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Cognitive reserve is the ability to actively cope with brain deterioration and delay cognitive decline in
neurodegenerative diseases. It operates by optimizing performance through differential recruitment of
brain networks or alternative cognitive strategies. We investigated cognitive reserve using
Huntington’s disease (HD) as a genetic model of neurodegeneration to compare premanifest HD,
manifest HD, and controls. Contrary to manifest HD, premanifest HD behave as controls despite
neurodegeneration. By decomposing the cognitive processes underlying decision making, drift
diffusion models revealed a response profile that differs progressively from controls to premanifest
andmanifestHD.Here,we show that cognitive reserve in premanifestHD is supportedbyan increased
rate of evidence accumulation compensating for the abnormal increase in the amount of evidence
needed to make a decision. This higher rate is associated with left superior parietal and hippocampal
hypertrophy, and exhibits a bell shape over the course of disease progression, characteristic of
compensation.

Neurodegenerative diseases affect brain parts and functions at variable
degrees and at different stages over the course of the disease, and eventually
precipitate brain atrophy that precedes intellectual deterioration1. In gen-
eral, patient’s normal behaviour is maintained until the neuropathological
damage surpasses the adaptive capabilities of the brain leading to the
appearance of clinical symptoms2–4. The concept of “reserve” refers to this
capacity of the brain to resist neuropathological changes and preserve
cognitive functioning5. Reserve is thought to rely on brain reserve and
cognitive reserve.While brain reserve relies purely onquantitative aspects of
the brain such as brain size for example, cognitive reserve reflects the brain’s
capabilities to optimize and develop alternative cognitive strategies to
actively preserve cognitive functions. Cognitive reserve depends onpatient’s
lifetime intellectual activities and environmental factors. It relies on two
concepts: neural reserve and neural compensation. The brain can either
increase the efficiency of an existing yet deteriorating network (neural
reserve) and/or recruit other regions upon performing a task (neural

compensation)3,6; i.e., some cognitive functions may compensate for others
that were impacted at earlier stages.

Assessing cognitive dysfunction concealed by cognitive reserve
requires disentangling them fromeach other to identify each separately. The
difficulty lies on the fact that most neurodegenerative diseases remain
undiagnosed until clinical manifestation, a point at which it is too late to
study cognitive reserve since its mechanisms are no longer effective.
Inherited neurodegenerative diseases provide a promising way of over-
coming this limitation. Huntington’s disease is an inherited, monogenetic
(expanded CAG repeat in the Huntingtin gene), dominant, and fully
penetrant neurodegenerative disease7. Individuals who carry >40 CAG
repeats will develop the disease8. This specificity allows to identify pre-
manifest Huntington’s disease gene carriers (preHDs) in whom striatal
atrophy has already settled, while the disease clinical onset and its related
motor, cognitive, and psychiatric deterioration have not yet appeared9.
Therefore, Huntington’s disease is a particularly well-suited
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neurodegenerative model for studying compensation mechanisms from
genetic diagnosis to onset of overt clinical manifestations4,7,10.

To study the mechanisms of cognitive reserve separately from cogni-
tive dysfunction11–14, we selected a cognitive task that is impaired in the early
stages of the disease (no longer effective cognitive reserve) but still normal in
presymptomatic subjects (effective cognitive reserve). We used a language
discrimination task as language is one of the first cognitive function to
decline in Huntington Disease14–19, with normal or near-normal perfor-
mance in preHDs and abnormal performance in earlyHDs, suggesting that
language performance would be a reliable measure to study cognitive
reserve.We analyzed the results of the language task—decidingwhether two
items are similar or not—throughDrift diffusionmodels (DDMs)20,21. These
models enable us to evaluate separately the cognitive parameters involved in
the discrimination task: accumulation over time of sensory evidence at a
certain rate up to a response threshold that triggers the motor response to
indicate which of the two alternatives to pick (similar or not). The
hypothesis is that in preHD, one of the impaired cognitive parameters will
be compensated for by another cognitive parameter, resulting in normal
behavioural performance, whereas in earlyHD, the compensatory cognitive
parameter will no longer be effective, resulting in a behavioural deficit.

We thus analyzed behavioural data of the language discrimination task
and used DDMs to separate subclinical deficits from cognitive reserve
mechanisms in preHDs. In order to explore in depth the progression of the
cognitive reserve mechanisms over the course of the disease, we divided
preHDs intogroups according to the time remaininguntil thepredictedage-
at-onset. Additionally, we used neuroanatomical data to explore the cor-
relation between cognitive reserve mechanisms and brain structural adap-
tations to such mechanisms. Behavioural and neuroanatomical analyses
first confirmed that preHDs behave similarly to controls, despite their
incipient striatal atrophy, confirming that cognitive reserve is effective at the
premanifest stage of the disease. DDMs revealed that cognitive reserve in
preHDs relies on decision making, with an increased drift rate which
compensate for a higher response threshold both observed in earlyHDs and
preHDs. The cognitive underpinnings of cognitive reserve correlatewith left

superior parietal hypertrophy and hippocampal hypertrophy, revealing a
neural network that compensates for brain degeneration.

Results
We applied DDMs to 93 participants of whom 20 where premanifest
Huntington’s disease mutation carriers (preHDs) without overt cognitive
symptoms, 28 were early-stage Huntington’s disease patients (earlyHDs),
and 45 were controls. The two groups of mutation carriers (earlyHDs and
preHDs) were distinguished from each other following the clinical evalua-
tion based on the Unified Huntington’s Disease Rating Scale22. The
demographic and clinical characteristics of participants are summarized in
Supplementary Table 1.

We evaluated participants’ cognitive functions using three tests of the
Unified Huntington’s Disease Rating Scale: verbal fluency test, Stroop test,
and Symbol digitmodalities test22. Participants were further evaluated using
forward digit span, category fluency, and trail making test (TMT)23. In
addition, participants performed a simple AX auditory language dis-
crimination task in which they were asked whether two pseudowords were
identical or different (Fig. 1a). We calculated the mean accuracy and the
mean response time for each participant. We hypothesized that preHDs,
relying on their cognitive reserve mechanisms, should show little deficit, if
any, whereas earlyHDs should show an overt deficit, assuming that their
compensation mechanisms would no longer be effective.

For each of the cognitive and behavioural tests, we performed one-way
ANOVA, with age as a covariate, to study the difference between groups
(controls, preHDs, earlyHDs).

PreHDs presented a normal clinical and behavioural profile
Analyses of cognitive tests showed a significantmain effect of group in each
test. Tukey’s post-hoc analyses revealed that the earlyHDs performedworse
in all tests, compared with the preHDs and controls (all p < 0.05). On the
other hand, the preHDs’ performances were statistically similar to those of
the controls (all p > 0.05) (Supplementary Table 2).

As for themean accuracy andmean response time of the language task,
analyses showed a significant main effect of group (accuracy:
F(2,90) = 20.93, p < 0.001, η2 = 0.32; response time: F(2,90) = 41.06,
p < 0.001, η2 = 0.48). Tukey’s post-hoc analyses revealed that the earlyHDs
were less accurate and slower than controls and preHDs. In contrast, the
preHDs were not statistically different from the controls (Supplementary
Table 3).

PreHDs presented neural atrophy
Forty-six three-dimensional, T1-weighted, structural brainMRI scans were
obtained within about 3months from behavioural data acquisition in
mutation carriers (20 preHDs and 26 earlyHDs). Theywere comparedwith
30 scans from a cohort of external healthy participants who did not perform
the language task and the cognitive battery (imaging controls). The imaging
controls had no previous or current neurological or psychiatric history and
their anatomical MRI was checked by a neuroradiologist for any abnorm-
alities. They were matched with the mutation carriers for age and sex
(46.1 ± 13.9 years old, 15 females).

We first compared the volumes of subcortical structures (striatum,
pallidum, thalamus, hippocampus, and amygdala) between the mutation
carriers and imaging controls. We ran mixed ANOVA with subcortical
volumes normalized to the total intracranial volume as the dependent
variable, group as a between factor, subcortical structure as a within factor,
and age as a covariate. There was an interaction between subcortical
structure and group (F(8,372) = 34.32, p < 0.001, η2p = 0.03). Tukey’s post-
hoc showed that earlyHDs had lower grey matter volumes than both ima-
ging controls and preHDs, in the striatum (all p < 0.001), pallidum
(p = 0.0510, least), and thalamus (all p < 0.01) (Fig. 2, Supplementary
Table 4). In addition, preHDs displayed striatal atrophy upon comparing
themwith the imaging controls (p < 0.001). Overall, there was no statistical
evidence for a difference between groups concerning the volumes of the
hippocampus and amygdala (all p > 0.05).

Fig. 1 | Discrimination task and hierarchical drift diffusion model. a Participants
heard two pseudowords (A and X) separated by a 100 ms time interval, and had to
decide whether they were identical or not. The response time (RT) is the sum of the
non-decision time (Ter) and the decision processes (Td): RT = Ter+ Td. b Example
of the trajectory of the drift diffusion model for a “same” trial in which the correct
response was delivered. Two decision boundaries (a and 0) represent the “same” and
“different” decisions, respectively. The drift rate, v, represents the rate of evidence
accumulation. The diffusion process starts between the two boundaries at zr (0.5a, if
not biased toward one of the alternatives) and continues until it reaches one of the
two boundaries. The predicted response time is the sum of the durations of the
diffusion process called decision time and the one called non-decision time, which
encompasses stimulus pre-processing and motor planning and execution.
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The following step was to study the differences in cortical thickness.
EarlyHDs showedcortical thinning in the left angular gyrus, the left occipital
superior cortex, the right caudal part of the middle frontal cortex, and the
right lateral occipital lobe upon comparing them with imaging controls
(Supplementary Fig. 1a and Supplementary Table 5). EarlyHDs also had a
thinner right lateral occipital cortex than that of preHDs (Supplementary
Fig. 1b and Supplementary Table 5). Cortical thickness was similar in
preHDs and imaging controls.

DDM revealed cognitive reserve
DDMs assume that, in order to make a decision between two alternatives,
one needs to extract sensory information from the stimulus. This infor-
mation is accumulated, over the decision-making process, at a certain speed,
called the drift rate (v), up to a response threshold (a) that triggers themotor
response. Evidence accumulation is therefore a time-consuming and noisy
process requiringmultiple samples to extract information from the stimulus
before enough evidence is collected to make a decision. The time required
for non-decision processes, such as stimulus processing,motor preparation,
and execution, is captured in the non-decision time (Ter). The a priori bias
towards one of the alternatives is called the relative bias (zr)24(Fig. 1b). For a
given participant, the four parameters (v, a, Ter, and zr) were obtained by
fitting the distribution of responses (“same” or “different”) and their cor-
responding response time in each trial. In our task, the participant would
hear two pseudowords at each trial. First, the acoustic information is
encoded (stimulus processing). Then the two pseudo-words are compared
at a certain speed (drift rate of evidence accumulation). According to the
participant’s conservatism, the amount of evidence required to choose
“same” or “different” ismore or less elevated (response threshold). Once the
decision is taken, the participant presses the corresponding key (motor
preparation and execution). For each DDM parameter, we ran ANOVA to
study the difference between groups after introducing age as a covariate.

Analyses showed a significant difference between groups in terms of
the response threshold (F(2,90) = 4.79, p < 0.05, η2 = 0.10) and the drift
rate (F(2,90) = 5.60, p < 0.01, η2 = 0.34), unlike non-decision time
(F(2,90) = 0.13, p = 0.88, η2 = 0.003) and relative bias (F(2,90) = 0.24,
p = 0.79, η2 = 0.005). Tukey’s post-hoc showed progression of the
response threshold from the lowest in controls to the highest in ear-
lyHDs, with the values of the preHDs in between. This suggests an

increase of the response threshold over the course of the disease (Sup-
plementary Table 3, Fig. 3a). On the contrary, the drift rate showed a bell-
shaped pattern, a recognizable signature of compensation (Supplemen-
tary Table 3, Fig. 3b). PreHDs and controls presented a higher drift rate
than earlyHDs. Although not significant, preHDs tended to have a higher
drift rate compared to controls.

To further investigate this pattern, we split the preHDs into three
groups according to their time to predicted age-at-onset8. Determination of
disease onset in Huntington’s disease is made by clinical experience, but the
conversion is a progressive process whichmakes it difficult to determine the
exact moment of motor onset of HD25. PreHDs were thus stratified into
three groups, far, middle and close to the onset of the disease, according to
the time remaining until the predicted onset of the disease: close to onset
with predicted onset within a year (N = 4), far to disease onset with a pre-
dicted onset ≥ 10 years (N = 7) and middle onset with a predicted onset
between 1 and 10 years (N = 9)26,27. Conducting ANOVA analyses with
these new groups and age as a covariate confirmed the bell-shaped pattern.
Analyses showed a main effect of group (F(4,88) = 15.29, p < 0.001,
η2 = 0.41). Tukey’s post-hoc showed that preHDs far from onset had a
statistically similar drift to that of controls, whereas the preHDs of the
middle group had a drift rate superior to those of controls, preHDs far from
onset, and earlyHDs. Finally, preHDs close to onset had a drift rate statis-
tically similar to that of controls, with a value between that of middle
preHDs and that of earlyHDs (Fig. 3d, Supplementary Table 6).

The participant’s behavioural performance is the result of the drift rate
and response threshold parameters. Drift rate appears to show a compen-
satory pattern (faster rate of evidence accumulation) while response
threshold shows a deteriorative pattern (higher response threshold)
throughout all stages of the disease. We went further and investigated the
relationship between drift rate and response threshold. We fitted a linear
model with the drift rate as a dependent variable, response threshold and
group as predictors, and age as a covariate. This showed that an increase in
response thresholdwas associatedwith an increase in drift rate. The increase
was similar in controls and earlyHDs, and sharper in preHDs (Supple-
mentary Table 7, Fig. 3e), meaning that for preHDs the drift rate might
compensate for the increasing threshold allowing to preserve behavioural
performances. This relationship between parameters was not induced by
contamination between them as they were all not correlated (all p > 0.05)28.

Fig. 2 | Neuroanatomical differences between groups. Boxplots of the subcortical
volumes differences between groups. For representational purposes, volumes nor-
malized to the total intracranial volume (tiv) were multiplied by 100 for all struc-
tures. In boxplots, the middle hinge corresponds to the median, the lower and upper

hinges correspond respectively to the first and third quartiles. ***p < 0.001,
**p < 0.01, ▪p = 0.0510, ns: non-significant. Imaging controls are represented in grey
(n = 30), premanifest participants (preHDs) in blue (n = 20), and early-stage Hun-
tington’s disease patients (earlyHDs) in red (n = 26).
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Cognitive reserve is correlated with brain structures in mutation
carriers
To explore the neuro-correlates of cognitive reserve, we investigated the
relationship between the drift rate and neuroanatomical data among
mutation carriers (preHDs and earlyHDs). To make sure that we were
looking at the effect of cognitive reserve rather than the brain reserve, we

controlled for the effect of the latter using the total intracranial volume as a
proxy in our analyses6.

Drift rate is associated with hippocampus volume in preHDs. First,
we explored the relationship between the drift rate and subcortical
structures volumes normalized to the total intracranial volume (striatum,
pallidum, thalamus, amygdala, and hippocampus) using a linear model
with the drift rate as the dependent variable, subcortical structures and
disease stage as the predictive variable, and age as a covariate. There was
no significant effect of any of the structures (all p > 0.05), however, there
was an interaction between the disease stage and the hippocampus
volume (F(1,33) = 13.35, p < 0.001, η2p = 0.29). A higher volume of the
hippocampus was associated with a higher drift rate only in preHDs
(β = 2246 ± 555, 95%CI [1118, 3374], t(33) = 4.05, p < 0.001) and not in
earlyHDs (β =−160.3 ± 351, 95%CI [-874, 553], t(33) = -0.46, p = 0.88)
(Fig. 4a, c). When we looked at that closely with follow up analyses,
preHDs middle group had a bigger hippocampus volume than that of
earlyHDs (β = 0.0005, 95%CI [0.00007, 0.0010], p < 0.05) (Fig. 4f).

Drift rate is associated with left superior parietal thickness in
mutation carriers. Second, we explored the relationship of the drift rate
with the cortical thickness while controlling for the total intracranial
volume. Lower drift rates were associated with a thinner cortex in clusters
located in the left superior parietal cortex and the right superior temporal
gyrus (all p < 0.05), independently of the disease stage (no significant
clusters with interaction, all p > 0.05) (Fig. 4b, d, e). In these two sig-
nificant cortical clusters, earlyHDs had a thinner cortex compared with
imaging controls (p < 0.001). There was no significant difference between
preHDs and imaging controls (all p > 0.05), though preHDs tended to
have a thicker cortex especially in the left superior parietal cortex (one
sided t-test t(41) = 1.71, p = 0.047, d = 0.49).

Left superior parietal thicknesspresents abell shapepattern related
to age-at-onset. Post-hoc analyses including the sub-groups of preHDs
revealed that earlyHDs had a thinner right superior temporal cortex
compared with all sub-groups of preHDs (p < 0.01, least). There were no
other significant differences between any of the sub-groups of preHDs
and imaging controls (Fig. 4h). In the superior parietal cortex, there was
no significant difference between preHDs and imaging controls
(p > 0.05). Notwithstanding, preHDs middle group had a significantly
thicker cortex compared with imaging controls, earlyHDs, and preHDs
close to onset (p < 0.05, <0.001, and <0.05, respectively) in the left
superior parietal cortex (Fig. 4g). In the latter cluster, preHDs close to
onset had similar cortical thinness to that of earlyHDs (p > 0.05).

One should highlight here that the hippocampus volume and the
cortical thickness of the two clusters were not correlated with any of the
clinical and cognitive tests. In another word, there is no statistical evidence
that the observed changes in brain anatomy were not specifically related to
the increase in drift rate.

Response threshold is correlated with hippocampus volume
in preHDs. Regarding the response threshold, there was an interaction
between the disease stage and the hippocampus volume (F(1,33) = 4.21,

Fig. 3 | Results of DDM analyses. Boxplots of (a) Response threshold a and (b) drift
rate v of each group. c Schematic representation of model parameters of each group.
d Relationship between the drift rate (y-axis) and time to predicted age-at-onset (x-
axis). e Relationship between the drift rate (y-axis) and the response threshold (x-
axis). Points represent individual values, lines and shades around them represent the
linear fit and the confidence interval, respectively. Controls are represented in grey
(n = 45), premanifest participants (preHDs) in blue (n = 20, n = 7 far, n = 9 middle,
n = 4 close to onset), and early-stageHuntington’s disease patients (earlyHDs) in red
(n = 28). In boxplots in (a), (b), and (d), themiddle hinge corresponds to themedian,
the lower and upper hinges correspond respectively to the first and third quartiles.
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p < 0.05, η2p = 0.01): a higher volume of the hippocampus predicted a
higher response threshold in preHDs (β = 2163.5 ± 892, 95%CI [349,
3978], t(33) = 2.43, p < 0.05), but not in earlyHDs (β = –10.9 ± 564, 95%
CI [–1158, 1137], t(33) = –0.02, p = 0.99). There were no significant
relationships between the cortical neuroanatomical structure and the
response threshold nor significant interaction with the disease stage
(all p > 0.05).

Discussion
In this study, our aim was to identify the mechanism underlying cognitive
reserve in neurodegenerative diseases using Huntington’s disease as a

model. We used DDMs to gain insight into the decision-making processes
involved in an language discrimination task we designed (Fig. 1). As pre-
viously reported, analyses of clinical cognitive assessment and behavioural
performances showed that preHDs performed as well as healthy partici-
pants (Fig. 3a, b) despite displaying incipient atrophy of the striatum
(Fig. 2)1,29,30 and cerebral functional changes31–35. However, analyses of
DDMs parameters revealed a different profile in preHDs with a substantial
increase in response threshold predicting a faster drift rate of evidence
accumulation (Fig. 3c–e). We hypothesized that the higher drift rate in
preHDs is a compensatory mechanism that preserves normal accuracy and
response times (Fig. 3e). The association between the increase in response

Fig. 4 | Relationship between brain structure and drift rate. a Hippocampus
(yellow). X isMNI coordinate. A anterior, P posterior. bCortical maps of significant
clusters with significant relationship between the cortical thickness and the drift rate.
Light grey represents gyrus and dark grey represents sulcus. Yellow: left superior
parietal cluster (152.71 mm2, MNI coordinates: [–34, –55, 59]); Orange: right
superior temporal cluster (112.72 mm2, MNI coordinates: [63, –16, –1]).
cRelationship between the hippocampus volumenormalized to the total intracranial
volume (tiv) (x-axis) and the drift rate (y-axis). For representational purposes, the x-
axis is multiplied by 100. d Relationship between the mean cortical thickness in the
yellow cluster (panelb) (x-axis) and the drift rate (y-axis). eRelationship between the

mean cortical thickness in the orange cluster (b) (x-axis) and the drift rate (y-axis).
f Boxplots of the normalized hippocampus volume. g Boxplots of the mean cortical
thickness in the yellow cluster. h Boxplots of the mean cortical thickness in the
orange cluster. *p < 0.05, **p < 0.01, ***p < 0.001. Imaging controls are represented
in grey (n = 30), premanifest participants (preHDs) in blue (n = 20, n = 7 far, n = 9
middle, n = 4 close to onset), and early-stage Huntington’s disease patients (ear-
lyHDs) in red (n = 28). In c, d, and e, points represent individual values, whereas
lines and shades around them represent the linear fit and the confidence interval,
respectively.
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threshold and the increase in drift rate of accumulation is consistent with
compensation between these two processes. This compensation was further
evidenced by the bell-shaped pattern of drift rate seen upon dividing the
preHDs into three groups according to their time to predicted age-at-onset,
where the middle group scored the highest (Fig. 3d). In contrast, earlyHDs
displayed impairment in clinical cognitive assessment, behavioural perfor-
mances, and DDMs analyses, suggesting that compensatory mechanisms
were absent or insufficient to counterbalance the decline as the disease
progresses and the pathological load increases, leading to observable cog-
nitive impairments2,4 in these individuals. In preHDs, the spared thalamus
(Fig. 2), the relationships between the drift rate and both the increased
volume of the hippocampus (Fig. 4c) and the hypertrophy of the superior
parietal cortex (Fig. 4d) suggest that the compensatorymechanismmight be
related to the attentional network36–38.

In our task, the response threshold increased across disease stages
suggesting a gradient of impairment proportional to disease progression
(Fig. 3c). A higher response threshold leads to a slower decision-making
process. In healthy participants, Forstmann et al. (2010)39 showed that the
flexible variation of the DDMs response threshold was dependent on the
strength of the connections between the cortex and striatum that inhibit the
subthalamic nucleus. This indirect pathway from the striatum to the tha-
lamus through the external globus pallidus and subthalamic nucleus was
much more affected in earlyHDs than in preHDs40. Disruption of that
indirect pathway, and a decrease in the number of white matter fibres
extending between the striatum and the cortex41,42 in Huntington’s disease
should decrease the inhibition of the subthalamic nucleus and lead to less
impulsive choices and an increase in response threshold43. This could
explain why we could not find neuroanatomical correlates of the response
threshold sincewe exploredonly brain volumeandcortical thickness. In line
with recent research on the role of white matter in adaptation to
neurodegeneration44, examining the white matter integrity and network
connectivity would be warranted to complement this work.

Provided that earlyHDs’ other cognitive disabilities are not too severe,
longer decision times should improve their accuracy (speed-accuracy
tradeoff)45. Yet, this is not the profile of responses we observed as earlyHDs
are less accurate and slower than controls, showing a performance
impairment compared to controls. Their slower rates of evidence accu-
mulation, brought by poor quality of evidence extracted from short-term
storage (lower drift rate), increased the number of errors they made and
reduced their performance in perceptual decision-making. Based on such
findings, we built our hypothesis that preHDs presented a compensatory
rise in drift rate that helped them maintain their normal behaviour despite
the parallel rise in response threshold (Fig. 3e). The stronger relationship
between drift rate and response threshold in preHDs compared with their
counterparts, together with the bell-shaped pattern it gave with preHDs
subgroups (Fig. 3d), and the inability of earlyHDs to maintain normal
behavioural performances are consistent with models assuming that com-
pensationmechanisms become less effective over the disease progression2,4.
The drift rate may constitute a measurable cognitive marker of
compensation.

Drift rate is linked to attention in both healthy subjects21 and patients
with hyperactivity disorder46. Individuals with higher attentional capacities
accumulate evidence faster47. We used MRI imaging to reveal drift rate-
related compensatory mechanisms and saw that the drift rate correlated
positively with cortical thickness in the left superior parietal and the right
superior temporal cortices, which are associated with a better ability to
sustain attention (Fig. 4d, e)36–38. Within this attentional network, the hip-
pocampus plays a role in maintaining high-resolution representations in
working memory when a complex and precise representation is required48,
especially in online perception49. The content of working memory auto-
matically modulates attention by gating the information matching its
content into awareness50. In preHDs, a larger hippocampal volume pre-
dicted a higher drift rate (Fig. 4c). This raises the possibility that the hip-
pocampus contributes to tune their attention to relevant stimulus features
(fine-grained presentation of pseudowords in our task), which consequently

increased information extraction. Obviously, the structural modification
(hypertrophy) (Fig. 4a, d), observed in preHDs, has developed over time
with daily use of this mechanism, beyond our simple task. In contrast,
hippocampal volume was not related to drift rate in earlyHDs suggesting
that attentional tuning was no longer working at this stage. The inability of
earlyHDs to recruit sufficient additional attentional resources is consistent
with their brain atrophy and the pattern of attentional impairment observed
in this disease. In our cohort, two key components of the attentional
network36,51, i.e. the right caudal part of the middle frontal cortex and the
thalamus, were atrophied in earlyHDs and spared in preHDs (Fig. 2, Sup-
plementary Fig.1). In line with previous literature, preHDs were minimally
affected in this domain, whereas earlyHDs presented a wide range of
attentional deficits (e.g. regarding sustained attention52). Moreover, the
atrophy of the left angular gyrus, a key structure involved in phonological
discrimination53, seen in earlyHDs was previously reported54. This might
also have prevented them from biasing their attention to fine-grained
phonological features of our task.

Cognitive reserve that operates through active compensation
mechanisms may depend on either an increase in the activity of a deficient
network (neural reserve) or the recruitment of alternative networks with
available resources (neural compensation)6. Both have been observed in
preHDs where functional imaging studies showed changes in BOLD
responses in task-dependent regions despite similar behavioural perfor-
mances to that of controls4,32,33. Changes in connectivity, structure, or acti-
vation can provide information about the link between the disease and
neural reorganization. However, this linkmight be pathological rather than
compensatory if it is not correlatedwith improvedperformances2,3.Here,we
observed left superior parietal cortex hypertrophy in preHDs (Fig. 4d). Such
an increase in cortical thickness, supposedly caused by hyperactivation, was
associated with better performances (shorter response times, better accu-
racy, and higher drift rates) (Supplementary Fig. 2, Supplementary Table 8,
Fig. 4d, e), supporting the hypothesis of a successful compensation, as
previously reported in motor learning31. The post-hoc analysis showed that
only preHDs middle group had this cortical hypertrophy, not preHDs far
fromand close to predicted age-at-onset; a bell-shapedpattern in favour of a
compensatory mechanism emerging at a certain point and failing as the
pathological load increases. Although these findings would need to be
replicated in a larger cohort, they are consistent with the results of previous
studies on Alzheimer’s disease55 and Huntington’s disease56 which reported
a preclinical stage of hypertrophy and increased functional connectivity
between the left caudate nucleus and parietal lobe preceding atrophy in
symptomatic patients34. This may reflect an experience-dependent increase
in neural volume57,58 as an attempt to compensate for the dysregulation of
the striatal network.

Overall, whether the compensatorymechanism is induced by attention
modulation which refers to neural reserve, or attention recruitment which
refers toneural compensation, is not resolvedhere.The fact that preHDsdid
not show cortical atrophy of the attentional system (see Supplementary
Fig. 1, Supplementary Table 5) indicates that this network was not a priori
affected. Future research replicating the results using functional MRI data
and tasks aimed at testing attentional capacities in HD mutation carriers
would allow to confirm the overactivation or additional recruitment of the
attentional network and to capture the dynamic nature of cognitive reserve.
It is worth mentioning here that our imaging results corresponded to cog-
nitive reserve rather than to brain reserve since we took total intracranial
volume into account in cortical thickness analyses and normalized volumes
in subcortical analyses.

Despite the study small cohort size, DDMs detected differences
between preHDs and controls and identified cognitive processes that might
underlie compensatory mechanisms in a discrimination task. We have
shown thatDDMs, combinedwith a language task, had an added value over
classical neuropsychological tests, which rarely detect differences in
preHDs, unless hundreds of participants are recruited1,59. Choosing a lan-
guage task was motivated by studies showing the sensitivity of language in
detecting subtle disorders in small cohorts of preHDs14–18. The duration of
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the task and its simplicity (pseudoword discrimination) made it easily
adaptable and transferable to other languages and other brain pathologies.
Showing the generality of the drift rate as a marker of compensation in
preHDs, i.e., of the increase in attention allocation as a compensatory
mechanism, would require assessing other cognitive domains. Structural
imaging provides a hint into the attentional network. Yet, it does not fully
capture and take into account the dynamic nature of cognitive reserve as a
process and does not allow discriminating between neural reserve or neural
compensation for example. Studying the functional correlates of the drift
rate in Huntington’s disease would provide a greater understanding of
online allocation of attentional resources as a compensatory mechanism4,60.
Thesefinding suggest that focusing on the role of the superior parietal cortex
and hippocampus is promising in Huntington’s disease, albeit needs to be
replicated in other neurodegenerative diseases. Strengthening the cognitive
mechanisms that compensate for the degeneration of the brain in neuro-
degenerativediseasesmight allow todelay theonset andprogressionof these
diseases and offer a promising line of treatment for neurodegenerative
diseases.

Methods
Participants
We recruited native French-speaking adults whowereHuntington’s disease
mutation carriers in addition to a group of healthy participants as controls.
Mutation carriers were either at an early-stage of Huntington’s disease
(earlyHDs; classified stages I and II based on total functional capacity score
of the Unified Huntington’s Disease Rating Scale), or were at the pre-
manifest stage (preHDs; total functional capacity score of 13 and totalmotor
score of <51 with no overt cognitive deficits9). Clinical data were collected
using paper-and-pencil tests. The recruited controls were matched with the
earlyHDs and preHDs groups for demographic variables, such as sex,
handedness, years of education, and age (all p > 0.05). The two mutation
carrier groupswere furthermatched for demographic variables (all p > 0.05)
except for age (p < 0.05). The participants hadnoneurological or psychiatric
disorders other than Huntington’s disease in the mutation carriers.

This study was conducted in accordance with the Declaration of
Helsinki (2008). All ethical regulations relevant to human research parti-
cipants were followed. Participants were recruited between December 2013
and July 2017 from a clinical biomarker study (NCT01412125) in out-
patients approved by the ethics committee of Henri Mondor Hospital
(Créteil, France). The sample size was estimated on the basis of previous
work61. Participants inclusion ended when 45 valid brain MRI scans had
been obtained from mutation carriers. All participants gave written
informed consent.

Experimental design
We designed a simple AX auditory language discrimination task that relied
on an automatic linguistic process rather than explicit learning62,63. We
focused on a low-level language component, phonological processing, in a
task optimized to induce performance differences between controls andHD
mutation carriers. In addition to being automatic64,65 phonological proces-
sing has a distinct brain signature from non-phonological processing53.

The discrimination task consisted in distinguishing a pair of pseudo-
words read 100ms apart (Fig. 1a). The two pseudowords were identical in a
half and differed by a single consonant (e.g. /tiplysk/ and /tipʁysk/) in the
other half. The location of the consonant that differed varied between the
trials (N = 216 trials) to impede expectation. A female native French speaker
(the last author) pronounced the pseudowords for the recording, with each
pseudoword lasting 1030 ± 165ms. Once the participant gave a response,
another trial would start 1000ms after. The task lasted <10min in total.
Except for the training session, trials were randomized into two blocks
separated by a break.

Theparticipantswere asked to sit in front of anAppleMacBookPro, in
a quiet room,wearingheadphones tuned to ensurehearing comfort andhad
to press P for “pareil” (the French word for “same”) or D for “different”, on
an AZERTY keyboard. Participants were informed that their accuracy and

response time would be recorded, and were advised to answer as accurately
and quickly as possible. The experiment was run under PsyScope X66.

Analysis of clinical assessment, response time, and accuracy
We analyzed the effect of group on the results of cognitive tests (forward
digit span, category fluency, trail making test (TMT), Unified Huntington’s
Disease Rating Scale cognitive scores) and language discrimination task
(mean accuracy and mean response time) using one-way ANOVA with
group as a between-participants factor. Age was added as a covariate to take
into account the normal difference between preHDs and earlyHDs brought
alongby thenatural progression of the disease.WheneverANOVAanalyses
showed a significant effect of group, pairwise comparison using Tukey’s
post-hoc analyses were undertaken (three pairs) to find out which group
means were different.

For accuracy and response time, the training trials were not included in
the analyses. However, trials in which participants withdrew temporarily
from the experiment and/or answered before the end of the trial presenta-
tion were removed, which resulted in losing 0.06% of data. Accuracy ana-
lyses were run on the remaining trials. Response time analyses were run on
correct-answer trials (3.9% loss) lasting >150ms (8.1% loss).

Model fit and selection
Bayesian hierarchical DDM67 is currently the most efficient method for
dealing with a small number of observations68, hence its use in our work. It
assumes that individual parameter estimates are random samples of group-
level distributions. Data were cleaned as in behavioural analyses, albeit
Bayesian hierarchical DDMs used both correct and incorrect responses and
response time. We assumed the same absolute drift rate value for both
answers (“same” and “different”), a necessary hypothesis to estimate a
possible relative bias toward one of the answers.

We tested two variants of the Bayesian hierarchical DDMs, full versus
parsimonious. In the full model, each parameter had three group-level
distributions, corresponding to our three groups (controls, preHDs, ear-
lyHDs). The parsimoniousmodel assumed that only the response threshold
and drift rate had different group-level distributions. Inter-trial variability
parameters were not included in our models due to the small number of
trials available and to allow convergence.

Model fit. We followed the Bayesian Hierarchical Drift Diffusion
Models67 recommendations to fit our models. For each model, the
starting values were set at the maximum a posteriori value to accelerate
convergence. Bayesian inference was then performed by drawing 50,000
posterior samples by Markov Chain-Monte Carlo methods. The first
25,000 samples were discarded to limit the influence of starting values on
posterior distributions. We retained every 10th sample to reduce auto-
correlation within chains. We performed 20 runs of the same model,
which were then combined to generate the final model. Parameter con-
vergence was checked before analysis by visual examination of the trace,
autocorrelation, and marginal posterior distribution, and with Gelman-
Rubin R-hat statistic69 comparing the within-chain and between-chain
variances of the 20 different runs of the same model.

Model selection. To identify the model best fitting our data, we used the
deviance information criterion70, a measurement of goodness-of-fit for
Bayesian hierarchical models with a penalty for the number of free
parameters.

The difference in deviance information criterion between the full and
parsimonious models was not significant (<10) (Supplementary Table 9),
indicating that the two models fit equally well our set of data.

We also checked the ability of themodels to generate the observed data
by performing posterior predictive checks. We sampled 500 sets of para-
meters from the posterior distributions of the fitted models and simulated
500 sets of data corresponding to our original design (number of trials and
participants). The posterior predictions were generated by averaging these
500 sets, and were compared with the observed data.
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The posterior predictive checks showed that both models yielded data
similar to the observed data. All reported statistics are in the 95% credible
interval of the observed data (Supplementary Table 9 and Supplemen-
tary Fig. 3).

Finally, the parameters of the full and parsimonious models (e.g.
correlations between the response thresholds of the two models) were all
highly correlated (r(91) = 1, p < 0.001) for all parameters. Altogether, this
indicates the lack of added value of the full model, hence our selection of the
parsimonious model.

Statistical analysis of structural imaging data
MRI acquisition and preprocessing. Three-dimensional, T1-weighted
structural scans were acquired with a MP-RAGE sequence on a Siemens
symphony 1.5 Tesla whole-body scanner (HenriMondor Hospital, Paris,
France) with a 12-channel head coil (TR = 2400 ms, TE = 3.72 ms, TI =
1000 ms, FA = 8°, FOV = 256*256 mm2, 1 mm isotropic voxel, slice
thickness = 1 mm, no inter-slice gap, 160 sagittal sections).

Cortical thickness is a sensitive method for studying cortical changes
within the brain and is more sensitive to age or disease related grey matter
changes than VBM71,72 while being independent from confounding infor-
mation such as surface area and cortical folding73.

MRI scans were preprocessed with Freesurfer (http://surfer.nmr.mgh.
harvard.edu/)74. The procedure included the removal of non-brain tissue,
normalization of the intensity of the grey/white matter boundary, auto-
mated topology correction, and surface deformation. The following sub-
cortical structures were automatically segmented: thalamus, striatum,
pallidum, hippocampus, and amygdala. Cortical thickness (in mm) was
calculated as the shortest distance between the grey/white matter boundary
and the pial surface at each vertex across the cortical mantle75. All recon-
structed data were visually checked for segmentation accuracy by a neu-
ropsychologist (ML) trained in brain structural segmentation analysis, and
reviewed by an expert neurologist blinded to participants’ genetic makeup.
The spherical cortical thickness data of all participantsweremappedonto an
“average” subject by surface-based registration methods76 to morphologi-
callymatchhomologous cortical locations inparticipants.Weuseda10mm
full width at half-maximum Gaussian kernel to smooth maps of cortical
thickness.

Neuroanatomical differences between groups. The subcortical
structures were compared between groups using a mixed ANOVA with
subcortical volumes normalized to the total intracranial volume as the
dependent variable, group as a between factor, subcortical structure as a
within factor, and age as a covariate. We corrected post-hoc analysis for
multiple comparisons with the Tukey method.

Vertex-wise comparisons of cortical thickness values between groups
were performed on Freesurfer using generalized linear models, with cortical
thickness as the dependent variable, group as the predictive factor, and age as
a covariate. At each vertex, F-statistics were calculated to test the hypothesis
of a difference in cortical thickness for each group comparison (two-tailed
test). We corrected for multiple comparisons by family-wise error cluster-
based correction, using Monte Carlo simulations with 10,000 iterations.

Relationship between brain structure and DDM parameters in
mutation carriers
For cortical analyses, wefitted a generalized linearmodel for eachparameter
with the cortical thickness as the dependent variable, the parameter and the
disease stage as predictive variables, and age as a covariate. At each vertex,F-
statistics were calculated to test the hypothesis of an interaction between
cortical thickness and disease stage.We corrected formultiple comparisons
by family-wise error cluster-based correction, using Monte Carlo simula-
tions with 10,000 iterations. If there was no cluster with a significant
interaction, the disease stage was removed from the analysis before testing
the hypothesis of the non-null relationship (two-tailed test) between the
DDMs parameter and the cortical thickness.

Finally, we used the clusters identified by the generalized linear model
analyses as regions of interest from which we extracted cortical thickness
values for imaging controls andmutation carriers.We tested for differences
in cortical thickness between mutation carriers and imaging controls by
performing ANOVA on the mean cortical thickness in each significant
cluster.

Statistics and reproducibility
Data handling, data representation and behavioural statistical analyseswere
done using the tidyverse toolbox 2.0.077 in R 4.2.3 within RStudio
2023.06.178. We performed type 3 Anovas using the function ezANOVA
from the ez package. Tukey post-hocs were done using the TukeyHSD
function. Unless specified otherwise, t-tests were independent two-tailed t-
tests with unequal variances and performed using the t.test function. Linear
models were fitted using lm and Anova from car package. Post-hocs were
performed using emmeans and emtrends functions.

DDM fit was done using the HDDM toolbox 0.6.067 under Python 2.6.
MRI analyses were performed with Freesurfer 6.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All participants signed an informed consent form guaranteeing data con-
fidentiality. The conditions of our ethics approval, including the ethical
consent by participants, do not permit public archiving of anonymized
study data. Readers seeking access to the data should contact Prof. Anne-
Catherine Bachoud-Lévi. Access will be granted to named individuals in
accordance with ethical procedures governing the reuse of sensitive data,
including a research partnership and the completion of a data transfer
agreement provided by the APHP. Legal copyright restrictions prevent
public archiving of the UHDRS, which can be obtained fromUHDRS® |—
Huntington Study Group.

Code availability
Analysis code is archived in a publicly accessible repository https://osf.io/
894ae/?view_only=ec711857a221400384ef17e333c15e9f. It requires the
following software: Freesurfer 6 (http://surfer.nmr.mgh.harvard.edu/)74, the
HDDM toolbox 0.6.067 under Python 2.6, and R 4.2.3.
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