
HAL Id: hal-04633679
https://hal.science/hal-04633679v2

Preprint submitted on 24 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable command governor via semi-ellipsoidal set for
linear systems with time-varying soft constraints

Hoai Nam Nguyen

To cite this version:
Hoai Nam Nguyen. Scalable command governor via semi-ellipsoidal set for linear systems with time-
varying soft constraints. 2024. �hal-04633679v2�

https://hal.science/hal-04633679v2
https://hal.archives-ouvertes.fr

Scalable Command Governor via

Semi-Ellipsoidal Set for Linear Systems with

Time-Varying Soft Constraints

Hoai-Nam Nguyen a

aSamovar, Telecom SudParis, Institute Polytechnique de Paris, 91120 Palaiseau,
France

Abstract

This paper provides a solution for a command governor (CG) that employs a semi-
ellipsoidal set. The motivation is driven by the need to address the shortcomings of
polyhedral and ellipsoidal sets widely used in CG. In particular for many applica-
tions, polyhedral sets require a large number of linear inequality constraints while
ellipsoidal sets are too conservative. Furthermore, both types of sets are generally
designed for systems with time-invariant and hard constraints. The contributions
of the paper are: i) we provide new convex conditions to construct an invariant
and constraint-admissible semi-ellipsoidal set for discrete-time linear systems with
time-varying soft constraints; ii) we propose a computationally efficient procedure
to solve the online optimization problem associated with the newly introduced semi-
ellipsoidal set in CG. Three numerical examples with comparison to earlier solutions
from the literature illustrate the effectiveness of the proposed approach.

Key words: Command Governor, Linear System, State and Input Constraint,
Invariant Set, ADMM

1 Introduction

This paper is concerned with the tracking problem of discrete-time linear time-
invariant systems, subject to possibly time-varying soft constraints on both
input and state. This is a problem that has been extensively studied over the
last decades, and a number of different solutions are available as, for example,
those based on model predictive control (MPC) [15], or command governor
(CG) [5].

Email address: hoai-nam.nguyen@telecom-sudparis.eu (Hoai-Nam Nguyen).

Preprint submitted to Elsevier Science 24 October 2024

In MPC [15], an optimization problem is solved at each time instant to find the
optimal input that drives the predicted plant output to the desired reference.
MPC provides a natural way to take the time-varying and/or soft constraints
into account. However, it is not trivial to guarantee recursive feasibility and
asymptotic stability for MPC with time-varying and/or soft constraints.

CG provides a useful alternative to MPC [5]. The main idea of CG is to use
optimization to find the best applied reference or equivalently the command
based on the current state and the current value of the desired reference. CG
may be attractive to practitioner concerned with online computational effort
and/or interested in preserving an existing well-designed nominal controller.

In CG, the state and the command are imposed to lie in the set Ω, which is
invariant and constraint-admissible. The set Ω is constructed offline, and is
used to guarantee the constraint satisfaction. In CG, ellipsoidal [18] and poly-
hedral sets [6] are widely considered for Ω. The popularity of ellipsoidal sets
stems from their computational efficiency via Linear Matrix Inequality (LMI)
formulation, their fixed complexity with respect to the state space dimension.
However, it is well known [1], [17] that ellipsoids provide a conservative ap-
proximation of the domain of attraction (DoA). In contrast, polyhedral sets
can provide a less conservative solution. However, their use comes with sig-
nificant trade-offs. To describe a polyhedral invariant set, a large number of
linear inequality constraints is typically required even for average-size systems
[1].

The set Ω is computed using iterative procedures and/or convex optimization.
In general, there is no closed-form relationship between Ω and the state/input
constraint sets. Consequently, considering time-varying and/or soft constraints
in CG is not straightforward. As a result, most of CG schemes in the literature
assume that the constraints are time-invariant and hard. There are only two
papers that we are aware of, and that consider time-varying or soft constraints:
[11], [12]. In [12], it was shown that the use of strictly contractive sets instead
of invariant ones can handle time-varying constraints, if the constraints vary
slowly enough. In [11], slack variables were considered to relax the constraints.
However, the introduction of slack variables along with the command in the
state extension makes the problem of constructing Ω very complex.

In [14], [20] an interesting class of invariant and constraint-admissible sets is
considered for nominal linear systems with input and state constraint. The
set, which is called semi-ellipsoidal set. However, the construction of the set
is based on a non-convex optimization problem.

In this paper, we follow the works in [14], [20]. The main aim is to propose new
CG schemes that employ invariant and constraint-admissible semi-ellipsoidal
sets. The main contributions of the paper are:

2

(1) To the best of the author’s knowledge, this is the first time a semi-
ellipsoidal set is used in the context of a CG.

(2) We provide new convex conditions to construct an invariant and constraint-
admissible semi-ellipsoidal set for CGs with linear feedback. The new set
is formed explicitly by the state and input constraint sets. Consequently,
it can be easily extended to deal with time-varying soft constraints.

(3) As shown in [4] for CGs, using saturated feedback instead of linear one
can enlarge the DoA, and hence improve the transient time. We provide
convex conditions to construct invariant and constraint-admissible semi-
ellipsoidal sets for CGs with saturated feedback. Our algorithm can cope
with time-varying soft constraints.

(4) Moving from an ellipsoidal and polyhedral set to a semi-ellipsoidal set
introduces new types of constraints. Hence, the new optimization prob-
lem is no longer a quadratically constrained quadratic program [18] or a
quadratic progam [6]. We develop a tailored algorithm specifically for the
new optimization problem.

The paper is organized as follows. Section 2 covers the problem formulation
and earlier works on CG. Section 3, Section 4 are, respectively, dedicated to
the construction of an invariant and constraint-admissible semi-ellipsoidal set
with linear feedback, with saturated feedback for time-invariant hard con-
straints. Then in Section 5, we extend the results in Section 3 and Section
4 to cope with time-varying soft constraints. Section 6 is concerned with the
online optimization problem. Three numerical examples with comparison to
earlier solutions from the literature are evaluated in Section 7. Finally, Section
8 concludes the article.

Notation: We denote by R the set of real numbers, by Rn the set of real n×1
vectors, by Rn×m the set of real n×m matrices. We use 0, I, respectively, to
denote the zero matrix, and the identity matrix of appropriate dimension. We
denote a positive definite(semi-definite) matrix P by P ≻ 0(P ⪰ 0). For a
given matrix P ≻ 0 of size n, E(P) is defined as

E(P) = {x ∈ Rn|xTP−1x ≤ 1}. (1)

For a given positive natural number n, we use 1, n to denote the set {1, 2, . . . , n}.
For symmetric matrices, the symbol (∗) denotes each of its symmetric block.
For a given vector d, we use diag(d) to denote the square diagonal matrix with
the elements of vector d on the main diagonal.

3

2 Problem Formulation and Earlier Works on Command Governor

2.1 Problem Formulation

We consider the following discrete-time linear time-invariant systemx(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
, (2)

where x(k) ∈ Rnx , u(k) ∈ Rnu , and y(k) ∈ Rny are, respectively, the state, the
control input, and the output. A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx .

The state x(k) and the input u(k) are subject to the constraints x(k) ∈ X ,
u(k) ∈ U , where X ,U areX = {x ∈ Rnx|g

i
≤ fix ≤ gi,∀i ∈ 1, lx}

U = {u ∈ Rnu|uj ≤ uj ≤ uj,∀j ∈ 1, nu}
, (3)

where fT
i ∈ Rnx , g

i
∈ R, gi ∈ R, uj ∈ R, uj ∈ R, i ∈ 1, lx, j ∈ 1, nu. At

the moment for simplicity, we consider the case where the constraints (3) are
time-invariant and hard.

Control Objectives: For a given reference signal r(k) ∈ Rny , the objective
of the paper is to calculate a CG based control action u(k) = U(x(k), r(k))
such that: i) the output y(k) follows as close as possible to r(k); ii) the state
and input constraints (3) are fulfilled.

We recall some earlier works on CG in the next section.

2.2 Earlier Works on Command Governor

Any steady state (xs, us, ys) of the system (2) satisfies the following equation

As

 xs

us

 =

0
I

 ys, (4)

where

As =

A− I B

C 0

 .

4

For simplicity, in the rest of the paper we assume that the matrix As is in-
vertible. In this case we can express the solution of (4) as

xs = Lxv, us = Luv, (5)

where v = ys is the so-called command, and Lx ∈ Rnx×ny , Lu ∈ Rnu×ny areLx

Lu

 = A−1
s

0
I

 .
The CG is an add-on scheme for enforcing the state and input constraints. It is
based on an assumption that an asymptotically stabilizing control law u(k) =
Kx(k) is available. This control law is designed to satisfy some performance
specifications for small signals near the origin. In the CG, the control input is
of the form

u(k) = K(x(k)− xs) + us = Kx(k) + Lv, (6)

where L = Lu −KLx.

By substituting (6) into (2), and by considering v(k+1) = v(k), we can express
the closed-loop system as

xe(k + 1) = Aexe(k), (7)

where xe(k) = [x(k)T v(k)T]T , and

Ae =

A+BK BL

0 I

 .
Using (6), the constraints (3) become xe ∈ Xe with

Xe =

x ∈ Rnx , v ∈ Rny

∣∣∣∣∣∣∣
x ∈ X ,

Kx+ Lv ∈ U

 . (8)

We say that a set Ω ⊆ Rnx+ny is invariant for (7) if for any xe(k) ∈ Ω, one has
xe(k + 1) ∈ Ω. In addition, if Ω ⊆ Xe, then Ω is constraint-admissible with
respect to (8).

For a given state x(k) and a given reference signal r(k) at time instant k, the
CG applies the control law u(k) = Kx(k) + Lv∗(k) to the system (2), where
v∗(k) is the solution of the following optimization problem

min
v

(v − r(k))TQ(v − r(k))

s.t. (x(k), v) ∈ Ω,
(9)

5

where Q ≻ 0 is a weighting matrix, and Ω is any invariant and constraint-
admissible set for (7), (8).

The basic idea of CG is the following. If there is no constraint violation, then
v∗(k) = r(k) is the solution of (9). Hence, the CG does not interfere with
the operation of the system. If a potential for constraint violation exists, the
CG seeks the closest admissible command v∗(k) to r(k). In the extreme case
thanks to the robust invariance of Ω, v(k + 1) = v∗(k) remains a feasible
solution of (9). This implies that the CG temporarily isolates the system from
further variations of the reference to assure the constraint satisfaction.

Assuming feasibility at the initial condition, the CG (6), (9) guarantees recur-
sive feasibility, i.e., if (9) is feasible at time k, then it is feasible at time k+1.
If r(k) = r remains constant and r is reachable, then v∗(k) converges to r in a
finite time. If r is not reachable, then v∗(k) will converge to the closest feasible
value to r in a finite time. The finite-settling-time convergence is a desirable
property. It shows that after transients caused by large changes in r(k), the
CG (6), (9) ensures the system reaches a stable steady-state condition.

As written in Introduction, in the CG literature, only ellipsoidal and polyhe-
dral sets are used for Ω. The aim of this paper is to propose new CG schemes
that are based on semi-ellipsoidal sets. We will first consider a semi-ellipsoidal
set with a linear feedback. We then extend our approach to the case of non-
linear saturated feedback.

Remark 1: For computational reasons [5], if polyhedral set is used for Ω, we
generally impose xe ∈ X̃e instead of the constraint (8) where

X̃e = Xe ∩Xµ
e , (10)

with

Xµ
e = {(x, v)|Lxv ∈ (1− µ)X , Luv ∈ (1− µ)U}. (11)

The margin µ > 0 is typically small.

3 Semi-Ellipsoidal Set with Linear Feedback

In this section, we will provide a convex procedure to obtain an invariant and
constraint-admissible semi-ellipsoidal set for (7), (8). The main idea is to ex-
ploit the particular structure of Ae, Ee. Starting from the original x−space,
we show how to obtain invariance and constraint-admissibility conditions for
semi-ellipsoidal set in the extended xe−space via the translation and the scal-
ing operators.

6

3.1 Translation

For a given P ≻ 0, consider the sets Ωx(P) and Ωv(P) with

Ωx(P) =

x
v

 ∣∣∣∣ (x− Lxv)
TP−1(x− Lxv) ≤ 1

 , (12)

and, i ∈ 1, lx, j ∈ 1, nu

Ωv(P) =

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−fiLxv ≤ −gi −
√
fiPfT

i

fiLxv ≤ gi −
√
fiPfT

i

−Lu,jv ≤ −uj −
√
KjPKT

j

Lu,jv ≤ uj −
√
KjPKT

j

, (13)

where Lu,j and Kj are, respectively, the j−th row of Lu and K.

In the (x, v)−space, Ωx(P) is an unbounded ellipsoid. In the x−space, Ωx(P)
is the translation of E(P) from the origin to the point Lxv. In other words,
Ωx(P) is an ellipsoid centered at Lxv. Define

Ωe(P) := Ωx(P) ∩ Ωv(P). (14)

Clearly, Ωe(P) is a semi-ellipsoidal set as it is the intersection of the ellipsoid
Ωx(P) and the polyhedral set Ωv(P).

Remark 2: There is another useful geometric interpretation of Ωe(P), namely,
Ωe(P) is a parameterized ellipsoid Ωx(P) with its center constrained within
the set Ωv(P).

Theorem 1: The set Ωe(P) is invariant and constraint-admissible for (7), (8)
if and only if P satisfies the following conditionP AcP

∗ P

 ⪰ 0. (15)

Proof: We divide the proof into two parts: invariance proof and constraint
admissibility proof.

Invariance Proof: One needs to show that xe(k+1) ∈ Ωe(P) for any xe(k) ∈
Ωe(P). As v(k+1) = v(k), it is clear that xe(k+1) ∈ Ωv(P) if xe(k) ∈ Ωv(P).

It remains to show that xe(k + 1) ∈ Ωx(P). Using (6), (7), one gets

x(k + 1) = Acx(k) +B(us(k)−Kxs(k)), (16)

7

where xs(k) = Lxv(k), us(k) = Luv(k). Using (4), (5) one gets

xs(k + 1) = Axs(k) +Bus(k),

where xs(k + 1) = Lxv(k + 1). Thus, with (16)

x(k + 1)− xs(k + 1) = Ac(x(k)− xs(k)),

or, equivalently
ζ(k + 1) = Acζ(k). (17)

where ζ(k) = x(k)−Lxv(k). It is well known [2] that condition (15) is necessary
and sufficient for the invariance of E(P) with respect to (17). Hence, for any
x(k), v(k) such that

(x(k)− Lxv(k))
TP−1(x(k)− Lxv(k)) ≤ 1,

one has

(x(k + 1)− Lxv(k + 1))TP−1(x(k + 1)− Lxv(k + 1)) ≤ 1.

It follows that for any xe(k) ∈ Ωx(P), one has xe(k + 1) ∈ Ωx(P).

Constraint Admissibility Proof: One needs to show that Ωe(P) ⊆ Xe, or
equivalently

x ∈ X , Kx+ Lv ∈ U ,
for any xe ∈ Ωe(P). First we will show that x ∈ X . For a given v ∈ Rny ,
consider the following optimization problem, i ∈ 1, lx

min
x

fix

s.t. (x− Lxv)
TP−1(x− Lxv) ≤ 1.

(18)

Note that the constraint of (18) is the set Ωx(P) with a given v. We denote
this set as Ωx(P, v). As the cost is linear and the set Ωx(P, v) is bounded, the
constraint of (18) is always active. The Lagrangian is

L(x, λ) = fix+
λ

2

(
(x− Lxv)

TP−1(x− Lxv)− 1
)
,

where λ ≥ 0 is the Lagrange multiplier. Since the constraint (18) is always
active, it follows that λ > 0. One has

∂L
∂x

= fT
i + λ∗P−1(x∗ − Lxv) = 0.

Therefore

x∗ = Lxv −
1

λ∗PfT
i

8

As the constraint in (18) is active, one obtains

(Lxv −
1

λ∗PfT
i − Lxv)

TP−1(Lxv −
1

λ∗PfT
i − Lxv) = 1,

or equivalently, λ∗ =
√
fiPfT

i . Hence

x∗ = Lxv −
1√

fiPfT
i

PfT
i .

It follows that
min

x∈Ωx(P,v)
fix = fiLxv −

√
fiPfT

i .

Using (13), for any v ∈ Ωv(P) one has

fiLxv −
√
fiPfT

i ≥ g
i
, i ∈ 1, lx.

Therefore, for any xe ∈ Ωe(P), i ∈ 1, lx

fix ≥ g
i
. (19)

Analogously, it can be shown for any xe ∈ Ωe(P), i ∈ 1, lx that

fix ≤ gi. (20)

Combining (19), (20), one gets x ∈ X for any xe ∈ Ωe(P).

Now we show for any xe ∈ Ωe(P) that Kx+Lv ∈ U . Using similar arguments
like those for the state constraints, it can be shown that for a given v and for
any xe ∈ Ωx(P)

min
x∈Ωx(P,v)

(Kjx+ Ljv) = Lu,jv −
√
KjPKT

j ,

where Lj is the j−th row of L. Using (13), for any v ∈ Ωv(P) one has

Lu,jv −
√
KjPKT

j ≥ uj.

Hence, for any j ∈ 1, nu, xe ∈ Ωe(P)

Kjx+ Ljv ≥ uj. (21)

Analogously, one obtains, for any j ∈ 1, nu, xe ∈ Ωe(P)

Kjx+ Ljv ≤ uj. (22)

Using (21), (22), one gets xe ∈ Ωv for any xe ∈ Ωe(P). The proof is complete.
2

9

Once invariance and constraint-admissibility conditions for Ωe(P) are ob-
tained, our next step is to maximize the size of Ωe(P). Since Ωe(P) can be
considered as a parameterized ellipsoid, our idea is to optimize Ωx(P) or equiv-
alently P for a particular fixed value of v = vf , vf ∈ Ωv(P). Using (13), and
since fiPfT

i ≥ 0, KjPKT
j ≥ 0, we obtain a necessary condition of vf for

guaranteeing that P exists

 g
i
≤ fiLxvf ≤ gi,∀i ∈ 1, lx,

uj ≤ Lu,jvf ≤ uj,∀j ∈ 1, nu

(23)

Using (13), for a fixed vf satisfying (23), the constraints on P are

fiPfT
i ≤

(
fiLxvf − g

i

)2
,∀i ∈ 1, lx,

fiPfT
i ≤ (fiLxvf − gi)

2 ,∀i ∈ 1, lx,

KjPKT
j ≤

(
Lu,jvf − uj

)2
,∀j ∈ 1, nu,

KjPKT
j ≤ (Lu,jvf − uj)

2 ,∀j ∈ 1, nu.

(24)

For a given and fixed vf satisfying (23), the problem of optimizing P can be
formulated as

min
P

f(P)

s.t. (15), (24),
(25)

where f(P) can be any convex function that maximizes the volume of the set
Ωx(P, vf). For example, f(P) can be −logdet(P) or −tr(P).

Problem (25) is a convex semi-definite program (SDP). We can solve it effi-
ciently using free available LMI parser such as YALMIP [16] or CVX [8].

It is clear that one should select vf to optimize P . Using (24), one has if

∣∣∣fiLxvf − g
i

∣∣∣ ≤ |fiLxvf − gi| , i ∈ 1, lx

then the constraint

fiPfT
i ≤ (fiLxvf − gi)

2 , i ∈ 1, lx

is redundant. Otherwise the constraint

fiPfT
i ≤

(
fiLxvf − g

i

)2
, i ∈ 1, lx

is redundant. We have the same conclusion for any j ∈ 1, nu. Hence, we can

10

select vf as a solution of the following optimization problem

max
vf

lx∑
i=1

wx,i min
{∣∣∣fiLxvf − g

i

∣∣∣ , |fiLxvf − gi|
}

+
nu∑
i=1

wu,j min
{∣∣∣Lu,jvf − uj

∣∣∣ , |Lu,jvf − uj|
}

s.t. Constraints (23),

(26)

where wx,i ≥ 0, wu,j ≥ 0 are weighting parameters.

Problem (26) can be converted into a mixed integer linear program. Note that
if X ,U contain the origin in their interior, a simple but not necessarily optimal
choice for vf is vf = 0.

3.2 Scaling

We assume that Ωe(P) is available as a result from Section 3.1. Clearly, it
is possible to employ Ωe(P) in a CG framework, as Ωe(P) is invariant and
constraint-admissible for (7), (8). Using the scaling operator, our aim of this
section is to provide an even larger set than Ωe(P) that expands the feasible
region for the CG to operate in. For a given scalar α ≥ 0, define

Ωx(α, P) =

x
v

 ∣∣∣∣ (x− Lxv)
TP−1(x− Lxv) ≤ α2

 . (27)

and, ∀i ∈ 1, lx,∀j ∈ 1, nu

Ωv(α, P) =

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−fiLxv ≤ −gi − α
√
fiPfT

i

fiLxv ≤ gi − α
√
fiPfT

i

−Lu,jv ≤ −uj − α
√
KjPKT

j

Lu,jv ≤ uj − α
√
KjPKT

j

; (28)

Define also

Ωe(α, P) := Ωx(α, P) ∩ Ωv(α, P). (29)

Clearly, Ωe(α, P) is a semi-ellipsoidal set.

Note that Ωx(α, P) is an unbounded ellipsoid in the (x, v)−space for any
α ≥ 0. Note also that Ωx(α, P) is the scaling of Ωx(P) with the scaling factor
α, i.e., α[xT vT]T ∈ Ωx(α, P) for any [xT vT]T ∈ Ωx(P . However, this is not
the case for Ωv(α, P), i.e., Ωv(α, P) is not a scaling of Ωv(P).

11

Theorem 2: Given any α ≥ 0 such that Ωv(α, P) is non-empty. If Ωe(P) is
invariant for (7), then Ωe(α, P) is invariant and constraint-admissible for (7),
(8).

Proof: Similar to the proof of Theorem 1, we divide the proof of Theorem 2
into two parts: invariance proof and constraint-admissibility proof.

Invariance Proof: Clearly, for any α such that Ωv(α, P) is non-empty, one
has

xe(k + 1) ∈ Ωv(α, P),

for any xe(k) ∈ Ωv(α, P) as v(k + 1) = v(k).

It remains to prove that xe(k + 1) ∈ Ωx(α, P) for any xe(k) ∈ Ωe(α, P).
Note that if α = 0, then xe(k) ∈ Ωe(α, P) if and only if xe(k) = 0. Hence
xe(k + 1) = 0 ∈ Ωe(α, P). If α > 0, one has

xe(k + 1)

α
= Ae

xe(k)

α
.

Using the two facts that

• one has xe(k)
α
∈ Ωe(P) for any xe(k) ∈ Ωe(α, P), and for any α > 0;

• Ωe(P) is invariant for (7);

one gets xe(k+1)
α
∈ Ωe(P). It follows that xe(k + 1) ∈ Ωx(α, P).

Constraint Admissibility Proof: The main idea of the proof is to show for
any xe ∈ Ωe(α, P) that x ∈ X and Kx + Lv ∈ U . The proof is omitted here,
as it follows the same arguments as the one of Theorem 1. 2

The following Algorithm can be used to construct an invariant and constraint-
admissible semi-ellipsoidal set Ωe(α, P).

Algorithm 1: Construction of Ωe(α, P)

1: Select vf .
2: Obtain P by solving (25).
3: Obtain Ωx(α, P) by using (27).
4: Obtain Ωv(α, P) by using (28).
5: Ωe(α, P) = Ωx(α, P) ∩ Ωv(α, P).

Remark 3: It is stressed that α is not a decision variable in Algorithm 1. We
use α as an auxiliary variable to enlarge the feasible set for the CG.

Remark 4: An interesting feature of Ωe(α, P) is that it has a fixed complexity
of representation. Given nx, nu, ny, lx, the number of parameters required to

describe Ωe(α, P) is the sum of nx × ny +
nx(nx+1)

2
and 2(lx + nu)× (ny + 2).

These two terms are, respectively, for describing Ωx(α, P) and Ωv(α, P).

12

4 Semi-Ellipsoidal Set with Saturated Feedback

The aim of this section is to provide a way to construct an invariant and
constraint-admissible semi-ellipsoidal set for CG using the following saturated
control law

u(k) = sat(Kx(k) + Lv(k)), (30)

where the saturation function sat(κ) with κ ∈ Rnu is defined as sat(κ) =
min{κ̃, u} with κ̃ = max{κ, u}. The operators min and max are taken component-
wise.

As noticed in [4], the motivation of using the nonlinear saturated control law
(30) instead of the linear one (6) is that the associated DoA of (30) can be
significantly larger than that of (6). As a result, the transient behavior of the
closed-loop system can thus be improved.

It is worth noticing that in the linear feedback case (6), Theorem 1 provides a
foundation to construct a semi-ellipsoidal invariant and constraint-admissible
set. Theorem 2 is built upon Theorem 1. Hence, due to space limitations, the
focus in this section is on extending Theorem 1 to handle the saturated control
law (30).

In the following we recall the linear differential inclusion (LDI) modeling
framework in [9]. We will use it to model the saturation nonlinearity. Define
the following set of nu × nu diagonal matrices S as

S =
{
Sm|Sm = diag(s1, . . . , snu), si ∈ {0, 1}, i ∈ 1, nu

}
.

There are 2nu elements in S. For a given matrix element Sm ∈ S, define
S−
m = I− Sm,m ∈ 1,mu with mu = 2nu .

For given vectors u ∈ Rnu , ξ ∈ Rnu , define the set D ⊆ Rnu as

D = {dm ∈ Rnu|dm = Smu+ S−
mξ,m ∈ 1, nu},

For example if nu = 2, we have mu = 4 and

d1 =

u1

u2

 , d2 =
u1

ξ2

 , d3 =
 ξ1

u2

 , d4 =
 ξ1
ξ2

 .
Define also Co(D) as the convex hull of D, i.e.,

Co(D) =
{

mu∑
m=1

λmdm|dm ∈ D, λm ≥ 0,
mu∑
m=1

λm = 1

}
.

13

Lemma 1: [9] Given u ∈ Rnu , ξ ∈ Rnu such that uj ≤ ξj ≤ uj, j ∈ 1, nu, one
has,

sat(u) ∈ Co(D). (31)

By substituting (30) into (2), and by considering v(k + 1) = v(k), one getsx(k + 1)

v(k + 1)

 =

Ax(k) +Bsat(Kx(k) + Lv(k))

v(k)

 . (32)

Given matrices Ps ∈ Rnx×nx , H ∈ Rnu×nx , define Ωv(Ps, H) as, ∀i ∈ 1, lx, ∀j ∈
1, nu

Ωv(Ps, H) =

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−fiLxv ≤ −gi −
√
fiPsfT

i

fiLxv ≤ gi −
√
fiPsfT

i

−Lu,jv ≤ −uj −
√
HjPsHT

j

Lu,jv ≤ uj −
√
HjPsHT

j

, (33)

where Hj is the j−th row of H. Define also

Ωe(Ps, H) = Ωx(Ps) ∩ Ωv(Ps, H), (34)

where Ωx(Ps) is the parameterized ellipsoid (12) with P = Ps. Clearly, Ωe(Ps, H)
is a semi-ellipsoidal set.

We have the following result.

Theorem 3: If there exist Ps ≻ 0, H ∈ Rnu×nx such thatPs AmPs +BmY

∗ Ps

 ⪰ 0,∀m ∈ 1,mu, (35)

and that the set Ωv(Ps, H) is non-empty, where Y = HPs, and

Am = A+BSmK,Bm = BS−
m,∀m ∈ 1,mu,

then the set Ωe(Ps, H) is invariant and constraint-admissible for (32), (8).

Proof: Following the same arguments as the ones of the proofs of Theorem 1,
it is straightforward to prove that Ωv(Ps, H) is invariant, and that Ωe(Ps, H)
is constraint-admissible. Hence we skip these proofs here.

It remains to show that Ωx(Ps) is invariant. Define N = Lu − HLx. Using
Lemma 1, for system (2) under the saturated control law (30), one has, for
any x, v such that uj ≤ Hjx+Njv ≤ uj, j ∈ 1, nu,

x(k + 1) ∈ Co (Am (x(k)− Lxv(k)) +Bus(k)) , (36)

14

where us(k) = Luu(k) and

Am = A+BSmK +BS−
mH,∀m ∈ 1,mu.

Using (4), (5) one gets

xs(k + 1) = Axs(k) +Bus(k),

with xs(k + 1) = Lxv(k + 1), xs(k) = Lxv(k). Thus, with (36)

x(k + 1)− xs(k + 1) ∈ Co (Am (x(k)− xs(k))) . (37)

Recall that Y = HPs. Rewrite (35) as

Ps AmPs

∗ Ps

 ⪰ 0,∀m ∈ 1,mu. (38)

It is well known [2] that conditions (38) assure the invariance of E(Ps) for
system (37), i.e., for any x(k), v(k) such that

(x(k)− Lxv(k))
TP−1

s (x(k)− Lxv(k)) ≤ 1,

one has

(x(k + 1)− Lxv(k + 1))TP−1
s (x(k + 1)− Lxv(k + 1)) ≤ 1.

Hence Ωx(Ps) is invariant for (32). 2

Remark 5: It is clear that if H = K, then Ωe(Ps, H) = Ωe(Ps). In this case,
one also has

A+BSmK +BS−
mK = A+BK,∀m ∈ 1,mu.

It follows that (35) becomes (15) with Ps = P, Y = KPs. Consequently,
compared to the linear control law (6), the use of the saturated one (30) in
conjunction with the LDI framework introduces H as an additional degree of
freedom.

We use H and Ps as decision variables to maximize the size of Ωe(Ps, H). For
this purpose, we select a particular value of v = vf , vf ∈ Ωv(Ps, H). Using (33)
and as

fiPsf
T
i ≥ 0, HjPsH

T
j ≥ 0,

for any i ∈ 1, lx, j ∈ 1, nu, it follows that (23) provides a necessary condition
of vf for the existence of Ps and H.

15

For any vf satisfying (23), using the first two equation of (33), one gets

 fiPsf
T
i ≤ (fiLxvf − g

i
)2,

fiPsf
T
i ≤ (fiLxvf − gi)

2,
∀i ∈ 1, lx, (39)

Using the last two equation of (33), one obtains

HjPsH
T
j ≤ (Lu,jvf − uj)

2,

HjPsH
T
j ≤ (Lu,jvf − uj)

2,
∀j ∈ 1, nu,

thus, using the Schur complement and Y = HPs

 (Lu,jvf − uj)
2 Yj

Y T
j Ps

 ⪰ 0,

 (Lu,jvf − uj)
2 Yj

Y T
j Ps

 ⪰ 0

∀j ∈ 1, nu, (40)

where Yj is the j−th row of Y , ∀j ∈ 1, nu.

The problem of optimizing Ps, H can be formulated as

min
Ps,Y

f(Ps)

s.t. (35), (39), (40),
(41)

where f(·) can be any convex function that maximizes the volume of the set
Ωx(Ps) for a given and fixed value of vf . Note that (41) is a SDP program.

Concerning the scaling operator, using similar arguments as the ones in Sec-
tion 3.2, it is possible to show that if Ωe(Ps, H) is invariant and constraint-
admissible for (32), (8), then so is the set

Ωe(α, Ps, H) = Ωx(α, Ps) ∩ Ωv(α, Ps, H), (42)

where Ωx(α, Ps) is defined in (27) with P = Ps, α ≥ 0, and

Ωv(·) =
{
v
∣∣∣∣Fvv ≤ g − Fαα

}
, (43)

16

with

Fv =

−f1Lx

...

−flxLx

f1Lx

...

flxLx

−Lu,1

...

−Lu,nu

Lu,1

...

Lu,nu

, g =

−g
1

. . .

−g
lx

g1

. . .

glx

−u1

. . .

−unu

u1

. . .

unu

, Fα =

√
f1PsfT

1

...√
flxPsfT

lx√
f1PsfT

1

...√
flxPsfT

lx√
H1PsHT

1

...√
HnuPsHT

nu√
H1PsHT

1

...√
HnuPsHT

nu

. (44)

5 Semi-Ellipsoidal Set with Time-Varying Soft Constraints

Perhaps the most interesting aspect of the results in Section 3 and in Section 4
is that they can be easily extended to cope with time-varying soft constraints.
This is because

• The semi-ellipsoidal set Ωe(α, P)/Ωe(α, Ps, H) is the intersection of the poly-
hedral set Ωv(α, P)/Ωv(α, Ps, H) and the unbounded ellipsoid Ωx(α, P)/Ωx(α, Ps).
• The set Ωv(α, P)/Ωv(α, Ps, H) is formed explicitly by the constraints of
X,U .

From this point on we will focus only on semi-ellipsoidal set with saturated
feedback. This is because the results in Section 3 are special cases of the results
in Section 4. At time instant k, the state constraint set X (k) is

X (k) = {x|g
i
(k) ≤ fi(k)x ≤ gi(k), i ∈ 1, lx(k)}. (45)

Note that not only fi(k), gi(k), gi(k) but also the number of constraints lx(k)
of X(k) are time-varying.

Clearly, if X (k) ⊆ X (k+1), then it is quite simple to guarantee the recursive
feasibility in CG. Otherwise, if X (k) varies arbitrarily, it becomes difficult -
if not impossible - to design a control strategy that guarantees the recursive
feasibility. A way to cope with this problem is to relax the state constraints

17

(45) as
X (k) = {x|g

i
(k)− ϵi(k) ≤ fi(k)x ≤ gi(k) + ϵi(k)}, (46)

where ϵi(k) ≥ 0, i ∈ 1, lx(k) are slack variables. Note that in addition to
guaranteeing the recursive feasibility, the use of ϵi(k) also allows to trade-off
constraint violation against the improvements in tracking performance.

Consider any matrices Ps, H satisfying (35), Y = HPs. Define

ϵ(k) = [ϵ1(k) ϵ2(k) . . . ϵlx(k)]
T . (47)

Define also the set Ωv(ϵ(k), α, Ps, H) as

Ωv(·) =
{
v

∣∣∣∣Fv(k)v ≤ g(k)− Fα(k)α− Fϵϵ(k)

}
, (48)

where Fv(k), Fα(k) and g(k) are defined in (44) with time-varying fi(k), gi(k), gi(k), ∀i ∈
1, lx(k), and

Fϵ = [−I . . .− I − I . . .− I 0 . . . 0 0 . . . 0]T .

Define
Ωe(ϵ(k), α, Ps, H) = Ωx(α, Ps) ∩ Ωv(ϵ(k), α, Ps, H). (49)

The following corollary is a direct consequence of the results in Section 4.

Corollary 1: For any α ≥ 0, ϵ(k) ≥ 0 such that Ωv(ϵ(k), α, Ps, H) is non-
empty, the set Ωe(ϵ(k), α, Ps, H) is invariant for (32) and constraint-admissible
for the input constraints (3), and for the state constraints (46).

6 Online Optimization Problem

6.1 Semi-Ellipsoidal Set Based Command Governor

The CG based on the set Ωe(ϵ, α, Ps, H) for time-varying soft constraints (46)
requires the online solution of the following optimization problem

min
v,α,ϵ

(
(v − r(k))TQt(v − r(k)) + ϵTQϵϵ

)

s.t.

[x(k)T vT]T ∈ Ωe(ϵ(k), α, Ps, H),

α ≥ 0,

ϵ ≥ 0,

(50)

where x(k) is the current state; Qt ≻ 0, Qϵ ≻ 0 are weighting matrices. The
first term in the cost function penalizes the deviation of the command from the

18

desired reference. The second term penalizes the violation of the constraints.
Note that we consider quadratic cost for ϵ in (50). However, linear cost can
also be applied, depending on the specific requirements of the problem.

Once the optimal solution (v∗(k), α∗(k), ϵ∗(k)) of (50) is found, the control
action is computed as

u(k) = sat(Kx(k) + Lv∗(k)). (51)

Using ϵ, it is clear that the optimization problem (50) is always feasible. Con-
cerning the finite time convergence for the command v, consider the case when
there exists ks such that, ∀k ≥ ks fi(k) = fi(ks), gi(k) = g

i
(ks),

gi(k) = gi(ks), r(k) = r(ks).
(52)

Denote (v∗(ks), α
∗(ks), ϵ

∗(ks))) as the optimal solution of the following problem

min
v,α,ϵ

(
(v − r(ks))

TQt(v − r(ks)) + ϵTQϵϵ
)

s.t.

v ∈ Ωv(ϵ(k), α, Ps, H),

α ≥ 0,

ϵ ≥ 0.

(53)

Note that the control scheme (50), (51) to satisfy the state constraints in a
soft way is an extension of the regular CG theory. Hence, if (52) holds for any
k ≥ ks, then there exists a time index kf such that, ∀k ≥ kf

v∗(k) = v∗(ks), α
∗(k) = α∗(ks), ϵ

∗(k) = ϵ∗(ks).

If ∃α ≥ 0 such that r(ks) ∈ Ωv(0, α, Ps, H), then v∗(ks) = r(ks), ϵ
∗(ks) = 0

is the trivial solution of (53). This means that the command converges to the
desired reference in finite time. If ∄α ≥ 0 such that r(ks) ∈ Ωv(0, α, Ps, H),
then v∗(ks) may not coincide with r(ks). The optimal solution (v∗(ks), ϵ

∗(ks)))
of (53) is the trade-off between tracking performance and constraint violation.

Concerning the online optimization problem (50), clearly, it is a convex pro-
gram. In the following we provide a way to solve efficiently (50). Our solver,
which is based on the alternating direction method of multipliers (ADMM),
can exploit the particular structure of Ωe(·). Hence, our solver can solve (50)
extremely fast via very simple mathematical operations. In the last decade,
ADMM has emerged as an effective algorithm for solving structured convex
optimization problems [3]. Our main contribution in this section is to show
how to convert (50) into a form that the sub-optimization problems associated

19

with the ADMM can be solved efficiently. To make the paper self-contained,
we recall the ADMM theory in the next section.

6.2 Alternating Direction Method of Multipliers

Consider the following optimization problem

min
s,z

h(s)

s.t.

Ms− z = b,

z ∈ Z,

(54)

where h(s) is a convex function, the matrix M and the vector b are of ap-
propriate dimension, Z is a convex set. One way to solve (54) is to form the
augmented Lagrangian

Lρ(s, z, y) = h(s) + ηT (Ms− z − b)

+ρ
2
(Ms− z − b)T (Ms− z − b),

(55)

where η is the Lagrange multiplier, ρ > 0 is a tunning parameter that presents
the trade-off between the cost function and the equality constraints.

ADMM works by solving iteratively two sub-problems and then updating the
Lagrange multiplier. At iteration q we carry out the following steps.

(1) Step 1: minimize Lρ(s, z, η) with respect to s

s(q+1) := argmin
s

{
Lρ(s, z

(q), η(q))
}
. (56)

(2) Step 2: minimize Lρ(s, z, η) with respect to z

z(q+1) := argmin
z∈Z

{
Lρ(s

(q+1), z, η(q))
}
. (57)

(3) Step 3: update the Lagrange multiplier

η(q+1) = η(q) + ρ(Ms(q+1) − z(q+1) − b). (58)

We use the superscript (q) in (56), (57), (58) to denote the values of variables
calculated at iteration q.

The ADMM is particularly useful when it is possible to solve (56), (57) effi-
ciently. The main contribution of this section is to show how to convert (50)
into a form that (56), (57) admit closed-form expressions.

20

The primal and dual residuals at iteration q are

ζ(q)p = Ms(q) − z(q) − b, ζ
(q)
d = z(q) − z(q−1). (59)

The algorithm is terminated when the primal and dual residuals satisfy a
stopping criterion. A typical criterion is ||ζ(q)p ||∞ ≤ ζp, ||ζ(q)d ||∞ ≤ ζd, where
ζp, ζd are given tolerances.

6.3 Solving the Online Optimization Problem of the Semi-Ellipsoidal Set
Based CG Using ADMM

We reformulate (50) as the optimization problem (54) as follows. Let us take

s =
[
vT α ϵT

]T
, (60)

thus, using (50), the cost function h(s) is

h(s) =
1

2
sTQs− r(k)TQT

0 s, (61)

with

Q =

Qt 0 0

0 0 0

0 0 Qϵ

 , Q0 =

Q

0

0

 .
Define the following auxiliary variables

z1 = Ds (x(k)− Lxv) , z2 = α,

z3 = Fvv + Fαα + Fϵϵ, z4 = ϵ,

z = [zT1 z2 z
T
3 z4]

T ,

(62)

where Ds ∈ Rnx×nx is a square root of P−1
s , i.e., DT

s Ds = P−1
s . Using (60), (62)

one has

Ms− z = b0x(k), (63)

with

M =

−DsLx 0 0

0 1 0

Fv Fα Fϵ

0 0 I

, b0 =

−Ds

0

0

0

.

21

Using (49), (50), one obtains the set Z

Z =

z

∣∣∣∣∣∣∣
zT1 z1 ≤ z22 , z2 ≥ 0,

z3 ≤ g(k), z4 ≥ 0.

 (64)

Hence problem (50) is reformulated as (54) with h(s),M, b = b0x(k), and Z
being given in (61), (63), (64), respectively.

Using (56), (57), (58), we carry out the following steps in each iteration.

Step 1: The optimization problem is

min
s

(
1
2
sT (Q+ ρMTM)s

−
(
MT (ρz(q) − η(q) + ρb0x(k)) +Q0r(k)

)T
s
)
.

(65)

The optimization problem (65) is an unconstrained quadratic program. The
solution to (65) is given explicitly as

s(q+1) =M
(
MT (ρz(q) − η(q) + ρb0x(k)) +Q0r(k)

)
, (66)

whereM = (Q+ ρMTM)−1.

Step 2: The optimization problem is
min
z

(
zT z − 2(Ms(q+1) + η(q)

ρ
− b0x(k))

T z
)

s.t. z ∈ Z.
(67)

Define

ν = Ms(q+1) +
η(q)

ρ
− b0x(k). (68)

Note that ν and z are of the same dimension. We rewrite ν as

ν = [νT
1 ν2 ν

T
3 νT

4]
T ,

where νi has the same dimension of zi, i ∈ 1, 4.

The cost function and the constraints of (67) are separable in zi, i ∈ 1, 4. We
can carry our their update in parallel. The update of (z1, z2) is the solution of
the following problem

min
z1,z2

(zT1 z1 + z22 − 2νT
1 z1 − 2ν2z2)

s.t. zT1 z1 ≤ z22 , z2 ≥ 0.
(69)

22

By using the method of Lagrange multipliers, the solution of (69) can be
calculated analytically as [19]

If νT
1 ν1 ≤ ν2

2 , ν2 < 0

z
(q+1)
1 = 0, z

(q+1)
2 = 0,

If νT
1 ν1 ≤ ν2

2 , ν2 ≥ 0

z
(q+1)
1 = ν1, z

(q+1)
2 = ν2,

Otherwise

z
(q+1)
1 =

ν2+
√

νT1 ν1

2
√

νT1 ν1
ν1, z

(q+1)
2 =

ν2+
√

νT1 ν1

2
.

(70)

The update of z3 is the solution of the optimization problem

min
z3

(zT3 z3 − 2νT
3 z3)

s.t. z3 ≤ g(k).
(71)

The solution of (71) can be given in the closed-form as

z
(q+1)
3 = min(ν3, g(k)), (72)

where the min operator is taken component-wise.

Analogously, the update of z4 is given as

z
(q+1)
4 = max(ν4,0), (73)

For the given stopping tolerances ϵd, ϵp and initial point (s(0), z(0), η(0)), Algo-
rithm 2 shows the ADMM algorithm applied to the problem (50)

Algorithm 2: ADMM Based Solver for (50)

1: Update s(q+1) using (66).
2: Update z(q+1) using (70), (72), (73).
3: Update η(q+1) as

η(q+1) ← η(q) + ρ(Ms(q+1) − z(q+1) − b0x(k))

Remark 6: Using Algorithm 2, the updates of s(q) and z(q) are given explicitly
with the use of the auxiliary variables (62). The use of other types of auxiliary
variables, e.g., z3 = d2−Lxθ2 instead of (62), would lead to a sub-optimization
problem of the ADMM, which does not have an explicit solution.

23

7 Examples

This section illustrates the potential benefit of the new methods by simula-
tions of three examples system. The CVX toolbox [8] was used to solve SDP
optimization problems. For comparison purpose, we denote the standard poly-
hedral based CG, the semi-ellipsoidal set based CG with linear feedback, and
with saturated feedback as StdCG, LiCG, and SatCG, respectively. We use
an Intel Core i7-10610U 1.8GHz to evaluate the algorithms.

7.1 Example 1: Time-Invariant Hard Constraints

This example is taken from [4]. Consider system (2) with

A =

 1 0.1

0 1

 , B =

 0

0.1

 , C =
[
1 0

]
. (74)

The gain K is given as

K =
[
−4.2674 −3.1426

]
. (75)

The input and state constraints are −0.2 ≤ u ≤ 0.2, −1 ≤ x1 ≤ 2.

By solving the SDP problem (25) with vf = 0, one gets

P =

 0.0118 −0.0184

−0.0184 0.0322

 .
By solving the SDP problem (41) with vf = 0, one obtains

Ps =

 0.0947 −0.0708

−0.0708 0.1180

 ,
H = [−0.6141 − 0.7835].

(76)

For this example, we were able to calculate the maximal invariant and constraint-
admissible set Ωp with µ = 10−4. Fig. 1 presents the projection of Ωp, of
Ωe(α, P) and of Ωe(α, Ps, H) onto the x−space. The projection of these sets
are the feasible sets of StdCG, LiCG and SatGG. We can observe that: i) the
feasible set of LiCG is slightly smaller than that of StdCG; ii) both of them
are much smaller than that of SatCG.

24

-1 -0.5 0 0.5 1 1.5 2

x
1

-0.4

-0.2

0

0.2

0.4

x
2

Fig. 1. Feasible sets and phase-space trajectories for example 1. Projection of
Ωe(α, P) onto the x−space (dashed magenta), projection of Ωe(α, Ps, H) onto the
x−space (solid cyan), projection of the maximal invariant and constraint-admissi-
ble polyhedral set onto the x−space (dash-dot yellow). Phase-space trajectory of
StdCG (dash-dot green), of LiCG 2 (dashed red), and of SatCG 3 (solid blue).

For the initial condition x(0) = [−0.95 0]T and for the reference r(k) = 1.95,
Fig 1 shows the phase-space trajectory of the three algorithms.

Fig. 2 presents the state, the command and the input trajectories as func-
tions of time for the three algorithms. We observe that SatCG has the best
performance in terms of transient time, followed by StdCG, then by LiCG.

Finally, using the function TIC/TOC of MATLAB 2023b, we found that the
online computation time for one sampling interval was 3.1312 × 10−3[sec],
1.7415 × 10−4[sec], and 1.5775 × 10−4[sec] for StdCG, LiCG, and SatCG, re-
spectively. We use quadprog solver in Matlab to solve the online quadratic
program of StdCG.

7.2 Example 2: Time-Varying Soft Constraints

We consider system (2) with A,B,C,K being given in (74), (75). The input
constraints are −0.2 ≤ u ≤ 0.2. The objective is to design a CG based con-
trol law that tracks a time-varying piecewise constant reference r(k) while
managing overshoot of the output. The reference r(k) is

r(k) =

 1, if k ≤ 120,

2, otherwise
(77)

25

0 50 100 150 200 250

Time Index

-1

0

1

2

x
1

0 50 100 150 200 250

Time Index

0

0.1

0.2

0.3

x
2

(a) State trajectories.

0 50 100 150 200 250

Time Index

-1

0

1

2

v

0 50 100 150 200 250

Time Index

-0.2

0

0.2

u

(b) Command and input trajectories

Fig. 2. (a) State trajectories; (b) Command and input trajectories for StdCG (dash–
dot green), for LiCG (dashed red), for SatCG (solid blue) for example 1.

For managing overshoot of the output, we impose the following constraint on
x1 at time k, x1(k) ≤ r(k) + ϵ1(k), if x1(0) ≤ r(0),

x1(k) ≥ r(k)− ϵ1(k), if x1(0) ≥ r(0),
(78)

where ϵ1 ≥ 0.

To demonstrate the ability of the proposed algorithms to handle arbitrarily
time-varying constraints, we consider the following constraint on x2 in addition
to (78)

x2(k) ≤ 0.3, if k ≥ 120, (79)

26

To guarantee that the optimization problem is always feasible, we relax the
constraint (79) as

x2(k) ≤ 0.3 + ϵ2(k), if k ≥ 120, (80)

where ϵ2 ≥ 0.

The initial condition is x(k) = [0 0]T . For simplicity of discussion, we apply
only SatCG in this example. We use Ps, H in (76) for the set Ωe(ϵ(k), α, Ps, H).
Three difference simulations consist of three different weights for the optimiza-
tion problem (50), Qt = 1 and Qϵ = diag([10 400]), Qϵ = diag([1 400]), Qϵ =
diag([0.1 400]). Note that the weight of ϵ2 is significantly larger than that of
the other two terms. his implies that it is desirable for x2(k) not to violate the
constraint (79).

Fig. 3 presents the reference, the state, the command, and the input trajec-
tories for SatCG with different Qϵ. Fig. 3 also presents the simulation results
when v(k) = r(k) is directly applied to the system, i.e., without using CG.

For a given constant reference r, define the percentage overshoot as

PO = 100max
k

y(k)− r

r

We can observe that

• Without using CG, the PO is about 36%.
• The PO is 6% for the CG with Qϵ = diag([0.1 400]).
• The PO is 0% for the CG withQϵ = diag([1 400]), and withQϵ = diag([10 400]).
• The transient time of the CG with Qϵ = diag([1 400]) is shorter than that
of the CG with Qϵ = diag([10 400]).
• The time-varying constraint (79) is satisfied for all three CG schemes.

7.3 Example 3: High-Order System

This example is inspired by the case study from [13]. We consider a system of
p objects connected by springs, illustrated in Fig. 4.

The mass are all taken as m = 2[kg]. The spring constants are ks = 1[N/m].
There are two external forces acting on the system: a force u1[N] acting on
the first object and a force u2[N] acting on the last object. The system can be
described using a set of differential equations. For the first object,

mp̈1 = −2ksp1 + ksp2 + u1. (81)

For object i, i ∈ 2, p− 1

mp̈i = kspi−1 − 2kspi + kspi+1. (82)

27

0 150 200 250

Time Index

0

1
1.36

2.36

x
1

40 50 60

11.06

1.36

0 50 100 150 200 250

Time Index

-0.2

0

0.3

x
2

(a) Reference and state trajectories.

0 50 100 150 200 250

Time Index

0

1

2

v

0 50 100 150 200 250

Time Index

-0.2

0

0.2

u

(b) Command and input trajectories

Fig. 3. (a) Reference (dash-dot violet) and state trajectories; (b) Command
and input trajectories for SatCG with Qϵ = diag([10 400]) (dashed blue),
Qϵ = diag([1 400]) (solid red), Qϵ = diag([0.1 400]) (solid green), and without
using CG (dash-dot magenta) for example 2.

Fig. 4. Chain of p masses for example 3.

28

For the last object,
mp̈p = kspp−1 − 2kspp + u2. (83)

The state of the system is given by the position pi[m], and velocity vi[m/s], of
each object, i = 1, p, i.e.,

x = [p1 p2 . . . pp v1 v2 . . . vp]
T (84)

The input is u = [u1 u2]
T , and the output is y = [p1 pp]

T .

We compute a model (2) by using a sampling time of Ts = 0.01[sec], and a
zero-order hold. We consider the following state and input constraints: |xi| ≤
1, i ∈ 1, p, |u1| ≤ 1, |u2| ≤ 1. For this example, we add slack variables ϵi ≥ 0
to relax the state constraints |xi| ≤ 1, i ∈ 1, p. As a result |xi| ≤ 1+ϵi, i ∈ 1, p.

The feedback gain K is chosen as an LQ gain with the following state and
control weighting matrices

Qx =

 I 0

0 0

 , Qu = 10−2I.

The matrices P, Ps, H are optimized, respectively, by using (25), (41) with
f(P) = −logdet(P), f(Ps) = −logdet(Ps). Numerical values for K,P, Ps, H
are reported in the Appendix for p = 5.

Table 1 shows the number of ellipsoids and the number of linear inequali-
ties, i.e., half-spaces required to describe Ωe(ϵ(k), α, Ps, H) for p = 3, 4, 5. For
comparison purpose, Table 1 also shows the number of half-spaces required to
describe the maximal invariant and constraint admissible set Ωp with µ = 0.01.
We used standard procedures in [7] to construct Ωp where the state constraints
are hard, i.e., |xi| ≤ 1, i ∈ 1, p. Note that we were not be able to find Ωp for
p = 5.

p 3 4 5

Poly- 3912 8968 ?

hedral half-spaces half-spaces

Semi 1 ellipsoid + 1 ellipsoid + 1 ellipsoid+

-ellipsoid 14 half-spaces 17 half-spaces 20 half-spaces

Table 1
Complexity of the set representation for example 3.

The weighting matrices for the optimization (50) are Qt = I, Qϵ = 10I. The
reference is r(k) = [1 1]T . The initial condition is zero. Using p = 5, Fig 5
presents the reference (dash-dot green), the state, the command and the input
trajectories as functions of time for LiCG, and for SatCG.

29

(a) Reference and state trajectories.

0 5 10 15 20 25 30 35 40

Time[s]

0

0.2

0.4

0.6

0.8

1

v
1

0 5 10 15 20 25 30 35 40

Time[s]

0

0.2

0.4

0.6

0.8

1
v

2

0 5 10 15 20 25 30 35 40

Time[s]

-0.2

0

0.2

0.4

0.6

0.8

1

u
1

0 5 10 15 20 25 30 35 40

Time[s]

-0.2

0

0.2

0.4

0.6

0.8

1

u
2

(b) Command and input trajectories

Fig. 5. (a) Reference (dash-dot green) and state trajectories; (b) Command and
input trajectories for LiCG (dashed red) and for SatCG (solid blue) for example 3.

Finally, using the function TIC/TOC of MATLAB 2023b, we found that the
online computation time for one sampling interval was 9.7564×10−4[sec], and
9.6241× 10−4[sec] for LiCG and for SatCG, respectively.

30

8 Conclusion

In this paper we provide new command governor schemes that employ a
semi-ellipsoidal set. We address both linear and saturated feedback cases, for
which we propose new linear matrix inequality conditions to construct an in-
variant and constraint-admissible semi-ellipsoidal set. Furthermore, we show
that these conditions can be extended to handle time-varying soft constraints,
providing great flexibility and adaptability. To solve the online optimization
problem associated with the introduced semi-ellipsoidal set, we propose a tai-
lored alternating direction method of multipliers based technique. The main
feature of the new technique is that it requires very simple mathematical
operations at each iteration, thus ensuring numerical efficiency for real-time
applications. Given the fixed complexity in representing the considered semi-
ellipsoidal sets, the proposed approaches are suitable for medium to large-sized
systems. Three numerical examples with comparison to earlier solutions in the
literature demonstrate the effectiveness of the new methods.

References

[1] Franco Blanchini, Stefano Miani, et al. Set-theoretic methods in control,
volume 78. Springer, 2008.

[2] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan
Balakrishnan. Linear matrix inequalities in system and control theory. SIAM,
1994.

[3] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine learning, 3(1):1–
122, 2011.

[4] Andres Cotorruelo, Daniel Limon, and Emanuele Garone. Output admissible
sets and reference governors: Saturations are not constraints! IEEE
Transactions on Automatic Control, 65(3):1192–1196, 2019.

[5] Emanuele Garone, Stefano Di Cairano, and Ilya Kolmanovsky. Reference and
command governors for systems with constraints: A survey on theory and
applications. Automatica, 75:306–328, 2017.

[6] Elmer G Gilbert and Ilya Kolmanovsky. Fast reference governors for systems
with state and control constraints and disturbance inputs. International Journal
of Robust and Nonlinear Control: IFAC-Affiliated Journal, 9(15):1117–1141,
1999.

[7] Elmer G Gilbert and K Tin Tan. Linear systems with state and control
constraints: The theory and application of maximal output admissible sets.
IEEE Transactions on Automatic control, 36(9):1008–1020, 1991.

31

[8] Michael Grant, Stephen Boyd, and Yinyu Ye. Cvx: Matlab software for
disciplined convex programming, 2008.

[9] Tingshu Hu, Zongli Lin, and Ben M Chen. Analysis and design for discrete-
time linear systems subject to actuator saturation. Systems & control letters,
45(2):97–112, 2002.

[10] Lars Imsland, Nadav Bar, and Bjarne A Foss. More efficient predictive control.
Automatica, 41(8):1395–1403, 2005.

[11] Uroš Kalabić, Yash Chitalia, Julia Buckland, and Ilya Kolmanovsky.
Prioritization schemes for reference and command governors. In 2013 European
Control Conference (ECC), pages 2734–2739. IEEE, 2013.

[12] Uroš Kalabić and Ilya Kolmanovsky. Reference and command governors for
systems with slowly time-varying references and time-dependent constraints. In
53rd IEEE conference on decision and control, pages 6701–6706. IEEE, 2014.

[13] Markus Kögel and Rolf Findeisen. A fast gradient method for embedded linear
predictive control. IFAC Proceedings Volumes, 44(1):1362–1367, 2011.

[14] Benôıt Legat, Saša V Raković, and Raphaël M Jungers. Piecewise semi-
ellipsoidal control invariant sets. IEEE Control Systems Letters, 5(3):755–760,
2020.

[15] Daniel Limón, Ignacio Alvarado, Teodoro Alamo, and Eduardo F Camacho.
Mpc for tracking piecewise constant references for constrained linear systems.
Automatica, 44(9):2382–2387, 2008.

[16] Johan Lofberg. Yalmip: A toolbox for modeling and optimization in matlab.
In 2004 IEEE international conference on robotics and automation (IEEE Cat.
No. 04CH37508), pages 284–289. IEEE, 2004.

[17] Hoai-Nam Nguyen. Constrained control of uncertain, time-varying, discrete-
time systems. Lecture Notes in Control and Information Sciences, 451:17, 2014.

[18] Hoai-Nam Nguyen. Ellipsoidal set based extended command governor for
constrained linear systems with bounded disturbances. IEEE Transactions on
Automatic Control, 2022.

[19] Hoai-Nam Nguyen. Improved prediction dynamics for robust mpc. IEEE
Transactions on Automatic Control, 2022.

[20] Brian D O’Dell and Eduardo A Misawa. Semi-ellipsoidal controlled invariant
sets for constrained linear systems. J. Dyn. Sys., Meas., Control, 124(1):98–103,
2002.

32

APPENDIX: Numerical values for K,P, Ps, H for p = 5 in example 3.

K = −

 12.063 −1.316 1.339 1.316 1.153 6.939 13.623 5.390 4.426 0.330

1.153 1.316 1.339 −1.316 12.063 0.330 4.426 5.390 13.623 6.939

 ,

P =

0.38 0.09 −0.09 −0.02 0.06 −0.01 −0.35 0.10 −0.01 −0.01

0.09 0.55 0.23 −0.00 −0.02 0.29 −0.13 −0.13 0.02 −0.01

−0.09 0.23 1.00 0.23 −0.09 −0.13 0.05 −0.03 0.05 −0.13

−0.02 −0.00 0.23 0.55 0.09 −0.01 0.02 −0.13 −0.13 0.29

0.06 −0.02 −0.09 0.09 0.38 −0.01 −0.01 0.10 −0.35 −0.01

−0.01 0.29 −0.13 −0.01 −0.01 0.36 −0.05 −0.18 0.02 0.10

−0.35 −0.13 0.05 0.02 −0.01 −0.05 0.39 −0.20 −0.01 0.02

0.10 −0.13 −0.03 −0.13 0.10 −0.18 −0.20 0.67 −0.20 −0.18

−0.01 0.02 0.05 −0.13 −0.35 0.02 −0.01 −0.20 0.39 −0.05

−0.01 −0.01 −0.13 0.29 −0.01 0.10 0.02 −0.18 −0.05 0.36

,

H = −

 1.835 −0.743 0.554 −0.051 0.398 1.800 1.648 0.864 0.719 0.202

0.371 −0.056 0.535 −0.744 1.807 0.185 0.695 0.875 1.634 1.814

 ,

Ps =

0.69 0.29 −0.14 −0.08 0.02 −0.04 −0.56 0.16 0.04 −0.01

0.29 1.00 0.15 −0.24 −0.07 0.38 −0.18 −0.12 0.02 −0.06

−0.14 0.16 1.00 0.23 −0.10 −0.15 0.09 −0.07 0.07 −0.14

−0.08 −0.24 0.23 1.10 0.32 −0.06 0.01 −0.12 −0.21 0.40

0.01 −0.07 −0.10 0.32 0.71 −0.01 0.05 0.15 −0.57 −0.04

−0.04 0.38 −0.15 −0.06 −0.01 0.70 −0.04 −0.28 0.03 0.10

−0.56 −0.18 0.09 0.01 0.05 −0.04 0.66 −0.25 −0.16 0.02

0.16 −0.12 −0.07 −0.12 0.15 −0.28 −0.25 0.92 −0.24 −0.27

0.04 0.02 0.07 −0.21 −0.57 0.03 −0.16 −0.24 0.67 −0.04

−0.01 −0.06 −0.14 0.40 −0.04 0.10 0.02 −0.27 −0.04 0.69

33

