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Predictive student models are increasingly used in learning environments due to their ability to enhance
educational outcomes and support stakeholders in making informed decisions. However, predictive mod-
els can be biased and produce unfair outcomes, leading to potential discrimination against certain indi-
viduals and harmful long-term implications. This has prompted research on fairness metrics meant to
capture and quantify such biases. Nonetheless, current metrics primarily focus on predictive performance
comparisons between groups, without considering the behavior of the models or the severity of the biases
in the outcomes. To address this gap, we proposed a novel metric in a previous work (Verger et al., 2023)
named Model Absolute Density Distance (MADD), measuring algorithmic unfairness as the difference of
the probability distributions of the model’s outcomes. In this paper, we extended our previous work with
two major additions. Firstly, we provided theoretical and practical considerations on a hyperparameter
of MADD, named bandwidth, useful for optimal measurement of fairness with this metric. Secondly, we
demonstrated how MADD can be used not only to measure unfairness but also to mitigate it through post-
processing of the model’s outcomes while preserving its accuracy. We experimented with our approach
on the same task of predicting student success in online courses as our previous work, and obtained suc-
cessful results. To facilitate replication and future usages of MADD in different contexts, we developed
an open-source Python package called maddlib (https://pypi.org/project/maddlib/). Al-
together, our work contributes to advancing the research on fair student models in education.

Keywords: fairness metric, unfairness mitigation, classification, student modeling, models’ behaviors,
sensitive features
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1. INTRODUCTION

Since recent years, a growing body of research has shown that artificial intelligence (AI) and
predictive models are not free from biases coming from technical and societal issues (Mehrabi
et al., 2022; Selbst et al., 2019; Lopez, 2021). These models are consequently prone to pro-
duce harmful, unfair outcomes (Buolamwini and Gebru, 2018; Bolukbasi et al., 2016; Larson
et al., 2016; Dastin, 2018). This has led not only to give a solid new impulsion to research
on fairness (Hutchinson and Mitchell, 2019; Barocas et al., 2019), but also to increase public
awareness about the potential harms of AI and predictive models and the enforcement of stricter
regulations1 (Calvi and Kotzinos, 2023).

Particularly in education, where predictive models are meant to improve students’ learning
experience (Romero and Ventura, 2020), unfair outcomes could, in turn, significantly hinder
their academic achievements and could result in long-term negative implications for students
(Baker and Hawn, 2021; Kizilcec and Lee, 2022; Vasquez Verdugo et al., 2022; Holstein and
Doroudi, 2021). Indeed, based on these predictions, important decisions may be taken, such as
reorienting them towards a different learning path, refusing their admission to a course, provid-
ing more limited learning support, or not considering them for a scholarship. Unfair predictions
can thus lead to unfair decisions, and more often than not, none of the stakeholders involved
(e.g., students, teachers, school, and university administration) are aware of unfairness issues in
the considered process.

So far, research on fairness in AI and machine learning (ML) has given a lot of attention to
classification models since a majority of tasks can be framed as classification problems (Barocas
et al., 2019; Pessach and Shmueli, 2023; Makhlouf et al., 2021; Le Quy et al., 2022; Suresh and
Guttag, 2021). This observation is equally applicable to AI and ML in education (Deho et al.,
2022; Gardner et al., 2019; Hu and Rangwala, 2020; Lee and Kizilcec, 2020), where very
common predictive tasks include predicting whether students will drop out, complete a course,
be admitted to a particular university, or be granted a scholarship.

Hence, in a previous paper (Verger et al., 2023), we proposed a new fairness metric, Model
Absolute Density Distance (MADD), applicable to binary classification tasks (and regression
in Švábenský et al. (2024)’s work), particularly suitable to social contexts such as education.
Indeed, in such contexts, the target variable we generally want to predict (e.g., dropout or success
in education) cannot be explained solely by the features available for data collection. Other
contextual factors (Lallé et al., 2024), including hidden historical biases (Mehrabi et al., 2022;
Castelnovo et al., 2022), may also influence the target variable and cannot always be captured in
the data. As a result, the target variable is not always a reliable indicator for evaluating fairness.
The MADD metric was developed to address this limitation by not taking into account the target
variable in its calculation. In (Verger et al., 2023), it allowed us to detect some algorithmic
biases that were not visible otherwise.

In this paper, we provide two major additions to the MADD metric. Firstly, we offer an
in-depth study of a MADD-specific parameter, the bandwidth, to demonstrate how to measure
fairness with this metric optimally. We also develop an automated search algorithm to tune this
parameter. Secondly, we provide a new method to mitigate algorithmic unfairness based on the

1e.g., General Data Protection Regulation (2016) at European level, California Consumer Privacy Act (2018) at
the United-States level, Principles on Artificial Intelligence (2019) from OECD (Organization for Economic Coop-
eration and Development) at the international level, and more specifically the upcoming European AI Act (Sovrano
et al., 2022).
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MADD metric. This method enables us to preserve the accuracy of the predictions while correct-
ing some of the unfairness of the model. For these two main new contributions, we consider the
common task of predicting student success or failure at a course level, with both simulated data
and real-world educational data. The real-world data came from the Open University Learning
Analytics Dataset (OULAD) (Kuzilek et al., 2017) and was chosen as an open dataset as well as
for the sake of comparison with our previous results. Furthermore, we discuss the implications
of our results for both contributions and provide relevant guidelines for using MADD.

As a final contribution to foster future usages of this metric, we provide the source code and
the data of our experiments in open access2, along with a Python package called maddlib3

gathering all the programming functions needed for fairness evaluation and mitigation with
MADD.

The remainder of this paper is organized as follows. We first provide a context for our
research in Section 2, reviewing the relevant literature and discussing related work. We then
present the MADD metric in detail as well as how to use it in practice in Section 3. Next, we
thoroughly study the bandwidth, the MADD hyperparameter, worthwhile for the optimal mea-
surement of fairness with this metric, in Section 4. We thus replicate our previous results (Verger
et al., 2023) with the optimal computation in Section 5, in particular thanks to the algorithm we
introduce in the preceding section. Additionally, we propose a fair post-processing technique to
improve fairness based on MADD in Section 6. Finally, we discuss all MADD-related contri-
butions and limitations in Section 7 before concluding this paper in Section 8.

2. RELATED WORK

2.1. FAIRNESS METRICS

The following paragraphs discuss the positioning of MADD in the context of existing fairness
metrics and present how it differs from them. The existing fairness metrics are categorized
into three main approaches: causality-based (counterfactual), similarity-based (individual), and
statistical (group) metrics (Castelnovo et al., 2022; Verma and Rubin, 2018). However, the first
two categories, causality-based and similarity-based, are seldom used in practice since, in order
to determine what is fair on a specific problem, they require either making strong assumptions
that would introduce additional biases or gathering extensive prior knowledge which comes at a
cost (Verma and Rubin, 2018). In contrast, statistical metrics, which only require the selection
of comparison groups beforehand, are suitable in many applications, making them popularly
studied in the literature and widely used in practice. MADD falls into this category.

Within statistical metrics, the concept of group fairness involves three main notions: inde-
pendence, separation, and sufficiency (Castelnovo et al., 2022). In the literature, “independence
is strictly linked to what is known as demographic (or statistical) parity, separation is related to
equality of odds and its relaxed versions, while sufficiency is connected to the concept of cali-
bration and predictive parity” (Castelnovo et al., 2022). More precisely, independence looks for
the predictions to be independent of the group membership, separation for the predictions to be
independent of the group membership conditionally to the ground truth, and sufficiency for the
ground truth to be independent of the group membership conditionally to the predictions. These
notions are useful in distinct real-life scenarios (Castelnovo et al., 2022): separation is more

2https://github.com/melinaverger/MADD
3https://pypi.org/project/maddlib
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suitable when we trust the objectivity of the target variable and when making discrimination is
justified as long as it follows the actual data; sufficiency takes the perspective of the decision
maker, focusing on error parity among people who are given the same predictions, not the same
ground truth as does separation; and independence is meaningful when hidden historical biases
could impact the entire datasets in a complex way so that we cannot entirely trust the objectivity
of the target variable, particularly in social contexts like education, as mentioned in Section 1.
Therefore, MADD was designed as an independence criterion.

Moreover, unlike other metrics that assess unfairness based on predictive performance com-
parison across groups, MADD takes into account the two entire predicted probability distribu-
tions in a finer-grained way (see its definition in Section 3). That is why this metric is able to
capture cases where a model generates errors with varying severity based on group membership,
even when it produces on average similar error rates across different groups, which other met-
rics cannot capture. In addition, MADD offers a visual interpretation of how the models behave
and of the related group distributions, allowing us to gain a deeper understanding of algorithmic
biases (see Section 3.2 as well as Figure 7c as examples; see (Verger et al., 2023) for detailed
visual analyses).

2.2. FAIRNESS EVALUATION FOR CLASSIFICATION IN EDUCATION

We now present how algorithmic fairness has been studied in education research. Although
considerations of social fairness have always been deeply rooted in the field (e.g., studies on
inequalities in educational opportunities and outcomes), the consideration of algorithmic fair-
ness is in fact much more recent and motivated by the growing number of students who are
affected by algorithmic systems in educational technologies today (Hutchinson and Mitchell,
2019; Kizilcec and Lee, 2022). Therefore, compared with the broader fields of AI and ML,
algorithmic fairness studies in education are even more recent and less numerous.

Among them, most studies focused on comparing the predictive performance of models, for
instance aimed at predicting student retention in an online college program between African-
Americans and Whites (Kai et al., 2017), risk of failing a course between African-American
and the other students (Hu and Rangwala, 2020), six-year college graduation or school and
college dropout between multiple ethnic groups (Anderson et al., 2019; Christie et al., 2019;
Yu et al., 2021), and course grade between males and females (Lee and Kizilcec, 2020). We
refer the reader to the surveys (Baker and Hawn, 2021) and (Kizilcec and Lee, 2022) for a more
comprehensive overview, but it is worth noting that these high-stakes real-world applications are
primarily centered around classification tasks, in line with the prevalent trends in the fields of
AI and ML as said above.

Other studies used well-established statistical fairness metrics such as group fairness, equal-
ized odds, equal opportunity, true positive rate, and false positive rate between groups. They
were applied in scenarios such as predicting course completion (Li et al., 2021), at-risk stu-
dents (Hu and Rangwala, 2020), and college grades and success (Jiang and Pardos, 2021; Yu
et al., 2020; Lee and Kizilcec, 2020). Additionally, Gardner et al. (2019) proposed a new fair-
ness metric developed in this educational field, Absolute Between-ROC Area (ABROCA), which
is based on the comparison of the Areas Under the Curve (AUC) of a given predictive model
for different groups of students. The authors used it to assess gender-based differences in clas-
sification performance of MOOC dropout models, showing that ABROCA captured unfair clas-
sification performance related to the gender imbalance in the data. This metric has also been
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used to evaluate fairness across different sociodemographic groups in contexts of predicting col-
lege graduation (Hutt et al., 2019) and predicting the content-relevance of students’ educational
forum posts (Sha et al., 2021).

Nonetheless, all of the aforementioned metrics rely on predictive performance comparison,
and that is why we investigate the value of MADD as a fairness metric that accounts for the
behaviors of the classifiers instead. This will contribute to the line of fairness work in education,
and although they are two distinct approaches (independence vs. separation), we offered a com-
parison with ABROCA in (Verger et al., 2023) to demonstrate the complementary nature of the
results, since fairness is a broad, complex and context-sensitive notion.

2.3. UNFAIRNESS MITIGATION

In addition to fairness evaluation, existing techniques aim to mitigate unfairness by reducing
some algorithmic biases. These techniques could be deployed at different stages: in the pre-
processing, the in-processing, and the post-processing phases of the ML pipeline (Kizilcec and
Lee, 2022). Generally, pre-processing techniques try to transform the training data so that the
underlying discrimination is removed, in-processing techniques try to modify and change state-
of-the-art learning algorithms in order to remove discrimination during the model training, and
post-processing techniques try to transform the model outputs to improve prediction fairness
(d’Alessandro et al., 2017; Caton and Haas, 2024). The latter do not require access to the
actual model, needing only access to the outputs and sensitive attributes information. They
are performed after the training (by using a holdout set), which makes them a highly flexible
approach. They are thus applicable to black-box scenarios, where models could be tailor-made
for a specific task, and where the entire ML pipeline is not exposed (Mehrabi et al., 2022; Caton
and Haas, 2024).

Moreover, the work in (Deho et al., 2022) and our previous findings in (Verger et al., 2023)
did not show evidence of a direct relationship between data bias and predictive bias, meaning
that trying to remove biases during the pre-processing and the in-processing phases would not
guarantee fair model outputs. That is why one of the contributions of this paper is also to pro-
pose a post-processing method to improve fairness thanks to the MADD metric (see Section 6).
Indeed, it consists in taking an already-trained model and transforming its outputs to satisfy
the fairness notion implied by MADD, while preserving the model’s predictive performance as
much as possible.

3. THE MADD METRIC

This Section 3 is dedicated to explaining the MADD metric. In the following, we will introduce
the necessary notations for the rest of the paper (Section 3.1), we will present the general idea
behind the metric (Section 3.2), we will provide its formalized definition (Section 3.3), and
we will conclude by indicating how to compute and implement it in a standard ML evaluation
process (Section 3.4).

3.1. NOTATIONS

DATA AND MODEL. Let C be a binary classifier, which for instance aims to predict student
success or failure at a course level. C is trained on a dataset {X,S, Y }ni=1, with n the number
of unique students or samples, X the features characterizing the students, S a binary sensitive
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feature that will be further detailed, and Y the binary target variable whose values yi ∈ {0, 1}
(e.g. 1 for success and 0 for failure). The objective of C is to minimize some loss function
L(Y, Ŷ ), with Ŷ its predictions that estimate Y .

MODEL OUTPUT. To calculate MADD, it is necessary for C to be able to output not only
its predictions ŷi ∈ {0, 1} but also the predicted probability p̂i associated to each prediction ŷi
(C → {ŷi = {0, 1} , p̂i ∈ [0, 1]}). In the rest of the paper, we focus on the probability related to
the positive prediction for every student i, i.e., the probabilities p̂i associated to ŷi = 1. Indeed,
C predicts ŷi = 1 if and only if p̂i ≥ t with t the classification threshold, and it predicts ŷi = 0
otherwise.

SENSITIVE FEATURE. The feature S is the feature with respect to which we will evaluate
algorithmic fairness with MADD. It is commonly called sensitive feature, but there is no re-
striction on what S should represent. Nonetheless, S should be a binary feature here, i.e., com-
posed of two distinct groups of students, indexed respectively by G0 = {1 ⩽ i ⩽ n | Si = 0}
and G1 = {1 ⩽ i ⩽ n | Si = 1}. Plus, n0 = card(G0) and n1 = card(G1) are the number of
students who belong to these groups respectively (which cannot be empty). As an example, if S
corresponds to having declared a disability, a given student cannot belong to both the group of
those who have not (e.g. G0) and the group of those who have (e.g. G1) declared a disability. It
is worth noting that none of these groups are considered a baseline or a privileged group in the
calculation of MADD. Indeed, most of the time, fairness is evaluated by comparing the predic-
tive performance of a model between the majority group and a minority group, thus implicitly
considering the majority group as the baseline or the privileged group. Considering that MADD
will take into account an absolute distance, it does not assume a priori that there is one group
towards which the results should converge. Then, we denote P̂G0 = (p̂i)i∈G0 and P̂G1 = (p̂i)i∈G1

the predicted probabilities for the groups G0 and G1 respectively. We refer the reader to the
forthcoming Figures 3 and 4 for a summary of some of these notations.

MADD HYPERPARAMETER. We introduce the hyperparameter h ∈ (0, 1], originally noted
as e and called probability sampling step in (Verger et al., 2023), that we rename bandwidth
here. Its name, role, and purpose will be further detailed in Section 4, but, as a first intuition, it
represents the resolution with which we compute MADD in order to measure fairness with this
metric optimally. The bandwidth h is directly linked to an equivalent parameter, m ∈ N∗, with
m being equal to ⌊1/h⌋. Thus, m is the number of subintervals of the unit interval I = [0, 1]

Figure 1: Illustration of the notations introduced for MADD.
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that the value of h will determine. Let us see in Figure 1 an illustration of these parameters. In
the figure, we can see that h corresponds to the width of the bins of a histogram (further studied
in Section 4) while m corresponds to its total number of bins. For instance, if h = 0.022, then
m = ⌊1/0.022⌋ = 45, meaning that there are 45 subintervals of the same width 0.022 (or 1/45)
in I: [0, 1/45), [1/45, 2/45), . . ., [43/45, 44/45), [44/45, 1]. We finally introduce a last nota-
tion which is Ik, representing the subinterval indexed by k where Ik = [(k − 1)/m, k/m) for
k ∈ [1, 2, ...,m− 1], and Im = [(m− 1)/m, 1] for k = m. Following up on the above example,
I44 = [43/45, 44/45).

3.2. APPROACH OF MADD

The general idea of MADD consists in comparing how a classifier C distributes its predicted
probabilities depending on the group the students belong to (G0 or G1). Let us consider a toy
example with the distributions displayed in Figure 2a and where h = 0.1 so m = 10. Thus,
to measure how different these distributions are, our goal is to measure the absolute distance
between the proportions (or percentages ∈ [0, 1]) of students receiving the same probabilities,
according to their group membership. For each bin of the two histograms, a single distance
corresponds to the red arrow in Figure 2a, and the total distance is consequently the sum of
all these single absolute distances. It visually corresponds to the non-overlapping part of the
two histograms, as shown in Figure 2b. Indeed, in the areas where the two distributions do
not intersect, the model does not distribute its predicted probabilities the same according to the
group membership. This is precisely what we intend to measure with MADD.

(a) (b)

Figure 2: Measurement approach. (a) Histograms of the predicted probabilities for each group
(G0 and G1) of the feature S. (b) Visual representation of MADD.

3.3. DEFINITION OF MADD

As previously mentioned in Section 3.2, Model Absolute Density Distance (MADD) is a mea-
sure of the absolute distance between the proportions of students of G0 and G1 receiving the
same predicted probabilities. To define MADD, we first need to introduce two unidimensional
vectors, DG0 and DG1 , that correspond to the two histograms of the respective groups G0 and
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G1, exemplified in Figure 2a. Thus, we denote DG0 = (dG0,k)1⩽k⩽m and DG1 = (dG1,k)1⩽k⩽m,
where each dG0,k and dG1,k is defined such that:

dG0,k =
1

n0

∑

i∈G0

1Ik(p̂i), dG1,k =
1

n1

∑

i∈G1

1Ik(p̂i) (1)

with 1 the indicator function (and m, n0, and n1 introduced in Section 3.1). The value of 1Ik(p̂i)
equals to 1 if p̂i belongs to the interval Ik and 0 otherwise:

1Ik(p̂i) =

{
1 if p̂i ∈ Ik
0 if p̂i /∈ Ik (2)

Thus, dG0,k (resp. dG1,k) contains the proportion of students of G0 (resp. G1) for whom the
model C gave a predicted probability p̂i that fell into Ik. We can now define MADD as follows:

MADD(DG0 , DG1) =
m∑

k=1

|dG0,k − dG1,k| (3)

The MADD metric satisfies the necessary properties of a metric: reflexivity, non-negativity,
commutativity, and triangle inequality (Cha and Srihari, 2002) (see proofs in Appendix of Verger
et al. (2023)’s paper). Moreover, a property of MADD is that it is bounded:

0 ⩽ MADD(DG0 , DG1) ⩽ 2 (4)

The closer MADD is to 0, the fairer the outcomes of the model are regarding the two groups.
Indeed, if the model produces the same probability outcomes for both groups, then DG0 = DG1

and MADD(DG0 , DG0) = 0. Conversely, in the most unfair case, where the model produces
totally distinct probability outcomes for both groups, MADD is equal to 2 because we sum all
the proportions of both groups whose respective total is 1. An example of such a situation could
be when on the one hand, ∃k0, dG0,k0 = 1 and ∀k ∈ [1,m], k ̸= k0, dG0,k = 0, and on the other
hand, ∃k1 ̸= k0, dG1,k1 = 1 and ∀k ∈ [1,m], k ̸= k1, dG1,k = 0. In that case, Equation 3 simply
becomes:

MADD(DG0 , DG1) = |dG0,k0 − 0|+ |dG1,k1 − 0| = 1 + 1 = 2 (5)

Also, in Equation 3, we can see that the numerical value of MADD depends on its bandwidth
parameter through the value of m in the sum (see Figure 5 for a visual example). Indeed, since
m is also the number of bins of the histograms, it will affect the p̂i that would fall into the Ik
and thus the values of dG0,k and dG1,k. Furthermore, the bandwidth h allows us to make the
two histograms DG0 and DG1 comparable for the MADD calculation. Indeed, let us say that
the model C outputs probabilities in the range of [0.0, 1.0] for one group and of [0.2, 0.9] for
the other, such as illustrated in Figure 2. If h did not allow the discretization of the unit interval
I = [0, 1] to have common bins for both histograms, then the comparison ofDG0 andDG1 would
have been biased and the MADD results would have been wrong estimations of the distance
between these two. In Section 4 further on, we will address the selection of this bandwidth
parameter h that allows MADD to best estimate this distance between the two distributions and
thus best estimate (un)fairness with this metric.

It is worth emphasizing again, as explained in Section 2.1, that MADD is an independence
metric, made for cases where we do not trust the objectivity of the target variable due to complex
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hidden historical biases. Therefore, a MADD value of 0 only means a fair output according to
this definition of fairness. When it is acceptable that two groups have different histograms, e.g.,
representing a known historical advantage and disadvantage between two groups, this type of
fairness should be measured by a separation metric.

3.4. IMPLEMENTATION OF MADD

Now, in Figure 3, we show how to compute MADD within a standard ML pipeline. The com-
putation of MADD is performed after the model C has been trained, as shown in the dotted box.
Hence, it does not affect the data or the model itself. More specifically, MADD is computed on
the set of probabilities P̂ outputted by the model. The first step consists in splitting the prob-
abilities pertaining to each group to get P̂G0 and P̂G1 . An example of this step is provided in
Figure 4 with a sample tabular view. Next, the DG0 and DG1 vectors are derived from P̂G0 and
P̂G1 according to the h parameter, enabling to compute MADD (i.e., Equation 3).

To ease its computation, we created an open-source Python package, maddlib. In partic-
ular, it allows direct computation of MADD when provided with predicted probabilities, i.e.,
it performs the split and the computation of DG0 and DG1 vectors directly (steps in the dotted
box of Figure 3). It also allows to plot the histograms and distributions for visual analysis. The

Figure 3: Computation of MADD with an already-trained model C. The steps related to the
computation of MADD are in the dotted box.

Figure 4: An example of a tabular view of P̂ split into P̂G0 and P̂G1 .

9
373 Journal of Educational Data Mining, Volume 16, No 1, 2024



instructions for installing and using the package are available at its Python Package Index (PyPI)
link3.

4. IMPROVING MADD COMPUTATION

In this Section 4, we now focus on the influence of the bandwidth h on MADD and on how to
fine-tune it. In our previous work (Verger et al., 2023), we considered that the choice of h was to
be made by the data analyst based on what seems reasonable in a particular situation. Here, we
will first explain how the bandwidth h intervenes in the MADD calculation (Section 4.1), then
we will demonstrate why some optimal bandwidth values always exist (Section 4.2), and we
will show how to select them. More precisely, we will provide an automated search algorithm to
find this range of optimal bandwidth values (Section 4.3), and we will illustrate our findings on
simulated data (Section 4.4) to confirm the validity of our approach, before applying it on real
data in the next Section 5.

4.1. INFLUENCE OF THE BANDWIDTH

At the end of Section 3.3, we saw that the bandwidth h influences the numerical value of MADD.
Let us consider the example in Figure 5. When we have a few bins, such as when h = 0.1 (left-
hand figure), all the probabilities fall into only a few (i.e., m = 10) different intervals Ik, which
consequently see their proportions of corresponding p̂i increasing. On the other hand, when
we increase the number of bins, for example by choosing a lower value of h such as h = 0.05
(right-hand figure), we increase the number of possible intervals (i.e., m = 20) so that the
probabilities are distributed into many more different intervals (leading to a visual spread out
such as in Figure 5b). Therefore, the value of h affects the number of bins and thus the values of
dG0,k and dG1,k. This, in turn, can influence the numerical value of MADD, e.g., with a MADD
of 1.18 for h = 0.1 and of 1.19 for h = 0.05 in the example of Figure 5.

(a) (b)

Figure 5: Visual representation of the influence of the bandwidth h on MADD.

In the next section, we will show that there exists a range of h values for which MADD best
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estimates the distance between the two distributions. Hence, we also call the h values of this
range as optimal h values or optimal bandwidths. That is why we renamed this parameter as
bandwidth (compared to probability sampling step noted e in (Verger et al., 2023)), as it refers
to the range of h values for which the metric optimally measures (un)fairness.

4.2. EXISTENCE OF OPTIMAL BANDWIDTHS

In this Section 4.2, we theoretically (and later experimentally) demonstrate that several optimal
h values always exist, ensuring that MADD is an optimal measure of (un)fairness, i.e., that it
best estimates the distance between the two distributions. We do so by first showing a property
regarding DG0 and DG1 (part 4.2.1), which then leads to demonstrating a theorem about MADD
(part 4.2.2). More specifically, we refine the definition of MADD using a well-established sta-
tistical tool, namely histogram estimators. This enables us to borrow statistical properties from
histogram estimators to determine the optimal h values (part 4.2.3). In addition to the theoret-
ical proofs, we will provide an algorithm meant to infer the optimal h values in practice (next
Section 4.3), which is implemented in the maddlib package3.

4.2.1. Property on DG0 and DG1

Here, we will see that DG0 and DG1 can be considered as probability density estimators. In-
deed, the discrete values p̂i, predicted by a model C, can be seen as samples of some respective
underlying distributions with respect to the group G0 or G1. If we note the probability density
functions (PDFs) of these underlying distributions as fG0 and fG1 , therefore we can consider
DG0 and DG1 as probability density estimators by histograms of fG0 and fG1 (Devroye and
Gyorfi, 1985). An example is shown in Figure 6.

Figure 6: Illustration of a probability density function (PDF) and its histogram estimator. With
our notations, DG0

(or f̂G0

h in a future notation) is the histogram estimator of the underlying
distribution fG0 . Idem for the notations of the group G1.

More precisely, the way we defined dG0,k and dG1,k in Equation 1 corresponds to the defini-
tion of a histogram estimator (Devroye and Gyorfi, 1985):

Definition 1. Assume f is the probability density function of a real distribution, {qi}1⩽i⩽n are
the samples of that distribution, and 1 the indicator function already defined in Section 3.3. The
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histogram function of the samples, also called the histogram estimator of f on I = [0, 1], is:

f̂h(x) =
1

h

m∑

k=1

(
1

n

n∑

i=1

1Ik(qi)

)
1Ik(x). (6)

It means that for a given h, we discretize I in m = ⌊1/h⌋ intervals Ik (external sum), and we
see for each sample qi, how many other samples fall into each Ik (internal sum). Thus, for
a x ∈ [0, 1], we count the number of qi present in the same interval in which x falls and we
divide this number by h to obtain a proportion. In the end, f̂h(x) simply returns the proportion
associated to the interval in which x falls, given a fixed bandwidth h.

In the case of MADD, the p̂i in Equation 1 represent the samples qi of the respective prob-
ability density functions fG0 and fG1 , and dG0,k and dG1,k are the respective values of f̂h(x) for
the group G0 and G1. This property of DG0 and DG1 as probability density estimators leads us
to a new theorem about MADD (see Theorem 1).

4.2.2. Theorem on MADD

Now, we will see that MADD is in fact a histogram-based estimator of the distance between two
distributions on L1[0, 1] space. Let note f̂G0

h , with G0 superscript, the histogram function of fG0

(idem with the group G1) for a given h. From the previous part, we can interchangeably note
DG0 and DG1 with f̂G0

h and f̂G1
h , which are the histogram functions of fG0 and fG1 respectively

(that can again be illustrated in Figure 6). Thus, we can formalize MADD as follows (see proof
in Appendix 10.1):
Theorem 1

MADD (DG0 , DG1) =
∥∥∥f̂G0

h − f̂G1
h

∥∥∥
L1[0,1]

(7)

Indeed, MADD in its original definition (Equation 3) tries to estimate the distance on L1[0, 1]
space between two distributions, fG0 and fG1 , thanks to their histogram estimators DG0 and
DG1 . The distance on L1[0, 1] space is defined as follows (Devroye and Gyorfi, 1985):

Definition 2. Assume f̂G0
h and f̂G1

h are integrable functions on [0, 1]. The distance between
f̂G0
h and f̂G1

h on the space L1[0, 1] is thus defined as the integral of the absolute value of their
difference on [0, 1], i.e.:

∥∥∥f̂G0
h − f̂G1

h

∥∥∥
L1[0,1]

:=

∫ 1

0

∣∣∣f̂G0
h − f̂G1

h

∣∣∣ (8)

This measure actually represents, by definition, the area of the disjoint portion of the regions
the distributions enclose with the x-axis. Therefore, Theorem 1 can be illustrated in Figure 7 by
the red zone that MADD represents, and thus MADD itself can be seen as a histogram-based
estimator of the distance between two distributions on L1[0, 1] space. This result will be crucial
to prove the existence of optimal bandwidths in the following part 4.2.3.

4.2.3. Theorem on optimal bandwidths

Since MADD now consists of histogram estimators (part 4.2.1), and thanks to Theorem 1 ap-
plicable on L1 space (part 4.2.2), we can use statistical literature on histogram estimators on
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(a) DG0 (b) DG1 (c) MADD

Figure 7: Visual representation of MADD (c) in the red zone, obtained from the density estima-
tions based on the histograms (a) and (b). From (Verger et al., 2023).

L1 space (Devroye and Gyorfi, 1985) to propose a new theorem on the optimal bandwidths of
MADD. Indeed, in the next Theorem 2, we define the h values with which MADD best estimates
(or converges to) the true distance

∥∥fG0 − fG1
∥∥
L1[0,1]

. We display here a short version of this
theorem, but its mathematically rigorous version and its proofs are available in Appendix 10.2.
Theorem 2 (Short version)

If fG0 and fG1 satisfy the commonly required assumptions of smoothness, then
MADD (DG0 , DG1), whose DG0 and DG1 depend on h, converges to

∥∥fG0 − fG1
∥∥
L1[0,1]

with the smallest error (of at most O
((√

n0+
√
n1√

n0n1

) 2
3

)
), when h = O

((√
n0+

√
n1√

n0n1

) 2
3

)
.

There are three important points to highlight from this theorem. Let note c =
(√

n0+
√
n1√

n0n1

) 2
3
.

Firstly, when the number of samples or students n increases, MADD converges to the true dis-
tance between the two distributions,

∥∥fG0 − fG1
∥∥
L1[0,1]

. It is exemplified later on in Figure 11b.
Secondly, when MADD precisely converges to the true distance, the errors between MADD and
the true distance are at most O(c), i.e., in order of c. For simplification, the notation O(c) means
that, if the errors are O(c), then they are inferior or equal to c multiplied by a constant k > 0.
Another way to apprehend the notation O is that the errors are asymptotically smaller or equal
to c× k. Thirdly, and most importantly for the search of optimal bandwidths, the smallest error
is reached when h is O(c). Again, it means that the optimal h this time should be inferior or
equal to c× k. We will note hsup = c× 1 = c in the rest of the paper. In the end, we now know
that MADD converges to a specific value, which is the best estimate of the true distance, and
leading to a range of optimal h values around hsup.

If we knew the theoretical fG0 and fG1 , we could find a single precise optimal h for which
MADD is the very best estimate of

∥∥fG0 − fG1
∥∥. In practice, since we only have access to

their histogram estimations DG0 and DG1 (or f̂G0
h and f̂G1

h ), we can only identify the range of
optimal h values. Consequently, in the following section, we elaborate on a search strategy to
approximate this range of h values for which MADD optimally estimates (un)fairness.
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4.3. OPTIMAL BANDWIDTH INTERVAL SEARCH ALGORITHM

Now that we know that optimal bandwidths always exist, the question is: how can we find them
in practice? To this end, we developed Algorithm 1, presented in the next pages, to infer these h
automatically. We will first discuss the approach taken by the algorithm in part 4.3.1, followed
by a detailed description of how the algorithm works in part 4.3.2.

4.3.1. Approach

As said in the previous part 4.2.3, Theorem 2 ensures that MADD will converge to the true
distance

∥∥fG0 − fG1
∥∥
L1[0,1]

for a range of h that we will call optimal bandwidth interval in
the following. Although we cannot know the single precise optimal h in practice, we can still
identify an optimal bandwidth interval where MADD has converged and is considered “stable”.
In this context, “stable” implies that the MADD values remain consistent, i.e., within a range
that we will assess with the smallest standard deviation possible.

To find this optimal bandwidth interval, since h ∈ (0, 1] (Section 3.1), we first compute
MADD for a large given number of hwithin the search space (0, 1] (e.g., we chose 1, 000 distinct
h values in Section 4.4, and the more the better depending on computation time). Then, we
explore all possible eligible intervals of h, whose conditions are below, within this search space,
and we compute the standard deviation of the MADD values within each eligible interval to
find the one with the smallest standard deviation. Nonetheless, as hsup is already a compromise
between the number of students n0 and n1 (part 4.2.3), it is most likely that h will be smaller
than hsup for better precision, which means that the experimental optimal h will be expected to
lie before hsup in the search space.

To define eligible intervals, we set two conditions. Firstly, each eligible interval should in-
clude at least 50 MADD values minimum to ensure that the standard deviation is meaningful
(nbPointsMin in Algorithm 1). This condition comes from the fact that distinct MADD val-
ues are associated to h values that are not linearly spaced, as explained in the next paragraph.
Secondly, the width of the eligible intervals is set to at least hsup × 0.45 (percent in Algorithm
1) to ensure that MADD appears stable within a significantly large range, which is unlikely due
to chance. It has to be noted that the values of these two conditions, which we deem reason-
able based on our experience, are nonetheless arbitrary and can be fine-tuned in the maddlib
package3.

As a final remark, Algorithm 1 should thus be provided with a list of h values representing
the search space within which to find the stable interval, i.e., the optimal bandwidth interval.
More precisely, to compute this list, it is important to note that it is not necessary to consider
every possible discrete h within (0, 1]. Indeed, an infinity of particular h would yield the same
number of bins m, which does not affect the resulting MADD value. For instance, both h = 0.7
and h = 0.6 lead to the same m = ⌊1/h⌋ = 1 bin, as well as h = 0.71, h = 0.711, h = 0.7111,
and so on. Therefore, we propose to compute the relevant values of h directly from a list of
distinct m values, handled in the maddlib package (see the getting-started tutorials3). For
instance, let us assume that we want to find the optimal bandwidth interval considering a search
space with only 5 h values, as a toy example. We first computem = [1, 2, 3, 4, 5[ that we turn by
definition (⌊1/h⌋) into h = [1, 0.50, 0.33, 0.25, 0.2[, finally reversed to become the search space
h =]0.2, 0.25, 0.33, 0.50, 1]. Repeating this process with a large number of m or h, e.g., 500,
the larger the m, the smaller the h. Thus, in the resulting search space, the small h values are
finer-grained (e.g., ⌊1/498⌋ vs. ⌊1/499⌋) than the higher ones (e.g., ⌊1/2⌋ vs. ⌊1/3⌋). That is
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Algorithm 1 Find Stable Interval of MADD with Minimum Standard Deviation
1: Input:
2: Lh: ordered list of h values where to find a stable interval
3: Lmadd: ordered list of MADD results associated to the h in h list
4: n0, n1: number of individuals in G0 and G1 respectively
5: [nbPointsMin = 50]: desired minimum number of stable MADD results (default: 50)
6: [percent = 0.45]: percent for the minimal length of the stable interval (default: 0.45)

7: Output:
8: indexes: tuple (i, j) of start and end indexes of the stable interval
9: stdMin: minimum standard deviation found in this interval

10: average: average MADD within this interval

11: Initialization
12: indexes← (0, 0)
13: stdMin←∞
14: hMax← last element of Lh

15: order ←
(√

n0+
√
n1√

n0n1

) 2
3

16: intervalLengthMin← order × percent

17: Search of the optimal bandwidth interval
18: for 0 ≤ i ≤ length of Lmadd− nbPointsMin do
19: leftBound← Lh[i]

20: // 1. Building eligible intervals (if needed)
21: if leftBound > (hMax− intervalLengthMin) then
22: break
23: end if
24: rightBound← leftBound+ intervalLengthMin
25: rightBoundIndex← (position of rightBound as if in Lh)− 1
26: if rightBoundIndex < i+ nbPointsMin then
27: rightBoundIndex← i+ nbPointsMin
28: end if

29: // 2. Increasing upper bound of eligible intervals
30: for rightBoundIndex ≤ j ≤ end of Lmadd do
31: std← standard deviation of Lmadd between indexes i and j
32: if std < stdMin then
33: stdMin← std
34: indexes← (i, j)
35: end if
36: end for

37: end for
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why MADD will look like a step function with respect to h (see Figures 9 and 10), since the
MADD value changes only when the value of h is derived from a distinct number of bins m.

4.3.2. Description

We now describe Algorithm 1 that we designed to perform the optimal bandwidth interval search
defined above. Firstly, in lines 2-6, we take as inputs the list of h values to look for the stable
interval, then the corresponding MADD values for each h, the number of individuals in both
groups G0 and G1, nbPointsMin set to 50 and percent set to 0.45 by default, as said in the
previous part 4.3.1. After that, in lines 12 to 14, we initialize the variables to be updated during
the search, and in lines 15 and 16, we compute the order as defined as hsup based on Theorem 2,
and infer intervalLengthMin from it.

Secondly, from lines 18 to 37, we start the search by delimiting an eligible interval with its
left index i and its right index j (there are two “for” loops over i and j respectively). In line 21,
if its lower bound, derived from the left index i (Lh[i] line 19), is already too large, the desired
minimal length of the interval cannot be achieved and the loop stops (lines 21-23). Otherwise,
between lines 24-28, we build this interval with an initial length intervalLengthMin (line 24)
and we check if there are enough MADD values (nbPointsMin) into it (lines 25-26). If not,
we extend it to reach nbPointsMin (line 27). Then, the right index j moves forward from the
end of the considered interval to the end of the list of all possible h (line 30; Lmadd contains
the same number of elements as Lh). Thus, all eligible intervals, between i and j indexes, are
considered, and we compute the standard deviation of MADD values for each of them (lines
30-36). If an interval comes up with a standard deviation smaller than the previously saved one,
then we update stdMin and the indexes with the information of the newly selected interval.
We repeat this process moving forward i index, too (two “for” loops). This enables to find the
most stable interval as defined in the previous part, i.e., with the smallest standard deviation.

At the end of Algorithm 1, we output, as presented in lines 8 to 10, the information about the
optimal interval where the stable value of MADD is the best estimate of (un)fairness between
the groups G0 and G1. In the next Section 4.4, we illustrate the search of optimal bandwidths
with simulated data.

4.4. APPLICATION WITH SIMULATED DATA

Here, to showcase the effectiveness of our automated search algorithm and how the theoretical
findings can be illustrated (e.g., convergence, order of h), we run an experiment via simulated
data. Here, simulated data allows us to know the expected results so that we can compare these
with the results we obtain with our approach, which is not the case in practice. Experiments
with real-world data are rather conducted in Section 5 to replicate our previous work (Verger
et al., 2023) with optimal bandwidths. After introducing the simulated distributions and the
bandwidths we will work with (parts 4.4.1 and 4.4.2), we empirically observe the convergence of
MADD in the optimal bandwidth interval (part 4.4.3), and how our automated search algorithm
is able to determine the stable MADD value that is the best estimate of the distance between the
two distributions (part 4.4.4).

4.4.1. Simulated data

We simulate (p̂i)i∈G0 and (p̂i)i∈G1 as if they have been obtained from the output of a classifier.
Let (p̂i)i∈G0 and (p̂i)i∈G1 be samples of some respective PDFs fG0 and fG1 . We choose two
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arbitrary PDFs fG0 and fG1 so as to simulate a scenario where the model tends to give higher
probabilities to the group G1 over the group G0. As displayed in Figure 8a, we define them
as part of the gamma distribution Γ(4, 1) and the normal distribution N (0.55, 1) respectively,
properly scaled along the x-axis thanks to coefficients 10 and 11, and normalized within the
interval [0, 1]:

fG0(x) :=
1

C0

fΓ(4,1)(11x)1[0,1](x) C0 :=

∫ 1

0

fΓ(4,1)(11x)dx

fG1(x) :=
1

C1

fN (0.55,1)(10x)1[0,1](x) C1 :=

∫ 1

0

fN (0.55,1)(10x)dx

(9)

Based on the above PDFs, we generate 10, 000 samples of (p̂i)i∈G0
and 10, 000 samples of

(p̂i)i∈G1
, whose vectors DG0 and DG1 can be illustrated in Figure 8b.

4.4.2. Bandwidth search space

We compute 1, 000 values of h into (0, 1], on the one hand, to examine a large number of them
inside the search space to find the optimal ones, and on the other hand, to show that the optimal
bandwidth interval can indeed be found before hsup. As highlighted at the end of part 4.3.1, they
are not regularly spaced since different h values could lead to the same number of bins m, and
thus create some redundancy in the results. Therefore, we generate 1, 000 values of m linearly
spaced by 1, and for each of them, we calculate the corresponding h. We remind that, as a
consequence, we have many more h concentrated towards the small values (when m is higher),
which we can see in Figures 9 and 10.

(a) (b)

Figure 8: Simulated data. (a) PDFs for the group G0 (i.e. fG0) and for the group G1 (i.e. fG1).
(b) Resulting histograms DG0

and DG1
.

4.4.3. Convergence of MADD and optimal bandwidth interval

Now that we have defined the distributions and the bandwidths of study, our goal is twofold: to
observe an effective convergence of MADD (to a specific value), and to verify that the optimal
bandwidth interval is indeed situated before hsup, given Theorem 2.
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To do so, we analyze the difference between MADD, i.e. ||f̂G0
h − f̂G1

h ||L1[0,1] (as defined in
Theorem 1), and the true distance ||fG0−fG1||L1[0,1] that MADD is meant to estimate. While we
cannot access the latter in practice, here, with simulated data, we can check if MADD indeed
converges to the true distance, i.e., if we are able to observe a stable zone of errors between both
as well as if this zone is located before hsup.

Let A =
∣∣MADD (DG0 , DG1)− ||fG0 − fG1||L1[0,1]

∣∣ be the error between MADD and the
true distance. We want to observe how A varies across all h values to see when A is the smallest
or even null, meaning that MADD best estimates the true distance.

In Figure 9a, we can first see that when h becomes greater than about 0.1,A increases rapidly.
It means that a too large h leads to inaccurate MADD results. Therefore, it is not advisable to
have less than m = 10 bins.

If we zoom on the smallest h values in Figure 9b, we can observe an interval of bandwidths
where A is null, meaning that MADD provides optimal results. This interval, between the green
vertical dotted lines, expectedly falls before hsup which is equal to hsup =

(
100+100
10000

) 2
3 ≈ 0.074

and illustrated by a red vertical dotted line.

(a) (b) Zoom

Figure 9: Evolution of A according to h values. The optimal bandwidth interval where MADD
converges to the true distance is enclosed between the green vertical dotted lines. hsup is repre-
sented by a red vertical dotted line. The green horizontal dotted line indicates the convergence
value on the y-axis.

4.4.4. Automated search of optimal bandwidths with our proposed algorithm

Our goal now is to check if our automated search algorithm is able to determine where is the
optimal bandwidth interval as well as the stable MADD value (the best estimate of the distance
between the two distributions). To do so, we test Algorithm 1 to identify the above-mentioned
interval in part 4.4.3, without knowing the exact distance between the distributions via A. We
look directly at the MADD results instead of A as we would do in practice.

Thus, we plot MADD according to the h values in Figure 10. Then, we use our Algorithm 1
to find the optimal bandwidth interval. We can observe in this figure that MADD converges to a
specific value as expected. Our automated search algorithm successfully identified the optimal
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(a) (b) Zoom

Figure 10: MADD results on simulated data according to the h values. The green horizontal
dotted line indicates the convergence value of MADD.

interval, enclosed between the green vertical dotted lines. In this interval, the average MADD
value is 1.19, illustrated by a green horizontal dotted line. This value is consequently the most
accurate MADD measurement for this simulated scenario, with the distributions displayed in
Figure 8.

More precisely, this optimal interval, found by the algorithm, is h ∈ [0.007, 0.040] (included
before hsup ≈ 0.074). Therefore, a practical bandwidth h chosen from this interval will provide
a stable and accurate MADD value, closest or even equal to the true distance

∥∥fG0 − fG1
∥∥
L1[0,1]

.
To transition to real data, we will also study the influence of the number of samples or students
in a dataset in the next Section 4.5.

4.5. INFLUENCE OF THE NUMBER OF SAMPLES

Additionally to the bandwidth, we will briefly study the influence of the number of samples on
the MADD computation. Not only are the bandwidths important to an accurate measurement,
but the number of samples plays a role, too. Indeed, as we saw in Theorem 2, hsup depends on
n0 and n1.

Our objective here is to compute the error A =
∣∣MADD (DG0 , DG1)− ||fG0 − fG1|L1[0,1]

∣∣
according to various sample sizes. We remind that n is the total number of samples, where
n = n0 + n1 (Section 3.1). We experiment with various n values taken from the following set:
{⌊exp(5)⌋, ⌊exp(5.5)⌋, · · · , ⌊exp(14.5)⌋}, as shown on the x-axis in Figure 11. We repeat each
calculation of A for each n 50 times to account for the variability resulting from the sampling of
the probabilities that represent the two distributions. In the subsequent paragraphs, we will ana-
lyze the case where n0 and n1 are balanced as well as the general case where they are unbalanced
thanks to theoretical considerations, using optimal h values for both scenarios.

Firstly, we set a 1:1 ratio for n0 and n1 so that n0 = ⌊n/2⌋. In Figure 11, the blue solid line
represents the error in this scenario. In Figure 11a, we observe a linear decrease in logarithmic
error as the logarithmic sample size n increases. This implies that the accuracy of MADD
improves with an increase in n. We plot the actual errors A without the logarithmic scale in
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(a) log(A) vs. log(n) (b) A vs. log(n)

Figure 11: Evolution of A according to different sample sizes n.

Figure 11b to provide a more intuitive understanding of this trend, the blue solid line converging
to a null error. We notice that for a small dataset, when n = ⌊exp (6)⌋ = 403, the error is only
0.08 (4% error). For a small or medium-sized dataset, when n = ⌊exp (8)⌋ = 2981, the error is
0.028 (1% error). For larger datasets, the error is nearly zero, indicating that MADD is the most
accurate estimate of (un)fairness.

Secondly, for other ratios of n0 and n1, i.e., for the most general case, we will take the

logarithm of
(√

n0+
√
n1√

n0n1

) 2
3

to determine its relationship with n by linearization (transforming
power into multiplicative factor). To do so, we introduce two ratios 0 < α = n0/n < 1 and
β = 1 − α, and we obtain the following, by substituting n0 and n1 by α and β (see proof in
Appendix 10.3):

log

((√
n0 +

√
n1√

n0n1

) 2
3

)
= −1

3

(
αβ

1 + 2
√
αβ

)
− 1

3
log(n) (10)

According to this equation, we see that log
((√

n0+
√
n1√

n0n1

) 2
3

)
has a linear relationship with log(n)

(with a coefficient of−1/3 and an intercept of−1
3

(
αβ

1+2
√
αβ

)
). This means that, for any different

ratios of n0 and n1, we will also observe a linear decrease of the logarithmic errors when n
increases, as the 1:1 ratio scenario. Indeed, we observe the above linear relationship in both
Figures 11a and 11b thanks to orange dotted lines, following the trend of the 1:1 scenario.

Moreover, with the two scenarios displayed in the same figure, we can see that when n0

and n1 are balanced (blue solid line), MADD converges (to the true distance ∥fG0 − fG1∥L1)
with even lower errors than the general case in orange dotted lines (the blue line has a better
coefficient of −0.51 < −1/3).

As a summary, MADD is friendly to large but also small datasets, and for different ratios of
n0 and n1, all the more when the number of samples n increases.
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5. REPLICATION OF (VERGER ET AL., 2023) EXPERIMENTS

We now aim to replicate the experiments reported in our previous work, but using the bandwidth
search algorithm we proposed above (Algorithm 1) to find the optimal h values for computing
MADD. To do so, we leverage the same dataset that we used in (Verger et al., 2023), namely the
Open University Learning Analytics Dataset (OULAD) (Kuzilek et al., 2017). In Section 5.1,
we will first provide a high-level description of the experimental setup. Further information
about the choices of the data and models can be found in (Verger et al., 2023). Then, in Sections
5.2 and 5.3, we will present the updated results.

5.1. OULAD DATASET AND MODELS

The dataset we used in our study is sourced from The Open University, a distance-learning insti-
tution based in the United Kingdom, and concerns student activity and demographics between
2013 and 2014. Notably, the dataset includes information on at least three sensitive features,
namely gender, poverty, and disability (see Table 1). Our research aims to evaluate the fair-
ness of classifiers that predict whether a student will pass or fail a course, using this data. As
in (Verger et al., 2023), among the seven courses provided in the OULAD dataset, we chose
two specific courses, labeled as “BBB” and “FFF”, with a total of 7, 903 and 7, 758 enrolled
students, respectively.

In particular, the passing rate in these two courses was to some extent correlated with the
gender feature. Thus, they were good candidates for examining the impact of gender bias on
the predictive models’ fairness. Moreover, the “BBB” course corresponds to a Social Sciences
course and the “FFF” course to a STEM (Science, Technology, Engineering, and Mathematics)
course, making them relevant candidates for examining the impact of gender bias on the predic-
tive models’ fairness on two different student populations. In addition, both courses presented
very high imbalances in terms of disability (respectively 91.2-8.8% and 91.7-8.3% for the not
disable-disable groups in courses “BBB” and “FFF”) and gender (respectively 88.4-11.6% and
17.8-82.2% for female-male groups in courses “BBB” and “FFF”), and still some imbalance
for poverty (respectively 42.3-57.7% and 46.9-53.1% for less-more deprived groups in courses
“BBB” and “FFF”). Based on these preliminary unfairness expectations derived from the skews
in the data, it is interesting to analyze whether and how the models will suffer from these biases
in both courses. Indeed, by nature, imbalanced data means there is less representation of the
minority groups, making it harder to train a ML model from them than from the majority group.
It is therefore a plausible initial hypothesis that the models trained here may lead to a higher
error rate for the minority groups.

The features we use to predict whether a student will pass or fail a course are displayed in
Table 1. Regarding the three sensitive features considered in this study, it is questionable to
use demographic information during training (Baker et al., 2023), but since we precisely want
to understand how these sensitive features play a role in the models’ outcomes, we kept them.
The sum click feature was the only one that was not immediately available as is, and we
computed it from inner joins and aggregation on the original data. Then, we learn out-of-the-
box classifiers on this data, using a 70-30% split ratio between the training and the test sets. We
use the exact same classifiers as in (Verger et al., 2023) for the sake of comparison, namely a
logistic regression classifier (LR), a k-nearest neighbors classifier (KN), a decision tree classifier
(DT), and a naive Bayes classifier (NB).

The accuracy of the trained classifiers was above a majority-class baseline (70%), and up

21
385 Journal of Educational Data Mining, Volume 16, No 1, 2024



Table 1: Features used from the OULAD (Kuzilek et al., 2017).

Name Feature type Description
gender∗ binary students’ gender
age ordinal the interval of students’ age
disability∗ binary indicates whether students have declared a dis-

ability
highest education ordinal the highest student education level on entry to

the course
poverty∗4 ordinal specifies the Index of Multiple Deprivation

(Kuzilek et al., 2017) band of the place where
students lived during the course

num of prev attempts numerical the number of times students have attempted
the course

studied credits numerical the total number of credits for the course stu-
dents are currently studying

sum click numerical the total number of times students interacted
with the material of the course

∗: sensitive feature considered in this study

to 93% for DT, except for the NB (62%) which instead presented interesting behaviors in the
previous analyses and was deemed worth keeping it. It is important to note that our experi-
ments focused on analyzing fairness in widely used models rather than solely achieving optimal
predictive performance, which is typically the goal of most ML studies. Thus, in a practical
application, the initial aim would be to find models with acceptable predictive performance and
subsequently use the MADD method to select the fairest options from that set.

To compute MADD, we use the bandwidth search algorithm we proposed (Algorithm 1) to
find the optimal h values for each combination of models and demographics in both “BBB” and
“FFF” courses, i.e., for every measurement. This approach not only demonstrates the practical
application of our search algorithm in real-world educational data but also enables us to com-
pare MADD results when using an optimal bandwidth vs. a predefined one, as previously done
in (Verger et al., 2023). We remind that, in our previous work, the bandwidth parameter was
arbitrarily set to 0.01, corresponding to a variation of the probability of success or failure of 1%.

5.2. RESULTS FOR COURSE “BBB”

We present both the MADD results previously obtained from (Verger et al., 2023), in Table 2,
and the updated MADD results computed with optimal bandwidths, in Table 3. We highlight in
bold, in the latter table, the MADD results that do not change after the optimal computation, and
we add for each measurement its corresponding optimal bandwidth interval.

Comparing Tables 2 and 3, we see that 7 of the 12 MADD values are identical, in particular
for the KN and DT models. Indeed, these models, by definition of their inner workings, already
output only a few discrete values of possible predicted probabilities (see Figures 4 and 5 from
(Verger et al., 2023) as examples). In the case of the KN model, it does not inherently provide

4Named imd band in the original data.
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Table 2: Previous MADD results for the course “BBB” from (Verger et al., 2023).

Model
Sensitive features

gender poverty disability Average

MADD

LR 1.72 1.85 1.57 1.71
KN 1.13 1.12 0.93 1.06
DT 0.69 0.85 0.65 0.73
NB 0.52 0.9 1.37 0.93

Average 1.02 1.18 1.13

Table 3: Updated MADD results for the course “BBB”.

Model
Sensitive features

gender poverty disability Average

MADD

LR 1.71 [0.013, 0.067] 1.85 [0.015, 0.067] 1.55 [0.01, 0.067] 1.70
KN 1.13 [0.002, 0.053] 1.12 [0.002, 0.053] 0.93 [0.002, 0.053] 1.06
DT 0.69 [0.002, 0.143] 0.85 [0.002, 0.25] 0.65 [0.002, 0.077] 0.73
NB 0.47 [0.012, 0.067] 0.87 [0.002, 0.053] 1.39 [0.002, 0.053] 0.91

Average 1.0 1.17 1.13

a continuous probability distribution, as the predicted probability for a class is based only on
the proportion of neighbors belonging to that class within the local neighborhood. In the case
of the DT model, its predictions are inherently discrete and simply cannot provide a continuous
probability distribution. Therefore, their MADD values are extremely stable for any number of
bins m and thus for any h values, which is shown in Figure 12. As for the 5 other MADD values
that are not identical to the previous results, they are on average 1.3% different (0.026 error on
average), which is very low. This is due to the fact that even when it was not inside the optimal
bandwidth interval, the h value empirically chosen in that paper was always very close to it.

These results show not only that the conclusions from (Verger et al., 2023) still hold, but
also that we can now safely exclude that a poor choice of h might have unfairly and artificially
increased the MADD value for one of the tested classifiers. In particular, while we expected that
gender and disability would generate more algorithmic unfairness as discussed above (Section
5.1), MADD is actually the worst for poverty on average (1.17, see Table 3). Furthermore,
trained on the same data, the models exhibit different levels of algorithmic unfairness (e.g., NB
is the most fair for gender whereas DT and KN are the most fair for disability). This does
confirm the need to investigate and compare systematically the fairness of different models on a
given dataset.

As for the search algorithm, Figure 12 also shows that for classifiers like DT and KN that
output a few discrete probabilities (e.g., 0, 0.5, and 1 for DT), it is rather trivial to find an optimal
h. Thus, for completeness, we also showcase in Figure 13 the output of Algorithm 1 on the LR
classifier that provides more continuous probabilities. Figure 13 shows similar findings than
with the simulated data above, confirming that the algorithm can effectively identify the optimal
bandwidth intervals with real-world data, too.
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(a) KN (b) DT

Figure 12: Evolution of MADD according to the h values for the (a) KN and (b) DT models for
S = poverty. The green vertical dotted lines delimit the identified optimal bandwidth interval.
The green horizontal dotted line indicates the convergence value of MADD.

(a) S = disability (b) S = gender (c) S = poverty

Figure 13: Evolution of MADD according to the h values for disability, gender, and poverty
with the LR model (with the y-axis ∈ [1, 2] instead of [0, 2] for better visualization). The green
vertical dotted lines delimit the identified optimal h intervals (included before hsup represented
by a red dotted line). The green horizontal dotted line indicates the convergence value of MADD.

5.3. RESULTS FOR COURSE “FFF”

For this course, we present the previous results in Table 4 and the current results in Table 5.
Again, we highlight in bold, in the latter table, the results that do not change after choosing
an h value within the optimal bandwidth intervals. We see that 6 of the 12 MADD values are
identical, again for the KN and DT models for the same reason as previously. For the other
6 values, they are on average 3.5% different (0.07 error on average), which is still quite low
and therefore does not jeopardize the conclusions drawn from experiments described in (Verger
et al., 2023).

Our algorithm thus obtains successful results also for real-world educational data, where the
number of samples in the dataset is limited (1, 590 and 1, 422 in the respective test sets of the
courses “BBB” and “FFF”) and the types of distributions scattered compared to simulated data.
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Now, in the next Section 6, we will demonstrate how MADD can be used not only to measure
unfairness, but also to mitigate it through post-processing of the model output while preserving
its accuracy as much as possible.

Table 4: Previous MADD results for the course “FFF” from (Verger et al., 2023).

Model
Sensitive features

gender poverty disability Average

MADD

LR 1.18 1.06 1.12 1.12
KN 1.06 0.93 0.78 0.92
DT 0.76 0.65 0.55 0.65
NB 0.56 0.47 0.90 0.64

Average 0.89 0.78 0.84

Table 5: Updated MADD results for the course “FFF”.

Model
Sensitive features

gender poverty disability Average

MADD

LR 1.14 [0.015, 0.071] 0.98 [0.015, 0.071] 0.92 [0.015, 0.077] 1.01
KN 1.06 [0.002, 0.053] 0.93 [0.002, 0.053] 0.78 [0.002, 0.111] 0.92
DT 0.76 [0.003, 0.056] 0.65 [0.002, 0.053] 0.55 [0.002, 0.053] 0.65
NB 0.57 [0.012, 0.062] 0.46 [0.01, 0.062] 0.82 [0.012, 0.062] 0.61

Average 0.88 0.76 0.77

6. IMPROVING FAIRNESS WITH MADD

In this Section 6, we propose to use the MADD metric to mitigate algorithmic unfairness. To do
so, we develop a post-processing method based on MADD, which modifies the initial predicted
probabilities of a model to fairer probabilities and thus predictions.

6.1. THE MADD POST-PROCESSING APPROACH

6.1.1. Purpose

As introduced in Section 3, the closer MADD is to 0, the fairer the outcome of the model is (w.r.t
to attribute S), since the distributions of predicted probabilities are no longer distinguishable
regarding the group membership (G0 or G1). Thus, to illustrate how the post-processing with
MADD would work, we consider a toy example with a model that tends to give higher predicted
probabilities (i.e., probabilities of success predictions) to a group than to the other, as shown in
Figure 14a. Therefore, the goal of the MADD post-processing is to reduce the gaps between the
distributions of both groups, to obtain a result similar to what we can observe in Figure 14b.

6.1.2. Approach

Following up on the previous part, a question can be raised: where should the two distributions
coincide? Indeed, should the distribution of G1 move to the one of G0, or is there a better
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(a) Before post-processing (b) After post-processing

Figure 14: MADD post-processing principle. Example with two distributions of predicted prob-
abilities, before and after the MADD post-processing.

location between the two? To solve this issue, let us first note as D the distribution related to
all students, composed of students from both groups G0 and G1 (see the black histogram in
Figure 15a). In machine learning, the goal for a model is to approximate the “true” relationship
(or prediction function X → Y) between the attributes X in input and the target variable Y in
output. As a consequence, we assume that a model that shows satisfying predictive performance
outputs a discrete distribution D which should be really close to D, its “true” distribution (see
the black line in Figure 15a). Therefore, assuming having such a model, our goal is to make
the distributions DG0 and DG1 coincide at the place of D, which should best approximate D.
Indeed, this allows both to reduce the gaps between the two groups, hence improving fairness
and preventing a loss in predictive performance. Therefore, the MADD post-processing is based
on the following theoretical considerations.

As seen earlier in part 4.2.1, since D, DG0 and DG1 correspond to histograms, they can be
mathematically considered as estimators of the PDFs they describe (see Figure 6) (Devroye and
Gyorfi, 1985) and noted as f , fG0 and fG1 respectively. We thus want fG0 and fG1 to move
towards the target f , as the intuition was given in the previous paragraph. To define how these
functions should get closer, we define the new theoretical PDFs f̃ , f̃G0 and f̃G1 that will be
estimated thanks to the post-processing. Thus, f, fG0 , fG1 , f̃G0 , and f̃G1 should be colinear
(see Figure 15b for an illustration and see proof in Appendix 10.4). As a consequence, the ratio
between f̃G0 and f and between f̃G1 and f remains constant (as shown in Figure 15b), which
prevents improving fairness more for one group than for the other. By introducing a λ parameter,
that we call fairness coefficient of distribution convergence, such that:

f̃G0 = (1− λ)fG0 + λf (11)

f̃G1 = (1− λ)fG1 + λf (12)

λ can be seen as a distance ratio (see Figure 15b) so that λ ∈ [0, 1], with λ = 0 when the PDFs
of G0 and G1 are at their initial state and λ = 1 when they both coincide. λ between 0 and 1
means that the distributions are getting closer (see discrete examples of distribution convergence
in Figure 17, later). The challenge is to find the highest λ possible that best improves the fairness
without affecting the accuracy of the results. However, in practice, as we do not know the true
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f , fG0 and fG1 , we cannot directly compute f̃ , f̃G0 and f̃G1 as written in Equations 11 and 12
with different values of λ. That is why we introduce fip in the next part.

(a) Principle

fG0

fG1

ff̃G0

f̃G1

(b) Influence of λ

Figure 15: MADD post-processing approach. (a) Illustration of the different distributions.
(b) Linear relationship between the PDFs.

6.1.3. Implementation

We will generate a mapping function5, fairness improved prediction or in short fip,
between the discrete estimates of f , fG0 , fG1 (i.e. D, DG0 , DG1) and the discrete estimates of
f̃ , f̃G0 , f̃G1 that we will note as D, DG0 , DG1 . The purpose of fip is more precisely to take as
inputs the p̂i available at the output of a trained model and a value of λ, and to output the new
fairer predicted probabilities that we note as p(λ)i (fip: (p̂i, λ) 7→ p

(λ)
i ). Consequently, p(λ)i will

allow to reconstruct the new DG0 and DG1 , as shown in Figure 14b.
fip will be generated as follows. Let us focus on the group G0 first. As we want the

proportions of students having the same predicted probabilities to be kept even if the predicted
probabilities values are changing with the post-processing, we will seek to make the cumulative
density function (CDF) of the initial p̂i of group G0 being equal to the CDF of the new p

(λ)
i of

group G0. Thus, it comes that (see proof in Appendix 10.5):

CDFG0(p̂i) = CDF
(λ)

G0

(
p
(λ)
i

)
(13)

=⇒ p
(λ)
i = CDF

−1(λ)

G0
(CDFG0(p̂i)) (14)

where CDF
(λ)

G0
= (1 − λ) CDFG0 +λCDF, and CDF

−1(λ)

G0
is the general inverse function of

CDF
(λ)

G0
. We will have the same equations for the group G1. In the end, what we do is to

compute the different CDFs and CDFs thanks to interp1d and cumtrapz Python functions
from scipy library that estimate their “true” equivalents based on the discrete values of p̂i we
have access to, which gives us the core of our fip mapping function. Now that we have the
ability to compute the p(λ)i , let us define an objective function based on both the accuracy and
the fairness of the new fairer predicted probability results which depend on λ, to evaluate the
outcome of our MADD post-processing method.

5Here, not a mathematical function, but a programming function. See details at https://github.com/
melinaverger/MADD.
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6.1.4. Objective function

Similarly to existing balancing methods between accuracy and penalty values, we define the
general objective function as follows:

L = (1− θ)AccuracyLoss(λ) + θ FairnessLoss(λ) (15)

where θ ∈ [0, 1] represents the importance of the accuracy and the fairness in the objective func-
tion. Indeed, a larger θ puts more emphasis on fairness, while a smaller θ favors accuracy. The
value of θ could be set by an expert depending on what one wants to put more emphasis on, or
experimentally determined like what we do with λ in part 6.3.1. The AccuracyLoss(λ), compat-
ible with any common loss functions ℓ (e.g., binary cross-entropy loss), and the FairnessLoss(λ)
could be, as an example, written as:

AccuracyLoss(λ) =
1

n

n∑

i=1

ℓ
(
p
(λ)
i , yi

)
(16)

FairnessLoss(λ) = MADD
(
DG0 , DG1

)
(17)

However, since the two losses may vary across different scales of values, one should pay
particular attention to the choice of ℓ and the way of rescaling both losses to balance them
effectively. We will show an example in part 6.2.2.

6.2. EXPERIMENTS SET UP

6.2.1. Workflow

Our MADD post-processing method, illustrated in Figure 16, can be applied for a fixed θ as
follows. Let us have a training, a validation and a test sets. We first train a classifier. Then, we
use this trained model on the validation set to output the predictions ŷi,validation and predicted
probabilities p̂i,validation. Next, we apply our fip mapping function with various values of λ
to obtain different corresponding p(λ)i,validation. We will thus deduce the new y

(λ)
i,validation thanks

to the classification threshold t. Now, with the new p
(λ)
i,validation, y(λ)i,validation and the true labels

yi,validation, we can plot the results of our objective function depending on the λs to find the
optimal λ∗ that will best improve the results of the classifier. Finally, we evaluate the accuracy
and the fairness of the results with the chosen λ∗ on the test set (i.e., with p(λ

∗)
i,test), y

(λ∗)
i,test and the

true labels yi,test). For the sake of simplification, in the experiments we omit training, validation
and test subscripts from the notations, but they will be easily deduced from the context.

6.2.2. Rescaled objective function

For our experiments, we use the objective function that we namedLexp composed of the rescaled
terms we define in Equations 186 and 19. Notably, we multiply MADD by 1/2 for the term
FairnessLossexp to be in the same scale of the one of AccuracyLossexp. Therefore, both losses
have a range of [0, 100%]. The AccuracyLossexp(λ) is the percentage of incorrect predictions,

6yi corresponds to the new predictions (1 or 0) obtained thanks to the new p
(λ)
i thresholded with the classification

threshold parameter t we primarily set at 0.5 (i.e. yi = 0 when p
(λ)
i < 0.5, yi = 1 otherwise).
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Figure 16: MADD post-processing workflow.

and the FairnessLossexp(λ) now represents a percentage of dissimilarity between the two distri-
butions. Thus, the resulting objective function Lexp is a weighted average of these two losses
based on their importance. However, as a case study, we choose to give, in all our experiments,
the same importance both to the accuracy and the fairness in the post-processing, so we fix
θ = 0.5. Additionally, it is important to note that in the case of this AccuracyLossexp(λ), it
exactly corresponds to 1 minus the standard accuracy score, which we will exploit in our results
in Section 6.3. Our goal will be to experimentally find the optimal parameter λ∗ that minimizes
this objective function Lexp, with θ = 0.5.

AccuracyLossexp(λ) =
1

n

n∑

i=1

1yi ̸=yi (18)

FairnessLossexp(λ) =
1

2
MADD

(
DG0 , DG1

)
(19)

6.2.3. Simulated data

To demonstrate the validity of our approach, we first experiment with our MADD post-processing
method on simulated data of p̂i for which we know the real distributions. We thus use the same
simulated data that we presented in Section 4.4, and we refer the reader to this part for the details
of how it has been generated.

Additionally to Section 4.4, we need here to simulate the true label yi for each student i.
This will enable us to simulate how a classifier would perform before the post-processing, to
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compare its results with those obtained after the post-processing. The latter are thus deduced
from the classification threshold parameter t that we set to 0.5 in this paper, and we refer the
reader to the footnote 6. Thus, for the simulated yi, we arbitrarily choose to pass the simulated
p̂i value as a parameter of a Bernoulli law: Bernoulli(p̂i) ∈ {0, 1}.

6.2.4. Real-world educational data

As a second testbed for our approach, we use it with real-world educational data. Again, we
use the data we already presented in Section 5. Since S = poverty obtained the highest MADD
value in the course “BBB” (see Table 3), it is thus a relevant feature with respect to which it is
interesting to improve fairness. It is worth noticing that as we split the data in a different way to
have an additional validation set, it leads to slightly different distributions in the current test set
from what was previously obtained.

6.3. RESULTS

6.3.1. Simulated data

We generate 1, 000 values of λ with a constant step in its interval [0, 1], and then we compute
all the corresponding pi(λ), in order to obtain the relationships between the next three Lexp,
AccuracyLossexp(λ), FairnessLossexp(λ) and λ. In Figure 17, we present how the new predicted
probabilities progress with some increasing values of λ. In Figure 18c, we display for all values
of λ the evolution of Lexp, AccuracyLossexp(λ) and FairnessLossexp(λ). We remind that we
set θ = 0.5 as we decided to give equal importance to both the accuracy and the fairness in the
post-processing. As we can see in Figure 18c, on the one hand, when λ increases, the accuracy
loss increases too (while we want to minimize it), but only slightly (0.361 to 0.390, i.e., about
+8%). On the other hand, the fairness loss, which corresponds to half of MADD, significantly
drops as what we look for (0.598 to its lowest at 0.063, i.e. about -90%). In addition, the
objective function Lexp reaches its minimum value 0.226 at λ∗ = 0.970, almost 1. Therefore,
if we accept to lose about 8% of accuracy (we can make this interpretation because of how we

Figure 17: Effect of the MADD post-processing on the predicted probabilities with increasing
values of λ.
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(a) DG0 , DG1 (i.e. λ = 0) (b) DG0 , DG1 for λ∗

(c) First simulation (d) Additional simulation

Figure 18: Simulated data results. (a) Histograms of DG0
and DG1

from simulated p̂i∈G0
and

p̂i∈G1
. (b) Histograms of the new DG0

and DG1
. (c, d) Objective function (total loss), accuracy

loss and fairness loss.

defined our AccuracyLossexp(λ)), then by choosing λ∗ = 0.970, we would increase the fairness
of the results by 90% w.r.t the MADD criterion. After that, we only have to pass λ∗ = 0.970 and
the p̂i as inputs of fip to obtain our new fairer predicted probabilities as shown in Figure 18b.
We have repeated the simulation by generating some other random 10, 000 samples for each
group, and the results are very similar (see Figure 18d), which strengthens the estimation of λ∗

being close to 1. To conclude, this experiment, based on a simulated and ideal case study with
sufficient data, demonstrates that the MADD post-processing manages to preserve a reasonably
similar level of accuracy while significantly improving the fairness of the results. Let us now
apply it to real-world data in the next part.

6.3.2. Real-world educational data

Similarly to what was done in the previous section, we display in Figure 19c the evolution
of Lexp, AccuracyLossexp(λ) and FairnessLossexp(λ), for the values of λ we generated in
part 6.3.1. When λ increases, the accuracy loss remains almost constant (0.332 to 0.336 i.e.
about +1%), and the fairness loss significantly drops again (0.431 to its lowest at 0.158, i.e.
about −63%). However, Figure 19c shows a lot more variability than in the previous case study,
which comes from the much lower number of samples in the validation set (about 700). This loss
in precision makes it more challenging to find an optimal λ∗. Indeed, we see that the minimum
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(a) DG0 , DG1 (i.e. λ = 0) (b) DG0 , DG1 for λ∗

(c) Validation set

Figure 19: Real-world educational data results.

of the objective function (0.241) is not necessarily reached at the optimal λ∗ (0.798) because the
FairnessLoss(λ) seems to keep decreasing but the computation is not precise enough. Nonethe-
less, we select this λ∗ = 0.798 value to visually evaluate how close or far the results are from
satisfying fairness. We can still observe satisfying results from Figures 19a to 19b. To conclude,
similarly to ML in general, the MADD post-processing is sensitive to the number of data, but
it still shows very successful fairness improvement without losing too much accuracy of the
results.

6.4. INFLUENCE OF THE NUMBER OF SAMPLES

Moreover, thanks to our definition of the post-processing method, the fairness of the improved
estimated probabilities is predictable. Indeed, the MADD of the improved estimated probabili-
ties, MADD

(
DG0 , DG1

)
, is a function of λ that converges when the sample size n increases to

(1− λ) ·MADD (DG0 , DG1). This means that, for any selected λ, after post-processing, its new
MADD value approximates (1−λ) times the old MADD value, and the larger the sample size n,
the more accurate this estimate is. This property is shown in Figure 20: the MADD

(
DG0 , DG1

)

function converges to the function (1− λ)MADD (DG0 , DG1) as the sample size increases.
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Figure 20: Convergence of MADD
(
DG0 , DG1

)
(in blue) to (1 − λ) · MADD (DG0 , DG1

) (in
orange). The λs are on the x-axis, and the MADD values are on the y-axis.

7. DISCUSSION

We now discuss the main implications of our work regarding (1) the MADD metric itself, (2) the
fairness evaluation with MADD, and (3) the MADD post-processing.

Firstly, the strengths of MADD consist in taking into account the entire predicted probability
distributions compared to existing metrics, and handling any of their forms. It is also an easily
interpretable fairness metric, enabling visual analyses through the plot of the two related distri-
butions. On the other hand, a major limitation of MADD in its original version was its sensitivity
to its bandwidth parameter (h) and to the number of samples (n) contained in a dataset. In this
paper, we provided theoretical guarantees and an automated search algorithm to alleviate this
issue, by finding optimal bandwidths for which MADD best estimates algorithmic unfairness.
This is an important contribution as it ensures the robustness of MADD. Regarding the choice
of standard deviation in the automated search algorithm, any other variation metric would have
given the same result, since we are looking for the interval where MADD is stable, relatively
over the search space, and since any optimal h, and not a single one, is valid in this interval.

In future work, we aim to apply MADD to other educational datasets and predictive tasks, so
as to further assess fairness in other contexts. In line with this, we provided a Python package,
maddlib3, so that other researchers and developers can replicate, assess, and mitigate the fair-
ness of their results with this metric. Also, MADD currently works for binary groups and binary
prediction classes, which, as said in the introduction, is suitable in many cases as it corresponds
in practice to the main prediction tasks in education. While focusing on binary information has
advantages, including the fact that it makes it possible to plot and interpret MADD easily, other
relevant applications of predictive models in education are not binary, which could be addressed
in future work.

Secondly, regarding fairness evaluation with MADD, we saw that this metric best estimates
the distance between the distributions of two groups when h is carefully chosen into its optimal
interval. These optimal h values mostly depend on the numbers of students belonging to both
groups, n0 and n1, as explained in Section 4.2. This has two important consequences. First, the
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optimal interval should be computed for each feature with respect to which we want to evaluate
algorithmic unfairness and more specifically for each measurement (model-feature combina-
tion). Second, two MADD values should be compared only if they have been computed with an
optimal h, otherwise there is no guarantee that both of these values had converged. For instance,
if we assume that a given sensitive feature (e.g., gender) leads to a MADD score of 1.5 with a
modelM1 trained on a dataset d1, and a score of 0.5 with a modelM2 trained on a dataset d2,
then we can say that the first setting is more discriminant with regards to this sensitive feature
than the second one, provided that MADD was calculated with an optimal h in both cases.

Although it is essential to choose the right bandwidth h, it is worth emphasizing that per-
forming a fairness evaluation with MADD does not prevent from evaluating the predictive per-
formance of the models as well. Indeed, as mentioned in (Verger et al., 2023), a model that
shows poor predictive performance is not necessarily behaving unfairly regarding the studied
groups, but it would then be unable to make relevant predictions for the success or failure of
students for instance, which makes this model not usable in practice. We refer the reader to
Section 5.2 of (Verger et al., 2023) for a comparison with a predictive-performance oriented
fairness metric, ABROCA (Gardner et al., 2019), and the main related takeaways in part 5.2.3.
Furthermore, an extension of MADD would be to generalize its definition (Equation 3) to take
into account the influence of several features on the fairness evaluation, which is scarcely stud-
ied in the literature. Several possibilities exist and will be further studied in future work.

Thirdly, regarding the mitigation with MADD through post-processing, its performance de-
pends on the number of samples n0 and n1, too. Indeed, the more precise both distributions are,
the more likely it is that the new fairer distributions will reach the target distribution as precisely
as possible. Granted that there is sufficient data, we found that our method can successfully im-
prove the fairness of the results regarding two groups, without losing too much accuracy. While
there is a need to replicate this finding, it is noteworthy that we could improve the MADD values
of some results by up to 63% with real-world data.

Overall, even if, with MADD or any other metric, we seek to best estimate algorithmic un-
fairness and mitigate it, these fairness metrics cannot be the only way to assess the fairness of a
system meant to improve the learning experience or to assist decision making. Indeed, fairness
should be considered as a global notion including the system, with all its components (e.g., data,
models, interfaces), but also its multiple stakeholders (e.g., institutions, students, instructors,
developers, researchers – see Romero and Ventura (2020), Holstein and Doroudi (2021) for a
complete list of them in an educational context – but also policymakers, lawyers, sociologists,
philosophers, etc.). Calvi and Kotzinos (2023) thus paves the way towards a global framework
to reach a higher level of evaluation through an algorithmic impact assessment (AIA) of the
systems. AIAs are meant to be iterative processes used to investigate the possible short and
long-term societal impacts of AI systems before their use, but with ongoing monitoring and
periodic revisiting even after their implementation. Nonetheless, fairness metrics are so far the
most advanced techniques available to evaluate algorithmic fairness (Calvi and Kotzinos, 2023).
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8. CONCLUSION

In this paper, we focused on Model Absolute Density Distance (MADD), a fairness metric we
recently proposed (Verger et al., 2023) to measure predictive models’ discriminatory behaviors
between groups. This metric is based on comparing the probability distributions outputted by
the models for each group, to uncover and measure the difference in these distributions that
could reveal unfair predictions.

Specifically, in this paper, we contributed to the work of Verger et al. (2023) in three ways.
First, we provide a more rigorous definition of the MADD metric, based on the mathematical
properties of histogram estimators. This allowed us to provide an algorithm for automatically
optimizing the bandwidth, i.e., the MADD hyperparameter, which in our previous work was
arbitrarily set to a predefined default value (Verger et al., 2023). Second, we provide a method
that leverages MADD to mitigate the algorithmic unfairness of a model without hindering its
accuracy, via post-processing of the probability distributions produced by the model. Third, we
developed an open-source Python package named maddlib3 to facilitate the usage of MADD
in future work.

To evaluate our work, we conducted experiments with both simulated and real-world edu-
cational data. In particular, the real-world data came from two online courses, and we studied
the fairness of ML classifiers which predicted whether students would pass or fail courses, de-
pending on their demographics and interactions with the course material. Our results did show
that trained on the same data, models exhibit different discriminatory behaviors according to
different sensitive features, thus generating different levels of unfair predictions. Furthermore,
there is no direct relationship between the bias that already exists in the data and the algorith-
mic unfairness of the models. For instance, we found that in a course, several models exhibited
more unfair behaviors for students based on their poverty, whereas the data were actually heavily
skewed for gender and disability features (Verger et al., 2023).

Our results show that we can successfully and substantially mitigate the unfair behaviors of
the models with our MADD-based post-processing method, without hindering accuracy. This
finding is promising for the value of our mitigation approach. The data and code of our experi-
ments are publicly available (see Section 1).

For future work, we plan to further study the value of MADD with other datasets. We also
plan to target other predictive tasks commonly used in education, such as predicting students
at risk of dropping out of a course, predicting skill acquisition, or predicting scholarship ac-
ceptance. As for the MADD metric, we aim to extend it to take into account combinations of
features that could generate more unfair predictions than each feature taken separately. This is
crucial to account for the fact that membership in several groups can result in unique combina-
tions of discrimination, known as intersectional discrimination. To the best of our knowledge,
such studies are still lacking in education, and we initiate a work in this direction.
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10. APPENDICES

10.1. PROOF OF THEOREM 1

Proof. To prove the theorem, we start from the definition of MADD (Equation 3) and the prop-
erties of the indicator function (noted 1 and defined in Equation 2). Specifically, we have:

MADD(DG0 , DG1)

:=
m∑

k=1

|dG0,k − dG1,k|

by definition of dG0,k and dG1,k in Equation 1:

=
m∑

k=1

∣∣∣∣∣
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by calculating the integral thanks to the definition of the indicator function:
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by distributing the indicator function:
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by definition of histogram function (Definition 1):

=

∫ 1

0

∣∣∣f̂G0
h (x)− f̂G1

h (x)
∣∣∣ dx

by definition of L1 distance (Definition 2):

=
∥∥∥f̂G0

h (x)− f̂G1
h (x)

∥∥∥
L1[0,1]
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10.2. PROOF OF THEOREM 2

We first clarify the conditions required for Theorem 2 to be held. Let us introduce F , the class
of functions satisfying the following conditions for any function ξ ∈ F :

1. ξ has compact support,

2. ξ is absolutely continuous with derivative ξ′ almost everywhere,

3. ξ′ is bounded and continuous.

Thus, we assume that both PDFs fG0 , fG1 ∈ F . Indeed, the first condition is necessarily sat-
isfied since, in our case, the model gives predicted probabilities that are continuous-valued in
[0, 1] (compact support), and the two other conditions, which are smoothness assumptions, are
generally regarded as standard and relatively undemanding requirement in continuous-valued
non-parametric estimation (Devroye and Gyorfi, 1985).

Before going into the details of Theorem 2, we introduce some necessary notions. In statis-
tics, the risk often represents the mathematical expectation of the absolute quadratic error be-
tween an estimator and its target. Here, the error is the difference between MADD and the true∥∥fG0 − fG1

∥∥
L1[0,1]

. The reason for finding the expectation of this difference is that the samples
are random, so the value of MADD will be different for different samples. Thus, the risk of an
estimator represents its theoretical mean error. Therefore, we define the risk as follows:

Definition 3 (Risk).

R
(
MADD(DG0 , DG1) ,

∥∥fG0 − fG1
∥∥
L1[0,1]

)

:= E
[∣∣∣MADD(DG0 , DG1)−

∥∥fG0 − fG1
∥∥
L1[0,1]

∣∣∣
]

For a good estimator, this risk should converge to 0 when the number of samples converges
to infinity. Nonetheless, in general, we also need to know how quickly it converges to 0. For
example, if the risk of one estimator is 1/n, and the risk of another estimator is 1/n2 + 1/n3,
we should choose the second one, even if when n = 1, the first risk is smaller than the second,
because the second risk converges to 0 more quickly, which means that when n is sufficiently
large, the second risk will be much smaller than the first one. Now, we define the convergence
speed formally:

Definition 4 (Convergence speed). For an estimator ξ̂ and its risk R
(
ξ̂, ξ
)

, if there exists a
constant C > 0 and a positive function ψ(n) such that

lim sup
n→+∞

ψ(n)R
(
ξ̂, ξ
)
= C

i.e.,R
(
ξ̂, ξ
)
= O (ψ(n)−1), then the convergence rate of ξ̂ is said to be at least of order ψ(n)−1.

Then, for an estimator which needs a parameter h dynamically chosen according to n, we
define the optimal convergence speed as follows:
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Definition 5 (Optimal convergence speed). For an estimator ξ̂h and its risk R
(
ξ̂h, ξ

)
, if there

exists a constant C > 0 and a positive function ψ(n) such that

lim sup
n→+∞

inf
h
ψ(n)R

(
ξ̂h, ξ

)
= C

then the optimal convergence rate of ξ̂h is said to be at least of order ψ(n)−1.

We also clarified the two following definitions.

Definition 6 (Asymptotic speed upper bound). Let a ∈ R. For two functions f and g, if ∃d >
0, C > 0,∀x s.t .|x− a| < d⇒ |f(x)| ≤ C|g(x)|, then we denote

f(x) = O
x→a

(g(x))

If g is non-zero in the neighbourhood of a, is equivalent to say

lim sup
x→a

∣∣∣∣
f(x)

g(x)

∣∣∣∣ <∞

Definition 7 (Asymptotically negligible). For two positive functions f and g, if lim
x→a

f(x)

g(x)
= 0,

then we denote
f(x) = o

x→a
(g(x))

We can say that f is negligible compared to g. When the context is clear, the subscript x → a
below O and o can be omitted.

We can now propose a mathematically rigorous version of Theorem 2 as follows using Def-
inition 5:
Theorem 2 (Complete version)

If fG0 , fG1 ∈ F , then MADD (DG0 , DG1) converges to
∥∥fG0 − fG1

∥∥
L1[0,1]

in the sense of

the risk in L1, with an optimal convergence speed of at least
(√

n0+
√
n1√

n0n1

) 2
3
, i.e. ∃C > 0 :

lim sup
n0→+∞
n1→+∞

inf
h

(√
n0 +

√
n1√

n0n1

)− 2
3

E
[∣∣∣MADD(DG0 , DG1)−

∥∥fG0 − fG1
∥∥
L1[0,1]

∣∣∣
]
= C (20)

where DG0 and DG0 depend on h. This speed is reached when h = O

((√
n0+

√
n1√

n0n1

) 2
3

)
.

Proof. To establish the theorem, we begin by examining the L1 difference between fG0 − fG1

and f̂G0
h − f̂G1

h :
∥∥∥
(
fG0 − fG1

)
−
(
f̂G0
h − f̂G1

h

)∥∥∥
L1

=
∥∥∥
(
fG0 − f̂G0

h

)
−
(
fG1 − f̂G1

h

)∥∥∥
L1

≤
∥∥∥fG0 − f̂G0

h

∥∥∥
L1

+
∥∥∥fG1 − f̂G1

h

∥∥∥
L1
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Drawing upon Theorems 5 and 6 as well as their proofs in Chapter 5 of “Nonparametric
Density Estimation: The L1 View” (Devroye and Gyorfi, 1985), we find that the L1 risk for a
histogram estimator ξ̂h is bounded as follows:

E
[∥∥∥ξ̂h − ξ

∥∥∥
L1

]
≤
√

2

π

∫ √
ξ

nh
+
h

4

∫
|ξ′|+ o

(
h+

1√
nh

)

where o
(
h+ 1√

nh

)
represents a term that converges to 0 when h+ 1√

nh
converges to 0. Applying

this to our specific case, we obtain:

E
[∥∥∥
(
fG0 − fG1

)
−
(
f̂G0
h − f̂G1

h

)∥∥∥
L1

]
(21)

≤ E
[∥∥∥
(
fG0 − f̂G0

h

)∥∥∥
L1

]
+ E

[∥∥∥
(
fG1 − f̂G1

h

)∥∥∥
L1

]
(22)

≤
√

2

π

∫ 1

0

√
fG0

n0h
+
h

4

∫ 1

0

∣∣∣
(
fG0
)′∣∣∣+

√
2

π

∫ 1

0

√
fG1

n1h
+
h

4

∫ 1

0

∣∣∣
(
fG1
)′∣∣∣

+o

(
h+

1√
n0h

+
1√
n1h

) (23)

Combining similar terms in Equation 23 with respect to h gives:

√
2

π

∫ 1

0

√
fG0

n0h
+
h

4

∫ 1

0

∣∣∣
(
fG0
)′∣∣∣+

√
2

π

∫ 1

0

√
fG1

n1h
+
h

4

∫ 1

0

∣∣∣
(
fG1
)′∣∣∣ (24)

=

√
2

π

(
n
− 1

2
0

∫ 1

0

√
fG0 + n

− 1
2

1

∫ 1

0

√
fG1

)
h−

1
2 +

1

4

(∫ 1

0

∣∣∣
(
fG0
)′∣∣∣+

∫ 1

0

∣∣∣
(
fG1
)′∣∣∣
)
h (25)

By taking the derivative of Equation 25 with respect to h, we find that the global minimum
h∗, minimizing the term, is:

h∗ = 2π− 1
3

(∫ 1

0

∣∣∣
(
fG0
)′∣∣∣+

∫ 1

0

∣∣∣
(
fG1
)′∣∣∣
)− 2

3

(√
n0

∫ 1

0

√
fG0 +

√
n1

∫ 1

0

√
fG1

√
n0n1

) 2
3

(26)

= O

((√
n0 +

√
n1√

n0n1

) 2
3

)
(27)

We note that h∗ satisfies the following properties:

• lim
n0→+∞
n1→+∞

h∗ = 0

• lim
n0→+∞

n0h
∗ =∞

• lim
n1→+∞

n1h
∗ =∞
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From these properties, we can deduce that when we seek the upper limit of Equation 23, the
limit of the term o

(
h+ 1√

n0h
+ 1√

n1h

)
is 0. By substituting Equation 26 into Equation 25 and

looking at the upper limit of the initial left-side term in inequality 21, we get:

lim sup
n0→+∞
n1→+∞

inf
h
E
[∥∥∥
(
fG0 − fG1

)
−
(
f̂G0
h − f̂G1

h

)∥∥∥
L1

]

≤ lim sup
n0→+∞
n1→+∞

inf
h

√
2

π

(
n
− 1

2
0

∫ 1

0

√
fG0 + n

− 1
2

1

∫ 1

0

√
fG1

)
h−

1
2 +

1

4

(∫ 1

0

∣∣∣
(
fG0
)′∣∣∣+

∫ 1

0

∣∣∣
(
fG1
)′∣∣∣
)
h

+o

(
h+

1√
n0h

+
1√
n1h

)

= lim sup
n0→+∞
n1→+∞

√
2

π

(
n
− 1

2
0

∫ 1

0

√
fG0 + n

− 1
2

1

∫ 1

0

√
fG1

)
h∗−

1
2 +

1

4

(∫ 1

0

∣∣∣
(
fG0
)′∣∣∣+

∫ 1

0

∣∣∣
(
fG1
)′∣∣∣
)
h∗

Since
√

2
π

(
n
− 1

2
0

∫ 1

0

√
fG0 + n

− 1
2

1

∫ 1

0

√
fG1

)
h∗−

1
2 = O

(√
n0+

√
n1√

n0n1

) 2
3
, then

lim sup
n0→+∞
n1→+∞

inf
h
E
[∥∥∥
(
fG0 − fG1

)
−
(
f̂G0
h − f̂G1

h

)∥∥∥
L1

]
= O

((√
n0 +

√
n1√

n0n1

) 2
3

)

According to the Theorem 1, we have MADD(DG0 , DG1) =
∥∥∥f̂G0

h − f̂G1
h

∥∥∥
L1

. Thus, by the

absolute value inequality:

E
[∣∣∣
∥∥fG0 − fG1

∥∥
L1
−MADD(DG0 , DG1)

∣∣∣
]
≤ E

[∥∥∥
(
fG0 − fG1

)
−
(
f̂G0
h − f̂G1

h

)∥∥∥
L1

]

Therefore, ∃C > 0 :

lim sup
n0→+∞
n1→+∞

inf
h

(√
n0 +

√
n1√

n0n1

)− 2
3

E
[∣∣∣MADD(DG0 , DG1)−

∥∥fG0 − fG1
∥∥
L1

∣∣∣
]
= C

This concludes the proof of Theorem 2. □
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10.3. PROOF OF EQUATION 10

log

((√
n0 +

√
n1√

n0n1

) 2
3

)
= log

((
n0 + n1 + 2

√
n0n1

n0n1

) 1
3

)

=
1

3
log

(
n+ 2

√
n0n1

n0n1

)

=
1

3
log

(
n+ 2

√
αβn2

αβn2

)

=
1

3
log

(
1 + 2

√
αβ

αβ

1

n

)

=
1

3
log

(
1 + 2

√
αβ

αβ

)
+

1

3
log(n−1)

=
1

3
log

((
αβ

1 + 2
√
αβ

)−1
)
− 1

3
log(n)

= −1

3
log

(
αβ

1 + 2
√
αβ

)
− 1

3
log(n)

10.4. PROOF OF EQUATIONS 11 AND 12 (LINEAR RELATIONSHIPS)

We set C to be a random variable with probability density functionD, representing the predicted
probability value of the output of the model C, and S to be a random variable subject to Bernoulli
distribution, representing the value of the sensitive parameter. Thus, DG0 and DG1 are the prob-
ability density functions of the conditional distributions C|S = 0 and C|S = 1, respectively.
According to the law of total probability, we have:

P (C ≤ t) = P (C ≤ t | S = 0) P (S = 0) + P (C ≤ t | S = 1) P (S = 1)

⇐⇒ F (t) = FG0(t) P (S = 0) + FG1(t) P (S = 1)

⇐⇒ D(t) = DG0(t) P (S = 0) +DG1(t) P (S = 1)

where F, FG0 , FG1 are the cumulative distribution functions (CDFs) of D, DG0 , DG1 , respec-
tively. Since P (S = 0) + P (S = 1) = 1, f is a linear combination of DG0 and DG1 , and D lies
between DG0 and DG1 in the function space (i.e., DG0 ,D,DG0 are collinear).

This property is also true for estimators obtained from observed values. In fact, the definition
of the sequence of the heights of the histogram is: for the m equal sub-intervals

]
k−1
m
, k
m

]
for all

k ∈ {1, . . . ,m} on [0, 1],

DG0 := {dG0,k | ∀k ∈ {1, . . . ,m}} , with dG0,k :=
NG0,k

n0

:=
1

n0

∑

i∈G0

1p̂i∈Ik

DG1 := {dG1,k | ∀k ∈ {1, . . . ,m}} , with dG1,k :=
NG1,k

n1

:=
1

n1

∑

i∈G1

1p̂i∈Ik

DG := {dG,k | ∀k ∈ {1, . . . ,m}} , with dG,k :=
NG0,k +NG1,k

n0 + n1

:=
1

n0 + n1

∑

i∈G
1p̂i∈Ik
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And because for all k ∈ {1, . . . ,m}, we have:

dG,k =
NG0,k +NG1,k

n0 + n1

=
n0 dG0,k + n1 dG1,k

n0 + n1

=
n0

n0 + n1

dG0,k +
n1

n0 + n1

dG1,k

Also, fG0 , f, fG1 are based on DG0 , DG, DG1 , respectively:

fG0(x) :=
m∑

k=i

dG0,k1x∈Ik

fG1(x) :=
m∑

k=i

dG1,k1x∈Ik

f(x) :=
m∑

k=i

dG,k1x∈Ik

Therefore, f(x) = n0

n0+n1
fG0(x) + n1

n0+n1
fG1(x), so fG0 , f, fG1 are also collinear (see Fig-

ure 15b). This is not a coincidence; in fact, as histogram estimators, when (n0, n1) → +∞,(
fG0 , f, fG1

)
→ (DG0 ,DG,DG1).

10.5. PROOF OF EQUATIONS 13 AND 14 (CDF-BASED DISTRIBUTION TRANSITION)

According to Inverse transform sampling (Devroye, 1986), we have the following two theorems:
Theorem 3

Let A be a distribution and FA be the cumulative distribution function of that distribution.
If X obeys the distribution A i.e. X ∼ A, then FA(X) ∼ U[0,1], where U[0,1] is a uniform
distribution over [0, 1].

Theorem 4

Let U ∼ U[0,1] and F−1
A be the generalised inverse function of FA, then F−1

A (U) ∼ A.

Let us consider group G0 as an example. By definition, the newly generated prediction p
(λ)
i

is CDF
−1(λ)

G0
(CDFG0(p̂i)), and by applying Theorem 3, we have CDFG0(p̂i) ∼ U[0,1], therefore

CDF
−1(λ)

G0
(CDFG0(p̂i)) obeys the newly generated distribution according to Theorem 4. Further-

more, since the CDF is monotone increasing and the inverse function does not change the mono-
tonicity, CDF

−1(λ)

G0
is also monotone increasing, which means that ∀i, j, p̂i ≥ p̂j =⇒ p

(λ)
i ≥ p

(λ)
i .

The conclusion on G1 follows the same reasoning.
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