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Abstract

This paper provides a solution for a command governor (CG) that employs a semi-ellipsoidal set. The motivation is driven by
the need to address the shortcomings of polyhedral and ellipsoidal sets widely used in CG. In particular for many applications,
polyhedral sets are too complex to construct while ellipsoidal sets are too conservative. Furthermore, both types of sets are
generally designed for systems with time-invariant and hard constraints. The contributions of the paper are: i) we provide new
convex conditions to construct an invariant and constraint-admissible semi-ellipsoidal set for discrete-time linear systems with
both time-invariant/time-varying and/or hard/soft constraints; ii) we propose a computationally efficient procedure to solve
the online optimization problem associated with the newly introduced semi-ellipsoidal set in CG. Three numerical examples
with comparison to earlier solutions from the literature illustrate the effectiveness of the proposed approach.
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1 Introduction

This paper is concerned with the tracking problem of
discrete-time linear time-invariant systems, subject to
possibly time-varying and/or soft constraints on both
input and state. This is a problem that has been exten-
sively studied over the last decades, and a number of
different solutions are available as, for example, those
based on model predictive control (MPC) [14], or com-
mand governor (CG) [5].

In MPC [14], an optimization problem is solved at each
time instant to find the optimal input that drives the
predicted plant output to the desired reference. MPC
provides a natural way to take the time-varying and/or
soft constraints into account. However, it is not trivial to
guarantee recursive feasibility and asymptotic stability
for MPC with time-varying and/or soft constraints.

CG provides a useful alternative to MPC [5]. The main
idea of CG is to use optimization to find the best applied
reference or equivalently the command based on the cur-
rent state and the current value of the desired reference.
CGmay be attractive to practitioner concerned with on-
line computational effort and/or interested in preserving
an existing well-designed nominal controller.
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In CG, the state and the command are imposed to lie in
the set Ω, which is invariant and constraint-admissible.
The set Ω is constructed offline, and is used to guar-
antee the constraint satisfaction. In CG, ellipsoidal [17]
and polyhedral sets [6] are widely considered for Ω. The
popularity of ellipsoidal sets stems from their compu-
tational efficiency via linear matrix inequality (LMI)
formulation, their fixed complexity with respect to the
state space dimension. However, it is well known [1], [16]
that ellipsoids provide a conservative approximation of
the domain of attraction (DoA). In contrast, polyhedral
sets can provide a less conservative solution. However,
constructing a polyhedral invariant set is computation-
ally demanding, especially for CG, where the extended
closed-loop system matrix is of high dimension, and has
eigenvalues on the unit circle.

The set Ω is computed using iterative procedures and/or
convex optimization. In general, there is no closed-form
relationship between Ω and the state/input constraint
sets. Consequently, considering time-varying and/or soft
constraints in CG is not straightforward. As a result,
most of CG schemes in the literature assume that the
constraints are time-invariant and hard. There are only
two papers that we are aware of, and that consider time-
varying or soft constraints: [11], [12]. In [12], it was shown
that the use of strictly contractive sets instead of invari-
ant ones can handle time-varying constraints, if the con-
straints vary slowly enough. In [11], slack variables were
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considered to relax the constraints. However, the intro-
duction of slack variables along with the command in
the state extension makes the problem of constructing
Ω very complex.

In [13], [19] an interesting class of invariant and
constraint-admissible sets is considered for nominal lin-
ear systems with input and state constraint. The set,
which is called semi-ellipsoidal set, is formed as the in-
tersection of ellipsoidal and polyhedral sets. However,
the construction of the set is based on a non-convex
optimization problem.

In this paper, we follow the works in [13], [19]. The main
aim is to propose new CG schemes that employ invari-
ant and constraint-admissible semi-ellipsoidal sets. The
main contributions of the paper are:

(1) To the best of the author’s knowledge, this is the
first time a semi-ellipsoidal set is used in the context
of a CG.

(2) We provide new convex conditions to construct an
invariant and constraint-admissible semi-ellipsoidal
set for CGs with linear feedback. The new set is
formed explicitly by the state and input constraint
sets. Consequently, it can be easily extended to deal
with time-varying and/or soft constraints.

(3) As shown in [4] for CGs, using saturated feed-
back instead of linear one can enlarge the DoA,
and hence improve the transient time. We pro-
vide convex conditions to construct invariant
and constraint-admissible semi-ellipsoidal sets for
CGs with saturated feedback. We consider both
time-invariant/time-varying and/or hard/soft con-
straints.

(4) Moving from an ellipsoidal and polyhedral set to
a semi-ellipsoidal set introduces new types of con-
straints. Hence, the new optimization problem is no
longer a quadratically constrained quadratic pro-
gram [17] or a quadratic progam [6]. We develop
a tailored algorithm specifically for the new opti-
mization problem.

It is worth noticing that the set Ω is not required to be
invariant in CG, but only to be a subset of the maxi-
mal admissible set [6]. This may simplify the offline con-
struction of Ω and the online optimization problem. The
price to be paid is a potential loss of performance, see,
e.g., [20].

The paper is organized as follows. Section 2 covers the
problem formulation and earlier works on CG. Sec-
tion 3, Section 4 are, respectively, dedicated to the
construction of an invariant and constraint-admissible
semi-ellipsoidal set with linear feedback, with saturated
feedback for time-invariant and hard constraints. Then
in Section 5, we extend the results in Section 3 and Sec-
tion 4 to cope with time-varying and/or soft constraints.
Section 6 is concerned with the online optimization

problem. Three numerical examples with comparison
to earlier solutions from the literature are evaluated in
Section 7. Finally, Section 8 concludes the article.

Notation: We denote by R the set of real numbers, by
Rn the set of real n × 1 vectors, by Rn×m the set of
real n×m matrices. We use 0, I, respectively, to denote
the zero matrix, and the identity matrix of appropriate
dimension. We denote a positive definite matrix P by
P ≻ 0. For a given P ≻ 0, E(P ) represents the following
ellipsoid

E(P ) := {x ∈ Rnx : xTP−1x ≤ 1} (1)

For a given integer n, we use 1, n to denote the set
1, 2, . . . , n. For symmetric matrices, the symbol (∗) de-
notes each of its symmetric block.

2 Problem Formulation and Earlier Works on
Command Governor

2.1 Problem Formulation

We consider the following discrete-time linear time-
invariant system

{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(2)

where x(k) ∈ Rnx , u(k) ∈ Rnu , and y(k) ∈ Rny are,
respectively, the state, the control input, and the output.
A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx .

The state x(k) and the input u(k) are subject to the con-
straints x(k) ∈ X, u(k) ∈ U , where X,U are polyhedral
sets with{

X := {x ∈ Rnx : g
i
≤ fT

i x ≤ gi,∀i = 1, lx}
U := {u ∈ Rnu : uj ≤ uj ≤ uj ,∀j = 1, nu}

(3)

where fi ∈ Rnx , g
i
∈ R, gi ∈ R, uj ∈ R, uj ∈ R,

∀i = 1, lx,∀j = 1, nu. At the moment for simplicity,
we consider the case where the constraints (3) are time-
invariant and hard.

Control Objectives: For a given reference signal
r(k) ∈ Rny , the objective of the paper is to calculate
a CG based control action u(k) = U(x(k), r(k)) such
that: ii) the output y(k) follows as close as possible to
r(k); ii) the state and input constraints (3) are fulfilled.

We recall some earlier works on CG in the next section.
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2.2 Earlier Works on Command Governor

Any steady state (xs, us, ys) of the system (2) satisfies
the following equation[

A− I B

C 0

][
xs

us

]
=

[
0

I

]
ys (4)

For simplicity, in the rest of the paper we assume that[
A− I B

C 0

]
is invertible. In this case we can express the

solution of (4) as

xs = Lxv, us = Luv (5)

where v = ys is the so-called command, Lx ∈ Rnx×ny ,
Lu ∈ Rnu×ny .

The CG is an add-on scheme for enforcing the state and
input constraints. It is based on an assumption that an
asymptotically stabilizing control law u(k) = Kx(k) is
available. This control law is designed to satisfy some
performance specifications for small signals near the ori-
gin. In the CG, the control input is of the form

u(k) = K(x(k)− xs) + us = Kx(k) + Lv (6)

where L = Lu −KLx.

By substituting (6) into (2), and by considering v(k +
1) = v(k), we can express the closed-loop system as

xe(k + 1) = Aexe(k) (7)

where xe(k) = [x(k)T v(k)T ]T , and

Ae :=

[
A+BK BL

0 I

]

Using (6), the constraints (3) become xe ∈ Xe with

Xe :=

{
x ∈ Rnx , v ∈ Rny :

∣∣∣∣∣ x ∈ X

Kx+ Lv ∈ U

}
(8)

We say that a set Ω ⊂ Rnx+nv is invariant for (7) if
∀xe(k) ∈ Ω, one has xe(k + 1) ∈ Ω. In addition, if Ω ⊆
Xe, then Ω is constraint-admissible with respect to (8).

For a given state x(k) and a given reference signal r(k)
at time instant k, the CG applies the control law u(k) =
Kx(k) + Lv∗(k) to the system (2), where v∗(k) is the

solution of the following optimization problem

min
v
{(v − r(k))TQ(v − r(k))}

s.t.
[
x(k)T vT

]T
∈ Ω

(9)

whereQ ≻ 0 is a weightingmatrix, andΩ is any invariant
and constraint-admissible set for (7), (8).

The basic idea of CG is the following. If there is no con-
straint violation, then v∗(k) = r(k) is the solution of (9).
Hence, the CG does not interfere with the operation of
the system. If a potential for constraint violation exists,
the CG seeks the closest admissible command v∗(k) to
r(k). In the extreme case thanks to the robust invari-
ance of Ω, v(k + 1) = v∗(k) remains a feasible solution
of (9). This implies that the CG temporarily isolates the
system from further variations of the reference to assure
the constraint satisfaction.

Assuming feasibility at the initial condition, the CG (6),
(9) guarantees recursive feasibility, i.e., if (9) is feasible at
time k, then it is feasible at time k+1. If r(k) = r remains
constant and r is reachable, then v∗(k) converges to r in a
finite time. If r is not reachable, then v∗(k) will converge
to the closest feasible value to r in a finite time. The
finite-settling-time convergence is a desirable property.
It shows that after transients caused by large changes
in r(k), the CG (6), (9) becomes inactive and nominal
closed-loop system performance is recovered.

As written in Introduction, in the CG literature, only
ellipsoidal and polyhedral sets are used for Ω. The aim of
this paper is to propose new CG schemes that are based
on semi-ellipsoidal sets. We will first consider a semi-
ellipsoidal set with a linear feedback.We then extend our
approach to the case of nonlinear saturated feedback.

3 Semi-Ellipsoidal Set with Linear Feedback

In this section, we will provide a convex procedure to
obtain an invariant and constraint-admissible semi-
ellipsoidal set for (7), (8). The main idea is to exploit
the particular structure of Ae, Ee. Starting from the
original x−space, we show how to obtain invariance and
constraint-admissibility conditions for semi-ellipsoidal
set in the extended xe−space via the translation and
the scaling operators.

3.1 Translation

For a given P ≻ 0, consider the sets Ωx(P ) and Ωv(P )
with

Ωx(P ) :=

{[
x

v

]
:
∣∣∣ (x− Lxv)

TP−1(x− Lxv) ≤ 1

}
(10)
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and, ∀i = 1, lx,∀j = 1, nu

Ωv(P ) :=


v :

∣∣∣∣∣∣∣∣∣∣∣

−fT
i Lxv ≤ −gi −

√
fT
i Pfi

fT
i Lxv ≤ gi −

√
fT
i Pfi

−Lu,jv ≤ −uj −
√
KjPKT

j

Lu,jv ≤ uj −
√
KjPKT

j


(11)

where Lu,j and Kj are, respectively, the j−th row of Lu

and K.

In the (x, v)−space, Ωx(P ) is an unbounded ellipsoid.
In the x−space, Ωx(P ) is the translation of E(P ) from
the origin to the point Lxv. In other words, Ωx(P ) is an
ellipsoid centered at Lxv. Define

Ωe(P ) := Ωx(P ) ∩ Ωv(P ) (12)

Clearly, Ωe(P ) is a semi-ellipsoidal set as it is the in-
tersection of the ellipsoid Ωx(P ) and the polyhedral set
Ωv(P ).

Remark 1: There is another useful geometric interpre-
tation of Ωe(P ), namely, Ωe(P ) is a parameterized el-
lipsoid Ωx(P ) with its center constrained within the set
Ωv(P ). 2

Theorem 1: The set Ωe(P ) is invariant and constraint-
admissible for (7), (8) if and only if P satisfies the fol-
lowing condition [

P AcP

(∗) P

]
⪰ 0, (13)

Proof: We divide the proof into two parts: invariance
proof and constraint admissibility proof.

Invariance Proof: One needs to show that ∀xe(k) ∈
Ωe(P ), one has xe(k + 1) ∈ Ωe(P ). As v(k + 1) = v(k),
it is clear that xe(k + 1) ∈ Ωv(P ) if xe(k) ∈ Ωv(P ).

It remains to show that xe(k + 1) ∈ Ωx(P ). Using (6),
(7), one gets

x(k + 1) = Acx(k) +B(us(k)−Kxs(k)) (14)

where xs(k) = Lxv(k), us(k) = Luv(k). Using (4), (5)
one gets

xs(k + 1) = Axs(k) +Bus(k)

where xs(k + 1) = Lxv(k + 1). Thus, with (14)

x(k + 1)− xs(k + 1) = Ac(x(k)− xs(k))

or, equivalently

ζ(k + 1) = Acζ(k) (15)

where ζ(k) = x(k)−Lxv(k). It is well known [2] that con-
dition (13) is necessary and sufficient for the invariance
of E(P ) with respect to (15). Hence, ∀x(k),∀v(k) such
that (x(k)−Lxv(k))

TP−1(x(k)−Lxv(k)) ≤ 1, one has
(x(k+1)−Lxv(k+1))TP−1(x(k+1)−Lxv(k+1)) ≤ 1.
It follows that xe(k + 1) ∈ Ωx(P ), ∀xe(k) ∈ Ωx(P ).

Constraint Admissibility Proof: One needs to show
that Ωe(P ) ⊆ Xe, or equivalently x ∈ X,Kx + Lv ∈
U,∀xe ∈ Ωe(P ). First we will show that x ∈ X,∀xe ∈
Ωe(P ). For a given v ∈ Rny , consider the following op-
timization problem, i ∈ 1, lx

min
x
{fT

i x}

s.t. (x− Lxv)
TP−1(x− Lxv) ≤ 1

(16)

As the cost is linear, the constraint of (16) is always
active. The Lagrangian is

L(x, λ) = fT
i x+

λ

2

(
(x− Lxv)

TP−1(x− Lxv)− 1
)

where λ > 0 is the Lagrange multiplier. One has

∂L
∂x

= fi + λ∗P−1(x∗ − Lxv) = 0

Therefore x∗ = Lxv − 1
λ∗Pfi. As the constraint in (16)

is active, one obtains

(Lxv −
1

λ∗Pfi − Lxv)
TP−1(Lxv −

1

λ∗Pfi − Lxv) = 1

or equivalently, λ∗ =
√
fT
i Pfi. Hence

x∗ = Lxv −
1√

fT
i Pfi

Pfi

It follows that

min
x
{fT

i x} = fT
i Lxv −

√
fT
i Pfi

Using (11), ∀v ∈ Ωv(P ) one has fT
i Lxv−

√
fT
i Pfi ≥ g

i
,

∀i = 1, lx. Therefore, ∀i = 1, lx

min
x
{fT

i x} ≥ g
i
,∀xe ∈ Ωe(P ) (17)

Analogously, it can be shown that

max
x
{fT

i x} ≤ gi,∀xe ∈ Ωe(P ) (18)

Combining (17), (18), one gets x ∈ X,∀xe ∈ Ωe(P ).
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Now we show that Kx + Lu ∈ U,∀xe ∈ Ωe(P ). Using
similar arguments like those for the state constraints, it
can be shown that for a given v, ∀xe ∈ Ωx(P )

min
x
{Kjx+ Ljv} = Lu,jv −

√
KjPKT

j

where Lj is the j−th row of L. Using (11), ∀v ∈ Ωv(P )
one has

Lu,jv −
√
KjPKj ≥ uj

Hence, ∀j = 1, nu

min
x
{Kjx+ Ljv} ≥ uj ,∀xe ∈ Ωe(P ) (19)

Analogously, one obtains

max
x
{Kjx+ Ljv} ≤ uj ,∀xe ∈ Ωe(P ) (20)

Using (19), (20), one gets xe ∈ Ωv∀xe ∈ Ωe(P ). The
proof is complete. 2

Once invariance and constraint-admissibility conditions
for Ωe(P ) are obtained, our next step is to maximize the
size of Ωe(P ). As Ωe(P ) can be considered as a parame-
terized ellipsoid, our idea is to optimize Ωx(P ) or equiv-
alently P for a particular fixed value of v = vf , vf ∈
Ωv(P ). Using (11), since fT

i Pfi ≥ 0,KjPKT
j ≥ 0 we

obtain a necessary condition of vf for guaranteeing that
P exists {

g
i
≤ fT

i Lxvf ≤ gi,∀i = 1, lx,

uj ≤ LT
u,jvf ≤ uj ,∀j = 1, nu

(21)

Using (11), for a fixed vf satisfying (21), the constraints
on P are

fT
i Pfi ≤

(
fT
i Lxvf − g

i

)2
,∀i = 1, lx

fT
i Pfi ≤

(
fT
i Lxvf − gi

)2
,∀i = 1, lx

KjPKT
j ≤

(
Lu,jvf − uj

)2
,∀j = 1, nu

KjPKT
j ≤ (Lu,jvf − uj)

2
,∀j = 1, nu

(22)

The problem of optimizing P can be formulated as

min
P
{f(P )}

s.t. (13), (22)
(23)

where f(P ) can be any convex function, such as
−logdet(P ), −tr(P ), e.t.c.

Remark 2: A simple choice for vf is vf = 0, if X,U
contain the origin in their interior. 2

Problem (23) is a convex semi-definite program (SDP).
We can solve it efficiently using free available LMI parser
such as YALMIP [15] or CVX [8].

3.2 Scaling

In this section we show how to use the scaling operator to
enlarge the semi-ellipsoidal set obtained in Section 3.1.
We assume that Ωe is available as a result from Section
3.1. For a given scalar α ≥ 0, define

Ωx(α, P ) :=

{[
x

v

]
:
∣∣∣ (x− Lxv)

TP−1(x− Lxv) ≤ α2

}
(24)

and, ∀i = 1, lx,∀j = 1, nu

Ωv(α, P ) :=


v :

∣∣∣∣∣∣∣∣∣∣∣

−fT
i Lxv ≤ −gi − α

√
fT
i Pfi

fT
i Lxv ≤ gi − α

√
fT
i Pfi

−Lu,jv ≤ −uj − α
√

KjPKT
j

Lu,jv ≤ uj − α
√
KjPKT

j


(25)

Define also

Ωe(α, P ) := Ωx(α, P ) ∩ Ωv(α, P ) (26)

It is clear that Ωe(α, P ) is a semi-ellipsoidal set.

Note that Ωx(α, P ) is an unbounded ellipsoid in the
(x, v)−space for any α ≥ 0. Note also that Ωx(α, P )
is the scaling of Ωx(P ) with the scaling factor α, i.e.,
∀[xT vT ]T ∈ Ωx(P ), one has [αxT αvT ]T ∈ Ωx(α, P ).
However, this is not the case for Ωv(α, P ), i.e., Ωv(α, P )
is not a scaling of Ωv(P ).

Theorem 2: Given any α ≥ 0 such that Ωv(α, P ) is
non-empty. If Ωe(P ) is invariant for (7), then Ωe(α, P )
is invariant and constraint-admissible for (7), (8).

Proof: Similar to the proof of Theorem 1, we divide the
proof of Theorem 2 into two parts: invariance proof and
constraint-admissibility proof.

Invariance Proof: Clearly, for any α such that
Ωv(α, P ) is non-empty, one has xe(k + 1) ∈ Ωv(α, P ),
∀xe(k) ∈ Ωv(α, P ) as v(k + 1) = v(k).

It remains to prove that xe(k+1) ∈ Ωx(α, P ), ∀xe(k) ∈
Ωe(α, P ). Note that if α = 0, then xe(k) ∈ Ωe(α, P ) if
and only if xe(k) = 0. Hence xe(k + 1) = 0 ∈ Ωe(α, P ).
If α > 0, one has

xe(k + 1)

α
= Ae

xe(k)

α

Using the two facts that: i) xe(k)
α ∈ Ωe(P ),∀xe(k) ∈

Ωe(α, P ), ∀α > 0; ii) Ωe(P ) is invariant for (7), on gets
xe(k+1)

α ∈ Ωe(P ). It follows that xe(k + 1) ∈ Ωx(α, P ).
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Constraint Admissibility Proof: The main idea of
the proof is to show that x ∈ X and Kx + Lv ∈ U ,
∀xe ∈ Ωe(α, P ). The proof is omitted here, as it follows
the same arguments as the one of Theorem 1. 2

Using Theorem 2, the following Algorithm can be used to
construct an invariant and constraint-admissible semi-
ellipsoidal set Ωe(α, P ).

Algorithm 1: Ωe(α, P ) Construction

1: Select vf .
2: Obtain P by solving (23).
3: Construct Ωv(α, P ).
4: Ωe(α, P ) := Ωx(α, P ) ∩ Ωv(α, P ).

4 Semi-Ellipsoidal Set with Saturated Feedback

The aim of this section is to provide a way to construct
an invariant and constraint-admissible semi-ellipsoidal
set for CG using the following saturated control law

u(k) = sat(Kx(k) + Lv(k)) (27)

where the saturation function sat(Kx+Lv) is defined as

sat(Kx+ Lv) = [sat(K1x+ L1v) ... sat(Knux+ Lnuv)]
T

sat(Kjx+ Ljv) =


uj , if Kjx+ Ljv ≤ uj ,

uj , if uj ≤ Kjx+ Ljv ≤ uj ,

uj , if uj ≤ Kjx+ Ljv

As noticed in [4], the motivation of using the nonlinear
saturated control law (27) instead of the linear one (6)
is that the associated DoA of (27) can be significantly
larger than that of (6). As a result, the transient behavior
of the closed-loop system can thus be improved.

It is worth noticing that in the linear feedback case (6),
Theorem 1 provides a foundation to construct a semi-
ellipsoidal invariant and constraint-admissible set. The-
orem 2 is built upon Theorem 1. Hence, due to space
limitations, the focus in this section is on extending The-
orem 1 to handle the saturated control law (27).

In the following we recall the linear differential inclusion
(LDI) modeling framework in [9]. We will use it to model
the saturation nonlinearity. Define S as the set of nu×nu

diagonal matrix whose diagonal elements are either 0 or
1. For example, if nu = 2 then

S =

{[
1 0

0 1

]
,

[
1 0

0 0

]
,

[
0 0

0 1

]
,

[
0 0

0 0

]}

There are 2nu elements in S. Define Sm,m = 1, 2nu as an
element in S. Define also S−

m = I−Sm. Clearly, S−
m ∈ S.

Lemma 1: For ξ ∈ Rnu such that uj ≤ ξj ≤ uj ,∀j =

1, nu, one has,

sat(u) ∈ Co
(
Smu+ S−

mξ
)
,∀m = 1, 2nu (28)

where Co(·) denotes the convex hull operator.

For example, if nu = 2, we have[
sat(u1)

sat(u2)

]
∈ Co

([
u1

u2

]
,

[
u1

ξ2

]
,

[
ξ1

u2

]
,

[
ξ1

ξ2

])

By substituting (27) into (2), and by considering v(k +
1) = v(k), one gets[

x(k + 1)

v(k + 1)

]
=

[
Ax(k) +Bsat(Kx(k) + Lv(k))

v(k)

]
(29)

Given matrices Ps ∈ Rnx×nx , H ∈ Rnu×nx , define
Ωv(Ps, H) as ∀i = 1, lx,∀j = 1, nu

Ωv(Ps, H) :=


v :

∣∣∣∣∣∣∣∣∣∣∣

−fT
i Lxv ≤ −gi −

√
fT
i Psfi

fT
i Lxv ≤ gi −

√
fT
i Psfi

−Lu,jv ≤ −uj −
√

HjPsHT
j

Lu,jv ≤ uj −
√
HjPsHT

j


(30)

where Hj is the j−th row of H. Define also

Ωe(Ps, H) = Ωx(Ps) ∩ Ωv(Ps, H) (31)

where Ωx(Ps) is the parameterized ellipsoid (10) with
P = Ps. Clearly, Ωe(Ps, H) is a semi-ellipsoidal set. We
have the following result.

Theorem 3: If there exist Ps ≻ 0, H ∈ Rnu×nx such
that [

Ps AmPs +BmY

(∗) Ps

]
⪰ 0,∀m = 1, 2nu , (32)

and that the set Ωv(Ps, H) is non-empty, where Am =
A + BSmK,Bm = BS−

m,∀m = 1, 2nu , Y = HPs, then
the set Ωe(Ps, H) is invariant and constraint-admissible
for (29), (8).

Proof: As the proofs that Ωv(Ps, H) is invariant, and
that Ωe(Ps, H) is constraint-admissible follow the same
arguments as the ones of the proofs of Theorem 1, we
skip these proofs here. It remains to show that Ωx(Ps) is
robustly invariant. DefineN = Lu−HLx. Using Lemma
1, for system (2) under the saturated control law (27),
one has, ∀x, ∀v : uj ≤ Hjx+Njv ≤ uj , j = 1, nu,

x(k + 1) ∈ Co (Am (x(k)− Lxv(k)) +Bus(k)) (33)
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whereAm = A+BSmK+BS−
mH,∀m = 1, 2nu , us(k) =

Luu(k). Using (4), (5) one gets

xs(k + 1) = Axs(k) +Bus(k)

with xs(k+1) = Lxv(k+1), xs(k) = Lxv(k). Thus, with
(33)

x(k + 1)− xs(k + 1) ∈ Co (Am (x(k)− xs(k))) (34)

Recall that Y = HPs. Rewrite (32) as[
Ps AmPs

(∗) Ps

]
⪰ 0,∀m = 1, 2nu (35)

It is well known [2] that conditions (35) assure the in-
variance of E(Ps) for system (34), i.e., ∀x(k),∀v(k) such
that (x(k)−Lxv(k))

TP−1
s (x(k)−Lxv(k)) ≤ 1, one has

(x(k+1)−Lxv(k+1))TP−1
s (x(k+1)−Lxv(k+1)) ≤ 1

Hence Ωx(Ps) is invariant for (29). 2

Remark 3: It is clear that if H = K, then Ωe(Ps, H) =
Ωe(Ps). In this case, one also has

A+BSmK +BS−
mK = A+BK, ∀m = 1, 2nu

It follows that (32) becomes (13) with Ps = P, Y = KPs.
Consequently, compared to the linear control law (6),
the use of the saturated one (27) in conjunction with the
LDI framework introduces H as an additional degree of
freedom. 2

We use H and Ps as decision variables to maximize the
size of Ωe(Ps, H). For this purpose, we select a particu-
lar value of v = vf , vf ∈ Ωv(Ps, H). Using (30) and as

fT
i Psfi ≥ 0, HjPsH

T
j ≥ 0, ∀i = 1, lx, ∀j = 1, nu, it fol-

lows that (21) provides a necessary condition of vf for
the existence of Ps and H.

For any vf satisfying (21), using the first two equation
of (30), one gets

{
fT
i Psfi ≤ (fT

i Lxvf − g
i
)2,

fT
i Psfi ≤ (fT

i Lxvf − gi)
2,
∀i = 1, lx (36)

Using the last two equation of (30), one obtains

{
HjPsH

T
j ≤ (Lu,jvf − uj)

2,

HjPsH
T
j ≤ (Lu,jvf − uj)

2,
∀j = 1, nu

thus, using the Schur complement and Y = HPs

[
(Lu,jvf − uj)

2 Yj

Y T
j Ps

]
⪰ 0,[

(Lu,jvf − uj)
2 Yj

Y T
j Ps

]
⪰ 0

∀j = 1, nu (37)

where Yj is the j−th row of Y , ∀j = 1, nu.

The problem of optimizing Ps, H can be formulated as

 min
Ps,Y
{f(Ps)}

s.t. (32), (36), (37)
(38)

where f(·) can be any convex function. Note that (38)
is a SDP program.

Concerning the scaling operator, using similar argu-
ments as the ones in Section 3.2, it is possible to show
that if Ωe(Ps, H) is invariant and constraint-admissible
for (29), (8), then so is the set

Ωe(α, Ps, H) = Ωx(α, Ps) ∩ Ωv(α, Ps, H) (39)

where Ωx(α, Ps) is defined in (24) with P = Ps, α ≥ 0,
and

Ωv(·) :=
{
v :
∣∣∣ Fvv ≤ g − Fαα

}
(40)

with

Fv =



−fT
1 Lx

...

−fT
lx
Lx

fT
1 Lx

...

fT
lx
Lx

−Lu,1

...

−Lu,nu

Lu,1

...

Lu,nu



, g =



−g
1

. . .

−g
lx

g1

. . .

glx

−u1

. . .

−unu

u1

. . .

unu



, Fα =



√
fT
1 Psf1
...√

fT
lx
Psflx√

fT
1 Psf1
...√

fT
lx
Psflx√

H1PsHT
1

...√
HnuPsHT

nu√
H1PsHT

1

...√
Hnu

PsHT
nu


(41)
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5 Semi-Ellipsoidal Set with Time-Varying
and/or Soft Constraints

Perhaps the most interesting aspect of the results in Sec-
tion 3 and in Section 4 is that they can be easily extended
to cope with time-varying and/or soft constraints. This
is because

• The semi-ellipsoidal set Ωe(α, P ) or Ωe(α, Ps, H) is
the intersection of the unbounded ellipsoid Ωx(α, P )
or Ωx(α, Ps) and the polyhedral set Ωv(α, P ) or
Ωv(α, Ps, H).
• The set Ωv(α, P ) or Ωv(α, Ps, H) is formed explicitly
by the constraints of X,U .

From this point on we will focus only on semi-ellipsoidal
set with saturated feedback since the results in Section 3
are special cases of the results in Section 4. For simplicity
of discussion, we consider only the case where the bounds
g
i
(k), gi(k) are time-varying, ∀i = 1, lx, i.e., the setX(k)

at time instant k is

X(k) = {x : g
i
(k) ≤ fT

i x ≤ gi(k), i = 1, lx} (42)

Clearly if, ∀k ≥ 0

g
i
(k + 1) ≤ g

i
(k), gi(k + 1) ≥ gi(k),∀i = 1, lx

then X(k) ⊆ X(k + 1). In this case, it is quite simple
to guarantee the recursive feasibility in CG. Otherwise,
if g

i
(k), gi(k) vary arbitrarily, then there is no control

strategy that can guarantee the recursive feasibility. A
way to cope with this problem is to relax the state con-
straints (42) as, ∀i = 1, lx

X(k) = {x : g
i
(k)− ϵi(k) ≤ fT

i x ≤ gi(k) + ϵi(k)} (43)

where ϵi(k) ≥ 0 are slack variables, ∀i = 1, lx. Note that
in addition to guaranteeing the recursive feasibility, the
use of ϵi(k) also allows to trade-off constraint violation
against the improvements in tracking performance.

Consider any matrices Ps, H satisfying (32), Y = HPs.
Define

ϵ(k) = [ϵ1(k) ϵ2(k) . . . ϵlx(k)]
T (44)

Define also the set Ωv(ϵ(k), α, Ps, H) as

Ωv(·) :=
{
v :
∣∣∣ Fvv ≤ g(k)− Fαα− Fϵϵ(k)

}
(45)

where Fv, Fα and g(k) are defined in (41) with time-
varying g

i
(k), gi(k),∀i = 1, lx, and

Fϵ = [−1 . . .− 1 − 1 . . .− 1 0 . . . 0 0 . . . 0]T

Define also

Ωe(ϵ(k), α, Ps, H) = Ωx(α, Ps) ∩ Ωv(ϵ(k), α, Ps, H)
(46)

The following corollary is a direct consequence of the
results in Section 4.

Corollary 1: For any α ≥ 0, ϵ(k) ≥ 0 such that
Ωv(ϵ(k), α, Ps, H) is non-empty, the set Ωe(ϵ(k), α, Ps, H)
is invariant for (29) and constraint-admissible for the
input constraints (3), and for the state constraints (43).

6 Online Optimization Problem

6.1 Semi-Ellipsoidal Set Based Command Governor

The CG based on the set Ωe(ϵ, α, Ps, H) for time-varying
and/or soft constraints (43) requires the online solution
of the following optimization problem

min
v,α,ϵ

{
(v − r(k))TQt(v − r(k)) + ϵTQϵϵ

}
s.t.


[x(k)T vT ]T ∈ Ωe(ϵ(k), α, Ps, H),

α ≥ 0,

ϵ ≥ 0

(47)

where x(k) is the current state; Qt ≻ 0, Qϵ ≻ 0 are
weighting matrices. The first term in the cost func-
tion penalizes the deviation of the command from the
desired reference. The second term penalizes the vi-
olation of the constraints. Once the optimal solution
(v∗(k), α∗(k), ϵ∗(k)) of (47) is found, the control action
is computed as

u(k) = sat(Kx(k) + Lv∗(k)) (48)

It is clear that the CG (47), (48) guarantees recur-
sive feasibility, since one can always select ϵ such that
Ωe(ϵ(k), α, Ps, H) ⊆ Ωe(ϵ(k + 1), α, Ps, H). Concerning
the finite time convergence for the command v, consider
the case when there exists ks such that, ∀k ≥ ks

g
i
(k) = g

i
(ks), gi(k) = gi(ks), r(k) = r(ks) (49)

Denote (v∗(ks), α
∗(ks), ϵ

∗(ks))) as the optimal solution
of the following problem

min
v,α,ϵ

{
(v − r(ks))

TQt(v − r(ks)) + ϵTQϵϵ
}

s.t.


v ∈ Ωv(ϵ(k), α, Ps, H),

α ≥ 0,

ϵ ≥ 0

(50)

Note that the control scheme (47), (48) to satisfy the
state constraints in a soft way is an extension of the reg-
ular CG theory. Hence, if (49) holds ∀k ≥ ks, then there
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exists a time index kf such that v∗(k) = v∗(ks), α
∗(k) =

α∗(ks), ϵ
∗(k) = ϵ∗(ks), ∀k ≥ kf . If ∃α ≥ 0 such that

r(ks) ∈ Ωv(0, α, Ps, H), then v∗(ks) = r(ks), ϵ
∗(ks) =

0 is the trivial solution of (50). This means that the
command converges to the desired reference in finite
time. If ∄α ≥ 0 such that r(ks) ∈ Ωv(0, α, Ps, H), then
v∗(ks) may not coincide with r(ks). The optimal solution
(v∗(ks), ϵ

∗(ks))) of (50) is the trade-off between tracking
performance and constraint violation.

Concerning the online optimization problem (47),
clearly, it is a convex program. In the following we pro-
vide a way to solve efficiently (47). Our solver, which
is based on the alternating direction method of multi-
pliers (ADMM), can exploit the particular structure of
Ωe(·). Hence, our solver can solve (47) extremely fast
via very simple mathematical operations. In the last
decade, ADMM has emerged as an effective algorithm
for solving structured convex optimization problems [3].
Our main contribution in this section is to show how
to convert (47) into a form that the sub-optimization
problems associated with the ADMM can be solved effi-
ciently. We recall the ADMM theory in the next section.

6.2 Alternating Direction Method of Multipliers

Consider the following optimization problem

min
s,z
{h(s)}

s.t.

{
Ms− z = b

z ∈ Z

(51)

where h(s) is a convex function, the matrix M and the
vector b are of appropriate dimension, Z is a convex
set. One way to solve (51) is to form the augmented
Lagrangian

Lρ(s, z, y) = h(s) + ηT (Ms− z − b)

+ρ
2 (Ms− z − b)T (Ms− z − b)

(52)

where η is the Lagrange multiplier, ρ > 0 is a tunning
parameter that presents the trade-off between the cost
function and the equality constraints.

ADMM works by solving iteratively two sub-problems
and then updating the Lagrange multiplier. At iteration
q we carry out the following steps.

(1) Step 1: minimize Lρ(s, z, η) with respect to s

s(q+1) := argmin
s

{
Lρ(s, z

(q), η(q))
}

(53)

(2) Step 2: minimize Lρ(s, z, η) with respect to z

z(q+1) := argmin
z∈Z

{
Lρ(s

(q+1), z, η(q))
}

(54)

(3) Step 3: update the Lagrange multiplier

η(q+1) = η(q) + ρ(Ms(q+1) − z(q+1) − b) (55)

We use the superscript (q) in (53), (54), (55) to denote
the values of variables calculated at iteration q.

The ADMM is particularly useful when it is possible to
solve (53), (54) efficiently. The main contribution of this
section is to show how to convert (47) into a form that
(53), (54) admit closed-form expressions.

The primal and dual residuals at iteration q are

ζ(q)p = Ms(q) − z(q) − b, ζ
(q)
d = z(q) − z(q−1) (56)

The algorithm is terminated when the primal and dual
residuals satisfy a stopping criterion. A typical criterion

is ||ζ(q)p ||∞ ≤ ζp, ||ζ(q)d ||∞ ≤ ζd, where ζp, ζd are given
tolerances.

6.3 Solving the Online Optimization Problem of the
Semi-Ellipsoidal Set Based CG Using ADMM

We reformulate (47) as the optimization problem (51)
as follows. Let us take

s =
[
vT α ϵT

]T
(57)

thus, using (47), the cost function h(s) is

h(s) =
1

2
sTQs− r(k)T qT0 s (58)

with Q = diag(Qt, 0, Qϵ), and q0 = [Q 0 0]T .

Define the following auxiliary variables
z1 = Ds (x(k)− Lxv) , z2 = α,

z3 = Fvv + Fαα+ Fϵϵ, z4 = ϵ

z = [zT1 z2 zT3 z4]
T

(59)

whereDs ∈ Rnx×nx is a square root of P−1
s , i.e.,DT

s Ds =
P−1
s . Using (57), (59) one has

Ms− z = b0x(k) (60)

with

M =


−DsLx 0 0

0 1 0

Fv Fα Fϵ

0 0 I

 , b0 =


−Ds

0

0

0
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Using (46), (47), one obtains the set Z

Z =

{
z :

∣∣∣∣∣ zT1 z1 ≤ z22 , z2 ≥ 0,

z3 ≤ g(k), z4 ≥ 0

}
(61)

Hence problem (47) is reformulated as (51) with
h(s),M, b = b0x(k), and Z being given in (58), (60),
(61), respectively.

Using (53), (54), (55), we carry out the following steps
in each iteration.

Step 1: The optimization problem is

min
s

{
1
2s

T (Q+ ρMTM)s

−(ρMT z(q) −MT η(q) + q0r(k) + ρMT b0x(k))
T s
}

(62)
The optimization problem (62) is an unconstrained
quadratic program. The solution to (62) is given explic-
itly as

s(q+1) =M
(
ρMT z(q) −MT η(q) + q0r(k) + ρMT b0x(k)

)
(63)

whereM = (Q+ ρMTM)−1.

Step 2: The optimization problem ismin
z

{
zT z − 2(Ms(q+1) + η(q)

ρ − b0x(k))
T z
}

s.t. z ∈ Z
(64)

Define

ν = Ms(q+1) +
η(q)

ρ
− b0x(k) (65)

Note that ν and z are of the same dimension. We rewrite
ν as

ν = [νT1 ν2 νT3 νT4 ]
T

where νi has the same dimension of zi, ∀i = 1, 4.

The cost function and the constraints of (64) are sepa-
rable in zi, i = 1, 4. We can carry our their update in
parallel. The update of (z1, z2) is the solution of the fol-
lowing problem min

z1,z2
{zT1 z1 + z22 − 2νT1 z1 − 2ν2z2}

s.t. zT1 z1 ≤ z22 , z2 ≥ 0
(66)

By using the method of Lagrange multipliers, the solu-

tion of (66) can be calculated analytically as [18]

If νT1 ν1 ≤ ν22 , ν2 < 0

z
(q+1)
1 = 0, z

(q+1)
2 = 0

If νT1 ν1 ≤ ν22 , ν2 ≥ 0

z
(q+1)
1 = ν1, z

(q+1)
2 = ν2

Otherwise

z
(q+1)
1 =

ν2+
√

νT
1 ν1

2
√

νT
1 ν1

ν1, z
(q+1)
2 =

ν2+
√

νT
1 ν1

2

(67)

The update of z3 is the solution of the optimization prob-
lem min

z3
{zT3 z3 − 2νT3 z3}

s.t. z3 ≤ g(k)
(68)

The solution of (68) can be given in the closed-form as

z
(q+1)
3 = min(ν3, g(k)) (69)

where the min operator is taken component-wise.

Analogously, the update of z4 is given as

z
(q+1)
4 = max(ν4,0) (70)

For the given stopping tolerances ϵd, ϵp and initial point

(s(0), z(0), η(0)), Algorithm 2 shows the ADMM algo-
rithm applied to the problem (47)

Algorithm 2: ADMM Based Solver for (47)

1: Update s(q+1) using (63).
2: Update z(q+1) using (67), (69), (70).
3: Update η(q+1) as

η(q+1) ← η(q) + ρ(Ms(q+1) − z(q+1) − b0x(k))

Remark 4: Using Algorithm 2, the updates of s(q) and
z(q) are given explicitly with the use of the auxiliary
variables (59). The use of other types of auxiliary vari-
ables, e.g., z3 = d2−Lxθ2 instead of (59), would lead to
a sub-optimization problem of the ADMM, which does
not have an explicit solution. 2

7 Examples

This section illustrates the potential benefit of the new
methods by simulations of three examples system. The
CVX toolbox [8] was used to solve SDP optimization
problems. For comparison purpose, we denote the stan-
dard polyhedral based CG, the semi-ellipsoidal set based
CG with linear feedback, and with saturated feedback
as method 1, method 2, and method 3, respectively.
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7.1 Example 1: Time-Invariant and Hard Constraints

This example is taken from [4]. Consider system (2) with

A =

[
1 0.1

0 1

]
, B =

[
0

0.1

]
, C =

[
1 0

]
(71)

The gain K is given as

K =
[
−4.2674 −3.1426

]
(72)

The input and state constraints are −0.2 ≤ u ≤ 0.2,
−1 ≤ x1 ≤ 2.

By solving the SDP problem (23) with vf = 0, one gets

P =

[
0.0118 −0.0184
−0.0184 0.0322

]

By solving the SDP problem (38) with vf = 0, one ob-
tains

Ps =

[
0.0947 −0.0708
−0.0708 0.1180

]
, H = [−0.6141 − 0.7835]

(73)
Fig. 1 presents the ellipsoid E(P ) (dashed magenta), the
projection of Ωe(α, P ) onto the x−space (dashed ma-
genta), the projection of Ωe(α, Ps, H) onto the x−space
(solid cyan). For this example, we were able to calculate
the maximal invariant and constraint-admissible poly-
hedral set Ωp. Fig. 1 presents the projection of Ωp onto
the x−space (dash-dot yellow). We can observe that: i)
the feasible set of method 2 is slightly smaller than that
of method 1; ii) both of them are much smaller than that
of method 3.

-1 -0.5 0 0.5 1 1.5 2

x
1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x
2

Fig. 1. Feasible sets and phase-space trajectories for example
1.

For the initial condition x(0) = [−0.95 0]T and for the
reference r(k) = 1.95, Fig 1 shows the phase-space tra-
jectory of method 1 (dash-dot green), method 2 (dashed
red), and method 3.

Fig. 2 presents the state, the command and the input
trajectories as functions of time for method 1 (dash-dot
green), for method 2 (dashed red), for method 3 (solid
blue). We observe that method 3 has the best perfor-
mance in terms of transient time, followed by method 1,
then by method 2.

0 50 100 150 200 250

Time
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1
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1
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(a) State trajectories.

0 50 100 150 200 250

Time

-1

0

1

2

v

0 50 100 150 200 250

Time

-0.2

0

0.2

u

(b) Command and input trajectories

Fig. 2. (a) State trajectories; (b) Command and input trajec-
tories for method 1 (dash-dot green), for method 2 (dashed
red), for method 3 (solid blue) for example 1.

Finally, using the function TIC/TOC of MATLAB
2023b, we found that the online computation times
for one sampling interval were 3.1312 × 10−3[sec],
1.7415×10−4[sec], and 1.5775×10−4[sec] for method 1,
method 2, and method 3, respectively. We use quadprog
solver in Matlab to solve the online quadratic program
of method 1.

7.2 Example 2: Time-Varying and Soft Constraints

We consider system (2) with A,B,C,K being given in
(71), (72). The input constraints are −0.2 ≤ u ≤ 0.2.
The objective is to design a CG based control law that
tracks a time-varying piecewise constant reference r(k)
while managing overshoot of the output. For this pur-
pose, at time k, we impose the following constraint on x1{

x1(k) ≤ r(k) + ϵ(k), if x1(0) ≤ r(0)

x1(k) ≥ r(k)− ϵ(k), if x1(0) ≥ r(0)
(74)
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where ϵ ≥ 0. The reference r(k) is

r(k) =

{
1, if k ≤ 120,

−1, otherwise
(75)

The initial condition is x(k) = [0 0]T . For simplicity of
discussion, we apply only method 3 in this example. We
use Ps, H in (73) for the set Ωe(ϵ(k), α, Ps, H). Three
difference simulations consist of three different weights
for the optimization problem (47), Qt = 1 and Qϵ =
10, 1, 0.1. Fig. 3 presents the reference (dash-dot violet),
the state, the command, and the input trajectories for
method 3 with Qϵ = 10 (dashed blue), Qϵ = 1 (solid
red), Qϵ = 0.1 (solid green). Fig. 3 also presents the
simulation results (dash-dot magenta) when v(k) = r(k)
is directly applied to the system, i.e., without using CG.
We observe that our approach can handle overshoot of
the output.
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(a) Reference and state trajectories.
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(b) Command and input trajectories

Fig. 3. (a) Reference (dash-dot violet) and state trajecto-
ries; (b) Command and input trajectories for method 3 with
Qϵ = 10 (dashed blue), Qϵ = 1 (solid red), Qϵ = 0.1 (solid
green), and without using CG (dash-dot magenta) for exam-
ple 2.

7.3 Example 3: High-Order System

To demonstrate that our approach can cope with high-
order system, we consider the continuous-time helicopter
dynamics given in [10]. After discretization of the system

with the sampling time Ts = 0.01(sec), one obtains (2)
with

A =



1 0.01 0 0 0 0

0 1 −0.0045 −0.0000 0 0

0 0 0.9990 0.0096 0 0

0 0 −0.1909 0.9288 0 0

0 0 0 0 0.9998 0.0098

0 0 0 0 −0.0301 0.9513


,

B =

[
0 0 0.001 0.1909 0 0

0 0 0 0 0.0002 0.0486

]
,

C =

[
1 0 0 0 0 0

0 0 0 0 1 0

]

The state and input constraints are: |x1| ≤ 11, |x5| ≤ 1,
|u1| ≤ 1 and |u2| ≤ 1. The feedback gain K is chosen as
an LQ gain with the state and control weighting matrices
Qx = diag{100, 1, 10, 1, 10, 1}, Qu = diag{0.1, 0.1}.

The matrices P, Ps, H are optimized, respectively, by
using (23), (38) with f(P ) = −logdet(P ), f(Ps) =
−logdet(Ps). Numerical values of K,P, Ps, H are not
reported here, but will be sent to the reader upon re-
quest. Using standard procedures in [7], we were not be
able to construct the polyhedral maximal invariant and
constraint-admissible set.

The weighting matrices for the optimization (47) are
Qt = I, Qϵ = 0.1I. The reference is r(k) = [0.5 0.5]T .
The initial condition is x(0) = [−1.2 0 0 0 − 1.2 0]T ,
which violates the constraints. Fig 4 presents the ref-
erence (dash-dot green), the state, the command and
the input trajectories as functions of time for method 2
(dashed red), and for method 3 (solid blue).

Finally, using the function TIC/TOC of MATLAB
2023b, we found that the online computation times
for one sampling interval were 6.5747 × 10−4[sec], and
5.5552 × 10−4[sec] for method 2 and method 3, respec-
tively.

8 Conclusion

In this paper we provide new command governor schemes
that employ a semi-ellipsoidal set. We address both lin-
ear and saturated feedback cases, for which we propose
new linear matrix inequality conditions to construct an
invariant and constraint-admissible semi-ellipsoidal set.
Furthermore, we show that these conditions can be ex-
tended to handle time-varying and/or soft constraints,
providing great flexibility and adaptability. To solve the
online optimization problem associated with the intro-
duced semi-ellipsoidal set, we propose a tailored alter-
nating direction method of multipliers based technique.
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(a) Reference and state trajectories.
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Fig. 4. (a) Reference (dash-dot green) and state trajectories;
(b) Command and input trajectories for method 2 (dashed
red) and for method 3 (solid blue) for example 3.

The main feature of the new technique is that it requires
very simple mathematical operations at each iteration,
thus ensuring numerical efficiency for real-time appli-
cations. Given theirs computationally tractable design
procedure, the proposed approaches are applicable for
medium to large-sized systems. Three numerical exam-
ples with comparison to earlier solutions in the literature
demonstrate the effectiveness of the new methods.
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