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Abstract

Disasters, both natural and man-made, pose significant challenges to healthcare systems,
particularly in managing blood supply chains effectively. Ensuring an adequate and timely
supply of blood products becomes crucial during these crises to save lives and mitigate the
impact of catastrophic events. This paper develops two-stage and multi-period risk aversion
models for the blood supply chain in disaster management, focusing on such measures as
mean-CVaR and worst-case criterion. Our computational experiments show that a coarse
approximation of uncertainty is more effective than a fine approximation and that good
preparation enables a more effective response to an emergency. Our findings provide insights
for policymakers, healthcare practitioners, and logistics professionals to improve blood supply
chain management strategies in disaster response and preparedness efforts.

Keywords— Blood supply chain; Disaster management; Risk measurement; Two-stage robust opti-
mization

1 Introduction

Since the 1950s, both the number and magnitude of disasters triggered by natural hazards
have continuously increased, with the number of affected people rising proportionally
(Boonmee et al., 2017). In 2023, 339 such disasters were registered by the Emergency
Event Database EM-DAT with a massive impact on the populations: 81,576 people were
killed, 277,382 injured, and 76.52 million people affected. Economic damages from these
disasters were estimated at US$ 295 billion (Beinsure, 2023).

Numerous academic works have been dedicated to disaster management to mitigate
such damages. They fit into four consecutive stages of disaster management: mitigation,
preparedness, response, and recovery. According to Coppola (2006), mitigation is about
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making the disaster less likely to occur or reducing its adverse effects in case of occurrence.
Preparedness is defined as the establishment of policies that will be used after the disas-
ter, which may increase the chances of survival and minimize financial and other losses.
Response seeks to take action to reduce or eliminate the impact of catastrophe during its
aftermath to prevent additional suffering, economic loss, or other losses. Finally, recov-
ery is about restoring the affected area to normal after the disaster. Therefore, disaster
management can be divided into two phases: pre-disaster or proactive (mitigation and
preparedness) and post-disaster or reactive (response and recovery).

Within disaster management, logistics issues are addressed by a branch of logistics
research often referred to as humanitarian logistics. The problems addressed concern the
procurement, storage, and transportation of food, water, medicine, and other supplies,
as well as human resources, equipment, and injured people before and after disasters
(Nikbakhsh and Zanjirani Farahani, 2011). During the preparation phase, the installa-
tion of facilities such as distribution centers, warehouses, medical centers, etc., needs to
be planned. This optimization problem is modeled as a facility location problem for hu-
manitarian logistics. Boonmee et al. (2017) proposed a recent classification of existing
studies in this field according to the facility location and disaster type, but also consid-
ering such modeling elements as data modeling type, decisions to be taken, objectives to
be optimized, constraints to be respected, and solution methods.

In this paper, we are interested in the problem of the blood supply chain in the context
of an earthquake. After an earthquake, the initial responses are focused on rescuing
affected individuals. In the hours and days following the event, searches are conducted to
locate the injured and transport them to hospitals for treatment. The response phase to an
earthquake is multi-periodic, and the number of victims is difficult to predict. The extent
of the damage, including impacts on infrastructure and human lives, varies based on the
earthquake’s magnitude. Blood becomes a crucial resource during this stage, particularly
for those requiring surgery. The demand for blood in hospitals during emergencies often
exceeds the regular stock. Therefore, having a resilient blood supply chain and effective
coordination is essential to meet the demand, prevent chaos, and minimize damage. In
2003, after a devastating earthquake in Iran, it was observed that only about 23% of the
collected blood reached the affected people (Abolghasemi et al., 2008). More lives can be
saved if the location of blood collection centers is chosen to efficiently supply hospitals,
considering the uncertainty of their demand.

From a mathematical point of view, demand uncertainty can be modeled in different
ways. However, for rare events such as earthquakes, it is often done through a discrete
uncertainty set of blood demand scenarios (Jabbarzadeh et al., 2014). At the same time,
regarding the issue of the blood supply chain in the context of an earthquake, there is
an open question about the relevance of objective functions used for optimization under
uncertainty. For conventional facility problems, economic performance indicators, such as
total investment cost, are often the prevalent criteria. However, in the context of a life-
or-death situation, such criteria seem to be hardly ethically acceptable. The motivation
for our study is to advance the discussion on this point by comparing several risk-averse
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objective functions and evaluating their impact on the estimated number of saved lives.
The main objective of this study is to provide decision-makers with a comprehensive
comparison of risk-averse models for the design of a blood supply chain to guide their
choices for ethically acceptable optimization in the context of mitigation of the damages
caused by an earthquake.

This paper presents risk-averse models for the blood supply chain using mean-CVaR
and worst-case risk measures. Our models are two-stage, multi-period, single-objective
formulations that optimize a humanitarian objective while controlling the investment and
operational costs of the supply chain. We demonstrate numerically that a coarse approx-
imation of uncertainty is more efficient than a fine one for the problem. The numerical
results indicate that our approaches manage risk more effectively than the solution and
model robustness approaches. Additionally, through performance indicators, we illustrate
that good preparation enables a more effective response to emergencies. These contribu-
tions aim to enhance the management of the emergency blood supply chain, integrating
humanitarian considerations while maintaining economic and operational robustness.

Our study presentation is organized as follows: We analyze the existing relevant litera-
ture in section 2. In section 3, we formally introduce the considered optimization problem.
In section 4, we present different mathematical models for risk aversion evaluated in this
study. We describe the methodology used to compare the models on an out-of-sample set
in section 5 and the procedure used to generate the data in section 5.1. The results are
analyzed in section 6. A conclusion of the study is presented in section 7.

2 Literature review

The specificity of the blood supply chain lies in its complexity and sensitivity, which
result from the critical and vital nature of blood products. Each stage of this chain,
from the blood collection from the donor to its transfusion to the recipient, requires
careful management to respect strict regulations designed to ensure blood products’ safety,
quality, and traceability. Its sensitivity also stems from its dependence on voluntary
donors and the need to maintain sufficient stocks to meet demand, especially in the case
of disasters triggered by natural hazards.

2.1 Blood supply chain management

In addressing the dynamic challenges of the blood supply chain during crises such as dis-
asters triggered by natural hazards and pandemics, it becomes imperative to ensure its
flexibility and responsiveness, as highlighted by Tirkolaee et al. (2023). In such circum-
stances, the demand for blood products surges, requiring swift mobilization of resources
and efficient coordination with humanitarian organizations, hospitals, and emergency ser-
vices. In practice, the management of the blood supply chain is a complex process in-
cluding several interdependent planning tasks (Meneses et al., 2023) which have to be
addressed at strategic, tactical, and operational decision-making levels (Pirabán et al.,
2019).
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At the strategic level, the most studied problem concerns strategic network design for
the blood supply chain (Chaiwuttisak et al., 2016; Bruno et al., 2019). At the tactical
level, inventory management and planning are the most frequently considered in the lit-
erature (Hemmelmayr et al., 2010; Zahiri et al., 2018; Rajendran and Ravi Ravindran,
2019; Samani and Hosseini-Motlagh, 2019; Ahmadimanesh et al., 2020). Shih and Rajen-
dran (2020) developed inventory models for the blood supply chain including hospitals
and blood centers taking into account the platelet demand and supply uncertainty while
considering two types of demand at the blood center: regular demand from the hospitals
and the emergency demand when hospitals experience a shortage. Zhao et al. (2021)
compared centralized and decentralized strategies for inventory management in the blood
supply chain amid fluctuations in supply and demand. Finally, at the operational level,
the response to the disaster is managed. A more detailed description of different planning
levels and corresponding modeling approaches can be found in two recent comprehen-
sive reviews of optimization models for blood supply chain management published by
Pirabán et al. (2019) and Meneses et al. (2023). In the following, we focus on the studies
considering the uncertainty in the design of the blood supply chain.

2.2 Blood supply chain under uncertainty

Jabbarzadeh et al. (2014) pioneered work on the emergency blood supply chain, study-
ing the case of an earthquake. In their work, they used a solution robustness and model
robustness approach, which is a way of looking at robustness introduced by Mulvey and
Vanderbei (1995). A solution is said to be solution robust if the value of the objective
function remains close to the optimal value associated with each scenario (as obtained
when solving the deterministic model with one scenario). A solution is said to be model
robust if feasible for any scenario. The authors proposed a two-stage robust model where
the decisions were related to determining the number and location of permanent and
temporary blood collection facilities, the allocation of these facilities to blood donors and
the blood inventory levels at each period. The planning horizon was divided into several
periods characterized by its own decisions. The objective was to minimize the expec-
tation of the network cost plus a factor times the network cost variance corresponding
to the solution robustness described below. Another objective was to minimize a factor
(penalty) multiplied by the expectation of the unsatisfied demand corresponding to the
model robustness. The authors applied their model to an earthquake in Iran.

Fahimnia et al. (2017) presented a stochastic mathematical model for designing a sup-
ply chain to minimize total costs and maximize suppliers’ social and environmental scores
in the face of disruptions. The decisions concerned the determination of the number of
permanent and temporary blood collection facilities, the quantity of blood to be collected
and transported, the blood inventory levels, and the quantity of blood transported be-
tween facilities. Uncertain parameters in the study included the demand for blood, the
supply of donors, and the fixed and operational costs associated with the blood supply
chain.
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Zahiri and Pishvaee (2017) developed a bi-objective mathematical programming model
for optimizing the blood supply chain network to minimize its total cost and maximize
demand satisfaction according to blood group compatibility. The decisions concerned the
location of temporary and permanent blood collection sites and selecting blood testing
laboratories and assigning donors and blood products to demand zones with perish time
considerations. The mathematical model was based on a robust possibilistic programming
approach to address uncertain input parameters such as moving facilities, locating centers,
establishing labs, transportation costs, blood demand, perishability, and blood group
compatibility.

Salehi et al. (2019) studied a two-stage multi-period stochastic model, considering the
uncertainty about blood demand and the potential transfusion of different blood groups
based on medical needs. The objective was to minimize the total costs associated with the
blood supply chain network, considering the average and the variability of the cost. The
decision-making process integrated strategic and tactical decisions such as the location
of temporary and permanent blood collection facilities, the capacity of temporary blood
collection facilities, assignment of donors to facilities, inventory, and backlogging.

Fazli-Khalaf et al. (2019) considered a stochastic tri-objective model based on possi-
bilistic linear programming tackles parameters such as blood demand in hospitals, trans-
portation time, and laboratory testing reliability. The first objective was to minimize
the total supply chain costs, the second targeted the minimization of total transportation
time between facilities, and the third aimed to maximize the total reliability of the tested
blood at the laboratories. The decisions in the proposed mathematical model included the
location of temporary and permanent blood collection facilities and testing laboratories,
the distribution of blood units to hospitals, and the selection of transport modes for blood
delivery.

Shih and Rajendran (2020) proposed a stochastic mixed-integer linear programming
model for the blood supply chain to manage blood supply under uncertainty in demand
and supply. The decisions included the ordering policy for platelet units by hospitals, the
number of platelet units procured by the blood center, the number of units shipped to
hospitals, and the inventory and shortage of platelet units at hospitals. The objective was
to minimize the total cost incurred over the blood supply chain.

Khalilpourazari and Hashemi Doulabi (2023) introduced a two-stage multi-period
stochastic model based on fuzzy programming for designing an emergency blood supply
chain network, emphasizing the potential impact of natural disasters like earthquakes.
The model considered uncertain parameters related to blood demand, derivatives, and
medical transfusions. The decisions included strategic preparedness and operational re-
sponse, as in the papers cited above, addressing issues like the location of temporary and
permanent blood collection facilities, the capacity of temporary blood collection facilities,
assignment of donors to facilities, selection of transport modes for blood delivery, pro-
curement, inventory, and backlogging. The objective was to minimize the supply chain’s
total costs and reduce transportation time.

In the literature, uncertainty has been modeled in two ways. The first is scenario
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modeling, where several possible scenarios are developed to form a discrete set of uncer-
tainties. The second approach is possibility distribution, a concept used in fuzzy logic
and possibilistic modeling to represent uncertainty differently from classical probability
distributions. Whereas probability distributions quantify the likelihood of various events
occurring, possibility distributions measure the possibility of an event occurring. Models
based on a discrete set of uncertainties are two-stage adaptive models with variables that
can be adapted to the scenarios. In contrast, models based on possibility distributions
are static, deterministic models based on fuzzy programming. To guarantee the feasi-
bility of solutions, they use the random constraint approach coupled with a possibility
programming measure that evaluates the certainty degree (Inuiguchi and Ramík, 2000).

Risk measures have been used in objective functions to guide the direction of optimiza-
tion and to evaluate models. A risk measure is a quantitative indicator that assesses the
uncertainty or variability associated with a decision. It enables the estimation of poten-
tial losses and assists in management and planning decisions. A measure is risk-neutral
if it does not give any particular preference to the level of risk associated with different
options. In other words, it considers all sources of risk equally and frequently consider-
ing the average value of the objective function over all scenarios. A risk-averse measure
reflects an aversion to risk, indicating a preference for less risky situations. A less risky
situation refers to a context or circumstances where uncertainty and the probability of
loss are minimized. Thus, in the previous studies, primarily risk-neutral measures (mean
value of the objective function) were used in models based on a discrete uncertainty set
or fuzzy programming, except Zahiri and Pishvaee (2017) and Salehi et al. (2019), which
used a risk-averse measure to evaluate the unsatisfied demand and the supply chain cost,
respectively. The first minimizes the unsatisfied demand for the highest possible value of
uncertainty. The second minimizes the maximum regret, where the regret of a scenario is
the difference between the cost of the solution found while considering all scenarios and
the cost of the solution of the deterministic model with the considered scenario.

The comparison of our study with the previous research is summarized in Table 1.

Articles Objective Risk Uncer- Method
Cost Demand tainty

Jabbarzadeh et al. (2014) Yes Yes neutral scenarios MILP/ B&B
Fahimnia et al. (2017) Yes No neutral scenarios MILP/ ϵ-cons & LR

Zahiri and Pishvaee (2017) Yes Yes averse fuzzy numbers MILP/ ϵ-cons & LR
Salehi et al. (2019) Yes No averse scenarios MILP/ B&C

Fazli-Khalaf et al. (2019) Yes No neutral fuzzy numbers MILP/ ϵ-cons
Shih and Rajendran (2020) Yes Yes neutral scenarios MILP/ B&B

Khalilpourazari and Hashemi Doulabi (2023) Yes No neutral fuzzy numbers MILP/ ϵ-cons
This research No Yes averse scenarios MILP/ B&B

B&B : Branch and Bound; B&C : Branch and Cut; ϵ-cons : ϵ-constraint; LR : Lagrangian relaxation

Table 1: Comparison of the present and previous studies

As can be seen from the literature review, such well-known risk-averse measures as the
min-max criterion (worst case optimization) and the combination of Conditional Value
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at Risk (CVaR) with the mean have not been considered yet in the blood supply chain
design. The min-max robust optimization involves optimizing the worst-case objective
over an uncertainty set. However, min-max models are often criticized for their over-
conservative nature, favoring an excessively cautious approach. In contrast, CVaR, a risk
measure widely used in finance, represents the average loss above a certain risk level.
In our study, we conduct an original evaluation of these risk-averse measures to advise
decision-makers on which one best satisfies the demand for blood in disaster management.
Given the original contribution of this analysis within the context of blood supply chains,
we subsequently examine the application of risk aversion measures as utilized in other
contexts within the literature.

2.3 Risk-averse measures

Two risk-averse measures are commonly employed in optimization under uncertainty: the
robust worst case (min-max) and the combination of Conditional Value at Risk (CVaR)
with the mean. As with the solution robustness and model robustness approaches, these
risk-averse measures provide solutions that are feasible in any scenario (model robustness)
but do not use the same selection criteria in the set of feasible solutions. In particular, the
min-max criterion is oriented to minimize the losses in the worst case over an uncertainty
set.

Ni et al. (2018) proposed a min-max robust model for optimizing facility location,
emergency inventory pre-positioning, and relief delivery operations in a disaster relief
network. The model considered uncertainties in demands, usable proportions of pre-
positioned inventories, and road link capacities. The objective was to minimize the first-
and worst-case second-stage costs among all possible realizations of the uncertain param-
eters falling into the uncertainty set. A case study of the Yushu earthquake was used to
demonstrate the application and advantages of the proposed model.

Chen et al. (2022) proposed a min-max robust optimization framework for energy
management in combined cooling, heating, and power systems. The authors established an
integrated demand response (IDR) model for day-ahead scheduling and intra-day real-time
regulation, focusing on uncertainties in renewable energy output and electric, cooling, and
heating load. The two-stage robust scheduling optimization model incorporated the cost
and constraints of IDR resources, aiming to enhance the system’s resilience to uncertain
risks and improve the economy and self-sufficiency of micro-energy grids.

Najafi et al. (2022) presented a novel linear max–min–max robust optimization tool for
operators in multi-energy systems. This tool accounted for electricity market prices and
wind generation uncertainties, incorporating a power-to-gas storage system. The study
introduced an uncertainty budget model, enhancing system robustness against various
forecasting uncertainties. The study’s primary objective was to minimize the total op-
erational cost of procuring energy carriers while meeting short-term demands through a
robust optimization model. This approach was designed to ensure feasibility under various
uncertainty scenarios and provide optimal solutions for worst-case parameter realizations.
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Zhang et al. (2023) addressed optimizing relief kit assembly and distribution in post-
disaster scenarios using a min-max robust model. The key objectives were to minimize
total costs and maximize demand satisfaction, considering uncertainties in both demand
and travel time. The proposed model encompassed facility location and relief kit assem-
bly in the first stage, followed by relief kit distribution in the second stage. The study
validated the model through computational experiments and a case study based on earth-
quakes in Yunnan Province, demonstrating its effectiveness in achieving cost efficiency
and meeting demand in post-disaster relief operations.

Nevertheless, min-max models frequently draw criticism for their excessively conserva-
tive nature, often adopting an overly cautious approach. CVaR exhibits less conservatism
than the worst-case approach, accounting for risks in extreme scenarios. Widely applied
across various studies, CVaR proves to be more pertinent than conventional risk measures
like expectation in certain contexts.

Noyan (2012) studied risk-averse two-stage stochastic programming with CVaR as
the risk measure for disaster management and developed decomposition algorithms for
solving such problems. The model focused on determining response facility locations and
inventory levels of relief supplies amidst demand and damage level uncertainties.

Yu et al. (2017) addressed an uncapacitated facility location problem incorporating
random facility disruptions with independent and correlated disruption scenarios. The
objective was to minimize the expected costs, including setup, day-to-day transportation,
and penalties. Conditional value-at-risk (CVaR) and absolute-semi-deviation risk mea-
sures were used to express the associated risks. As a result, the model was designed to
control transportation cost risks under facility disruptions while optimizing facility loca-
tion and customer assignments. Numerical results showcased the superiority of risk-averse
models in enhancing reliability over classic risk-neutral counterparts.

Burtscheidt et al. (2020) delved into risk-averse models in bilevel stochastic linear pro-
gramming. The leader, making decisions without knowledge of the randomness, dealt with
outcomes modeled as random variables. They were evaluated using a law-invariant convex
risk measure, with the Conditional Value-at-Risk (CVaR) among the considered measures.
The study established qualitative stability under perturbations of the probability distri-
bution, along with Lipschitz continuity and differentiability conditions for expectation,
expected excess, and upper semi-deviation. A regularization scheme is proposed for fi-
nite discrete distributions, reformulating bilevel stochastic problems into standard bilevel
problems.

Afsari et al. (2024) presented a mathematical model addressing the optimal service
restoration problem in networked Microgrids focusing on self-healing operation. The
model aimed to maximize restored loads while minimizing risk, and it was assessed using
conditional value-at-risk (CVaR).

The CVaR risk measure can be found in many other works on various issues (see, for
example Pisciella et al. (2016); Bushaj et al. (2022) ).

In this study, we opt for scenario-based uncertainty modeling and implement the CVaR
and worst-case risk measures for the supply chain design problem described in the next
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section.

3 Problem description

This work focuses on developing a strategic plan for managing blood supply-chain lo-
gistics during natural disasters, particularly earthquakes. The primary objective of this
supply chain is to transport blood from donors to hospitals where patients require blood
transfusions. Blood is collected from two types of facilities: fixed collection centers and
mobile collection facilities. Fixed collection centers operate within a specific location and
collect blood from nearby donors, while mobile collection facilities can be moved to differ-
ent places during the response phase. Since the number of patients requiring treatment is
unknown until the disaster occurs, we employ a two-stage approach. In the preparedness
phase, we set up permanent blood collection centers in specific locations and create initial
blood stocks in hospitals. In the response phase, hospitals receive patients who require
treatment on an ongoing basis. We decide where to dispatch mobile collection facilities
and the amount of blood each facility delivers to each hospital for each period.

In the remainder, we make the following assumptions:

• We consider a two-stage setting where the uncertain parameters related to all periods
are revealed simultaneously. Lead time for the order processing is assumed to be
negligible.

• We do not consider individual donors but donor groups, each associated with a
possible location and a deterministic blood supply. A single blood type is considered.

• We assume that hospitals and blood collection centers have limited storage capacity.
The perishable aspect of blood is not taken into account.

• The Health Insurance Portability and Accountability Act (HIPAA) regulations imply
that each hospital can receive blood only from a designated blood center and cannot
share or procure blood from other hospitals.

To define the problem, we model the time horizon T as a set of T ` 1 discrete periods
t0, . . . , T u, where the preparedness phase occurs at period 0, and the response phase takes
place during T ˚ :“ T zt0u. We denote by H the set of hospitals where patients are treated
and by I and J the set of donor groups and the set of potential locations for fixed blood
collection facilities, respectively. We also define E Ď I ˆ J as the set of pairs pi, jq such
that blood of donor group i can be collected at location j (i.e., the two locations are close
enough).

During the preparedness phase, two types of costs are considered: fj, the cost of
opening a fixed blood collection site at j P J , and ch, the cost of maintaining each unit
of blood in stock at hospital h P H during the preparedness.

During the response phase, the cost of collecting one unit of blood from donor group
i P I at a (fixed or mobile) facility located at j P J is oi,j. Additionally, aj,h is the
transport cost from blood collection site j P J to hospital h P H and ch is the cost of
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storing one unit of blood at hospital h P H during one time period. Finally, moving one
mobile collection facility from location j P J to another location j1 P J , at the beginning
of period t P T ˚, costs bj,j1,t. The deterministic parameters of the problem are summarized
in Table 2.

Symbol Value
H set of hospitals
I set of donor groups
J set of potential locations for blood collection facilities
Di,j , Di,h distance between locations i P I and j P J or h P H
d maximum acceptable distance for assigning a donor group to a location
E set of pairs pi, jq such that j P J can collect blood from i P I, E “ tpi, jq P I ˆ J : Di,j ď du

T the latest response period
T time horizon (T “ t0, ..., T u)
ρi supply of donor group i P I
γh capacity for blood inventory of hospital h P H
γ̄h maximum blood inventory before the response phase of hospital h P H
β capacity for blood inventory of each fixed collection facility
δ capacity for blood inventory of each mobile collection facility
ch unit blood storage cost at h P H during the response phase
ch unit blood storage cost at h P H before the response phase
bj,j1,t cost of moving a mobile collection facility from j P J to j1 P J at the beginning of t P T ˚

fj cost of opening a fixed blood collection facility at j P J
aj,h blood unit transport cost from j P J to h P H
oi,j blood unit collection cost from i P I at j P J
B available budget

Table 2: Deterministic parameters

We consider the quantity of blood needed in hospitals to make treatments as uncertain
input data of our problem. A realization of the uncertain parameters is a vector ξ in
R|H|ˆ|T ˚|

` , where ξh,t is the quantity of blood needed during period t P T ˚ to treat patients
at hospital h P H under realisation ξ. Let Ξ be the set of all possible realizations for the
uncertain parameters. The uncertain parameters of the problem are summarized in Table
3.

Symbol Meaning
Ξ Uncertainty set
ξ P Ξ realisation of the uncertainty
ξh,t blood demand for hospital h at period t in uncertainty realization ξ

Table 3: Uncertain data

We will now introduce the problem we are considering using the abovementioned
notations. In the preparedness phase, we decide on the location of the fixed collection
facilities and the amount of initial bloodstock in each hospital before the demand for
blood is known. The initial stock at each hospital h is limited to γ̄h. The total cost of
preparedness comprises the cost of the opened fixed collection facilities and the cost of
maintaining the initial stock at hospitals.
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In the response phase, which begins once the blood demand ξ is revealed, we de-
termine the location of each mobile collection facility at each period, the assignment of
donor groups to collection facilities, the quantity of blood to collect from donors, and the
quantity of blood to send to each hospital. The capacity γh of each hospital h P H to
store blood must not be exceeded at any time. Additionally, each fixed (resp. mobile)
facility cannot collect more blood than its capacity β (resp. δ). Donor group i P I can
give blood at any facility located at site j P J if pi, jq P E . The total amount of blood
collected from donor group i during the entire response phase must not exceed its supply
ρi. Finally, at most one collection facility can be assigned to location j P J during a
period.

The cost incurred by the response phase is related to the movements of mobile col-
lection facilities, blood collection and transportation costs, and the maintenance of the
stocks. The total cost of the network and its operation, including preparation and re-
sponse costs, must not exceed the available budget of B.

The objective of this optimization problem is to minimize the unfulfilled blood demand
during the response period T ˚. This is a stochastic problem: the evaluation of a design
solution depends on the realized uncertain parameter ξ P Ξ. The next section discusses
different risk measures and the associated mathematical programming models.

4 Mathematical programming models

In this section, we discuss several mathematical programming models that are designed
to solve the blood supply chain design problem. Specifically, we present a model that
minimizes a risk measure, a robust model, and a model from the literature. We begin
by presenting in section 4.1 modeling blocks for the preparedness and response phases,
common to all our models. To account for the stochastic nature of the problem, we
then provide in section 4.2 three stochastic two-stage models for specific variants of our
problem.

4.1 Basic modeling blocks

4.1.1 The preparedness phase

Decisions in the preparation phase are modeled by variables x and s̄:

• for each location j P J , the binary variable xj is equal to 1 if a fixed collection
facility is built at j, and 0 otherwise.

• for each hospital h P H, s̄h P R` represents the initial blood supply in h. It is limited
to s̄h ď γ̄h, h P H.

In the following, we denote by X the set of valid decisions from the preparation phase,
i.e., X “ tpx, s̄q P t0, 1u|J | ˆ R|H|

` : s̄h ď γ̄h, @h P Hu.
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4.1.2 The response phase

The response phase problem is parameterized by the decisions px, s̄q made in the prepared-
ness phase and by the random realization ξ P Ξ. We denote the value of the associated
optimal response as Qpx, s̄, ξq. To manage the mobile collection facilities and blood flow
in the response phase, we use four types of variables:

• The binary variable yj,j1,t is equal to 1 if and only if a mobile blood collection facility
located at j P J at the end of period t ´ 1 moves to location j1 P J and is ready
to serve at period t ą 1. For the special case of t “ 1, we set yj,j1,1 “ 0 for j1 ‰ j,
while variable yj,j,1 is equal to 1 if and only if a mobile facility is present in j at the
first period. Only those facilities present at some location during the first time can
be used in the rest of the response phase.

• The real variable qi,j,h,t P R` defines the amount of blood to be collected at time t
from donor group i P I at location j P J , for pi, jq P E , to supply hospital h P H.

• The real variable sh,t P R` defines the amount of blood stored in hospital h P H in
period t.

• The real variable θh,t P R` defines the unsatisfied blood demand for hospital h P H
in period t.

Qpx, s̄, ξq :“ min
ÿ

tPT ˚

ÿ

hPH
θh,t (1)

s.t.
ÿ

jPJ
fjxj `

ÿ

hPH
chsh`

ÿ

tPT ˚

˜

ÿ

jPJ

ÿ

j1PJ
bj,j1,tyj,j1,t`

ÿ

hPH
pchsh,t`

ÿ

pi,jqPE

paj,h ` oi,jqqi,j,h,tq

¸

ď B (2)

xj `
ÿ

j1PJ
yj1,j,t ď 1 @j P J , t P T ˚ (3)

ÿ

j1PJ
yj1,j,t´1 “

ÿ

j1PJ
yj,j1,t @j P J , t P T ˚

zt1u (4)

ÿ

iPI:
pi,jqPE

ÿ

hPH
qi,j,h,t ď βxj `

ÿ

j1PJ
δyj1,j,t @j P J , t P T ˚ (5)

ÿ

jPJ :
pi,jqPE

ÿ

hPH

ÿ

tPT ˚

qi,j,h,t ď ρi @i P I (6)

ÿ

pi,jqPE

qi,j,h,1 ` sh ` θh,1 “ sh,1 ` ξh,1 @h P H (7)

ÿ

pi,jqPE

qi,j,h,t ` sh,t´1 ` θh,t “ sh,t ` ξh,t @h P H, t P T ˚
zt1u (8)

sh,t ď γh @h P H, t P T (9)

yj,j1,t P t0, 1u @pj, j1
q P J ˆ J , t P T ˚ (10)

qi,j,h,t P R` @pi, jq P E , h P H, t P T ˚ (11)

sh,t P R` @h P H, t P T ˚ (12)
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θh,t P R` @h P H, t P T ˚ (13)

Given a first-stage solution px, s̄q P X and a specific ξ P Ξ, the response phase problem
is represented by equations (1)-(13). The objective function (1) minimizes the unsatisfied
demand during the response phase, while Constraint (2) ensures that network costs do
not exceed the available budget. Constraints (3) specify that only one facility can be
present at a given location at a given time, while Constraints (4) ensure that a mobile
blood collection facility can leave location j P J at the end of period t P T ˚ if and only
if it was present there during the same period. Constraints (5) limit the amount of blood
collected in a collection facility at each period to its capacity, and Constraints (6) ensure
that the maximum blood supply for group donors is not exceeded. Constraints (7) and (8)
guarantee the conservation of blood flows in the hospitals, while Constraints (9) ensures
that the capacity for blood stocks at hospitals is not exceeded. The domains of variables
in the response phase are defined by constraints (10)-(13).

4.2 Discrete scenario-based two-stage models

We first present the general problem considered.

4.2.1 General mathematical model

Our focus is on minimizing the impact of the disaster on the population’s chances of
surviving in good health, given a financial constraint dictated beforehand by exogenous
considerations. Since human lives are at stake, we employ a risk-averse strategy. As
mentioned in Section 2, the model developed by Jabbarzadeh et al. (2014) optimizes
a linear combination of the average unserved demand (through model robustness) and
the average and variance of the economic cost (via solution robustness). Hence, this
approach is risk-neutral regarding humanitarian considerations in the sense that it does
not differentiate between a solution that performs well across all scenarios and one that
performs exceptionally in some cases but could result in numerous casualties in others.
Also, the risk-averse component of the objective function employed for the economic
criterion does not constitute a coherent risk measure in the sense of Artzner et al. (1999).
Indeed, it does not satisfy the monotonicity property: a solution with small variability in
the cost might be preferred to another solution whose cost is smaller in all scenarios and
possesses a larger variability.

We elected the conditional value-at-risk as our preferred risk measure to model our
aversion to humanitarian risk. Given a probability threshold α P p0, 1q, the conditional
value at risk α of a random variable X can be intuitively interpreted as the expected
value of X in the 100p1 ´ αq% largest outcomes1. Formally, the conditional value-at-risk
is defined as:

CVaRαpXq “ inf
ηPR

"

η `
1

1 ´ α
EωrX ´ ηs`q

*

.

1This interpretation holds for continuous random variables but can be inaccurate in the case of discrete random
variables. For more details, we refer to Rockafellar and Uryasev (2002); Schultz and Tiedemann (2006).
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Besides, CVaR possesses nice theoretical properties, as its objective satisfies the axioms
of a coherent risk measure. Additionally, it has favorable computational properties, as
a linear formulation of the model is readily available. However, optimizing CVaR only
would completely discard the most favorable outcomes from the evaluation of preparedness
solutions, leading to potentially severely suboptimal strategies in many scenarios. To
mitigate this undesirable effect, we combine CVaR with the expected value of the unserved
demand over all the scenarios with the help of a real weight λ P r0, 1s.

Hence, the general mathematical model can be cast as:

pMean-CVaR˚
q : min p1 ´ λqEξPΞ rQppx, s̄q, ξqs ` λCVaRα,ξPΞ rQppx, s̄q, ξqqs (14)

s.t. px, s̄q P X (15)

However, this general model remains intractable in practice. To devise computationally
tractable optimization models, we use an approximation of the initial uncertainty set Ξ
by sampling a finite family pξω : ω P Ωq of |Ω| scenarios, where Ω is the set of indices
of scenarios. The probability of scenario ω P Ω is denoted by pω. In the following, we
present two approximate models proposed for this purpose.

The first model, called (Mean-CVaR) (section 4.2.2), is the approximation of (mean-
CVaR˚) obtained through sampling. The larger the scenario sample used, the more precise
the approximation becomes. However, the computational burden for solving the model
increases correspondingly, and under limited computing resources, the solver may stop
without finding an optimal or even a feasible solution.

Given the observation that including too few scenarios may result in sub-optimal
solutions for our general model, we devised an alternative approximate model with a
different objective function. This robust worst-case model (section 4.2.3) accommodates
a larger number of scenarios, enabling us to compute near-optimal solutions to this proxy
problem with a larger sample size. This approach may lead to higher-quality outcomes in
the context of our general model.

Finally, the last model (section 4.2.4) is used for comparison purposes, it was proposed
in Jabbarzadeh et al. (2014).

4.2.2 Mean-CVaR model

The model (Mean-CVaR) approximates (Mean-CVaR˚) obtained through sampling. To
obtain a mixed integer linear programming model, we use the classical linear expression
of CVaR proven valid for discrete random variables by Rockafellar and Uryasev (2002)
and independently proven to be valid in the context of two-stage stochastic optimization
with mixed-integer recourse by Schultz and Tiedemann (2006) and Noyan (2012). To this
end, we introduce new variables η P R and vω P R` for each ω P Ω. Given a risk threshold
α P p0, 1q and a weight λ P r0, 1s, we obtain:

pMean-CVaRq : min p1 ´ λq
ÿ

ωPΩ
pωQpx, s̄, ξω

q ` λ

˜

η `
1

1 ´ α

ÿ

ωPΩ
pωv

ω

¸

(16)

s.t. px, s̄q P X (17)
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η P R (18)

vω
ě Qpx, s̄, ξω

q ´ η @ω P Ω (19)

vω
ě 0 @ω P Ω (20)

The objective function (16) minimizes a convex combination between the expectation
of the unmet demand and the CVaRα of the unmet demand. Constraints (19) and (20)
allow the linearization of CVaR. Constraint (17) defines first-stage solutions.

4.2.3 Robust worst-case model

As the number of scenarios included in Ω grows, the (mean-CVaR) model becomes more
challenging to solve. The model introduced in this section is particularly useful in situa-
tions where the scale of the instance or a large number of scenarios makes the resolution
of the mean-CVaR model difficult.

The concept of robust optimization is based on finding solutions that maintain their
effectiveness even in adverse situations. In other words, this approach aims to solve
models that perform well despite unfavorable scenarios, thereby enhancing the solutions’
reliability. The primary objective is to minimize sensitivity to disturbances and ensure
acceptable performance even in critical circumstances. Our two-stage modeling employs
a worst-case approach consistent with this paradigm. The objective function follows a
min-max-min logic, where the outer min operates on the first-stage variables, the inner
min minimizes the value of the recourse objective function, and the max identifies the
worst-case scenario for the selected first-stage solution.

min
px,s̄qPX

max
ωPΩ

Qpx, s̄, ξω
q (21)

To obtain the MILP formulation (22)-(25) for problem (21), we use an epigraph z P R

that is equal to the worst-case recourse cost at optimality thanks to constraints (24). The
objective (22) is to minimize the maximum value of the possible recourse to the first-stage
solution (23).

pWorst-caseq : min z (22)

s.t. px, s̄q P X (23)

z ě Qpx, s̄, ξω
q @ω P Ω (24)

z P R (25)

4.2.4 The model of Jabbarzadeh et al. (2014)

We rewrite the model proposed in Jabbarzadeh et al. (2014) using the same variables as
defined in section 4.1, duplicating the recourse variables s,y, q and θ for each ω P Ω. We
also use some additional notations and variables. The binary variable kω

i,j,t is equal to 1
if the donors of group i P I are assigned to the collection facility present in j P J in
period t P T ˚, under realization ω P Ω. As proposed by Yu and Li (2000), the Average
Absolute Deviation of the economic cost is computed to assess its variability. They suggest
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using non-negative variables Θω P R`, ω P Ω to make this term linear. For the sake of
conciseness, we denote by ψpx, s̄,yω,kω, sω, qωq the cost of the policy px, s̄,yω,kω, sω, qωq

under realization ξω, ω P Ω:

ψpx, s̄,yω,kω, sω, qω
q :“

ÿ

jPJ
fjxj `

ÿ

hPH
chsh `

ÿ

tPT ˚

«

ÿ

jPJ

ÿ

j1PJ
bj,j1,ty

ω
j,j1,t `

ÿ

hPH
chs

ω
h,t `

ÿ

hPH

ÿ

pi,jqPE

paj,h ` oi,jqqω
i,j,h,t

ff

In constraints (40), Mω
i,j,h,t :“ mintρi,maxtβ, δuu is a constant parameter that is suf-

ficiently large to ensure that kω
i,j,t is equal to one whenever qω

i,j,h,t ą 0 for some h P H,
while not discarding any feasible value of qω

i,j,h,t. In objective function (26), the first and
second terms minimize the mean and variability of the cost, respectively; this corresponds
to the concept of solution robustness. The third term minimizes the average unsatisfied
demand; this corresponds to the idea of model robustness. The penalty weight Γ P R` for
not meeting the demand for blood is used to explore the trade-off between the solution
robustness and the model robustness.

pJq : min
ÿ

ωPΩ
pω

«

ψpx, s̄,yω,kω, sω, qω
q ´

ÿ

ω1PΩ
pω1ψpx, s̄,yω1

,kω1

, sω1

, qω1

q ` 2Θω

ff

`
ÿ

ωPΩ
pωψpx, s̄,yω,kω, sω, qω

q ` Γ
ÿ

ωPΩ

ÿ

hPH

ÿ

tPT ˚

pωθ
ω
h,t (26)

s.t xj `
ÿ

j1PJ
yω

j1,j,t ď 1 @j P J , t P T ˚, ω P Ω (27)

ÿ

iPI

ÿ

hPH
qω

i,j,h,t ď βxj `
ÿ

j1PJ
δyω

j1,j,t @j P J , t P T ˚, ω P Ω (28)

ÿ

jPJ

ÿ

hPH

ÿ

tPT ˚

qω
i,j,h,t ď ρi @i P I, ω P Ω (29)

ÿ

iPI

ÿ

jPJ
qω

i,j,h,1 ` sh ` θω
h,1 “ sω

h,1 ` ξω
h,1 @h P H, ω P Ω (30)

ÿ

iPI

ÿ

jPJ
qω

i,j,h,t ` sω
h,t´1 ` θω

h,t “ sω
h,t ` ξω

h,t @h P H, t P T ˚
zt1u, ω P Ω (31)

sω
h,t ď γh @h P H, t P T , ω P Ω (32)

yω
j,j1,t P t0, 1u @pj, j1

q P J ˆ J , t P T ˚, ω P Ω (33)

qω
i,j,h,t P R` @i P I, j P J , h P H, t P T ˚, ω P Ω (34)

sω
h,t P R` @h P H, t P T ˚, ω P Ω (35)

θω
h,t P R` @h P H, t P T ˚, ω P Ω (36)

ÿ

j1PJ
yω

j1,j,t´1 ě
ÿ

j1PJ
yω

j,j1,t @j P J , t P T ˚
zt1u, ω P Ω (37)

kω
i,j,t ď xj `

ÿ

j1PJ
yω

j1,j,t @i P I, j P J , t P T ˚, ω P Ω (38)

Di,jk
ω
i,j,t ď d @pi, jq P E , t P T ˚, ω P Ω (39)

qω
i,j,h,t ď Mω

i,j,h,tk
ω
i,j,t @i P I, j P J , h P H, t P T ˚, ω P Ω (40)
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ψpx, s̄,yω,kω, sω, qω
q

´
ÿ

ω1PΩ
pω1ψpx, s̄,yω1

,kω1

, sω1

, qω1

q ` Θω
ě 0 @ω P Ω (41)

kω
i,j,t P t0, 1u @i P I, j P J , t P T ˚, ω P Ω (42)

Θω
P R`

@ω P Ω (43)

Apart from the objective function, there are a few noticeable differences between the
model of Jabbarzadeh et al. (2014) and the models we developed for this study. First,
Constraint (37), which models the path of mobile collection facilities, ensures that a mobile
facility leaves one location for another only if it was there in the previous period. Using an
inequality allows for solutions where the number of mobile collection facilities decreases
over time. Considering that the cost of keeping a mobile facility in the same location
for two consecutive periods is zero, in our models, we have adopted a flow conservation
constraint expressed by Constraint (4) for the number of mobile collection facilities.

Second, Constraints (38) ensure the assignment of donors only to existing facilities,
while Constraints (39) ensure that each donor group can only be assigned to facilities
within an acceptable distance. Constraints (40) ensure that no blood is collected at a
location with no donor group assigned. We have not included these constraints in our
models since Constraints (5) and (6) linearly imply them.

Third, no variable related to donor groups and locations that are out of the acceptable
range is present in our models thanks to the definition of E . We note that modern MILP
solvers automatically remove such variables from model pJq during the presolve procedure.

Fourth, we do not need to use Constraint (41) resulting from the linearization of
the Average Absolute Deviation in the objective function, nor Constraints (42) and (43)
defining the domain of the auxiliary variables. On the opposite, the model of Jabbarzadeh
et al. (2014) does not use the budget constraint (2).

5 Computational experiments

To compare the different models, we use the Sample Average Approximation (SAA)
method (Ahmed and Shapiro, 2002; Kim et al., 2015), commonly used in stochastic pro-
gramming. It approximates the expectation of a random function by averaging over a
finite number of randomly generated samples. SAA can be leveraged to solve a stochastic
optimization problem by reformulating it as a deterministic optimization problem, which
captures the uncertainty through sampled scenarios. The decision variables are then op-
timized based on the sample average objective function, which approximates the actual
objective function. SAA is typically used when it is computationally infeasible to solve
the original stochastic optimization problem exactly or when the true distribution of the
uncertain variables is unknown and can only be approximated through sampling. How-
ever, SAA introduces approximation errors due to the finite size of the sample used, and
the quality of the approximation depends on the number of scenarios and their represen-
tativeness of the actual distribution (Ahmed and Shapiro, 2002; Kim et al., 2015).
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We use SAA to approximate the mean-CVaR measure of the unmet demand during
the response phase to evaluate the performance of a first-stage decision. To obtain a
fair comparison, these scenarios differ from those used to optimize the models. Let Ω̂ be
the set of scenarios used to compute this measure (called out-of-sample set hereafter).
For a first-stage solution px, s̄q provided by the resolution of a model, we compute the
value of the recourse for all scenarios ω̂ P Ω̂ by solving model (1)-(12). Then, for two
parameters α and λ such that 0 ď α, λ ď 1, we obtain an evaluation of this solution for
the out-of-sample set Ω̂ as follows.

p1 ´ λq Eω̂rQpx, s̄, ξω̂
qs ` λ CVaRαpQpx, s̄, ξω̂

qq. (44)

Similarly to Shapiro (2003), we derive a confidence interval of the objective func-
tion based on the out-of-sample evaluation. In this purpose, we define random variable
Ypx, s̄, ξq as follows.

Ypx, s̄, ξq“p1´λqQpx, s̄, ξq`λ

ˆ

VaRαpQpx, s̄, ξω̂
qq`

1
1´α

“

Qpx, s̄, ξq´VaRαpQpx, s̄, ξω̂
qq

‰

`

˙

We then compute the 95%-confidence interval for Eω̂rYpx, s̄, ξqs:

CI95% “ Eω̂rYpx, s̄, ξω̂
qs ˘ 1.96σ

2
ω̂pYpx, s̄, ξω̂qq

b

|Ω̂|

where σ2
ω̂pYpx, s̄, ξω̂qq is the observed variance of Y over Ω̂ and 1.96 is the value of the

2.5 percentile of the normal distribution.
To use the same comparison baseline, we compare the first-stage solutions found by

the models for the same given budget. In our models, this budget value is provided as a
constraint. This is not the case for the model of Jabbarzadeh et al. (2014), which does
not include the budget constraint. To overcome this difference, we first solve the model
of Jabbarzadeh et al. (2014) for a set of values of Γ. Second, we evaluate the first-stage
solutions that are feasible within the given budget. Finally, we keep the best-performing
solution, i.e., the one with the lowest score of (44). If no solution found satisfies the
budget constraint, it is considered impossible to design the network under that budget.

5.1 Benchmark data

The studies of Jabbarzadeh et al. (2014) and Fazli-Khalaf et al. (2019) provide data with
some possible earthquake scenarios over Tehran, Iran. We consolidate this data in Table
4.

The discrete uncertainty set provided by Jabbarzadeh et al. (2014) contains 18 hospital
blood demand scenarios for each period. They use the approach proposed by Tabatabaie
et al. (2010) to estimate blood demand based on historical data from the Iranian Blood
Transfusion Organization (IBTO). The limited scope of data is not enough for a com-
prehensive evaluation of the models to assess the impact of the chosen objectives on the
estimated number of saved lives to guide the choices of decision-makers. Therefore, we
developed a novel, more diversified dataset, presented here below.
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Parameter Value
number of hospitals |H| 2
number of donor groups |I| 22
number of potential locations for collection facilities |J | 22
number of time periods T 2
supply of each donor group ρi {166, 399, 198, 543, 500, 145, 195, 238, 99,

191, 182, 151, 174, 305, 402, 181, 156, 246,
154, 214, 102, 81}

blood storage capacity
at each hospital γh {1000, 2200} blood units
at each hospital before the response phase γ̄h 0 blood unit
at each fixed facility β 500 blood units
at each mobile facility δ 200 blood units

blood storage cost during the response phase ch 1 per blood unit
blood storage cost before the response phase ch 0
cost of moving a mobile collection facility bj,j1,t 322.98 for t “ 1 and 1 per kilometer for t ą 1
cost of opening a fixed blood collection facility fj 1518.23
blood unit transport cost aj,h 0.02ˆ D(j,h) per blood unit
collecting cost for one unit of blood oi,j 0.0690567 per blood unit
probability of each scenario pω 1/18

Table 4: Data from Jabbarzadeh et al. (2014) and Fazli-Khalaf et al. (2019)

5.2 Data generation

An instance of the considered problem is characterized by geographic data (locations
of population, hospitals, distances) and costs. An instance is parameterized by a tuple
pH,J , T q where H is the set of hospitals, J is the set of potential locations for blood
facilities, and T is the number of periods in the response phase. Each instance is associated
with a family of five sets of scenarios, which differ by their sizes, representing uncertainty
set Ω and an out-of-sample set of scenarios Ω̂ for evaluating solutions. We consider
equiprobable scenarios in both Ω and Ω̂. We assume a donor group at each potential
location; therefore, I “ J .

We divide the considered geographical area into |I| groups of population Pi, i P I, and
simulate the impact of different scenarios of earthquakes on each group. An initial shake
and aftershocks define an earthquake scenario according to the time horizon. Let M be
the set of magnitudes, G, the geographical area, and T ˚, the response time horizon. A
scenario is, therefore, a sequence of events petqtPT ˚ , where an event et is defined by a pair
pmt, gtq P M ˆ G such as e1 is the initial shake event and aftershocks happen in a radius
d P R` around g1. Their geographic coordinates identify elements of G.

The total potential blood supply ρi of group i is calculated on the basis suggested
(Jabbarzadeh et al., 2014), i.e., 22 units of blood per population of 1000 individuals.
We also assume that the impact of an earthquake scenario on a group cannot create a
blood demand exceeding 22 units for a population of 1000. The demand of each group
is assigned to a specific hospital, meaning that after the earthquake, victims of the same
group will be brought to the same hospital. Therefore, after selecting subset I of locations
and subset H of hospitals, we run a clustering procedure to assign victims of each group
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i P I to a hospital h P H. We ensure that each cluster contains at least µ% of groups.
To evaluate the impact of an earthquake scenario ω P Ω on the population, we denote

by P ω
i,t the population of group i P I during period t P T , potentially impacted by the

event of scenario ω. According to the assumption made before, P ω
i,0 “ ρi “ 22 ˆ Pi{1000,

i P I, and ω P Ω, where P ω
i,0 is the initial population (P ω

i,0 “ P ω1

i,0, @ω, ω1 P Ω). This
population will decrease with the occurrence of events in each scenario. For a given event
et, the impact on a population i P I is given by function ϕpet, iq described in Equation
(45) with dmax ě Dpg, iq, @pg, iq P G ˆI, and Dpg, iq is the function providing the distance
between the geographical points g and i.

ϕpet, iq “ mt

„

1 ´
D2pgt, iq

d2
max

ȷ

(45)

Therefore, we compute the potentially impacted population of the group P ω
i,t “ P ω

i,t´1p1 ´

ϕpet, iqq. The demand for blood in hospital ξω
h,t is then given by ξω

h,t “
ř

iPIh
ϕpet, iqP

ω
i,t´1,

where Ih is the set of groups assigned to hospital h P H by clustering.
We use Algorithm 1 to generate the discrete set of scenarios Ω. It is also used to create

the out-of-sample set. We assume that the territory can be hit by one of L principal
shakes that differ in magnitude and location, which we call initial events. We generate
|Ω| scenarios starting with these initial events by extending each initial event with |Ω|/L
sequences of |T | ´ 1 events.

In our numerical experiment, we use the city of Paris as a basis for the geographic
data. We did a web scraping to obtain the geographical coordinates and population of the
districts of Paris and the locations of the hospitals. We generated different instances from
these data by selecting several values for the different parameters, resulting in 60 different
instances. Then, we separately generated two sets of 20,000 scenarios for each instance,
each with L = 2000. We constructed the uncertainty sets Ω of different sizes from the
first set of scenarios by randomly selecting scenarios. The second set of 20,000 scenarios
is the out-of-sample scenarios Ω̂. For the creation of these new instances, we used the
following parameter values: |H| in t1, 2, 3, 4, 5u, |J | in t20, 40, 80u, T in t2, 3, 4, 5u, and
|Ω| in t20, 50, 100, 200, 300u.

Two types of hospitals are considered: small and large. The latter are assumed to be
the most important hospitals in the territory, with large blood storage capacities. The
former are less important and possess only half of the capacity of large hospitals. Let nb be
the number of large hospitals and ns be the number of small ones. In our implementation,
if |H| is even then nb “ ns, otherwise nb “ ns `1. We assume that the total blood storage
capacity of the hospitals is equal to the total supply of donors group:

ř

hPH
γh “

ř

iPI
ρi. The

blood storage capacity of a small hospital h P H is calculated as follows.

γh “
ÿ

iPI

ρi

2 ˚ nb ` ns

For the permanent blood collection facilities, we assume that their capacity depends on
the population’s size in the area. Moreover, we note that in Fazli-Khalaf et al. (2019), the
capacity of a large hospital was 4.4 times larger than the capacity of a permanent blood
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Algorithm 1: Generation of scenarios
Data: territory G, set of magnitudes M, time horizon T , the number of locations I,

number of hospitals H, the number of initiating events L, the set of indices of
scenarios Ω, population of each group pPiqiPI , pIhqhPH, impact estimation
function ϕ defined in Equation (45), maximum distance between a principal
shake point and its aftershocks points d

Result: pξω
h,tqtPT ˚,ωPΩ, blood demand scenarios

1 /* initialisation */;
2 for pω, iq P Ω ˆ I do
3 P ω

i,0 “ 22Pi{1000
4 end
5 /* generation of scenarios*/;
6 for s P t1, . . . , Lu do
7 e1 Ð random choice of an initial event;

8 for ω P

!

|Ω|

L ps ´ 1q ` 1, . . . , |Ω|

L s
)

do

9 for t P T ˚ do
10 for h P H do
11 ξω

h,t Ð 0;
12 for i P Ih do
13 ξω

h,t Ð ξω
h,t ` ϕpet, iqP ω

i,t´1;
14 P ω

i,t Ð p1 ´ ϕpet, iqqP ω
i,t´1;

15 end
16 end
17 /* choosing of the next replicas event of period t+1*/;
18 et`1 Ð random choice of an event such that Dpg1, gtq ď du;
19 end
20 end
21 end

collection facility. As the capacity of the hospital depends already on the population size,
we use the same ratio to compute the capacity of the permanent blood collection facility
β. Let us compare the ratio cost/capacity of permanent and mobile blood collection
facilities. We note that for one unit of blood, using a permanent facility is 1.88 times
more expensive than using a mobile facility. Taking this ratio into account, we compute
the establishment cost of a permanent facility as 1.88 ˚ β{200. Other cost parameters are
kept the same as in (Jabbarzadeh et al., 2014; Fazli-Khalaf et al., 2019). The values of
parameters are summarized in Table 5.
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Symbol Value
|H| t1, 2, 3, 4, 5u

|I| t20, 40, 80u

|J | t20, 40, 80u

T t2, 3, 4, 5u

ρi 22 ˚ Pi{1000
γh t

ř

iPI
ρi{p2 ˚ nb ` nsq, 2 ˚

ř

iPI
ρi{p2 ˚ nb ` nsqu blood units

β
ř

iPI
p2 ˚ ρiq{p4.4 ˚ p2 ˚ nb ` nsqq blood units

δ 200 blood units
ch 1 per blood unit
bj,j1,t 322.98 for t “ 1 and for other t, 1 per kilometer
fj 1.88 ˚ β{200
aj,h 0.02 per kilometer and per blood unit
oi,j 0.0690567 per blood unit
B {10%, 20%, 30%, 40%, 50%} of the estimated upper limit of the budget to be used
Γ {1, 5, 10, 15, 25, 35, 45} times the estimated lower bound

Table 5: Deterministic data

The problem to solve can be represented by a triplet p|H|_|J |_|T ˚|,Ω, Bq where
|H|_|J |_|T ˚| is an instance, Ω the uncertainty set and B P R` the budget for the
preparedness and the response to the earthquake.

Bsup
“

ÿ

jPJ
fj ` βpoi,j ` aj,h˚q|T ˚

| (46)

where h˚
P H with Dpj, h˚

q ě Dpj, hq @h P H and oi,j “ oi1,j @pi, i1q P I2

To obtain values for the budget parameter, we first calculate an upper bound Bsup (46)
on the budget that can be required to build the supply chain under the condition that
there is a permanent facility at each location that collects its total capacity at each period
and delivers it to the most distant hospital. We then take 10%, 20%, 30%, 40%, and 50%
of this upper bound to form the set of values for budget B associated with each instance
|H|_|J |_|T ˚|.

The percentages we use have been identified experimentally on instances 1_20_2 and
2_20_2 for which we resolved the model of Jabbarzadeh et al. (2014) with Ω of size 100
and Γ taking values in {1, 10, 50, 70, 100, 160, 200, 500, 1000, 3200}. We analyzed
the average returned cost and set the possible budget values to 20,000, 50,000, 100,000,
150,000, 200,000, and 250,000. In a second step, we solved the mean-CVaR model (λ =
0.5 and α = 0.8) on the two instances considered with an Ω of 100 and successively with
the different values of budget found above. By calculating the ratio of the budget used in
the found solutions to the upper bound of the budget calculated for each instance (430,174
for the first instance and 371,304 for the second), we obtain the following percentages:

• 1_20_2 : 4.65% – 11.62% – 23.25% – 34.87% – 46.49% – 58.12%
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• 2_20_2 : 5.39% – 13.47% – 26.93% – 40.40% – 53.86% – 67.33%

From these results, we have decided to use 10%, 20%, 30%, 40%, and 50% of the upper
limit of each instance. It should be noted that for these two cases, with a budget of
250,000, the optimal solution found by the mean-CVaR model satisfies all the demand for
blood so that it will be the same for any higher budget.

Concerning the parameter Γ used in the objective function in Jabbarzadeh et al. (2014),
we have analyzed the results provided and have derived a rule for generating Γ values to
solve the model of Jabbarzadeh et al. (2014) on new instances as shown in (47):

Γinf “
Bsup

max
ωPΩ

t
ř

tPT ˚

ř

hPH
ξω

h,tu
(47)

Taking into account Formula (47), the following seven values of Γ were used for each new
instance in numerical tests: 1Γinf , 5Γinf , 10Γinf , 15Γinf , 25Γinf , 35Γinf and 45Γinf .

5.3 Experimental setting

Models and algorithms were written in C++, and IBM ILOG Cplex 12.10 was employed
as a solver for the MILP models. The evaluation process includes training and testing
phases. In the training phase, each instance is solved with the tested method with the
scenario set Ω and the specified budget. The solution obtained for the preparedness phase
(decisions about fixed facilities) is stored and used as input for the testing phase. The
testing phase involves solving the recourse problem for the first-stage solution (obtained
during training) for each scenario from set Ω̂ and the given budget. For the training
phase, we set a time limit of 1 hour, used two cores, and had a memory limit of 16 GB.
For the testing phase on out-of-sample scenarios, we set a time limit of 15 minutes and
used eight cores.

For each instance, we used five different training sets with the size of the training
set Ω taking the following values t20, 50, 100, 200, 300u. The out-of-sample scenario set
Ω̂ of each instance contained 20, 000 scenarios. The following methods were tested: the
Jabbarzadeh et al. model (described in Section 4.2.4) labeled as jab, the robust worst-case
model (described in section 4.2.3) labeled as wc and the mean-CVaR model (described
in Section 4.2.2) labeled as mc8 for α = 0.8 and mc9 for α=0.9. Table 6 summarizes the
number of runs in the computational experiments. The results obtained for mc8 and mc9
were relatively close, for this reason the results for mc9 are only reported in Appendix A.

Model jab wc mc8 mc9 Total
Training 2,100 1,500 1,500 1,500 6,600
Testing 25,860,000

Table 6: Total number of runs for our computational experiments
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6 Results and Analysis

6.1 Results for the training phase

First, we report the results obtained during the training phase. We compare the capability
of different models to produce feasible solutions and to achieve convergence across various
instance sizes. Additionally, we analyze the impact of different instance parameters on the
difficulty of solving the tested models. Aggregated results are shown in Table 7. For each
model and training set, we report the percentage of instances solved optimally (columns
Optimal), the percentage of instances for which a feasible non-optimal solution was found
(columns Non-optimal), and the percentage of instances that could not be built due to
exceeding the memory limit (columns Memory Fault). We aggregate all results related
to the same number of scenarios (20, 50, 100, 200, and 300). The average results are
reported in the last line.

|Ω|
Optimal (%) Non-optimal (%) Memory fault (%)

jab wc mc8 jab wc mc8 jab wc mc8

20 59.28 44 20 10.23 47.33 68 30.47 8.66 12
50 36.19 33 12.66 3.33 42.33 60.33 60.47 24.66 27
100 11.90 21 6.33 2.14 38 51.33 85.95 41 42.33
200 0 11.66 3 0 33.33 38.66 100 55 58.33
300 0 6.66 1 0 28.33 34 100 65 65
avg. 21.47 23.26 8.60 3.14 37.86 50.46 75.38 38.86 40.93

Table 7: Percentage of instances having been solved optimally, having reached a time limit, and
having had a memory fault by model and training set.

From the obtained results, we can conclude that the number of scenarios significantly
impacts the solver’s ability to tackle each model. The percentages of Optimal and Non-
optimal solutions decrease as the number of scenarios increases, while the percentage
of Memory Faults rises. This is unsurprising since the number of scenarios affects the
number of variables and constraints in all models, leading to larger constraint matrices.
Additionally, even when the models can be loaded into memory, they contain binary
variables indexed by the scenarios, resulting in a larger branch-and-bound tree. For the
jab model, the solver could not load any instance with 200 or 300 scenarios. For other
models, feasible solutions were found for instances of all sizes, but the percentage of solved
instances decreases significantly as the number of scenarios increases. We can notice that
when the solver can load model jab, it can generally converge (only 3% of the instances
are loaded but not solved optimally).

Table 8 is a disaggregated version of Table 7, where results are split by the number of
locations. This table illustrates the impact of the number of locations on the problem’s
difficulty. The columns have the same meaning as in Table 7.

It can be observed from Table 8 that the difficulty also increases with the number of
locations. For 80 locations, the jab model was able to solve only 10% of the 20 scenarios
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cases, and could not build the models for 50, 100, 200, and 300 scenario cases. On the
other hand, the other models solved at least 64% of the 80-location and 20-scenarios
instances.

The number of variables is of the order of Op|Ω||T ||J |2|H|q for all models, but the
number of constraints in jab model is larger in comparison to other models: it is of the
order of Op|Ω||T ||J |2|H|q. In contrast, the number of constraints in the other models is
of the order of Op|Ω||T |p3|J | ` |H|qq. This explains the fact why jab is more affected by
the number of locations.

|J | |Ω|
Optimal (%) Non-optimal (%) Memory fault (%)

jab wc mc8 jab wc mc8 jab wc mc8

20

20 97.85 66 16 2.14 34 84 0 0 0
50 93.57 63 16 6.42 37 83 0 0 1
100 35.71 52 12 6.42 48 88 57.85 0 0
200 0 33 7 0 67 93 100 0 0
300 0 20 2 0 70 88 100 10 10

40

20 80 38 17 18.57 62 83 1.42 0 0
50 15 29 15 3.57 71 83 81.42 0 2
100 0 10 6 0 62 64 100 28 30
200 0 2 2 0 33 23 100 65 75
300 0 0 1 0 15 14 100 85 85

80

20 0 28 27 10 46 37 90 26 36
50 0 7 7 0 19 15 100 74 78
100 0 1 1 0 4 2 100 95 97
200 0 0 0 0 0 0 100 100 100
300 0 0 0 0 0 0 100 100 100

avg. 21.47 23.26 8.60 3.14 37.86 50.46 75.38 38.86 40.93

Table 8: Percentage of instances having been solved optimally, having reached a time limit, and
having had a memory fault by model, training set, and location.

In Table 9, we report the computing time required to solve small to medium instances
for the tested models. For each method, we report the average optimality gap indicated by
the MILP solver after one hour of computing time (columns Average optimality gap) and
the average solution time (columns Average resolution time). If convergence is not reached
after one hour, we report 100% and 3600 seconds respectively for the two indicators.
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|J | |Ω|
Average optimality gap (%) Average resolution time (second)
jab wc mc8 jab wc mc8

20

20 0.0 0.07 0.75 148.57 1553.29 3080.28
50 0.03 0.16 1.86 498.44 1657.38 3124.99
100 57.9 0.16 1.42 2528.99 2127.8 3242.5
200 100.0 22.72 30.58 3600 2954.74 3480.07
300 100.0 60.92 71.41 3600 3278.67 3564.36

40

20 1.63 1.33 2.45 1026.67 2408.38 3009.04
50 81.44 18.09 11.65 3141.61 2920.86 3220.32
100 100.0 76.9 75.46 3600 3362.23 3470.9
200 100.0 97.02 98.0 3600 3553.39 3581.46
300 100.0 100.0 99.0 3600 3600 3598.5

80

20 90.5 54.4 52.75 3600 2877.67 2892.76
50 100.0 92.03 93.0 3600 3444.93 3415.99
100 100.0 99.0 99.0 3600 3593.26 3582.03
200 100.0 100.0 100.0 3600 3600 3600
300 100.0 100.0 100.0 3600 3600 3600

avg. 75.43 54.85 55.82 2889.63 2968.86 3364.21

Table 9: Average optimality gap and average resolution time per number of locations and number
of scenarios

We can see from Table 9 that mc8 model has a longer average solution time than
wc model, which converges in average for more instances (about 23% compared to 8%,
see Table 8). If we combine this observation with the data reported in Table 8, we can
conclude that for this phase a coarse approximation of uncertainty is more effective than a
fine approximation. The average resolution time of jab is the smallest since its resolution
converges very quickly for small instances compared to the other models.

As a conclusion for our experiments in the training phase, even though the jab model
is easier to tackle for small instances, its scalability is the worst and the total number
of the obtained feasible solutions is the lowest. This means that if a medium number of
scenarios should be taken into account, method jab cannot be used. Finally, no method
could provide solutions for the instances with 200 scenarios and 80 locations.

6.2 Results for the testing phase

This section reports the results of the computational experiments for the testing phase
to assess the quality of the first-stage solutions produced by each method in the training
phase. Since the size of the instances significantly impacts the computational results,
we split the analysis into three parts, related to instances with 20, 40, and 80 locations,
respectively. For each instance size and each method, we first determine the best num-
ber of scenarios to use. The results of these preliminary computational experiments are
presented in Appendix A. Based on the obtained results, we concluded that increasing
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the number of scenarios generally improves the solution quality, provided the solver can
converge to an optimal solution. However, for a large number of scenarios, it becomes
challenging to achieve convergence. Therefore, we prioritized convergence over a larger
number of scenarios. The best configuration for each model was used for comparison,
utilizing the mean-CVaR objective.

To compare the different models, we use the notion of performance profile introduced
by Dolan and Moré (2002). In their work, they proposed a framework to evaluate and
compare the performance of the set of solvers S on a test set of problems P . They denoted
by wp,u the computing time required to solve problem p P P by solver u P S and defined
a baseline for comparisons name performance ratio rp,u computed as follows:

rp,u “
wp,u

mintwp,u1 : u1 P Su

This quantity compares the performance of a solver u on a problem p, with the best
performance of any solver on this problem. For the solver which does not solve problem
p P P , the ratio equals to r̂, with r̂ ě rp,u, @pp, uq P P ˆS. They proved that the choice of
r̂ does not affect the performance evaluation. Therefore, the performance profile Fu of a
solver u P S is the distribution function of a performance metric of this solver. It is a non-
decreasing, piece-wise constant function, continuous from the right at each break-point
defined by the following relation:

Fu : R ÝÑ r0, 1s

τ ÞÝÑ 1
|P|

|tp P P : rp,u ď τu|

Fupτq is the percentage of problems on which the solver u P S performs at most τ times
worst than the best solver.

The performance profiles of jab, wc, and mc8 models are plotted in Figures 1a, 2a and
as well as in figures given in Appendix A for the preliminary results. In these figures,
the x-axis represents the performance of the method compared to the best one. Value 1
means that the best solution was found while value 5 is a special value indicating that
the ratio was at least 5 or no solution was found. The y-axis represents the cumulative
frequency of the corresponding ratio.

Figure 1a shows the comparative performance profile of jab, wc, and mc8 models
trained with respectively 50, 100, and 100 scenarios. Figure 1b provides the distribution
of the confidence intervals for these models.

For these instances, mc8 model has the best performance (abscissa equal to 1 for 100%
of instances), followed by wc model (84%), and these two approaches outperform jab
model (16%). For failures (abscissa equal to 5), we can see 0% of instances for mc8 and
wc, and 17% for jab. The confidence intervals shown in Figure 1b confirm the clear
dominance of wc and mc8 over jab while the results obtained for wc and mc8 are relatively
close.

For 40 locations, the best results for all methods were obtained with 20 scenarios only.
Figure 2 shows the comparative performance profile of jab, wc, and mc8 models trained
with 20 scenarios. Figure 2a provides the distribution of the confidence intervals for these
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(a) Performance profiles (b) Confidence intervals

Figure 1: Results for instances with 20 locations

models. For 40 locations, we can observe the similar results as for 20 locations: mc8
provides the best results in 96% of the instances, compared to 80% for wc and 10% for
jab. In terms of failures (abscissa equal to 5), wc and mc8 account for 1% of instances,
while jab account for 42%.

(a) Performance profiles (b) Confidence intervals

Figure 2: Results for instances with 40 locations

For 80 locations, the best results for all methods were also obtained with 20 scenarios
only, they are reported in Figure 3. For these instances, wc model has the best performance
(abscissa equal to 1 for 65% of instances), mc8 model follows closely (61%), both largely
surpass jab model (1%). Concerning failures, wc registers them for 32% of instances, mc8
records 38% and jab accounts for 99%. The superior performance ofwc model compared
to mc8 model is due to a higher percentage of instances solved during the training phase
(see Table 8). Figure 3b shows a considerable variability for the jab model, confirming
our observation about poor scalability of this model. The obtained results show that using
risk-averse objective functions leads to more robust solutions in the preparedness phase,
thereby achieving overall better results in satisfying demand in the context of mitigating
earthquake damages. This ultimately results in a more effective response to emergencies.
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(a) Performance profiles (b) Confidence intervals

Figure 3: Results for instances with 80 locations

6.3 Managerial insights on the budget utilisation

Figure 4 shows the average mean-Cvar of unsatisfied demand by model and budget value
used in the experiments.

(a) Instances with 20 locations (b) Instances with 40 locations

(c) Instances with 80 locations

Figure 4: Percentage difference from the best percentage (calculated as meanCvar) of unmet
demand relative to demand, by model and budget
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Percp|H|_|J |_|T ˚
|, B, px˚, s̄quq “

p1 ´ λq Eω̂rQpx, s̄, ξω̂qs ` λ CVaRαpQpx, s̄, ξω̂qq

p1 ´ λq Eω̂r
ř

hPH

ř

tPT ˚

ξω̂
h,ts ` λ CVaRαp

ř

hPH

ř

tPT ˚

ξω̂
h,tq

(48)

gapp|H|_|J |_|T ˚
|, B, uq “ Percp|H|_|J |_|T ˚

|, B, px˚, s̄quq´ (49)

min
u1PS

tPercp|H|_|J |_|T ˚
|, B, px˚, s̄qu1qu

To plot Figure 4, we calculated the rate of unsatisfied demand as a percentage of total
demand for each model u P S, instance and budget using formula (48) where px˚, s̄qu is
the solution of model u, found during training phase and evaluated during testing phase.
We calculated the gap (49) between each model’s rate and the best rate using these
values. Finally, we calculated and plotted the average gap for each model calculated over
all instances and budgets.

We can notice that on average, mc and wc models better satisfy the demand than jab
model for the same amount of the available budget. We can also observe that this differ-
ence is even more significant for lower amounts of the available budget. This observation
confirm our hypothesis that the risk-averse objective functions have positive impact on the
estimated number of saved lives and should be preferred in the design of a blood supply
chain for ethically acceptable optimization in the context of mitigation of the damages
caused by an earthquake.

7 Conclusion

In this research, we proposed risk-averse models for designing a blood supply chain to
prepare for and respond to a humanitarian emergency caused by a disaster, such as an
earthquake. In our study, we chose a two-stage model combining the preparation stage,
where tactical decisions are made, and the response stage, where operational decisions are
made. The objective is to minimize the unmet blood demand and, given the uncertainty
about this demand, we proposed to use mean-CVaR, a combination of risk measures:
expectation (risk-neutral) and CVaR (risk-averse).

We proposed two models based on a discrete approximation of uncertainty. The first
optimizes the SAA approximation of mean-CVaR, and the second adopts a robust per-
spective and optimizes unmet demand in the worst-case scenario. We then evaluated the
performance of these models on an out-of-sample set of scenarios, based on data from
the literature and new, larger, instances. We computed an estimate of our risk measure
mean-CVaR and its confidence interval and compared the performances of our models and
the one from Jabbarzadeh et al. (2014). Numerical results show that the models using dis-
crete mean-CVaR and worst-case objectives perform significantly better than the solution
robustness and model robustness approaches for the objective of the minimisation of the
unmet blood demand under uncertainty about this demand. Our results also show that
allocating the budget between the two phases affects the efficiency of the supply chain and
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that the preparation phase is crucial and clearly determines the system’s performance in
the response phase.

Despite their performance, the proposed optimisation models show their limitations
when instances are large. This calls for more sophisticated resolution techniques (branch-
and-cut, reformulations), dedicated heuristics, or different approximations (e.g., poly-
hedral uncertainty sets). The development of such techniques offers a valuable research
perspective for enhancing the management of humanitarian emergencies caused by various
types of disasters.

Availability of Source Code and Data

The source code used to implement the experiments described in this article is available as
open source on GitHub but its address cannot be communicated in the submitted version
for the purpose of the double-blind review.
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A Performance profiles for different number of scenarios in the
training phase

Figures 5 - 7 show the results for the instances with 20, 40, and 80 locations respectively and different
numbers of scenarios (from 20 to 300).

(a) jab (b) wc

(c) mc8 (d) mc9

Figure 5: Performance profiles for the instances with 20 locations
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(a) jab (b) wc

(c) mc8 (d) mc9

Figure 6: Performance profiles for the instances with 40 locations
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(a) jab (b) wc

(c) mc8 (d) mc9

Figure 7: Performance profiles for the instances with 80 locations
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