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Abstract. Quality assessment (QA) has long been considered essential
to guarantee the reliability of neuroimaging studies. It is particularly
important for fetal brain MRI, where unpredictable fetal motion can lead
to substantial artifacts in the acquired images. Multiple images are then
combined into a single volume through super-resolution reconstruction
(SRR) pipelines, a step that can also introduce additional artifacts. While
multiple studies designed automated quality control pipelines, no work
evaluated the reproducibility of the manual quality ratings used to train
these pipelines. In this work, our objective is twofold. First, we assess
the inter- and intra-rater variability of the quality scoring performed by
three experts on over 100 SRR images reconstructed using three different
SRR pipelines. The raters were asked to assess the quality of images
following 8 specific criteria like blurring or tissue contrast, providing a
multi-dimensional view on image quality. We show that, using a protocol
and training sessions, artifacts like bias field and blur level still have a
low agreement (ICC below 0.5), while global quality scores show very
high agreement (ICC = 0.9) across raters. We also observe that the SRR
methods are influenced differently by factors like gestational age, input
data quality and number of stacks used by reconstruction. Finally, our
quality scores allow us to unveil systematic weaknesses of the different
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pipelines, indicating how further development could lead to more robust,
well rounded SRR methods.

Keywords: Quality assessment · Reproducibility · Fetal brain · MRI ·
Super-resolution reconstruction

1 Introduction

Image quality assessment (QA) is critical to enforce reliability, generalization
and reproducibility of neuroimaging studies [1, 2]. Reproducible QA by human
raters is particularly critical and challenging in fetal brain MRI examinations.
QA is more challenging in fetal MRI than in postnatal acquisitions: exams are
typically carried out by acquiring several stacks of 2D fast-spin echo T2-weighted
(T2w) images with thick slices in orthogonal orientations [3, 4]. While this pro-
tocol was designed to minimize the impact of motion during the acquisition, the
resulting images can still be severely affected by artifacts like inter-slice motion,
signal drops or bias field inhomogeneity [4]. By design, a single fetal MRI acqui-
sition thus corresponds to multiple stacks of 2D images in comparison to a single
T1/T2 weighted volume to be assessed for QA in postnatal protocols. QA is crit-
ical for fetal MRI because image quality of the original acquisitions affects in a
complex manner each of the image processing steps which aim at computing an
artifact-free, motion-corrected, 3D volume with isotropic resolution (Figure 1A)
from the stacks of 2D images. While these super-resolution reconstruction (SRR)
pipelines [5–8] have been designed to compensate for the artifacts affecting the
input stacks of 2D images, their processing can converge towards a sub-optimal
solution, yielding a SRR 3D volume of insufficient quality for downstream ap-
plications, such as biometry measurements or tissue segmentation (Figure 1B).
QA for fetal MRI is thus particularly critical when considering potential trans-
lation in clinical routine, where the variations in image quality might impact the
measurement of interest for diagnostics at the individual level.

Some works have thus introduced automated QA methods for either the
clinical acquisition of 2D stacks [9–14] or the output SRR volume [15,16]. Most
of them rely on a binary include/exclude criterion, and train a supervised model
to identify and exclude poor quality data.

However, most of these works rely on QA scores from a single rater, which
runs the risk of developing biased models that overfit to a given rater [17],
potentially forfeiting the very objectivity that is sought in automated quality
assessment [18]. Multi-rater dataset are commonly developed in segmentation
tasks, as they allow to quantify inter-rater variability, providing a bound on
the expected performance of a given method, but enable also to build reliable
ground truth data [19–21]. Inter-rater QA variability has been estimated on
adult MRI [18,22,23], showing a large variability across raters, but these works
generally attempt to give a global quality score, and rarely focus on rating the
degree of importance of specific artifacts. While only a single work reported
inter-rater reliability in the context of 2D T2w stacks QA [13], this has never
been studied in the context of fetal brain SRR.
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Assessing data quality on fetal brain MRI reconstruction 3

Fig. 1. (A) Illustration of the data acquisition and reconstruction in fetal brain MRI.
Stacks of 2D images are acquired at multiple orientations and combined into a single
3D volume using super-resolution reconstruction techniques. Quality control checks are
implemented on the stacks of 2D images (Step 1) and on the SRR volume (Step 2).
(B) SRR volumes with different quality scores. (C) Example of the different artifacts
rated in this study.

In this work, we address the three following open questions: (1) How reliable
are quality scores on fetal brain SR reconstructions within and across raters?
(2) What are the artifacts that arise in different SRR algorithms and how can
we use these insights to improve the quality of SRR volumes? (3) How is the
quality of SRR volumes connected to variables like gestational age, number of
stacks used in reconstruction and quality of the input LR T2w stacks?

2 Methodology

2.1 Data

We reconstructed 105 SRR volumes from the 2D clinical series of 21 subjects,
acquired across three different scanners and 3 clinical centers, S1 (n=8), S2
(n=11) and S3 (n=2). The data were acquired on different Siemens (S1 and S2)
and General Electrics (S3) scanners at 1.5T (n=14) and 3T (n=7). Details on
the input data resolution, reconstruction resolution, gestational age and number
of low-resolution stacks available are provided in the supplementary Table S1.
The corresponding local ethics committees independently approved the stud-
ies under which data were collected, and all participants gave written informed
consent. Each subject was then reconstructed using three state-of-the-art re-
construction pipelines: SVRTK [5, 24, 25], NiftyMIC [7] and NeSVoR [8]. It was
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reconstructed twice with each method: once using all available LR T2w stacks
and a second time after filtering out bad quality stacks using quality ratings from
FetMRQC [13], an automated QA pipeline for LR T2w stacks. After discarding
duplicates (7 subjects where all stacks are included after QC ) and assigning a
quality score of 0 to reconstructions that failed to produce an output (5 recon-
structions from NiftyMIC), this yielded the total of 105 SR volumes.

2.2 Manual quality rating

As previous works often showed a substantial level of disagreement on subjective
QA tasks [13, 22], we attempted to build a formal QA rating protocol, where
the raters were first asked to rate eight specific artifact criteria (Figure 1C)
before giving a global subjective quality score (Figure 1B). The categories are
the following:

1. Full reconstruction: Is the brain fully reconstructed? Are there holes, or
large parts of the brain missing?

2. Geometrical artifacts: Did the SRR introduce any non-biological, textured
artifact like stripes?

3. Topological artifacts: Did the SRR introduce any discontinuity in the cor-
tical gray matter (cGM), or are some parts of the white matter (WM) directly
touching the cortical cerebrospinal fluid (CSF)?

4. Blur: Is there some blur in the image, especially between WM and cGM?
5. Noise: Is there a high level of noise in the image, potential preventing us

from seeing the deep gray matter (dGM) clearly?
6. Bias: Is there a bias field (smooth intensity inhomogeneity) on the image?
7. Tissue intensity contrast – WM/cGM/cerebrospinal fluid: Is the con-

trast sufficient? Do we see well the cGM?
8. Tissue intensity contrast – WM/dGM: Is the contrast sufficient? Do we

see well the sub-regions in the dGM?

The first artifact is a binary rating, and the rest are continuous, in the form
of sliders with values between 0 and 3 or 4, as shown on Figure S1). After
rating each of these categories, the raters gave a continuous global quality score,
with values corresponding to four categories [0, 1[= exclude, [1, 2[= poor, [2, 3[=
acceptable and [3, 4[= excellent. The three raters (R1, R2, R3) underwent a
training session on 25 SRR volumes not considered in this work (external to the
dataset mentioned above), discussed their results and refined common criteria
before rating them again. After this training session, they were asked to manually
score the 105 SRR volumes twice, with the cases randomly shuffled. In total, we
collected 105 volumes × 3 raters × 2 repetitions = 630 ratings.

2.3 Experiments

1 – SRR rating variability. We analyzed the ratings of the 105 SRR volumes
by the three raters. We measured inter-rater variability for each the eight artifact
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ratings as well as the global socre using intraclass correlation coefficient ICC(A,1)
(R package irr v.0.84.1) [26]. We did this computation on both repetitions. To
measure intra-rater-reliability, we used Lin’s concordance correlation coefficient
(CCC) (R package DescTools v.0.99.54) [27].
2 – Systematic artifacts of SRR methods. We evaluated the quality of
the three SRR algorithms considered by comparing their eight quality scores.
We first carried out a Friedman test (the non-parametric equivalent of a re-
peated measures ANOVA) with two degrees of freedom for each quality score,
and corrected the resulting p-values for multiple comparisons using Bonferroni
correction. When the p-value was below α = 0.05, we ran a pair-wise Wilcoxon
signed rank test to identify pairs that showed statistically significant differences.
We used the quality ratings averaged across raters and repetitions as the refer-
ence quality scores.
3 – Influence of gestational age and input 2D stacks quality on the
output SRR volume. To study how gestational age (GA) and the input stacks
quality influences the SRR volumes, we computed Spearman rank correlation,
and visually investigated extreme outliers. As different SRR algorithms could
lead to different trends, we evaluated the correlation individually for each SRR
method. The LR T2w quality scores were obtained using FetMRQC [13], and a
global input quality score was computed by averaging the quality of each stack
used in the reconstruction of a given SRR volume. We used the averaged SRR
quality ratings across raters and repetitions as the reference SRR quality score.

3 Results

3.1 Global SR quality ratings are highly reliable

In Table 1, we show the inter- and intra-rater reliability for the 3 raters, by com-
paring the scores across the two sessions (the SRR volumes were scored twice).
Although raters underwent a training session, we see that the both inter- and
intra- rater reliability remain low for several criteria, namely the level of blur in
the image (particularly at the CSF/GM/WM interface), and of the level of bias.
The inter-rater agreement for the level of geometric artifacts was also low, al-
though the intra-rater reliability was higher, suggesting a systematic discrepancy
in scoring across raters. The blur and bias levels correspond to a moderate relia-
bility according to Koo and Li’s interpretation [28]. There is an good-to-excellent
level of agreement across raters for the global quality score.

3.2 Different SRR methods suffer from different artifacts

Figure 2 shows the box plots for the eight discrete quality ratings, and shows
pair-wise Wilcoxon signed rank tests when the Friedman test was found to be
significant. A statistical difference was found across the SRR methods for the
geometric artifacts, the noise and the bias field rating. For geometric artifacts,
NiftyMIC was found to have significantly more artifacts (i.e. lower score) than
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Table 1. Inter- and intra-rater reliability on 105 images rated two times by three raters.
Inter-rater reliability was computed using intraclass correlation coefficient ICC(A,1)
(squared brackets are 95% CI), intra-rater reliability was computed using Lin’s concor-
dance correlation coefficient (CCC) (with standard deviation across raters). Reliability
above 0.8 is shown in blue, and below 0.5 in red.

Inter-rater reliability Intra-rater
Rating Round 1 Round 2 reliability

Full recon. 0.77[0.69,0.83] 0.80[0.73,0.85] 0.94±0.01

Geometric 0.48[0.33,0.62] 0.52[0.39,0.64] 0.72±0.10

Topological 0.64[0.51,0.74] 0.62[0.45,0.74] 0.74±0.07

Blur 0.46[0.32,0.59] 0.47[0.32,0.60] 0.57±0.04

Noise 0.74[0.66,0.82] 0.69[0.55,0.79] 0.80±0.03

Bias 0.40[0.22,0.56] 0.50[0.37,0.62] 0.55±0.27

Intensity GM 0.67[0.55,0.77] 0.66[0.50,0.77] 0.85±0.03

Intensity dGM 0.65[0.53,0.75] 0.68[0.55,0.78] 0.85±0.03

Global Quality 0.89[0.86,0.92] 0.89[0.85,0.92] 0.94±0.02

Fig. 2. Box plots showing the difference in all quality ratings across the three recon-
struction pipelines used in this study.

NeSVoR (W = 522, p = 0.00072) and SVRTK (W = 155, p = 0.0078). The pair-
wise analysis did not return any significant results for the noise rating, likely
due to a lack of power of the test. For the bias field, SVRTK was found to
have significantly more bias than NiftyMIC (W = 450, p = 0.028) and NeSVoR
(W = 615, p = 8× 10−9), and in turn NiftyMIC was found to have significantly
more bias than NeSVoR (W = 492, p = 0.004).
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Fig. 3. (A) Global QA score of the SRR volume as a function of the averaged QA
score of the input 2D stacks. Each color shade corresponds to a different subject. The
full linear regression line corresponds to NeSVoR, the short dashed one to NiftyMIC
and the long dashed line to SVRTK. The Spearman rank correlation coefficient ρ is
reported for each SRR method. (B) Illustration of extreme cases from Figure 3A.
Top box: example of a case where the LR data were rated of poor quality, but the
reconstructions are of very good quality (top left in (A)). Bottom box: example of a
case where the LR data were rated as high quality, but the reconstructions are of poor
quality (bottom right in (A)). (C) Global QA score of the SRR volume as a function
of the number of stacks provided as input.

3.3 SRR methods depend differently on LR T2w quality, gestational
age and number of stacks used in reconstruction

Figure 3A shows the correlation between the averaged quality rating of the 2D
stacks and the SRR volume quality. The Spearman rank correlations are quite
low, with ρNeSVoR = 0.22, ρNiftyMIC = 0.35, ρSVRTK = 0.17. There are two types
of outliers: region (1) shows 16 cases, out of 53 cases that have been labeled as
having very good quality 2D stacks, where the reconstruction was deemed unus-
able (quality below 1) – they greatly impact the correlation, as removing them
changes correlation to ρ = 0.53; region (2) shows eight opposite cases, where the
input 2D stacks were deemed of poor quality (16 cases in total ∈ [1, 1.5[), but the
SRR was between acceptable and excellent quality. A picture of the 2D stacks
and SRR with all three SRR methods is displayed in Figure 3B. We can see that
among the cases with good scores for 2D stacks and failed SRR, the score for 2D
stacks was excellent for 8/16 stacks because they displayed very little motion,
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although their contrast was low and bias field was high. These cases lead to very
poor reconstruction. The rest of the cases with a good quality for 2D stacks
and bad SRR feature one subject with ventriculomegaly, where NiftyMIC and
SVRTK failed, two failures by SVRTK and four failures from NiftyMIC. We also
observe that these two regions feature SRR obtained with a very different number
of stacks. Region (1) has nstacks = 10.6± 3.4 while region (2) only has nstacks =
5.19±2.6. This is consistent with Figure 3C, where we observed that NeSVoR and
SVRTK benefit a lot from having more stacks available, with a correlation ρ =
0.69 and 0.51 respectively, while this is not the case for NiftyMIC (ρ = −0.02).

We also investigated the effect of GA on SRR volume quality, and detailed
results are available on Figure S3 in the Supplementary Material. The Spearman
rank correlation shows different trends for the different SRR methods. NeSVoR
and SVRTK show a statistically significant negative correlation (ρ = −0.38, ρ =
−0.44) while NiftyMIC shows a small positive, non-significant correlation. This
is not surprising for NeSVoR and SVRTK, as subjects at older GAs have a more
developed brain with more subtle structures, and as a result, similar artifacts
can be perceived as impacting more the quality compared to younger GAs. The
opposite trend in NiftyMIC is caused by many subjects where NiftyMIC’s outlier
rejection excluded most of the available data, leading to a SRR of unacceptable
quality.

4 Discussion and conclusion

In this study, we quantified for the first time the intra- and inter-rater variability
in SRR quality assessment. We then used these ratings to better understand the
differences between NeSVoR, NiftyMIC and SVRTK in terms of their suscepti-
bility to the artifacts considered. Finally, we studied how external factors like
the quality of the input data, the number of stacks used for reconstruction and
the gestational age influenced the behavior of these SRR pipelines. Increasing
further the reliability of QA scores. Our results show that excellent relia-
bility can be achieved for global quality scoring across three raters, with good
reliability on specific criteria relating to the contrast across tissues and noise
levels. However we also identified blurriness and bias field as difficult to assess
by raters, with the lowest inter- and intra- rater reliability in the study. This is in
line with previous work [13] that found almost no correlation between raters on
rating of the level of bias field in LR images. Additional visualization tools based
on a difference map between the original image and a de-biased image could po-
tentially help human raters in this task. Such tools have been implemented for
adult brain MRI QC, where visual reports feature enhancement of the noise
around the head that helps to identify various motion-related artifacts [22].
Improving quality control in low-resolution data. As we have seen in
Experiment 3, there are many outliers that have been assigned a good LR quality,
but lead to an unusable SRR. In particular, input LR data with low contrast
were rated very highly, while they systematically led to a failed reconstruction.
This should be taken into account in future works on LR quality rating: while

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.06.28.601169doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.28.601169
http://creativecommons.org/licenses/by/4.0/


Assessing data quality on fetal brain MRI reconstruction 9

in LR quality rating, one easily notices and penalizes artifact due to motion
(signal drops or staircase-like motion through plane), they can be addressed
more reliably than a very low contrast input.
Improving SRR reconstruction methods. Our results from Experiments 2
and 3 show potential avenues for improving the performance of SRR pipelines.
In particular, Figure 2 shows that SVRTK leads to volumes with a strong bias
field. Running a bias field correction algorithm like N4 [29] could then be consid-
ered to address this issue. NiftyMIC was shown to exhibit significant geometric
artifacts, caused by its outlier rejection module excluding too many slices. This
results in several cases where the majority of data is discarded, preventing it
from benefiting from using more stacks, as opposed to SVRTK and NeSVoR.
Tuning the exclusion parameter more carefully could be an avenue to improve
NiftyMIC’s performance. In general, simulated data could be of help to tune
these parameters in a quantitative way, complementing manual annotations [30].
Future perspectives. Future extensions of this work will focus on further im-
proving the quality and robustness of SRR methods. In particular, we will inves-
tigate how we can use the quality assessment at the input level to maximize the
SRR quality. From the clinical perspective, automating fetal brain MRI QA and
integrating it in the clinical workflow would reduce the burden of manually pro-
cessing acquired images and would also lead to more automated MRI-to-PACS
pipelines for fetal MRI analysis.
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Supplementary material

Fig. S1. Example of a manual QC report used in the study. The report display a
quick view with a slice in axial, sagittal and coronal orientations, and then shows all
the slices from all orientations. The rating panel contains categories of artifact sever-
ity for each entry. Geometrical artifacts, blurring, noise, bias field, tissue contrasts I
(WM/cGM/CSF) and II (WM/dGM) are rated on a scale from 0 (very severe arti-
fact/poor quality) to 3 (no artifact/excellent quality). Tpological artifacts and global
quality score are rated in a scale from 0 to 4.
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Table S1. Data description. nsub native and nsub 0.8mm refer to the number of sub-
jects reconstructed either at their native resolution (0.5mm or 1.1mm isotropic) or at
0.8mm isotropic. This allows to account for the bias that different target resolutions
might introduce in the data. The S1 data contain 5 subjects with intrauterine growth
restriction (IUGR) and 3 with corpus callosum agenesis (CCA) pathological subjects
and the S2 data contain 3 subjects with ventriculomegaly, 3 with (partial) CCA, 1 with
cytomegalovirus (CMV) and 4 controls.

Site Magnetic IP res. TP res. nsub nsub nstacks GAfield [T] [mm] [mm] native 0.8mm

S1
1.5 0.5 3.2 1 2 5.7 ± 3.8 29.2± 7.9

3 0.5 3.5 1 2 4.7±1.2 36.6± 2.0
0.7 3.5 2 – 6 ± 0 37.8± 1.8

S2 1.5 1.1 3.3 2 7 8.3 ± 4.6 28.1± 4.1
3 0.5 3.3 1 1 8.5 ± 0.7 26.5± 0.7

S3 1.5 0.5 3 – 2 14.5 ± 6.4 31.5± 3.5

Fig. S2. Correlation matrix be-
tween the different rating criteria
across all raters.

Fig. S3. Global QA score of the SRR volume
as a function of the gestational age. Each color
shade corresponds to a different subject. The full
linear regression line corresponds to NeSVoR,
the short dashed one to NiftyMIC and the long
dashed line to SVRTK. The Spearman rank cor-
relation coefficient ρ is reported for each SRR
method.
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