine CVaRwith the expected value of the
unserved demand over all the scenarios with the help of a real weight λ P r0, 1s.

Hence, the general mathematical model can be cast as:

(MCVaR‹) : min p1´ λqEξPΞ rQppx, s̄q, ξqs ` λCVaRα,ξPΞ rQppx, s̄q, ξqqs (14)

s.t. px, s̄q P X (15)

However, this general model remains intractable in practice. In the following, we propose several
approximate models with different balances between the model’s accuracy and the computational effort
required to solve it. The computationally tractable models are based on sampling a finite family pξω :

1This interpretation holds for continuous random variables but can be inaccurate in the case of discrete random
variables. For more details, we refer to Rockafellar and Uryasev (2002); Schultz and Tiedemann (2006).
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ω P Ωq of scenarios from Ξ, where Ω is the set of scenario indices. The probability of scenario ω P Ω
is denoted by pω. Section 4.2.2 presents models based on the straightforward application of this idea.
Section 4.2.3 introduces a model with a different objective function, which accommodates a larger number
of scenarios and allows the computation of near-optimal solutions to this proxy problem with a larger
sample size. Finally, Section 4.2.4 recalls the model proposed in Jabbarzadeh et al. (2014), which we
include for comparison purposes.

4.2.2 Mean-CVaR models

Model (MCVaR) is the sampling-based approximation of (MCVaR‹). We derive a mixed-integer linear
programming (MILP) formulation using the classical linear formulation of CVaR, proven valid for discrete
random variables by Rockafellar and Uryasev (2002) and independently proven to be valid in the context
of two-stage stochastic optimization with mixed-integer recourse by Schultz and Tiedemann (2006) and
Noyan (2012). To this end, we introduce new variables η P R and vω P R` for each ω P Ω. Given a risk
threshold α P p0, 1q and a weight λ P r0, 1s, we obtain:

(MCVaR) : min p1´ λq
ÿ

ωPΩ
pωQpx, s̄, ξωq ` λ

˜

η `
1

1´ α
ÿ

ωPΩ
pωv

ω

¸

(16)

s.t. px, s̄q P X (17)

η P R (18)

vω ě Qpx, s̄, ξωq ´ η @ω P Ω (19)

vω ě 0 @ω P Ω (20)

The objective function (16) minimizes a convex combination of the expected unmet demand and the
CVaRα of the unmet demand, and Constraints (19) and (20) allow the linearization of CVaR. The MILP
formulation is obtained by writing Qpx, s̄, ξωq using a block of second-stage variables and constraints of
the form (1)-(13) for each ω P Ω.

The size of (MCVaR) grows linearly with |Ω|, and solving (MCVaR) is usually computationally
challenging when a large number of scenarios is considered. That is why we introduce another ap-
proximation of (MCVaR‹) obtained by the linear relaxation of the second-stage problem. Specifically,
model (MCVaR) is defined by relaxing the integrality in Constraints (10), in each scenario block.
This considerably reduces the number of binary variables in the model and makes it amenable to linear
programming-based decomposition methods (see Section 5).

4.2.3 Robust worst-case model

As the number of scenarios included in Ω grows, the (MCVaR) model becomes more challenging to solve.
In this section, we propose another model whose size also grows linearly with |Ω|, but tends to be less
difficult to solve in practice.

Robust optimization finds solutions that maintain their effectiveness even in adverse situations. In
other words, this approach aims to solve models that perform well despite unfavorable scenarios, thereby
enhancing the reliability of the solutions. The primary objective is to minimize the sensitivity to distur-
bances and ensure acceptable performance even in critical circumstances. The robust two-stage model
we propose employs a worst-case approach consistent with this paradigm. The objective function follows
a min-max-min logic, where the outer min operates on the first-stage variables, the inner min minimizes
the value of the recourse objective function, and the max identifies the worst-case scenario for the selected
first-stage solution.

min
px,s̄qPX

max
ωPΩ

Qpx, s̄, ξωq (21)

Our worst-case solution approaches are based on the following equivalent model, which yields an MILP
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model when Qpx, s̄, ξωq is replaced with its MILP expression (1)-(13):

(Worst-Case) : min z (22)

s.t. px, s̄q P X (23)

z ě Qpx, s̄, ξωq @ω P Ω (24)

z P R (25)

The epigraph variable z P R equals the worst-case recourse cost at optimality thanks to constraints (24).
The objective (22) is to minimize the maximum value of the possible recourse to the first-stage solution
(23).

4.2.4 The model of Jabbarzadeh et al. (2014)

We rewrite the model proposed in Jabbarzadeh et al. (2014) using the same variables as defined in
Section 4.1, duplicating the recourse variables s,y, q and θ for each ω P Ω. We also use some additional
notation and variables: the binary variable kω

i,j,t is equal to 1 if the donors of group i P I are assigned
to the collection facility present in j P J in period t P T ˚, under realization ω P Ω. As proposed
by Yu and Li (2000), the Average Absolute Deviation of the economic cost is computed to assess its
variability. They suggest using non-negative variables Θω P R`, ω P Ω to make this term linear. For the
sake of conciseness, we denote by ψpx, s̄,yω,kω, sω, qωq the cost of the policy px, s̄,yω,kω, sω, qωq under
realization ξω, ω P Ω:

ψpx, s̄,yω,kω, sω, qωq :“

ÿ

jPJ
fjxj `

ÿ

hPH
chsh `

ÿ

tPT ˚

»

–

ÿ

jPJ

ÿ

j1PJ
bj,j1,ty

ω
j,j1,t `

ÿ

hPH
chs

ω
h,t `

ÿ

hPH

ÿ

pi,jqPE

paj,h ` oi,jqq
ω
i,j,h,t

fi

fl

In constraints (40), Mω
i,j,h,t :“ mintρi,maxtβ, δuu is a constant parameter that is sufficiently large

to ensure that kω
i,j,t is equal to one whenever qω

i,j,h,t ą 0 for some h P H, while not discarding any
feasible value of qω

i,j,h,t. In objective function (26), the first and second terms minimize the mean and
variability of the cost, respectively; this corresponds to the concept of solution robustness. The third
term minimizes the average unsatisfied demand; this corresponds to the idea of model robustness. The
penalty weight Γ P R` for not meeting the demand for blood is used to explore the trade-off between the
solution robustness and the model robustness.

pJq : min
ÿ

ωPΩ
pω

«

ψpx, s̄,yω,kω, sω, qωq ´
ÿ

ω1PΩ
pω1ψpx, s̄,yω1

,kω1

, sω1

, qω1

q ` 2Θω

ff

`
ÿ

ωPΩ
pωψpx, s̄,y

ω,kω, sω, qωq ` Γ
ÿ

ωPΩ

ÿ

hPH

ÿ

tPT ˚

pωθ
ω
h,t (26)

s.t xj `
ÿ

j1PJ
yω

j1,j,t ď 1 @j P J , t P T ˚, ω P Ω (27)

ÿ

iPI

ÿ

hPH
qω

i,j,h,t ď βxj `
ÿ

j1PJ
δyω

j1,j,t @j P J , t P T ˚, ω P Ω (28)

ÿ

jPJ

ÿ

hPH

ÿ

tPT ˚

qω
i,j,h,t ď ρi @i P I, ω P Ω (29)

ÿ

iPI

ÿ

jPJ
qω

i,j,h,1 ` sh ` θ
ω
h,1 “ sω

h,1 ` ξ
ω
h,1 @h P H, ω P Ω (30)

ÿ

iPI

ÿ

jPJ
qω

i,j,h,t ` s
ω
h,t´1 ` θ

ω
h,t “ sω

h,t ` ξ
ω
h,t @h P H, t P T ˚zt1u, ω P Ω (31)

sω
h,t ď γh @h P H, t P T , ω P Ω (32)

yω
j,j1,t P t0, 1u @pj, j1q P J ˆ J , t P T ˚, ω P Ω (33)

qω
i,j,h,t P R` @i P I, j P J , h P H, t P T ˚, ω P Ω (34)
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sω
h,t P R` @h P H, t P T ˚, ω P Ω (35)

θω
h,t P R` @h P H, t P T ˚, ω P Ω (36)

ÿ

j1PJ
yω

j1,j,t´1 ě
ÿ

j1PJ
yω

j,j1,t @j P J , t P T ˚zt1u, ω P Ω (37)

kω
i,j,t ď xj `

ÿ

j1PJ
yω

j1,j,t @i P I, j P J , t P T ˚, ω P Ω (38)

Di,jk
ω
i,j,t ď d @pi, jq P E , t P T ˚, ω P Ω (39)

qω
i,j,h,t ďMω

i,j,h,tk
ω
i,j,t @i P I, j P J , h P H, t P T ˚, ω P Ω (40)

ψpx, s̄,yω,kω, sω, qωq

´
ÿ

ω1PΩ
pω1ψpx, s̄,yω1

,kω1

, sω1

, qω1

q `Θω ě 0 @ω P Ω (41)

kω
i,j,t P t0, 1u @i P I, j P J , t P T ˚, ω P Ω (42)

Θω P R` @ω P Ω (43)

Apart from the objective function, there are a few noticeable differences between the model of Jab-
barzadeh et al. (2014) and the models we developed for this study. First, Constraint (37), which models
the path of mobile collection facilities, ensures that a mobile facility leaves one location for another only
if it was there in the previous period. Using an inequality allows for solutions where the number of
mobile collection facilities decreases over time. Considering that the cost of keeping a mobile facility in
the same location for two consecutive periods is zero, in our models, we have adopted a flow conservation
constraint expressed by Constraint (4) for the number of mobile collection facilities.

Second, Constraints (38) ensure the assignment of donors only to existing facilities, while Constraints
(39) ensure that each donor group can only be assigned to facilities within an acceptable distance.
Constraints (40) ensure that no blood is collected at a location with no donor group assigned. We have
not included these constraints in our models since Constraints (5) and (6) linearly imply them.

Third, no variable related to donor groups and locations that are out of the acceptable range is present
in our models thanks to the definition of E . Note that modern MILP solvers automatically remove such
variables from model pJq during the presolve procedure.

Fourth, we do not need to use Constraint (41) resulting from the linearization of the Average Absolute
Deviation in the objective function, nor Constraints (42) and (43) defining the domain of the auxiliary
variables. On the opposite, the model of Jabbarzadeh et al. (2014) does not use the budget constraint
(2).

5 Solution Methods

One of the main challenges in studying blood supply chains, as noted by Ghatreh Samani et al. (2018),
is solving large-scale problems where branch-and-bound algorithms often reach their limitations. Decom-
position methods are techniques that iteratively solve relaxations of the original problem while ensuring
optimality. They involve handling a master problem (a relaxation of the main problem) and subproblems
that help improve this relaxation. For our problem, we propose two decomposition methods: the Benders
algorithm to solve model (MCVaR) and the CCG algorithm for model (Worst-Case).

5.1 Benders Decomposition

In this section, we present a Benders decomposition to solve model (MCVaR) . This solution algorithm
has been independently elaborated in Benders (1962) and Slyke and Wets (1969). The interested reader
can refer to Rahmaniani et al. (2017) for a review of the method and its possible improvements. The
general principle is to iteratively build an outer approximation of the second-stage value function as
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a function of the first-stage variables. The second-stage value function is convex piecewise linear and
separable according to the scenario indices. The approach takes advantage of these properties to design
a linear programming representation of the function as the sum of the value functions of each scenario,
each represented through its subgradients.

Given a first-stage solution px˚, s̄˚, η˚q of (MCVaR) , the second-stage value function is equal to
ř

ωPΩ pωzω, where zω is the specific contribution of scenario ω P Ω and is the optimal value of the Benders
separation subproblem:

pSPB
ω px

˚, s̄˚, η˚qq : min p1´ λq
ÿ

hPH

ÿ

tPT ˚

θh,t `
λ

1´ αv (44)

s.t. (2)´ (9) with x˚, s̄˚ and ξω

v ´
ÿ

hPH

ÿ

tPT ˚

θh,t ě ´η
˚ (45)

v ě 0 (46)

yj,j1,t P r0, 1s @pj, j1q P J ˆ J , t P T ˚ (47)

qi,j,h,t P R` @pi, jq P E , h P H, t P T ˚ (48)

sh,t P R` @h P H, t P T ˚ (49)

θh,t P R` @h P H, t P T ˚ (50)

To enforce the relatively complete recourse property, we add the following induced feasibility con-
straint to the first-stage set of constraints:

ř

jPJ fjxj `
ř

hPH c̄hs̄h ď B. This redundant constraint
ensures that any solution px˚, s̄˚, η˚q that is feasible for the first stage is also feasible for the second
stage. It follows that, for a first-stage feasible px˚, s̄˚, η˚q and scenario ω P Ω, the optimal value of
pSPB

ω px
˚, s̄˚, η˚qq equals the optimal value of its dual linear program, leading to the Benders reformula-

tion of (MCVaR) :

pMPBq : min λη `
ÿ

ωPΩ
pωzω (51)

s.t.
ÿ

jPJ
fjxj `

ÿ

hPH
c̄hs̄h ď B (52)

zω ě π˚ω

˜

ÿ

jPJ
fjxj `

ÿ

hPH
c̄hs̄h ´B

¸

´ ν˚ωη `
ÿ

jPJ

ÿ

tPT ˚

ζ˚ω
j,t pxj ´ 1q

´
ÿ

jPJ

ÿ

tPT ˚

βχω˚
j,t xj `

ÿ

hPH
Λ˚ω

h,1pξ
ω
h,1 ´ s̄hq `

ÿ

hPH

ÿ

tPT ˚´t1u

Λ˚ω
h,tξ

ω
h,t

´
ÿ

iPI
ψ˚ω

i ρi ´
ÿ

hPH

ÿ

tPT ˚

Υ˚ω
h,tγh

@ω P Ω, pπ˚ω, ζ˚ω,χ˚ω,Λ˚ω, ν˚ω,ψ˚ω,Υ˚ωq P Qω
D (53)

px, s̄q P X (54)

η P R` (55)

zω ě 0 @ω P Ω (56)

Constraints (52) are the induced feasibility constraints, and Constraints (53) are the so-called Benders
optimality cuts. The set Qω

D is the projection of the set of extreme points of the dual linear program of
pSPB

ω px
˚, s̄˚, η˚qq on the components associated with non-zero right-hand-side constraints: π˚ω and ζ˚ω

are associated with (2) and (3), χ˚ω,Λ˚ω,ψ˚ω, and Υ˚ω are dual values associated with the constraints
(6) to (9), respectively, while νω˚ is associated with (45). Note that Λ˚ω, indexed by t, is used for both
constraints (7) and (8), and that the upper bound constraint on y in Constraint (47) is redundant because
of Constraints (3).

The Benders decomposition algorithm solves pMPBq iteratively, starting from a relaxation where only
a subset of the optimality cuts (53) are considered. This relaxation, called the relaxed master program
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pRMPBq, is progressively refined until we can prove that its optimal solution is also optimal for pMPBq.
When a candidate solution px˚, s̄˚, η˚, z˚q of pRMPBq is obtained, its feasibility is checked by solving
the separation problem pSPB

ω px
˚, s̄˚, η˚qq for each ω P Ω. If z˚

ω ď OptpSPB
ω px

˚, s̄˚, η˚qq for all ω P Ω,
then px˚, s̄˚, η˚q is optimal and the algorithm stops. Otherwise, the relaxed master program is refined
by adding a new optimality cut defined with optimal dual variables of pSPB

ω px
˚, s̄˚, η˚qq. In practice,

vanilla implementations of Benders decomposition often suffer from convergence issues. To improve the
convergence of the solution process and speed up each iteration, we implemented the following acceleration
techniques.

Initialization of the relaxed master program Our preliminary experiments show that starting
with a good subset of optimality cuts is crucial for the convergence of the Benders algorithm: even
small-size instances of (MCVaR) cannot be solved to optimality when starting from an empty set of
optimality cuts. We use the initialization strategy proposed in Fischetti et al. (2017). It consists of
solving the linear relaxation of (MCVaR) , i.e. where the integrality of variables x are relaxed, using
Benders decomposition. Some optimality cuts generated during the process are kept to define the initial
relaxed master program pRMPBq. A simple version of the in-out stabilization technique for cutting
planes Ben-Ameur and Neto (2007) is employed. The detailed algorithm is provided in Appendix A.

Bunching The bunching technique (see e.g. Birge and Louveaux (2011)) takes advantage of similar-
ities between scenarios to quickly derive optimality cuts for some of them without solving the associated
separation subproblems. In problem (MCVaR) , uncertainty only appears in the right-hand side of the
constraints. Formally, it follows that the separation problem for scenario ω P Ω can be written in the
synthetic form pSPB

ω px, s, ηqq : mintgJr : Wr ě dω ´ Trx, s, ηs, r ě 0u, and the subproblems of all
scenarios share the same elements g,W and T. Let us consider a given first-stage solution px̂, ˆ̄s, η̂q, a
scenario ω P Ω, an optimal basis B‹ of the linear program pSPB

ω px̂, ˆ̄s, η̂qq and the associated primal-dual
solution pair pr‹,φ‹q. Since φ‹ is dual feasible for pSPB

ω px̂, ˆ̄s, η̂qq, we have that WJφ‹ ď g. Matrix
W and vector g being independent on the scenario, φ‹ and B‹ are also dual feasible for the separation
subproblems of all scenarios ω1 P Ω. Hence, if B‹ is also primal feasible for a scenario ω1 P Ω, then
φ‹ is an optimal solution of the dual of pSPB

ω1px̂, ˆ̄s, η̂qq which can be used to define an optimality cut
associated with scenario ω1. To check the primal feasibility of B‹, one can verify the non-negativity of
pB‹q´1pdω1 ´ Trx, s, ηsq as suggested in Birge and Louveaux (2011). However, modern commercial LP
solvers do not provide a straightforward way of retrieving pB‹q´1 or checking the feasibility of B‹ by
other simple means. That is why we opted for a simple and very fast heuristic procedure. From the
primal optimal solution r‹ of ω, we try to build a primal feasible solution r1 for ω1 using a simple greedy
repairing heuristic (described in Appendix A). If gJr1 “ φ‹Jpdω1´Trx, s, ηsq, then φ‹ is proven optimal
for ω1 by the weak linear programming duality theorem. In this case, we do not solve the separation
problem pSPB

ω1px̂, ˆ̄s, η̂qq and define the optimality cut associated with ω1 and first-stage solution px̂, ˆ̄s, η̂q.
This simple heuristic reduces the computing time of the separation phase of the Benders algorithm by
around 10% on average and up to 30% for some instances.

Early termination of the separation procedure At a given iteration of the Benders algorithm,
let px‹, s̄‹, η‹, z‹q be an optimal solution of the relaxed master program pRMPBq. Then λη‹`

ř

ωPΩ pωz
‹
ω

is a lower bound on the expected value of the first-stage solution px‹, s̄‹, η‹q. This lower bound can
trivially be improved when some separation subproblems in Ω1 Ď Ω have already been solved to obtain
v “ λη‹ `

ř

ωPΩzΩ1 pωz
‹
ω `

ř

ωPΩ1 OptpSPB
ω px

‹, s̄‹, η‹qq. If v exceeds a known upper bound v on the
optimal value of pMPBq, then px‹, s̄‹, η‹q is proven to be non-optimal, and there is no need to separate the
optimality cuts associated with scenarios in ω P ΩzΩ1. Note that this case can occur when implementing
the Benders decomposition as a branch-and-cut algorithm (see Appendix A).
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5.2 Column-and-Constraint Generation algorithm for the robust worst-case

In this section, we present a Column-and-Constraint Generation (CCG) algorithm for solving model
(Worst-Case). The CCG algorithm has been introduced by Zeng and Zhao (2013) to solve robust
optimization problems with recourse. It relies on an iterative framework, where a master problem and a
subproblem are solved successively. The master problem is a relaxation of the original problem, which
includes only the variables and constraints associated with a subset of the scenarios. The subproblem
is designed to identify the missing variables and constraints that must be incorporated into the master
problem to obtain a feasible (and optimal) solution.

Let pWCRpΩ̄qq denote the relaxed master program obtained from (Worst-Case) by replacing the
scenario set Ω with Ω̄ Ď Ω. Algorithm 1 starts by initializing Ω̄ with an arbitrary scenario. The main loop
at iteration k solves the relaxed master program, yielding a first-stage solution pxk˚, s̄k˚q together with
its approximate worst-case cost zk˚. Then, the separation phase checks whether this approximate cost
is exact. To this end, it suffices to solve the second-stage problem (1)-(13) for all scenarios in ω P ΩzΩ̄
and check their optimal values Qpxk˚, s̄k˚, ξωq, against zk˚. However, these problems are mixed-integer
linear programs whose solutions can be computationally challenging. That is why we first solve their
linear relaxation, whose value is denoted by QRpx

k˚, s̄k˚, ξωq in the pseudocode. If scenarios ω P ΩzΩ̄
such that QRpx

k˚, s̄k˚, ξωq ą zk˚ are identified, they are added to Ω̄ to refine the relaxation, and the
algorithm proceeds to the next iteration. Otherwise, the exact second-stage values of the scenarios not
included in Ω̄ yet are computed. As soon as one scenario ω P ΩzΩ̄ such that Qpxk˚, s̄k˚, ξωq ą zk˚

is identified, it is added to Ω̄ and the algorithm proceeds to the next iteration without solving other
subproblems. If Constraints (24) are satisfied for all ω P ΩzΩ̄, then pxk˚, s̄k˚, zk˚q is both a feasible
solution of (Worst-Case)and an optimal solution of a relaxation, hence it is optimal for (Worst-
Case).

Since all problems solved by Algorithm 1 are (mixed-integer) linear programs, the finite convergence
of the algorithm is implied by the finite number of scenarios.

6 Computational experiments

To compare the different models, we use the Sample Average Approximation (SAA) method (Ahmed
and Shapiro, 2002; Kim et al., 2015), commonly used in stochastic programming. It approximates the
expectation of a random function by averaging over a finite number of randomly generated samples. SAA
can be leveraged to solve a stochastic optimization problem by reformulating it as a deterministic opti-
mization problem, which captures the uncertainty through sampled scenarios. The decision variables are
then optimized based on the sample average objective function, which approximates the actual objective
function. SAA is typically used when it is computationally infeasible to solve the original stochastic
optimization problem exactly or when the true distribution of the uncertain variables is unknown and
can only be approximated through sampling. However, SAA introduces approximation errors due to the
finite size of the sample used, and the quality of the approximation depends on the number of scenarios
and their representativeness of the actual distribution (Ahmed and Shapiro, 2002; Kim et al., 2015).

We use SAA to approximate the mean-CVaR measure of the unmet demand during the response
phase to evaluate the performance of a first-stage decision. To obtain a fair comparison, these scenarios
differ from those used to optimize the models. Let Ω̂ be the set of scenarios used to compute this measure
(called out-of-sample set hereafter). For a first-stage solution px, s̄q provided by the resolution of a model,
we compute the value of the recourse for all scenarios ω̂ P Ω̂ by solving model (1)-(12). Then, for two
parameters α and λ such that 0 ď α, λ ď 1, we obtain an evaluation of this solution for the out-of-sample
set Ω̂ as follows.

p1´ λq Eω̂rQpx, s̄, ξω̂qs ` λ CVaRαpQpx, s̄, ξω̂qq. (57)
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Algorithm 1: CCG Algorithm
Data: Ω
Result: Optimal solution px, s̄q of (Worst-Case)

1 Ω̄ Ð tarbitrary ω P Ωu;
2 convergedÐ false ;
3 k Ð 0;
4 while ␣converged do
5 pxk˚, s̄k˚, zk˚q Ð Solve pWCRpΩ̄qq;
6 LÐH ;
7 Ω̂ Ð ΩzΩ̄;
8 for ω P Ω̂ do
9 Compute QRpx

k˚, s̄k˚, ξωq ;
10 if QRpx

k˚, s̄k˚, ξωq ą zk˚ then
11 LÐ LY tωu ;
12 end
13 end
14 while L “ H and Ω̂ ‰ H do
15 Choose ω P Ω̂;
16 Ω̂ Ð Ω̂´ tωu;
17 Compute Qpxk˚, s̄k˚, ξωq ;
18 if Qpxk˚, s̄k˚, ξωq ą zk˚ then
19 LÐ LY tωu ;
20 end
21 end
22 if L “ H then
23 convergedÐ true ;
24 end
25 else
26 Ω̄ Ð Ω̄Y L ;
27 k Ð k ` 1;
28 end
29 end

Similarly to Shapiro (2003), we derive a confidence interval of the objective function based on the
out-of-sample evaluation. In this purpose, we define random variable Ypx, s̄, ξq as follows.

Ypx, s̄, ξq“p1´λqQpx, s̄, ξq`λ
ˆ

VaRαpQpx, s̄, ξω̂qq`
1

1´α
“

Qpx, s̄, ξq´VaRαpQpx, s̄, ξω̂qq
‰

`

˙

We then compute the 95%-confidence interval for Eω̂rYpx, s̄, ξqs:

CI95% “ Eω̂rYpx, s̄, ξω̂qs ˘ 1.96σω̂pYpx, s̄, ξω̂qq
b

|Ω̂|

where σ2
ω̂pYpx, s̄, ξω̂qq is the observed variance of Y over Ω̂ and 1.96 is the value of the 2.5 percentile of

the normal distribution.
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Parameter Value
number of hospitals |H| 2
number of donor groups |I| 22
number of potential locations for collection facilities |J | 22
number of time periods T 2
supply of each donor group ρi {166, 399, 198, 543, 500, 145, 195, 238, 99, 191, 182,

151, 174, 305, 402, 181, 156, 246, 154, 214, 102, 81}
blood storage capacity

at each hospital γh {1000, 2200} blood units
at each hospital before the response phase γ̄h 0 blood unit
at each fixed facility β 500 blood units
at each mobile facility δ 200 blood units

blood storage cost during the response phase ch 1 per blood unit
blood storage cost before the response phase ch 0
cost of moving a mobile collection facility bj,j1,t 322.98 for t “ 1 and 1 per kilometer for t ą 1
cost of opening a fixed blood collection facility fj 1518.23
blood unit transport cost aj,h 0.02ˆ D(j,h) per blood unit
collecting cost for one unit of blood oi,j 0.0690567 per blood unit
probability of each scenario pω 1/18

Table 5: Data from Jabbarzadeh et al. (2014) and Fazli-Khalaf et al. (2019)

To use the same comparison baseline, we compare the first-stage solutions found by the models for
the same given budget. In our models, this budget value is provided as a constraint. This is not the case
for the model of Jabbarzadeh et al. (2014), which does not include the budget constraint. To overcome
this difference, we first solve the model of Jabbarzadeh et al. (2014) for a set of values of Γ. Second, we
evaluate the first-stage solutions that are feasible within the given budget. Finally, we keep the best-
performing solution, i.e., the one with the lowest score of (57). If no solution found satisfies the budget
constraint, it is considered impossible to design the network under that budget.

6.1 Benchmark data

The studies of Jabbarzadeh et al. (2014) and Fazli-Khalaf et al. (2019) provide data with some possible
earthquake scenarios over Tehran, Iran. We consolidate this data in Table 5.

The discrete uncertainty set provided by Jabbarzadeh et al. (2014) contains 18 hospital blood demand
scenarios for each period. They use the approach proposed by Tabatabaie et al. (2010) to estimate blood
demand based on historical data from the Iranian Blood Transfusion Organization (IBTO). The limited
scope of data is not enough for a comprehensive evaluation of the models to assess the impact of the chosen
objectives on the estimated number of saved lives to guide the choices of decision-makers. Therefore, we
developed a novel, more diversified dataset, presented here below.

6.2 Data generation

An instance of the considered problem is characterized by geographic data (locations of population,
hospitals, distances) and costs. An instance is parameterized by a tuple pH,J , T q where H is the set of
hospitals, J is the set of potential locations for blood facilities, and T is the number of periods in the
response phase. Each instance is associated with a family of five sets of scenarios, which differ by their
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sizes, representing uncertainty set Ω and an out-of-sample set of scenarios Ω̂ for evaluating solutions. We
consider equiprobable scenarios in both Ω and Ω̂. We assume a donor group at each potential location;
therefore, I “ J .

We divide the considered geographical area into |I| groups of population Pi, i P I, and simulate the
impact of different scenarios of earthquakes on each group. An initial shake and aftershocks define an
earthquake scenario according to the time horizon. Let M be the set of magnitudes, G, the geographical
area, and T ˚, the response time horizon. A scenario is, therefore, a sequence of events petqtPT ˚ , where
an event et is defined by a pair pmt, gtq P M ˆ G such as e1 is the initial shake event and aftershocks
happen in a radius d P R` around g1. Their geographic coordinates identify elements of G.

The total potential blood supply ρi of group i is calculated on the basis suggested (Jabbarzadeh
et al., 2014), i.e., 22 units of blood per population of 1000 individuals. We also assume that the impact
of an earthquake scenario on a group cannot create a blood demand exceeding 22 units for a population
of 1000. The demand of each group is assigned to a specific hospital, meaning that after the earthquake,
victims of the same group will be brought to the same hospital. Therefore, after selecting subset I of
locations and subset H of hospitals, we run a clustering procedure to assign victims of each group i P I
to a hospital h P H. We ensure that each cluster contains at least µ% of groups.

To evaluate the impact of an earthquake scenario ω P Ω on the population, we denote by Pω
i,t the

population of group i P I during period t P T , potentially impacted by the event of scenario ω. According
to the assumption made before, Pω

i,0 “ ρi “ 22 ˆ Pi{1000, i P I, and ω P Ω, where Pω
i,0 is the initial

population (Pω
i,0 “ Pω1

i,0, @ω, ω
1 P Ω). This population will decrease with the occurrence of events in each

scenario. For a given event et, the impact on a population i P I is given by function ϕpet, iq described
in Equation (58) with dmax ě Dpg, iq,@pg, iq P G ˆ I, and Dpg, iq is the function providing the distance
between the geographical points g and i.

ϕpet, iq “ mt

„

1´ D2pgt, iq

d2
max

ȷ

(58)

Therefore, we compute the potentially impacted population of the group Pω
i,t “ Pω

i,t´1p1´ ϕpet, iqq. The
demand for blood in hospital ξω

h,t is then given by ξω
h,t “

ř

iPIh
ϕpet, iqP

ω
i,t´1, where Ih is the set of groups

assigned to hospital h P H by clustering.
We use Algorithm 2 to generate the discrete set of scenarios Ω. It is also used to create the out-of-

sample set. We assume that the territory can be hit by one of L principal shakes that differ in magnitude
and location, which we call initial events. We generate |Ω| scenarios starting with these initial events by
extending each initial event with |Ω|/L sequences of |T | ´ 1 events.

In our numerical experiment, we use the city of Paris as a basis for the geographic data. We did
a web scraping to obtain the geographical coordinates and population of the districts of Paris and the
locations of the hospitals. We generated different instances from these data by selecting several values
for the different parameters, resulting in 60 different instances. Then, we separately generated two sets of
20,000 scenarios for each instance, each with L = 2000. We constructed the uncertainty sets Ω of different
sizes from the first set of scenarios by randomly selecting scenarios. The second set of 20,000 scenarios is
the out-of-sample scenarios Ω̂. For the creation of these new instances, we used the following parameter
values: |H| in t1, 2, 3, 4, 5u, |J | in t20, 40, 80u, T in t2, 3, 4, 5u, and |Ω| in t20, 50, 100, 200, 300u.

Two types of hospitals are considered: small and large. The latter are assumed to be the most
important hospitals in the territory, with large blood storage capacities. The former are less important
and possess only half of the capacity of large hospitals. Let nb be the number of large hospitals and ns

be the number of small ones. In our implementation, if |H| is even then nb “ ns, otherwise nb “ ns ` 1.
We assume that the total blood storage capacity of the hospitals is equal to the total supply of donors
group:

ř

hPH
γh “

ř

iPI
ρi. The blood storage capacity of a small hospital h P H is calculated as follows.

γh “
ÿ

iPI

ρi

2 ˚ nb ` ns
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Algorithm 2: Generation of scenarios
Data: territory G, set of magnitudes M, time horizon T , the number of locations I,

number of hospitals H, the number of initiating events L, the set of indices of
scenarios Ω, population of each group pPiqiPI , pIhqhPH, impact estimation
function ϕ defined in Equation (58), maximum distance between a principal
shake point and its aftershocks points d

Result: pξω
h,tqtPT ˚,ωPΩ, blood demand scenarios

1 /* initialisation */;
2 for pω, iq P Ωˆ I do
3 Pω

i,0 “ 22Pi{1000
4 end
5 /* generation of scenarios*/;
6 for s P t1, . . . , Lu do
7 e1 Ð random choice of an initial event;
8 for ω P

!

|Ω|

L ps´ 1q ` 1, . . . , |Ω|

L s
)

do

9 for t P T ˚ do
10 for h P H do
11 ξω

h,t Ð 0;
12 for i P Ih do
13 ξω

h,t Ð ξω
h,t ` ϕpet, iqP

ω
i,t´1;

14 Pω
i,t Ð p1´ ϕpet, iqqP

ω
i,t´1;

15 end
16 end
17 /* choosing of the next replicas event of period t+1*/;
18 et`1 Ð random choice of an event such that Dpg1, gtq ď du;
19 end
20 end
21 end

For the permanent blood collection facilities, we assume that their capacity depends on the popu-
lation’s size in the area. Moreover, we note that in Fazli-Khalaf et al. (2019), the capacity of a large
hospital was 4.4 times larger than the capacity of a permanent blood collection facility. As the capacity of
the hospital depends already on the population size, we use the same ratio to compute the capacity of the
permanent blood collection facility β. Let us compare the ratio cost/capacity of permanent and mobile
blood collection facilities. We note that for one unit of blood, using a permanent facility is 1.88 times
more expensive than using a mobile facility. Taking this ratio into account, we compute the establishment
cost of a permanent facility as 1.88 ˚β{200. Other cost parameters are kept the same as in (Jabbarzadeh
et al., 2014; Fazli-Khalaf et al., 2019). The values of parameters are summarized in Table 6.
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Symbol Value
|H| t1, 2, 3, 4, 5u
|I| t20, 40, 80u
|J | t20, 40, 80u
T t2, 3, 4, 5u
ρi 22 ˚ Pi{1000
γh t

ř

iPI
ρi{p2 ˚ nb ` nsq, 2 ˚

ř

iPI
ρi{p2 ˚ nb ` nsqu blood units

β
ř

iPI
p2 ˚ ρiq{p4.4 ˚ p2 ˚ nb ` nsqq blood units

δ 200 blood units
ch 1 per blood unit
bj,j1,t 322.98 for t “ 1 and for other t, 1 per kilometer
fj 1.88 ˚ β{200
aj,h 0.02 per kilometer and per blood unit
oi,j 0.0690567 per blood unit
B {10%, 20%, 30%, 40%, 50%} of the estimated upper limit of the budget to be used
Γ {1, 5, 10, 15, 25, 35, 45} times the estimated lower bound

Table 6: Deterministic data

The problem to solve can be represented by a triplet p|H|_|J |_|T ˚|,Ω, Bq where |H|_|J |_|T ˚| is
an instance, Ω the uncertainty set and B P R` the budget for the preparedness and the response to the
earthquake.

Bsup “
ÿ

jPJ
fj ` βpoi,j ` aj,h˚q|T ˚| (59)

where h˚ P H with Dpj, h˚q ě Dpj, hq @h P H and oi,j “ oi1,j @pi, i
1q P I2

To obtain values for the budget parameter, we first calculate an upper bound Bsup (59) on the budget
that can be required to build the supply chain under the condition that there is a permanent facility at
each location that collects its total capacity at each period and delivers it to the most distant hospital.
We then take 10%, 20%, 30%, 40%, and 50% of this upper bound to form the set of values for budget B
associated with each instance |H|_|J |_|T ˚|.

The percentages we use have been identified experimentally on instances 1_20_2 and 2_20_2 for
which we resolved the model of Jabbarzadeh et al. (2014) with Ω of size 100 and Γ taking values in {1,
10, 50, 70, 100, 160, 200, 500, 1000, 3200}. We analyzed the average returned cost and set the possible
budget values to 20,000, 50,000, 100,000, 150,000, 200,000, and 250,000. In a second step, we solved
the mean-CVaR model (λ = 0.5 and α = 0.8) on the two instances considered with an Ω of 100 and
successively with the different values of budget found above. By calculating the ratio of the budget used
in the found solutions to the upper bound of the budget calculated for each instance (430,174 for the first
instance and 371,304 for the second), we obtain the following percentages:

• 1_20_2 : 4.65% – 11.62% – 23.25% – 34.87% – 46.49% – 58.12%

• 2_20_2 : 5.39% – 13.47% – 26.93% – 40.40% – 53.86% – 67.33%

From these results, we have decided to use 10%, 20%, 30%, 40%, and 50% of the upper limit of each
instance. It should be noted that for these two cases, with a budget of 250,000, the optimal solution
found by the mean-CVaR model satisfies all the demand for blood so that it will be the same for any
higher budget.
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Concerning the parameter Γ used in the objective function in Jabbarzadeh et al. (2014), we have
analyzed the results provided and have derived a rule for generating Γ values to solve the model of
Jabbarzadeh et al. (2014) on new instances as shown in (60):

Γinf “
Bsup

max
ωPΩ

t
ř

tPT ˚

ř

hPH
ξω

h,tu
(60)

Taking into account Formula (60), the following seven values of Γ were used for each new instance in
numerical tests: 1Γinf , 5Γinf , 10Γinf , 15Γinf , 25Γinf , 35Γinf and 45Γinf .

6.3 Experimental setting

Models and algorithms were written in C++, and IBM ILOG Cplex 12.10 was employed as a solver for
the MILP models. The evaluation process includes training and testing phases. In the training phase,
each instance is solved with the tested method with the scenario set Ω and the specified budget. The
solution obtained for the preparedness phase (decisions about fixed facilities) is stored and used as input
for the testing phase. The testing phase involves solving the recourse problem for the first-stage solution
(obtained during training) for each scenario from set Ω̂ and the given budget. For the training phase, we
set a time limit of 1 hour, used two cores, and had a memory limit of 16 GB. For the testing phase on
out-of-sample scenarios, we set a time limit of 15 minutes and used eight cores.

For each instance, we used five different training sets with the size of the training set Ω taking
the following values t20, 50, 100, 200, 300u. The out-of-sample scenario set Ω̂ of each instance contained
20, 000 scenarios. The following methods were tested: Jabbarzadeh et al. (2014) model (described in
Section 4.2.4) labeled as jab, the robust worst-case model (Worst-Case)(described in section 4.2.3)
labeled as wc, the mean-CVaR model (MCVaR)(described in Section 4.2.2) labeled as mc8 for α = 0.8,
the model (MCVaR) defined by relaxing the integrality in Constraints (10), labeled as mcr8 for α = 0.8,
the Benders decomposition algorithm (described in section 5.1) labeled as ben and the CCG algorithm
(described in section 5.2) labeled as ccg. Table 7 summarizes the number of runs in the computational
experiments.

Model jab wc mc8 mcr8 ben ccg Total
Training 2,100 1,500 1,500 1,500 1,500 1,500 9,600
Testing 32,700,000

Table 7: Total number of runs for our computational experiments

7 Results and Analysis

7.1 Results for the training phase

First, we report the results obtained during the training phase. We compare the capability of different
models to produce feasible solutions and to achieve convergence across various instance sizes. Additionally,
we analyze the impact of different instance parameters on the difficulty of solving the tested models.
Aggregated results are shown in Table 8. For each model and training set, we report the percentage
of instances solved optimally (columns Optimal), the percentage of instances for which a feasible non-
optimal solution was found (columns Non-optimal), and the percentage of instances that could not be
built due to exceeding the memory limit (columns Memory error). We aggregate all results related to the
same number of scenarios (20, 50, 100, 200, and 300). The average results are reported in the last line.

24



|Ω|
Optimal (%) Non-optimal (%) Memory error (%)

jab wc mc8 mcr8 jab wc mc8 mcr8 jab wc mc8 mcr8

20 59.28 44 20 52.67 10.23 47.33 68 47.33 30.47 8.66 12 0
50 36.19 33 12.66 45 3.33 42.33 60.33 48 60.47 24.66 27 7
100 11.90 21 6.33 34.33 2.14 38 51.33 41 85.95 41 42.33 24.67
200 0 11.66 3 24.67 0 33.33 38.66 32.33 100 55 58.33 43
300 0 6.66 1 19 0 28.33 34 29.67 100 65 65 51.33
avg. 21.47 23.26 8.60 35.13 3.14 37.86 50.46 39.67 75.38 38.86 40.93 25.2

|Ω| Optimal (%) Non-optimal (%) Memory error (%)
ben ccg ben ccg ben ccg

20 91 50.67 9 49.33 0 0
50 88 46.67 12 53.33 0 0
100 83.33 46.33 16.67 52.33 0 1.33
200 80.33 40 17.67 51.33 2 8.67
300 79.33 34.67 19.33 44.33 1.34 21
avg. 84.4 43.67 14.93 50.13 0.67 6.2

Table 8: Percentage of instances solved optimally, having reached a time limit, and having raised
a memory error by model and training set.

From the obtained results, we can conclude that the number of scenarios significantly impacts the
solver’s ability to tackle each model. The percentages of Optimal and Non-optimal solutions decrease as
the number of scenarios increases, while the percentage of memory errors rises. This is unsurprising since
the number of scenarios affects the number of variables and constraints in all models, leading to larger
constraint matrices. Additionally, even when the models can be loaded into memory, they contain binary
variables indexed by the scenarios (except for mcr8 model), resulting in a larger branch-and-bound tree.
For the jab model, the solver could not load any instance with 200 or 300 scenarios. For other models,
feasible solutions were found for instances of all sizes, but the percentage of solved instances decreases
significantly as the number of scenarios increases. We can notice that when the solver can load model
jab, it can generally converge (only 3% of the instances are loaded but not solved optimally).

Table 9 is a disaggregated version of Table 8, where results are split by the number of locations. This
table illustrates the impact of the number of locations on the problem’s difficulty. The columns have the
same meaning as in Table 8.

It can be observed from Table 9 that the difficulty also increases with the number of locations. For
80 locations, the jab model was able to solve only 10% of the 20 scenarios cases, and could not build the
models for 50, 100, 200, and 300 scenario cases. On the other hand, the other models solved at least 64%
of the 80-location and 20-scenarios instances.

The number of variables is of the order of Op|Ω||T ||J |2|H|q for all models, but the number of con-
straints in jab model is larger in comparison to other models: it is of the order of Op|Ω||T ||J |2|H|q. In
contrast, the number of constraints in the other models is of the order of Op|Ω||T |p3|J | ` |H|qq. This
explains the fact why jab is more affected by the number of locations.

The analysis of results in Table 9 shows the superiority of decomposition-based methods over mono-
lithic approaches in solving these large-scale optimization problems. This comparison, involving four
different methods mcr8, ben, wc, and ccg demonstrates the notable advantages in both optimality and
robustness offered by decomposition strategies.

First, we observe that ben outperforms mcr8. The former achieves an average optimality rate of 84.4%
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|J | |Ω|
Optimal (%) Non-optimal (%) Memory error (%)

jab wc mc8 mcr8 jab wc mc8 mcr8 jab wc mc8 mcr8

20

20 97.86 66 16 72 2.14 34 84 28 0 0 0 0
50 93.57 63 16 67 6.42 37 83 33 0 0 1 0
100 35.71 52 12 58 6.42 48 88 42 57.85 0 0 0
200 0 33 7 53 0 67 93 47 100 0 0 0
300 0 20 2 41 0 70 88 59 100 10 10 0

40

20 80 38 17 36 18.57 62 83 64 1.42 0 0 0
50 15 29 15 32 3.57 71 83 68 81.42 0 2 0
100 0 10 6 27 0 62 64 73 100 28 30 0
200 0 2 2 18 0 33 23 49 100 65 75 33
300 0 0 1 16 0 15 14 30 100 85 85 54

80

20 0 28 27 50 10 46 37 50 90 26 36 0
50 0 7 7 36 0 19 15 43 100 74 78 21
100 0 1 1 18 0 4 2 8 100 95 97 74
200 0 0 0 3 0 0 0 1 100 100 100 96
300 0 0 0 0 0 0 0 0 100 100 100 100

avg. 21.48 23.26 8.60 35.13 3.14 37.86 50.46 39.67 75.38 38.86 40.93 25.2

|J | |Ω|
Optimal (%) Non-optimal (%) Memory error (%)
ben ccg ben ccg ben ccg

20

20 100 76 0 24 0 0
50 100 68 0 32 0 0
100 100 64 0 36 0 0
200 100 59 0 41 0 0
300 100 52 0 48 0 0

40

20 83 35 17 65 0 0
50 81 33 19 67 0 0
100 74 35 26 65 0 0
200 74 26 26 74 0 0
300 74 24 26 72 0 4

80

20 90 41 10 59 0 0
50 83 39 17 61 0 0
100 76 40 24 56 0 4
200 67 35 27 39 6 26
300 64 28 32 13 4 59

avg. 84.4 43.67 14.93 50.13 0.67 6.2

Table 9: Percentage of instances solved optimally, having reached a time limit, and having raised
a memory error, organized by model, training set, and location.

26



across all tested instances, even reaching a perfect 100% for smaller instances (|J | “ 20 and |Ω| ď 300).
Conversely, mcr8 achieves a significantly lower average optimality rate of 35.13%, with performance
deteriorating as the problem size increases. For large instances (|J | “ 80 and |Ω| “ 300), mcr8 struggles,
yielding 0% optimality. Furthermore, mcr8 suffers from memory errors in 25.2% of instances, whereas
ben handles memory efficiently, with only 0.67% recorded faults.

Similarly, the second comparison between wc and ccg highlights the advantages of decomposition.
While wc achieves a low average optimality rate of 23.26%, ccg nearly doubles this, reaching 43.67%.
Additionally, ccg exhibits more stable performance across varying problem sizes, while wc faces significant
challenges, with its optimality rate dropping to 1% for larger instances (|J | “ 80 and |Ω| “ 100).
Regarding memory errors, ccg is more robust, with lower fault rates than wc, which suffers from 100%
memory errors for large instances (|J | “ 80 and |Ω| ě 200).

The analysis also reveals the limitations of the decomposition methods. While ccg performs well
overall, it occasionally exhibits higher non-optimality rates than wc for larger instances. For example,
when |J | “ 40 and |Ω| “ 200 or 300, ccg shows non-optimality rates of 74% and 72%, respectively,
compared to 33% and 15% for wc. This indicates that ccg excels for smaller instances but may lose
its advantage in finding optimal solutions as the problem size grows. Moreover, while ccg encounters
fewer memory errors than wc, it still experiences significant fault rates for large instances (|J | “ 80 and
|Ω| “ 200 or 300), with rates of 26% and 59%, respectively.

In Table 10, we report the computing time required to solve small to medium instances for the tested
models. For each method, we report the average optimality gap indicated by the MILP solver after
one hour of computing time (columns Average optimality gap) and the average solution time (columns
Average resolution time). If convergence is not reached after one hour, we report 100% and 3600 seconds,
respectively, for the two indicators.

We observe from Table 10 that among the monolithic methods, mcr8 outperforms the others in terms
of both average solution time and average optimality gap. This highlights the efficiency of the refor-
mulated constraints in mcr8, which help to reduce the computational burden on the solver significantly.
Additionally, we note a substantial reduction in the optimality gap by a factor of at least 40 when switch-
ing to the Benders decomposition method. Moreover, both decomposition methods, ben and ccg, exhibit
lower average solution times compared to other methods, with a minimum reduction by a factor of 2 in the
case of ben. When combining this observation with the data reported in Table 9, we can conclude that,
for this phase, a coarse approximation of uncertainty proves more efficient than a fine approximation.

In conclusion, for the training phase of our experiments, while the jab model is easier to handle for
small instances, it suffers from poor scalability and yields the lowest number of feasible solutions overall.
Consequently, if a medium number of scenarios must be considered, the jab method becomes impractical.
Furthermore, none of the monolithic methods managed to provide solutions for instances involving 300
scenarios and 80 locations.

Overall, these comparisons highlight the advantages of decomposition-based methods, as evidenced
by the superior performance of ben and ccg regarding computational efficiency and robustness. De-
composition techniques excel by breaking down complex problems into smaller sub-problems, thereby
better managing complexity and improving scalability. However, they still face challenges, particularly
for large-scale instances, where further optimization efforts are necessary to improve performance and pre-
vent memory issues. This analysis underscores the potential of decomposition approaches for large-scale
optimization while identifying areas for future enhancement.

7.2 Results for the testing phase

This section reports the results of the computational experiments for the testing phase to assess the
quality of the first-stage solutions produced by each method in the training phase. Since the size of the
instances significantly impacts the computational results, we split the analysis into three parts, related
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|J | |Ω|
Average optimality gap (%) Average resolution time (second)
jab wc mc8 mcr8 jab wc mc8 mcr8

20

20 0 0.07 0.75 0.01 148.57 1553.29 3080.28 1244.86
50 0.03 0.16 1.86 0 498.44 1657.38 3124.99 1455.16
100 57.9 0.16 1.42 0 2528.99 2127.8 3242.5 1749.76
200 100 22.72 30.58 0.01 3600 2954.74 3480.07 2173.1
300 100 60.92 71.41 0.01 3600 3278.67 3564.36 2667.79

40

20 1.63 1.33 2.45 0.02 1026.67 2408.38 3009.04 2408.3
50 81.44 18.09 11.65 0.03 3141.61 2920.86 3220.32 2565.72
100 100 76.9 75.46 14.02 3600 3362.23 3470.9 2788.29
200 100 97.02 98 37.08 3600 3553.39 3581.46 3091.63
300 100 100 99 69.03 3600 3600 3598.5 3241.97

80

20 90.5 54.4 52.75 0.04 3600 2877.67 2892.76 2041.87
50 100 92.03 93.0 44.04 3600 3444.93 3415.99 2552.35
100 100 99.0 99.0 78.02 3600 3593.26 3582.03 3109.59
200 100 100 100 96 3600 3600 3600 3524.74
300 100 100 100 100 3600 3600 3600 3600

avg. 75.43 54.85 55.82 29.22 2889.63 2968.86 3364.21 2547.68

|J | |Ω|
Average optimality gap (%) Average resolution time (second)
ben ccg ben ccg

20

20 0.0 - 43.06 1188.84
50 0.0 - 104.19 1350.32
100 0.0 - 208.29 1497.71
200 0.0 - 411.39 1787.98
300 0.0 - 637.44 2057.49

40

20 0.01 - 692.31 2408.63
50 0.01 - 892.16 2579.01
100 0.01 - 1308.25 2468.11
200 0.02 - 1626.79 2343.73
300 0.01 - 1964.1 2307.13

80

20 0.0 - 825.11 2147.69
50 0.0 - 1604.88 2108.32
100 0.0 - 2136.94 1905.98
200 6.0 - 2296.64 1976.45
300 4.02 - 2606.48 2545.23

avg. 0.67 - 1157.2 2044.84

Table 10: Average optimality gap and average resolution time per number of locations and
number of scenarios
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to instances with 20, 40, and 80 locations, respectively. For each instance size and each method, we
first determine the best number of scenarios to use. The results of these preliminary computational
experiments are presented in Appendix B. Based on the obtained results, we concluded that increasing
the number of scenarios generally improves the solution quality, provided the solver can converge to an
optimal solution. However, for a large number of scenarios, it becomes challenging to achieve convergence.
Therefore, we prioritized convergence over a larger number of scenarios. The best configuration for each
model was used for comparison, utilizing the mean-CVaR objective.

To compare the different models, we use the notion of performance profile introduced by Dolan and
Moré (2002). In their work, they proposed a framework to evaluate and compare the performance of
the set of solvers S on a test set of problems P. They denoted by wp,u the computing time required to
solve problem p P P by solver u P S and defined a baseline for comparisons name performance ratio rp,u

computed as follows:

rp,u “
wp,u

mintwp,u1 : u1 P Su

This quantity compares the performance of a solver u on a problem p, with the best performance of any
solver on this problem. For the solver which does not solve problem p P P, the ratio equals to r̂, with
r̂ ě rp,u,@pp, uq P P ˆ S. They proved that the choice of r̂ does not affect the performance evaluation.
Therefore, the performance profile Fu of a solver u P S is the distribution function of a performance
metric of this solver. It is a non-decreasing, piece-wise constant function, continuous from the right at
each break-point defined by the following relation:

Fu : R ÝÑ r0, 1s
τ ÞÝÑ 1

|P|
|tp P P : rp,u ď τu|

Fupτq is the percentage of problems on which the solver u P S performs at most τ times worst than the
best solver.

The performance profiles of jab, wc, and mc8 models are plotted in Figures 1a, 2a and as well as
in figures given in Appendix B for the preliminary results. In these figures, the x-axis represents the
performance of the method compared to the best one. Value 1 means that the best solution was found
while value 5 is a special value indicating that the ratio was at least 5 or no solution was found. The
y-axis represents the cumulative frequency of the corresponding ratio.

Figure 1a shows the comparative performance profile of jab, wc, mc8, and mcr8 models trained with
respectively 50, 20, 100, and 200 scenarios. Figure 1b provides the distribution of the confidence intervals
for these models.

(a) Performance profiles (b) Confidence intervals

Figure 1: Results for instances with 20 locations

29



For these instances, mcr8 model has the best performance (abscissa equal to 1 for 99% of instances),
followed by mc8 and wc models (respectively 98% and 81%), and these three approaches outperform jab

model (6%). For failures (abscissa equal to 5), we can see 1% of instances for mcr8, mc8, and wc, and
32% for jab. The confidence intervals shown in Figure 1b confirm the clear dominance of wc, mc8, and
mcr8 over jab while the results obtained for wc, mc8, and mcr8 are relatively close.

For 40 locations, the best results for all methods were obtained with 20 scenarios only except for
mcr8 which performs for 50 scenarios. Figure 2 shows the comparative performance profile of jab, wc,
and mc8 models trained with 20 scenarios. Figure 2a provides the distribution of the confidence intervals
for these models. For 40 locations, we can observe similar results as for 20 locations: mcr8 provides the
best results in 95% of the instances, compared to 92% for mc8, 77% for wc and 7% for jab. In terms of
failures (abscissa equal to 5), wc and mc8 account for 3% of instances, while jab account for 42%, and
mcr8 account for only 1%.

(a) Performance profiles (b) Confidence intervals

Figure 2: Results for instances with 40 locations

For 80 locations, the best results for all methods were obtained with 20 scenarios only, they are
reported in Figure 3. For these instances, the mcr8 model still exhibits the best performance (with an
abscissa equal to 1 for 97% of instances), showing a considerable gap compared to the wc and mc8 models
(respectively 43% and 49%). All three models significantly outperform the jab model, which achieves
only 1%. Regarding failures, the mcr8 model registers failures for 3% of instances, the wc and mc8 records
respectively 45% and 48%, and jab accounts for 99%.

(a) Performance profiles (b) Confidence intervals

Figure 3: Results for instances with 80 locations
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The obtained results demonstrate that employing risk-averse objective functions leads to more robust
solutions during the preparedness phase, thereby achieving better overall performance in meeting demand
when mitigating earthquake damages. This ultimately enhances the effectiveness of emergency response.

From an optimization standpoint, one important conclusion is, for approximating mean-CVaR in
this problem, relaxing the integrality constraints in the second stage proves to be more effective than
adopting a worst-case objective approximation, both in terms of computational time (when using a
suitable decomposition algorithm, see Table 10) and solution quality.

7.3 Managerial insights on the budget utilisation

Performance Analysis of the Models by Budget
Figure 4 shows the average mean-CVaR of unsatisfied demand by model and budget value used in the
experiments.

(a) Instances with 20 locations (b) Instances with 40 locations

(c) Instances with 80 locations

Figure 4: Percentage difference from the best percentage (calculated as mean-CVaR) of unmet
demand relative to demand, by model and budget

Percp|H|_|J |_|T ˚|, B, px˚, s̄quq “
p1´ λq Eω̂rQpx, s̄, ξω̂qs ` λ CVaRαpQpx, s̄, ξω̂qq

p1´ λq Eω̂r
ř

hPH

ř

tPT ˚

ξω̂
h,ts ` λ CVaRαp

ř

hPH

ř

tPT ˚

ξω̂
h,tq

(61)

gapp|H|_|J |_|T ˚|, B, uq “ Percp|H|_|J |_|T ˚|, B, px˚, s̄quq´ (62)

min
u1PS

tPercp|H|_|J |_|T ˚|, B, px˚, s̄qu1qu
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To plot Figure 4, we calculated the rate of unsatisfied demand as a percentage of total demand for each
model u P S, instance and budget using formula (61) where px˚, s̄qu is the solution of model u, found
during training phase and evaluated during testing phase. We calculated the gap (62) between each
model’s rate and the best rate using these values. Finally, we calculated and plotted the average gap for
each model calculated over all instances and budgets.

We can notice that on average, mc8 and wc models better satisfy the demand than jab model for the
same amount of the available budget. We can also observe that this difference is even more significant
for lower amounts of the available budget. This observation confirms our hypothesis that the risk-averse
objective functions have a positive impact on the estimated number of saved lives and should be preferred
in the design of a blood supply chain for ethically acceptable optimization in the context of mitigation
of the damages caused by an earthquake.

Analysis of Budget Allocation Between Preparation and Response
As illustrated in Figure 5, the jab model consistently allocates a low proportion of the budget to the

preparation phase, particularly at lower budget levels, with allocations as low as 2.23%. This strategy,
while cost-effective in the short term, poses significant risks during the response phase. In contrast,
risk-aware models such as wc, mc8, and mcr8 prioritize preparation, allocating a substantial share of the
budget (approximately 75%–88%), thereby ensuring enhanced response capabilities.

At lower budgets, risk-averse models allocate around 57%–59% of the budget to preparation. As
budgets increase, these allocations remain stable, averaging approximately 78% for models wc, mc8, and
mcr8. The jab model, however, employs a different strategy, initially investing minimally in preparation
but sharply increasing this share as the budget grows.

Risk-averse models underscore the importance of allocating a significant portion of the budget to
preparation in uncertain or high-risk environments. This approach minimizes unforeseen complications
and enhances responsiveness during the critical response phase. In contrast, the jab model’s minimal
preparation investment at lower budgets may prove detrimental in scenarios where effective anticipation
is crucial.

The average preparation allocation of approximately 78% (as detailed in Table 11) provided by risk-
averse models can serve as a benchmark for decision-makers in crisis management. This distribution
strikes a balance, ensuring robust anticipation capabilities while reserving sufficient resources for the
response phase.

In uncertain or high-stakes situations, the wc, mc8, and mcr8 models are recommended due to their
strong emphasis on risk mitigation and preparation. Conversely, the jab model may be more suitable in
low-uncertainty environments where immediate risk is less pronounced.

This analysis highlights the critical role of risk consideration in disaster supply chain management. By
evaluating the level of uncertainty and available resources, decision-makers can select the most appropriate
model to optimize demand satisfaction while adhering to budget constraints.

8 Conclusion

In this research, we proposed risk-averse models for designing a blood supply chain to prepare for and
respond to a humanitarian emergency caused by a disaster, such as an earthquake. In our study, we
chose a two-stage model combining the preparation stage, where tactical decisions are made, and the
response stage, where operational decisions are made. The objective is to minimize the unmet blood
demand and, given the uncertainty about this demand, we proposed to use mean-CVaR a combination
of risk measures: expectation (risk-neutral) and CVaR (risk-averse).

We proposed three models based on a discrete approximation of uncertainty. The first optimizes the
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(a) Instances with 20 locations (b) Instances with 40 locations

(c) Instances with 80 locations

Figure 5: Percentage of the available budget used for the preparedness, by model and budget

SAA approximation of mean-CVaR the second is a relaxation on the first (by relaxing binary variable
indexed by scenario), and the third adopts a robust perspective and optimizes unmet demand in the
worst-case scenario. We then evaluated the performance of these models on an out-of-sample set of
scenarios, based on data from the literature and new, larger, instances. We computed an estimate of our
risk measure mean-CVaR and its confidence interval and compared the performances of our models and
the one from Jabbarzadeh et al. (2014). Numerical results show that the models using discrete mean-
CVaR and worst-case objectives perform significantly better (in average 85, 67% and 76, 33% respectively)
than the solution robustness and model robustness approaches (in average 9%) for the objective of the
minimization of the unmet blood demand under uncertainty about this demand.

Our results also show that allocating the budget between the two phases affects the efficiency of the
supply chain and that the preparation phase is crucial and clearly determines the system’s performance
in the response phase.

Despite their strong performance, the proposed optimization models exhibit limitations when ad-
dressing large instances. To address this, we introduced two decomposition methods that are better
suited for large-scale problems due to their ability to divide the problem into more manageable subprob-
lems. Numerical results show that these methods not only reduce the computational burden but also
significantly enhance the solver’s ability to explore feasible solutions efficiently.

Decomposition methods reduced the percentage of unsolved instances by at least a factor of six
compared to monolithic models, decreasing from 25.2% to 0% and 38.87% to 6.2%. Additionally, they
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Budget jab wc mc8 mcr8

10 2.23 59.31 57.35 57.35
20 8.35 76.97 75.95 75.95
30 43.74 84.73 82.74 82.09
40 35.08 83.56 85.55 85.55
50 31.14 88.52 86.87 86.88

avg. 24.13 78.62 77.69 77.56

Table 11: Average optimality gap and average resolution time per number of locations and
number of scenarios

led to a notable increase in the percentage of instances solved to optimality, from 35.13% to 82.2%
and from 23.26% to 43.67%. However, a non-negligible percentage of instances still fail to converge to
optimality, and some remain unsolvable due to memory constraints when binary variables indexed by
scenarios are retained.

From an optimization standpoint, we observe that, for approximating mean-CVaR in this context,
loosening the integrality constraints in the second stage proves to be a more practical approach than
relying on a worst-case objective. This strategy not only accelerates the solution process by leveraging
appropriate decomposition techniques but also enhances the overall quality of the solution, making it a
more efficient alternative under computational constraints.

These findings highlight the need for more advanced resolution techniques, such as branch-and-cut
algorithms, reformulations, dedicated heuristics, or alternative approximations like polyhedral uncertainty
sets. The development of these techniques presents a valuable research direction to further improve the
management of humanitarian emergencies caused by various types of disasters.

While our models and methods provide significant improvements in the design and management of
blood supply chains for humanitarian emergencies, several limitations remain, as:

• Resource Constraints: Our models do not account for real-world limitations on the number of
mobile collection units or human resources available during the response phase. Incorporating
such constraints could further enhance the realism of the models.

• Dynamic Demand Fluctuations: We assume static uncertainty in demand. In practice, demand
may fluctuate in real-time as more information becomes available during a disaster. Extending our
models to handle dynamic or real-time demand updates would be valuable.

• Transportation Challenges: The current models do not explicitly account for disruptions in trans-
portation, such as road closures or delays caused by disaster conditions. Modeling such disruptions
could improve the robustness of the proposed supply chain.

• Multi-Stakeholder Coordination: Our models assume centralized decision-making. In reality, mul-
tiple stakeholders are often involved, which can lead to coordination issues and delays. Addressing
these factors could improve the applicability of our approach in real-world settings.

Future work can explore these limitations by integrating additional real-world constraints, adopting
stochastic or adaptive optimization techniques, and developing collaborative decision-making models
involving multiple stakeholders.

Availability of Source Code and Data

The source code used to implement the experiments described in this article is available as open source
on GitHub but its address cannot be communicated in the submitted version for the purpose of the
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A Improvements of the Benders algorithm

This section details the algorithmic enhancements implemented to improve the convergence of the Benders
algorithm presented in Section 5.1.

First, the relaxed master program pRMPBq is initialized using the procedure described in section
A.1. Then, model pMPBq is solved using the branch-and-Benders-cut approach, i.e. solving the problem
using a commercial branch-and-cut solver and adding the Benders optimality cuts within a lazy constraint
callback.

A.1 Initialization of the relaxed master program

Algorithm 3 details the procedure used to initialize the relaxed master program pRMPBq at the beginning
of the Benders algorithm, proposed in Fischetti et al. (2017) and applied to model (MCVaR) .

At each iteration k, we solve the linear relaxation of pRMPBq where only a subset (empty at the
first iteration k “ 0) of the optimality cuts is included. This yields an optimal fractional solution
pxk˚, s̄k˚, ηk˚, zk˚q of this relaxation. The simple in-out procedure uses a stabilizing point px̃, ˜̄s, η̃, z̃q
and defines the separation point pxsep, s̄sep, ηsep, zsepq as pxsep, s̄sep, ηsep, zsepq “ ϵpxk˚, s̄k˚, ηk˚, zk˚q `

p1 ´ ϵqpx̃, ˜̄s, η̃, z̃q, where ϵ P r0, 1s. The stabilization point is initially chosen as an arbitrary feasible
solution of pMPBq and is updated at each iteration.

Cuts are generated for subproblem solutions that are violated at the separation point. After five
consecutive iterations without improvement of the value of the relaxed master program, the stabilization
is stopped by setting ϵ “ 1 (which switches to the standard cutting plane approach). The procedure
terminates when the stabilization is inactive, and either no new optimality cuts have been added at the
last iteration or the value of the relaxed master program has not improved for five consecutive iterations.
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To reduce the size of the initial master program, every fifth iteration and after the very last iteration,
the optimality cuts that have been included in pRMPBq but are not active at the current solution
pxk˚, s̄k˚, ηk˚, zk˚q are removed from the model.

Initial stabilizing point The initial stabilizing point px̃, ˜̄s, η̃, z̃q is determined as a feasible solution
to the linear relaxation of (MCVaR) , using the following simple heuristic. First, as long as the budget
permits, fixed centers x̃ are established, and the initial blood supply in all hospitals is set to zero (˜̄s “ 0).
Next, we assume there is no flow in the network, meaning that for each scenario ω P Ω, the total
unmet demand equals the total demand. Then η̃ is set as η̃ :“ VaRα,ωPΩr

ř

tPT ˚

ř

hPH
ξω

h,ts. From this

value, we compute the positive difference vω between the total unmet demand of scenario ω P Ω and
the η̃. Finally, the estimation of the objective value z̃ω of the subproblem for scenario ω P Ω is set as
z̃ω :“ p1´ λq

ř

hPH
ř

tPT ˚ ξω
h,t `

λ
1´αv

ω.

A.2 Repairing heuristic for bunching

Algorithm 4 takes as input an optimal solution pv̂ω, ŷω, ŝω, q̂ω, θ̂ωq of problem pSPB
ω px̄, s̄, η̄qq and derives

a feasible (hopefully optimal) solution for the separation problem pSPB
ω1px̄, s̄, η̄qq of another scenario ω1

such that ξω1

h,t ď ξω
h,t for all h P H, t P T ˚ (i.e. with a smaller vector of demands). Its principle is to keep

the same routing decisions (ŷω1 :“ ŷω and adjust the flow variables in order to satisfy the constraints
(7)-(8). Since the demands in ω1 are lower than in ω, one can easily show that the constructed solution
(v̂ω1

, ŷω1

, ŝω1

, q̂ω1

, θ̂ω1) is feasible for the subproblem ω1. By construction, the constraints (7)-(8) are valid.
As q̂ω1

ď q̂ω, the capacity constraints (5), (6) and (9) remain satisfied. Moreover, the economic cost of
the construct solution cannot exceed the budget consumed by the solution of subproblem ω, which uses
more flow to satisfy more demand. Therefore, the budget constraint (2) also remains valid.

B Performance profiles for different number of scenarios in the
training phase

Figures 6 - 8 show the results for the instances with 20, 40, and 80 locations respectively and different
numbers of scenarios (from 20 to 300).
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(a) jab (b) wc

(c) mc8 (d) mcr8

Figure 6: Performance profiles for the instances with 20 locations
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Algorithm 3: Initialization of the Benders relaxed master program using in-out
stabilization

Data: Ω, px̃, ˜̄s, η̃, z̃q
Result: pQω

DqωPΩ

1 Qω
D ÐH @ω P Ω ;

2 convergedÐ false;
3 ϵ Ð 0.2;
4 old_objectiveÐ ´8;
5 k Ð 0, no_impr Ð 0;
6 while ␣ converged do
7 new_cutsÐ 0;
8 pxk˚, s̄k˚, ηk˚, zk˚q Ð Solve pRMP q with Qω

D;
9 new_objectiveÐ optimal value of pRMP q with Qω

D;
10 px̃, ˜̄s, η̃, z̃q Ð 1

2 rpx̃,
˜̄s, η̃, z̃q ` pxk˚, s̄k˚, ηk˚, zk˚qs ;

11 pxsep, s̄sep, ηsep, zsepq Ð ϵpxk˚, s̄k˚, ηk˚, zk˚q ` p1´ ϵqpx̃, ˜̄s, η̃, z̃q ;
12 for ω P Ω do
13 pπω˚, ζω˚,χω˚,Λω˚, νω˚q Ð Solve SPBpxsep, s̄sep, ηsep, ξωq ;

14 if zsep
ω ă πω˚

˜

ř

jPJ
fjx

sep
j `

ř

hPH
c̄hs̄

sep
h ´B

¸

`
ř

jPJ

ř

tPT ˚

ζω˚
j,t

´

xsep
j ´ 1

¯

´ νω˚ηsep ´

ř

jPJ

ř

tPT ˚

βχω˚
j,t x

sep
j `

ř

hPH
Λω˚

h,1pξ
ω
h,1 ´ s̄

sep
h q then

15 Qω
D Ð Qω

D Y pπ
ω˚, ζω˚,χω˚,Λω˚, νω˚q ;

16 new_cutsÐ new_cuts` 1;
17 end
18 end
19 if ϵ “ 1 and (new_cuts = 0 or no_impr=5) then
20 convergedÐ true ;
21 end
22 if new_objective ď old_objective then
23 no_impr Ð no_impr ` 1 ;
24 end
25 else
26 no_impr Ð 0;
27 end
28 if ϵ ‰ 1 and no_impr “ 5 then
29 no_impr Ð 0, ϵÐ 1;
30 end
31 if pk ” 0 pmod 5qq or converged then
32 for ω P Ω do
33 for pπω˚, ζω˚,χω˚,Λω˚, νω˚q P Qω

D do

34 if zk˚
ω ą πω˚

˜

ř

jPJ
fjx

k˚
j `

ř

hPH
c̄hs̄

k˚
h ´B

¸

`
ř

jPJ

ř

tPT ˚

ζω˚
j,t

`

xk˚
j ´ 1

˘

´

νω˚ηk˚ ´
ř

jPJ

ř

tPT ˚

βχω˚
j,t x

k˚
j `

ř

hPH
Λω˚

h,1pξ
ω
h,1 ´ s̄

k˚
h q then

35 remove pπω˚, ζω˚,χω˚,Λω˚, νω˚q from P Qω
D ;

36 end
37 end
38 end
39 end
40 k Ð k ` 1;
41 old_objectiveÐ new_objective;
42 end
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Algorithm 4: Greedy algorithm for bunching
Data: η, pv̂ω, ŷω, ŝω, q̂ω, θ̂ωq, ω and ω1

Result: p1´ λq
ř

hPH

ř

tPT ˚

θ̂ω1

h,t `
λ

1´α v̂
ω1

1 ŷω1

Ð ŷω ;
2 ŝω1

Ð ŝω ;
3 for h P H do
4 ∆s Ð 0 ;
5 ∆ Ð 0 ;
6 for t “ T to 2 do
7 ∆s Ð ŝω

h,t ´ ŝ
ω1

h,t ;
8 ∆ Ð ξω

h,t ´ ξ
ω1

h,t `∆s ;
9 θ̂ω1

h,t Ð maxp0, θ̂ω
h,t ´∆q ;

10 ∆ Ð maxp0,∆´ θ̂ω
h,tq ;

11 ŝω1

h,t´1 Ð maxp0, ŝω
h,t´1 ´∆q ;

12 ∆ Ð maxp0,∆´ ŝω
h,t´1q ;

13 while ∆ ą 0 do
14 Choose pi, jq P E ;
15 q̂ω1

i,j,h,t Ð maxp0, q̂ω
i,j,h,t ´∆q;

16 ∆ Ð maxp0,∆´ q̂ω
i,j,h,tq;

17 end
18 end
19 ∆s Ð ŝω

h,1 ´ ŝ
ω1

h,1 ;
20 ∆ Ð ξω

h,t ´ ξ
ω1

h,t `∆s ;
21 θ̂ω1

h,1 Ð maxp0, θ̂ω
h,t ´∆q ;

22 ∆ Ð maxp0,∆´ θ̂ω
h,1q ;

23 while ∆ ą 0 do
24 Choose pi, jq P E ;
25 q̂ω1

i,j,h,1 Ð maxp0, q̂ω
i,j,h,1 ´∆q;

26 ∆ Ð maxp0,∆´ q̂ω
i,j,h,1q;

27 end
28 end
29 v̂ω1

Ð maxp0,
ř

hPH

ř

tPT ˚

θ̂ω1

h,t ´ ηq;
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(a) jab (b) wc

(c) mc8 (d) mcr8

Figure 7: Performance profiles for the instances with 40 locations
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(a) jab (b) wc

(c) mc8 (d) mcr8

Figure 8: Performance profiles for the instances with 80 locations
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