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Abstract 

This study presents an innovative approach to speech breathing 

analysis, emphasizing the potential of Electromagnetic 

Articulography (EMA) as a viable tool. We compared the 

widely used Respiratory Inductive Plethysmography (RIP) with 

EMA by collecting speech breathing data from 18 speakers 

during sustained vowel productions of /a/ under habitual and 

loud speech conditions. Our findings indicate that EMA signals 

can effectively track temporal patterns of speech breathing 

movements, which do not differ from the RIP system. With this 

study, we would like to emphasize the potential of using 

(existing) EMA systems in laboratories to analyze speech 

breathing patterns. This paper explores the advantages and 

opportunities that arise from integrating EMA systems into 

speech breathing research. The findings suggest that such 

integration can enhance our understanding of speech 

production and contribute to advancements in related fields. 
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1. Introduction 

The respiratory inductive plethysmography (RIP) is a popular 

technique and a validated, common tool for studying speech 

breathing patterns (Winkworth et al. 1995, Fuchs & Rochet-

Capellan 2021, Charuau et al. 2022). Two elastic bands (with 

insulated wires) are positioned around the chest and the 

abdomen to track breathing patterns. Although different sizes of 

bands exist, wearing the bands may affect participants’ comfort 

and awareness of the equipment which could further lead to 

alterations in breathing behavior. Another limitation is that body 

movements can generate artifacts in the signal that can affect 

the accuracy of the data (Fuchs & Rochet-Capellan 2021). 

Additionally, Fuchs and Rochet-Capellan (2021) pointed out 

that the development of smaller and/or wireless sensors could 

improve comfort during breathing recordings, which has been 

recently developed by Columbi Computers AB (Sweden) for the 

RespTrack system. To simultaneously capture kinematic speech 

data, one is currently dependent on using two systems, such as 

RIP and e.g., an Electromagnetic Articulograph (EMA) as it has 

been done by e.g., Rasskazova et al. (2019). 

Here, we present the use of EMA as a new applied technique 

for tracking speech breathing patterns, entailing high-resolution 

contours with better comfort and fewer artifacts. We conducted 

a study comparing the RIP system (Inductotrace®) and the 

EMA system (Carstens AG501) to track and analyze speech 

breathing patterns. The goal was to assess the similarity of the 

kinematic trajectories for capturing speech breathing patterns 

recorded by both systems. The data used for comparisons are 

sustained vowel productions in two different conditions, i.e., in 

habitual and loud speech. 

In a first step, we analyze data from all applied EMA sensors to 

identify the most suitable sensors for accurately tracking speech 

breathing. This initial assessment ensures that the selected 

sensors provide reliable and precise measurements. The second 

step involves comparing the signals obtained from both the RIP 

system and the EMA system. By examining the signals from 

these two systems, we evaluated the consistency and accuracy 

of the EMA system in capturing speech breathing patterns. 

Finally, in the third step, we identify similarities in the signals 

to analyze the robustness of the tracking methods. 

By conducting this comprehensive analysis, we aim to highlight 

the reliability and effectiveness of the EMA system for tracking 

speech breathing. The findings from this study will contribute 

to advancing research in speech production and to enhance our 

understanding of the intricate mechanisms involved in speech 

breathing. 

2. Methods 

2.1. Participants 

We collected acoustic and kinematic data from 18 native 

German speaking participants (9 males, 9 females). The age 

ranged from 23 to 54 years with a mean age of 33 years. 

2.2. Experimental Set-up 

The kinematic breathing data were collected using the (a) EMA 

(AG 501) and (b) RIP (Inductotrace®) at the same time with a 

sampling rate of 1250 Hz. To track breathing data with EMA, 

sensors were placed at different positions and fixed with tape 

(Figure 1). One sensor on the lowest vertebra of the cervical 

spine functioned as the reference sensor. Sensors on the sternum 

and three on the chest were used to track (speech) breathing 

kinematics. Sensors tracking thorax movements were 

positioned at the axilla level on the chest (on clothes); one in 

the middle and two at the height of each papilla. After placing 

the EMA sensors (Figure 1 left), the RIP band (only upper band 

for thorax movement) was put around the participants’ chest 

(Figure 1 right). Three different band sizes were used (7 x 

small, 5 x medium, and 6 x regular), thus representing different 

body sizes. 

 

 
 

Figure 1: EMA sensors on subject – (left) before the RIP belt 

is put on and (right) with the RIP belt put on. 
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2.3. Speech Material 

In this paper, only data of sustained productions of the vowel 

/a/ in habitual and loud speech are presented. The data analyzed 

here is part of a larger data set. Participants were asked to take 

a deep breath and to produce maximum phonation of the vowel 

/a/ in habitual speech and loud speech. Tracking of speech 

loudness was done via a sound level meter that was set up 1.25m 

away from the participants. For loud speech, participants were 

asked to keep a constant level of 80dB. The sustained vowel /a/ 

phonation was repeated three times per condition. 

2.4. Data Processing and Analysis 

Since the RIP and EMA recordings started asynchronous, we 

aligned the audio tracks of the EMA and RIP by an acoustic 

impulse at the beginning of the recording. The acoustic 

boundaries of both habitual and loud /a/ were manually 

segmented using Praat (Boersma & Weenink, 2024). For the 

EMA system, different distances between sensors were 

calculated and analyzed in the vertical (low-high, y) and 

horizontal (front-back, x) dimension (Figure 2):  

 

• D1: Distance of the chest’s middle sensor to the 

reference sensor (chest mid to R) → EMAD1 

• D2: Distance of the calculated midpoint between 

left sensor and right sensor on the chest to the 

reference sensor (midpoint to R) → EMAD2 

• D3: Distance of sternum to the reference sensor 

(sternum to R) → EMAD3 

 

 
Figure 2: Schematized EMA sensors on the front and on the 

back (R = reference sensor). 

 

For the calculated distances, three landmarks were 

automatically determined in the RIP and the EMA signal: (i) 

inhalation onset, (ii) inhalation peak, and (iii) exhalation offset 

(Figure 3). The landmark detection was as follows: The signals 

were prepared first by resampling them to 100 Hz and applying 

a Savitzky-Golay filter using a window of 101 samples and 

polynomial order 3 afterwards. The basis for the landmark 

detection was then the processed signal within a window of the 

acoustic boundaries of the target vowels ± 7s.  

 

The signals’ velocity was used for the detection of the 

inhalation onset and the exhalation offset. For the inhalation 

onset, the maximum velocity left to the inhalation peak was 

determined first and then the first zero crossing in the velocity 

was used for the landmark detection of the onset. The detection 

of the offset was based on the velocity multiplied by a window 

function consisting of two half Gaussians and a stable region 

during the acoustic segment. The last zero crossing left to the 

velocity maximum in the second half of the window was used 

as the offsets’ landmark. The inhalation peak was defined as the 

maximum in the signal.  

 

Figure 3 displays examples of synchronized RIP and EMA data 

during the production of sustained /a/ in habitual speech, 

namely the raw filtered signal, the resampled and filtered signal, 

the signals’ velocity and the windowed velocity, along with the 

detected landmarks in vertical dashed lines. 

 
Figure 3: Example of landmark detection in RIP (left) and 

EMA signal EMAD1x (right). Vertical dotted lines refer to 

landmarks (onset, peak and offset). Rows show the raw filtered 

and the processed signal (top), the velocity (mid), and the 

window function (bottom). 

 

To compare the RIP and EMA signal and to determine which 

EMA distance trajectories are most comparable to the RIP 

system, the procedure was as follows:  

 

First, the following two parameters were calculated to analyze 

temporal breathing patterns: 

1) Inhalation phase (s): Interval between inhalation 

onset and inhalation peak. 

2) Exhalation phase (s): Interval between inhalation 

peak and inhalation offset. 

 

To compare each of the two parameters, we run hierarchical 

Bayesian regression models for the two temporal parameters 

and speaking styles (loud, habitual) with the SIGNAL TYPE 

(RIP vs. EMAD1x, EMAD1y, EMAD2x, EMAD2y, EMAD3x, 

EMAD3y) as independent variables with by-speaker intercepts 

and slopes. We used default priors in all models. Results are 

reported under section 3.1. 

 

Second, we compared the RIP and EMA trajectories based on 

100 equally distanced time points from the inhalation onset to 

the exhalation offset and standardized the trajectories by token 

and signal type. For visual inspection, we calculated Euclidean-

distance matrices showing the (dis-)similarity between RIP and 

the EMA dimensions across speakers and repetitions, and 

speaking styles (section 3.2.).  

 

Third, we run Gaussian Process regression models for each 

speaking style on a subset of the standardized signal trajectories 

(steps of 5% from inhalation onset to exhalation offset). We 

used separate covariances for each SIGNAL TYPE with 

exponential priors for amplitude (lambda=1) and length scale 

(lambda=3) and a by-SIGNAL TYPE intercept with a default 

prior. The models were run with 2000 samples for tuning and 
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2000 samples in four chains, thus leading to 8000 iterations for 

the analysis. We computed the difference between the posterior 

of the RIP and the posterior of each EMA distance afterwards. 

Results are reported under section 3.3. We report the mean and 

the 95% highest density interval (HDI) of the posterior 

estimates for all regression analyses. 

3. Results 

3.1. Parameter comparisons 

Table 1 contains the averaged results for the parameters of 

interest for the different signals (RIP vs. EMAD1-D3) in both the 

x- and the y-dimension.  

Table 1:  Mean durations of inhalation and exhalation 

phases in seconds (standard deviations in brackets) 

for the RIP and EMA distance signals. 

Condition Signal 
Inhalation 

phase 

Exhalation 

phase 

habitual 

RIP 2.78 (1.18) 22.62 (8.50) 

EMAD1x 2.36 (1.00) 22.49 (8.68) 

EMAD1y 2.58 (1.02) 22.63 (8.63) 

EMAD2x 2.81 (1.05) 22.49 (8.69) 

EMAD2y 2.53 (1.07) 22.68 (8.59) 

EMAD3x 2.29 (1.22) 22.10 (8.66) 

EMAD3y 2.58 (1.02) 22.53 (8.59) 

loud 

RIP 2.41 (0.93) 23.46 (10.15) 

EMAD1x 2.15 (0.99) 22.61 (10.37) 

EMAD1y 2.14 (1.00) 23.23 (10.42) 

EMAD2x 2.18 (1.02) 23.07 (10.59) 

EMAD2y 2.15 (0.98) 23.36 (10.59) 

EMAD3x 2.25 (1.10) 23.21 (10.17) 

EMAD3y 2.22 (0.97) 23.16 (10.68) 

 

No durational differences in the exhalation phases of the EMA 

signal (and its related differences) compared to RIP’s in the 

production of sustained vowel /a/ in habitual and loud speech 

were found. However, regarding the inhalation phases, the 

models reveal slightly shorter inhalation phases in EMAD1x 

(β=-0.96 [-1.6, -0.35]) and EMAD2x (β=-0.45 [-0.82, -0.09]) in 

habitual and EMAD1x (β=-0.5 [-0.79, -0.18]), EMAD2x (β=-0.32 

[-0.59, -0.05]) and EMAD3y (β=-0.35 [-0.67, -0.3]) in loud 

speech compared to the RIP signal. 

3.2. Distance plots for visual inspection 

Figure 4 and Figure 5 display distance plots comparing RIP 

and EMA signals averaged across all speakers during sustained 

vowel productions in habitual speech (Figure 4) and loud 

speech (Figure 5). For the signal comparison in habitual and 

loud speech, the EMAD2y signal was chosen as an example, as 

this EMA distance signal is most similar to the phases of the 

RIP signal - particularly in habitual speech (Table 1).  The color 

coding indicates the continuum from similar (black; 0 of the 

normalized Euclidean distance) to dissimilar (white, 1 of the 

normalized Euclidean distance). The diagonal of each matrix 

represents the comparison of the trajectories at the 

corresponding time points. In both conditions (habitual and 

loud), a black diagonal beam can be observed indicating a clear 

similarity between the trajectories of RIP and EMA. 

 
Figure 4: Distance plot (EMAD2y) comparing RIP and EMA 

signals in habitual speech. 

 

Figure 5: Distance plot (EMAD2y) comparing RIP and 

EMA signals in loud speech. 

3.3. Trajectory comparisons: Regression analysis 

To investigate which distance signal is most suitable to track 

speech breathing patterns with EMA, we compare the contours 

of the RIP signal with all EMA distance signals by means of 

Gaussian Process regression models. Figure 6 shows the output 

of the models for habitual (left column) and loud (right column) 

speech. Each panel shows the comparison of the RIP signal with 

the respective EMA signal. The top of each panel depicts the 

95% posterior estimate for the RIP (blue, hatched) and the EMA 

signal (red), and the plot below shows the difference (orange) 

between the RIP signal and the EMA signal. 

Our regression analyses revealed that none of the EMA distance 

signals significantly differs from the RIP signal in shape across 

the speech breathing movements. As can be seen in Figure 6, 

the 95% HDI of the posterior differences between the RIP and 

EMA contours is centered around zero, thus indicating no 

difference at each of the evaluated time points. If a significant 

deviation between the signals was detected, this would be 

marked by a red area (which is not the case here). 
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Figure 6: Regression results for RIP compared to various 

EMA signals (rows) for habitual (left) and loud speech 

(right). The top of each panel shows 95% of the posterior 

estimates for RIP and the EMA signal, and the lower plot 

shows the difference between RIP and the EMA signal. 

4. Discussion  

This study reveals that EMA sensors are capable of tracking 

speech breathing patterns that are comparable with the 

commonly used RIP signal. We were able to show that temporal 

parameters, such as inhalation and exhalation phases do not 

differ between the EMA and RIP signal. However, slightly 

longer durations were detected for some parameters. This could 

be explained by the fact that the expansion of the RIP band is 

measured in a three-dimensional space, whereas the EMA 

signal only measured one-dimensional distances. As EMA also 

allows for the analysis of 3D movement patterns, possible 

parameters need to be developed to capture 3D patterns in the 

future. Nonetheless, since the movement trajectories did not 

differ between RIP and EMA, we postulate that EMA is a 

potential method to collect speech breathing data. 

 

As we attached EMA sensors to various positions on the chest, 

we were able to show that in principle, the signal from all 

sensors can be used. A subsequent analysis will determine 

which sensors are most suitable to give a recommendation on 

the minimum number of EMA sensors that should be used in 

future studies. In general, when doing EMA recordings, sensors 

for tracking speech breathing are easily addable to the sensor 

set-up when tracking articulation, making EMA a promising 

tool for research in speech breathing production studies. As 

breathing is the basic requirement for speech production and as 

it has a linguistic and communicative role (Fuchs & Rochet-

Capellan 2021), the relevance of examining speech breathing 

patterns, breath cycle coordination and the interaction between 

breathing with other speech systems is given (Werner 2023). 

 

Due to the significant cost difference between an EMA system 

and an RIP, laboratories that already possess an EMA device 

can derive practical advantages from utilizing EMA instead of 

the traditionally employed RIP. The experimental process 

becomes simplified since there is no longer a requirement for 

diverse belts (as for Inductotrace®), resulting in enhanced 

convenience and reduced intrusiveness. 

 

We will pursue the analyses of speaker-specific behaviors and 

look more into natural speech production, such as sentence 

productions and text reading. 

5. Conclusion 

Previous research has demonstrated that the respiratory 

inductive plethysmography (RIP) is a widely accepted and 

validated tool for studying speech breathing patterns. However, 

it also has its limitations, such as potential discomfort for 

participants and the possibility of body movements generating 

artifacts in the signal. This study is the first comparing speech 

breathing patterns assessed with Electromagnetic Articulo-

graphy (EMA) to RIP signals. Results underscore the benefits 

and ease of using EMA for analyzing speech breathing pattern 

and paves the way for further studies which are using EMA 

systems to also easily collect data on speech breathing 

simultaneously to speech production kinematics.  
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