sorbonne cors anr[®] UNIVERSITÉ High-resolution x-ray em m spectrometry and quantification in the Li K spectral range with a reflection zone plate spectrometer

Khalil **HASSEBI**

Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR) **Sorbonne University** Paris, France Under the supervision of:

Dr. Philippe JONNARD Dr. Nicolas RIVIDI Dr. Anne VERLAGUET

X-ray emission spectroscopy

- 1. The X-ray emission spectrum is generated by **bombarding** the sample with electrons or by absorption of a photon.
- 2. These X-rays/electrons **ionize inner-shell electrons**, which then decay by emitting X-ray photons.
- 3. These emitted X-rays have energies that correspond to the energy **differences between the two electronic states**. (*core -> core* or *valence -> core*)
- → X-ray emission spectroscopy (XES) provides a means of **probing the partially occupied density of electronic states**

XES a powerful technique since the physical and chemical properties of matter depend on these distributions.

→ Element-specific information

→ Chemical state (how each element is chemically combined in the sample...)

K. Hassebi, N. Rividi, M. Fialin, A. Verlaguet, G. Godard, J. Probst, H. Löchel, T. Krist, C. Braig, C. Seifert, R. Benbalagh, R. Vacheresse, V. Ilakovac, K. Le Guen, P. Jonnard, X-Ray Spectrom 2024, L. <u>https://doi.org/l0.l002/xrs.3427</u>

These emission bands are about 10 eV wide: the **natural widths of the emission** + the **experimental broadening** -> reflect the widths of the valence bands.

Li Metal

2p valence states transition
to ls core states in lithium atoms
and therefore the spectrum reflects
the distribution of the p states
within the valence band.

Not the optimal conditions

Chemical environment

Core binding energies depend on the chemical environment

But also information about the chemical state of an element by studying the **peak positions**. **band shapes** ...

changes in the energy distribution of the electrons occupying the valence band.

Fischer, D. W., & Baun, W. L. (n.d.). *THE EFFECT OF CHEMICAL COMBINATION ON SOME SOFT X-RAY K AND L EMISSION SPECTRA*.

Application: Elemental mapping but also Chemical mapping...

Quantification of Al-Mg alloy

The goal is to: **Detect** + **Quantify**

Relative errors:

	Al		Mg	
	I, %	Pk max, %	Integral, %	Peak max, %
MAC30	26	26.4	139.5	147.3
Chantler	28	23	198.4	97.8
EPDL97	18	11.5	56.6	27.4
EPDL23	17.4	11.2	54.4	26.6
Penelope 2018	17.5	12.6	54.4	31.4

Using t	the <u>PAP mode</u>		Al	N	lg
		Integral	Peak max	Integral	Peak max
	MAC30	84.2	84.74	15.7	15.2
t% (D7D)	Chantler	86.6	80.9	12.6	19.0
	EPDL97	76	70.41	24	29.5
W1/8 (NZP)	EPDL23	75.5	70.2	24.4	29.7
	Penelope	75.6	71.3	24.4	28.6
	2018	75.0			
wt% (crystal	62.3 37.6		7.6		

MACs are not well known in the ultra-soft xray range

Contaminations, quality of standards ... \rightarrow ⁸

Quantification of Al-Si alloy

🔶 Al-Si (1wt% Si)
← Si Substrate

Depth distribution function for a 3 kV:

Ultra-soft x-ray range

MAC database	Al (wt%)	Si (wt%)
MAC30	76.4	23.5
Chantler	86.9	13
EPDL97	87.5	12.4
EPDL23	86.8	13.1
PENELOPE 2018	86.3	13.6

Quantification of AlCuLi quasicrystal

We do not observe the M emission of the Cu

		Ultra-soft x-ray range	
MAC database	Al (wt%)	Li (wt%)	Cu (wt%)
MAC30	74.2	16.2	9.4
Chantler	49.6	19.8	30.5
EPDL97	51.2	19.1	29.6
EPDL23	63.8	12.9	23.2
PENELOPE 2018	57.3	20.7	21.9
		Soft x-ray range	
Wt% (crystal)	59.6	16.9	24.0

Cu obtained by difference

Comparison with the crystal spectrometer

Challenges in the ultra-soft x-ray range

Fundamental parameters

- Successfully implementation of the <u>RZP</u> on <u>EPMA</u>
- RZP provides good intensity and spectral resolution (0.25 eV at the Mg L_{2.3} edge)
- Chemical state depends of the XES spectra
- <u>First attempts</u> to quantify in the ultra-soft x-ray range (Li, Mg, Al...)
- Challenges faced in this spectral range (MACs, contaminations...), still room for improvements

Acknowledgement:

Under the supervision of: Dr. Philippe JONNARD Dr. Nicolas RIVIDI Dr. Anne VERLAGUET

Special thanks to all SQLX team:

- Régis Vacheresse
- Rabah Benbalagh
- Karine Le Guen
- Vita Ilakovac
- Marie Christine Lépy
- Michel Fialin

EKRS 2024