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Damping assignment of boundary
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unknown open-loop damping
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* ONERA — The French Aerospace Lab, DTIS, 2 Avenue Edouard
Belin, F-31400, Toulouse, France.

Abstract: A damping assignment control law for infinite-dimensional port-Hamiltonian systems
in one-dimensional space with actuators and sensors located at the spatial boundaries is
proposed with the novelty that the boundary damping is unknown. This allows us to fix a
desired decay of energy for the cases in which the system is over-damped, poorly damped,
and even with negative damping. We propose an observer composed of an infinite-dimensional
model and a finite-dimensional one for the state and parameter estimation. The asymptotic
convergence of the observer is shown using LaSalle’s invariance principle assuming that the
trajectories are precompact. Finally, an observer-based adaptive output feedback controller is
proposed for the damping assignment in the closed loop. The passivity of the closed-loop system
is guaranteed with respect to the initial Hamiltonian of the system under the assumption that
the observer is initialized identically to the current state and close enough to the parameter

value. The transmission line is used to exemplify this approach.
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Boundary control systems, distributed parameter systems, port-Hamiltonian
systems, damping assignment, observer design, adaptive control.

1. INTRODUCTION

The port-Hamiltonian approach, initially introduced for
finite-dimensional systems in [Maschke and van der Schaft,
1992], is a framework that takes energy considerations for
the modelling and control of dynamical systems. One of
the main advantages of this approach is that it can be
seen as a lingua franca between different physical domains
[van der Schaft and Jeltsema, 2014, Marquez et al., 2020].
The port-Hamiltonian representation has been extended
to infinite-dimensional systems in [van der Schaft and
Maschke, 2002] and the class of Boundary Controlled Port-
Hamiltonian Systems (BC-PHS) has been characterized in
[Le Gorrec et al., 2005]. Using this approach one can model
beams, waves, transmission lines, transport phenomena,
among others.

Since the Hamiltonian can be, in general, used as Lya-
punov function, the stability of port-Hamiltonian systems
can be characterized by the internal energy dissipation.
Although in most physical systems, energy dissipation
is natural due to intrinsic dissipative elements like re-
sistors and dampers, their influence on the system can
be different to the desired one. Then, control laws are
important to modify the decay of energy into a desired
one. For BC-PHS, this has been investigated using static
and dynamic output feedback controllers [Villegas, 2007,
Jacob and Zwart, 2012]. Asymptotic stability has been
reported in [Macchelli, 2013, Macchelli et al., 2017], ex-
ponential stability in [Villegas et al., 2009, Ramirez et al.,
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2014, Trostorff and Waurick, 2022], and more recently, the
damping assignment technique has been proposed for the
vibrating string model with distributed damping [Redaud
et al., 2022]. In order to precisely assign a desired decay
of energy, the values of the intrinsic damping (or the one
added by design) are required by the controller.

One way to estimate the current parameters of the system
is using dynamic observers and Kalman filters [Dochain,
2003, Demetriou and Ito, 2003]. For port-Hamiltonian
systems, observers have been mainly used for state estima-
tion. See for instance [Venkatraman and van der Schaft,
2010, Vincent et al., 2016, Yaghmaei and Yazdanpanah,
2018, Biedermann and Meurer, 2021, Pfeifer et al., 2021]
for the finite-dimensional case and [Kotyczka et al., 2019,
Toledo et al., 2020, Malzer et al., 2021b,a| for the infinite-
dimensional case. To the best of the authors’ knowledge,
the estimation of parameters using observers has not been
investigated for BC-PHS. In particular, in this paper we
propose an observer composed of an infinite-dimensional
model and a finite-dimensional one for the state and
parameter estimation, being the observed parameter the
damping coeflicients at the spatial boundaries.

By estimating the damping terms at the spatial bound-
aries, in this paper, we present a preliminary step towards
the damping assignment of the closed-loop of BC-PHS
under unknown damping in open-loop. The conditions to
guarantee asymptotic stability and the passivity of the
closed-loop system with respect to the initial Hamiltonian
are limited to a proper initialization of the observer. The
main contributions of this paper are therefore twofold: (4)
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a dynamic observer for the estimation of the damping at
the spatial boundaries of BC-PHS, and (i4) an adaptive
output feedback control law for the assignment of damping
in closed-loop.

The paper is organized as follows. In Section 2, we recall
the class of system of interest and we introduce the
main problem. In Section 3, we propose the observer and
we show its convergence. In Section 4, we present the
conditions to guarantee asymptotic stability using the
adaptive output feedback control law. In Section 5, we
illustrate the approach using numerical simulations on
the transmission line. Finally, in Section 6, we give some
conclusions and perspectives.

2. PROBLEM FORMULATION

We consider the following boundary controlled port-
Hamiltonian system:

G (G0 = P (RO 0) + BH(O(C. 1),
5. (C 0) = zo( )a(t)> (1)
eo(t)

W%(gg)——Rm>+v@r:u@,

where ¢ € [a,b] is the one-dimensional space, t > 0 is
the time, z(¢,t) € R™ is the state variable with initial
condition z¢(¢), P; = P{ € R™ " is a non-singular matrix,
Py = —P§ € R™*" () is a bounded and continuously
differentiable matrix-valued function satisfying for all ¢ €
[a,b], H(¢) = HT() and mI < H(¢) < MI, with

0 < m < M being scalars independent of (, ( é;) are

the boundary port variables defined as

(G0) - () (ied) . e

and Wg and W, € R™*2™ are two matrices defining the
input u(t) € R™ and output y(t) € R™, respectively.

The Hamiltonian associated to (1) is given by

b
HE) =5 [ AC0THQ:c0d ()

and in this paper, we are interested to the cases in
which the boundary output and boundary input in (1)
are conjugated in the sense that H(t) = y(t)Tu(t), i.e.,
the cases in which the input and output matrices satisfy
WgSWE = WeSWE = 0 and WeEWE = I, with
¥ = (9%). The matrix R € R™™" is related to diSSipative
elements placed at the spatial boundaries of the domain
and for simplicity, in this paper, is considered that is
diagonal. Finally, v(t) € R™ represents the control action.
The reader is refer to [Le Gorrec et al., 2005, Jacob and
Zwart, 2012] for more details on the BC-PHS (1).

Since H(t) = y(t) u(t), we obtain the following energy
balance through (1):

H(t) = —y(t) " Ry(t) + y(t) "o(t). (4)
Using the control action v(t) = —(Rq — R)y(t) +r(t), with
Ry € R™ ™ and r(t) € R™, one can fix some desired decay
of energy by properly choosing Rg4. Thus, the following
desired energy balance is achieved:

H(t) = —y(t) " Ray(t) +y(t) "r(?). ()
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The objective of this paper is to approach the desired
energy balance in (5) without the knowledge of the
matrix R. To this end, we propose an observer composed
of an infinite-dimensional model (a copy of (1)) and a
finite-dimensional one containing as state the estimation
of the parameters. This observer allows us to estimate the
damping matrix R, which can be then used in the following
adaptive output feedback control law:

v(t) = —K(t)y(t) +r(t), K(t)=Ra—R(t), (6)
where R(t) is the estimated value of the matrix R. As

soon as ]%(t) approaches R, the control law approaches
the desired one.

3. ESTIMATION OF THE DAMPING

We assume that R is a diagonal matrix and we define the
unknown vector 0 as follows:

91 @1 0
loR= ] (7)
O 0 ... 0,

We assume that 6(t) = 0, and we propose the following
observer for the system (1):

5 (60 = P (RO 0) + RO 1),

2(C70) = 20(C)7
X9 0(t) = —La(y)(i(t) — y(t)),

g(t) = We (£0),

W%(gg)z—wn>mw+mw—Lumw—yo»
where 2((,t) € R™ is the estimation of z(¢,t) with initial
condition Z(¢), 6(t) € R™ is the damping estimation with
initial condition 6y, Ly € R™ "™ and La(y) € R™ "™ are
the observer matrices defined here after, M(y) € R™*" is
a diagonal matrix with the ¢ — th diagonal element equal
to the i — th element of the vector y(t), and the observed
fa(t)
és(t)
2(b,t) and 2(a,t) instead of z(b, t) and z(a, t), respectively.
Let the observer errors be defined as 2((,t) = 2(¢,t) —
z(¢,t) and 0(t) = 6(t) — 0. Then, computing estimation
error dynamics as follows:

6(0) = by, (8)

boundary port variables ( ) are defined as in (2) using

Een= §<<oacw»+aﬂxﬁ«¢»
ﬂ)=—Lﬂ)()
5. {260 =0 = 30 0 o)
6(0) = o = by — 0,
(t

Q,

—~
o~

N

gt) = We ~a(t))7

W (£0) = ~M(y)a(t) - Lig(),

where Z(¢,?) € R" is the state estimation error with initial
condition Zp(¢) and # € R™ is the damping estimation

error with initial condition . The following proposition
is instrumental for the forthcoming convergence proof of
the observer.

are such

Proposition 1. If the gain matrices L; and Lg(]y
then the

that Ly = L] > 0, and Lao(y) = —Q; ' M(y
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error system in (9) can be equivalently written as the
passive interconnection between an infinite-dimensional
port-Hamiltonian system (represented by ’ﬁ) and a finite-
dimensional one (represented by O) as shown in Fig. 1.

i) [ L
_ z?cz) ]
Yo(t) C§ o (t)

™
=

~~
1=

Fig. 1. Equivalent representation of the error dynamic.

Proof. If we define u( ):=Ws (fd(t ) and the Hamilto-

€a(t)
nian error as H(t) = 3 f (¢,t)THZ(C,t), one can verify
f[(t) =g’ ( ) (This can be verified according to the
assumptions on the matrices Wi and We). :T hen, we can
define the following BC-PHS associated to H(t):

5 (G0 = P (RO 0) + RO 1),
5. ) 2(6,0) = Z0(0),
7t =we (5().
e ) S50
Then, we define the following finite-dimensional port-
Hamiltonian system O with associated energy H,(t) =

30(t) T Qo0 (t):

(1) = O)Q 0(t) + Bo(y)uo(t),
o(t)=39 v )T Qf(t) + Dytio(0),

0(0) = fo = 6o — 97
with J, =0, R, = 0,0 < Q, € R"™™, B,(y) = —La(y),
and D, = L;. Finally, using the passive interconnection as

shown in Fig. 1
: { o(t) = 4(t),
u(t) = =yo(t),

and the fact that La(y) = —Q;'M(y)T, one can write
down the system (9) using (10), (11) and (12). This
concludes the proof.

(10)

O:

z@ Cbl

(11)

(12)

Since the error dynamic can be described by the passive
interconnection between two port-Hamiltonian systems,
it convergence can be shown using the total energy as
Lyapunov function. In the next proposition, we present
the main contribution of this paper. Using the fact that
the BC-PHS in (10) is exactly observable (see [Jacob and
Kaiser, 2019]) and assuming that the solution trajectories
of the error system (9) are precompact, one can show the
asymptotic convergence of the observer using LaSalle’s in-
variance principle applied to infinite-dimensional systems.
This is summarized in the following proposition.

Proposmon 2. Consider the error dynamic in Q ) with
Li=L{ >0,La(y) = —-Q; ' M(y)" ;and @, = Q, > 0.1If
y(t) is different to zero, the states 2((, t) and 0(t) Converge
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to zero asymptotically for any Zo(¢) € La([a,b], R") and
0y € R™.

Proof. Using the fact that the error system (9) can
be written as the interconnection between two port-
Hamiltonian systems (see Proposition 1), a natural can-
didate Lyapunov function is the sum of the energies of
both systems. That is

V(t) = H(t) + H(t), (13)
with the functions H(t) = % bé(gt)THZ(C, t)d¢ and
H,(t) = %é(t)TQoé(t). The time derivative of (13) is:

V(1) = §(6) Ta(t) + yo(t) "uo(t) — uo(t) T Douo(t),
= —5(t) "yo(t) + o (1) 5(t) — §(8) T Lag(2),
= _gTng(t)a
where we have used (10), (11) and (12). Now, provided
that the solution trajectories of the error system are
precompact, we use LaSalle’s invariance principle applied

to infinite-dimensional systems. To this end, we have to
show that the maximal invariant set of the following set:
T ={2((t) € La([a,b], R™), 0(t) € R™ | V(t) =0},

contains the origin only, i.e., Z2(¢,t) = 0 and 0(¢t) = 0.
Since L; > 0, the condition V(t) = 0 implies §(t) = 0.
Since the BC-PHS in (10) is exactly observable (see [Jacob
and Kaiser, 2019, Theorem 3]), (10) is approximately
observable (weaker condition).This implies that if for some
period of time ¢t € [0,7], g(t) = 0, then 2(¢,t) =
0 (see [Curtain and Zwart, 2012, Corollary 4.1.14 b]).
The latter implies a(t) = 0 (since 2(¢,t) = 0 implies
fa(t) = 0 and és(¢) 0 (see (2) replacing fa by fa,
es by €s, and z by 2)). @4(t) = 0 and g(¢) = 0 imply

0,

0

\./
~—

Yo(t) = 0 and u,(t) respectively (see (12)). The
previous implies é( t) = 0 and Bo(y)  Qu0(t) = 0 (See
(11)). Replacing Bo(y) = —La(y) = Q;'M(y)', we
obtain M (y)0(t) = 0. Differentiating the latter one obtain
M(9)0(t) —|—M(y)§(t) = 0. Since by definition y(t) # 0 and
since é(t) = 0 (since u,(t) = 0), the only possible value is
6(t) = 0. This concludes the proof.

Remark 3. Note that, the main condition to use LaSalle’s
invariance principle, in this case, is the approximate ob-
servability of the BC-PHS in (10). This allows applying
Proposition 2 to cases where there are fewer than n sen-
sors. This is exemplified in Section 5 with the transmission
line example.

In the following section, we use the observed value 6(t) to
build an adaptive output feedback control law allowing the
assignment of the desired damping in the closed loop.

4. OBSERVER-BASED DAMPING ASSIGNMENT

Now, we apply the adaptive output feedback control
law (6) with R(t) as a diagonal matrix containing the

estimated values 01 (t),...,0,(t) in its diagonal (similarly
to (7)). Then, the Hamiltonian of (1) becomes:

H(t) = —y()" [Ra— B)| y(®) + (&) (1),

where ﬁ(t) being a diagonal matrix containing the ele-
ments of 0(t).

(14)
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The control objective is to guarantee that R(t) converges
faster than the state z(¢,t) and that H(t) < y(t)Tr(t) for
all t > 0. In this way, the original system (1) is stable with
a desired dissipation matrix R4 and the passive structure
is preserved with respect to the new input r(¢) and the
initial Hamiltonian (3). One way to guarantee this is to
initialize the observer such that Zy(¢) = 0 and Ryq > R(0).
This is a conservative condition and represents a trade-off
between the choice of the desired dissipation matrix Ry in
the closed loop and the initial estimation of the state and
parameters. In the following proposition, we summarize
this condition.

Proposition 4. Consider the system (1), the observer (8)
with gains L; and Lo(y) as in Proposition 2, and the
adaptive output feedback control law (6) with r(t) = 0,
Ry > 0, and R(t) as defined in (7) with 6(t) instead. For
any 20(C) € La([a,b],R™), the trajectory z((,t) converges
to zero asymptotically if the observer is initialized such
that 29(¢) = 20(¢) and R(0) — R < Rg. Moreover, if r(t) #
0, the Hamiltonian of (1) is such that H(t) < y(t) "r(t) for
all ¢.

Proof. Let the Hamiltonian (3) of the system (1) as a
candidate Lyapunov function. By replacing u(t) by the
observer-based control law (6) in (4) and we obtain the
following balance equation
H(t) = ~y() [Ra = R + R| y(®) + y() Tr(1)

We use the fact that the estimation error is asymptotically
stable as shown in Proposition 2. Then, using V(t) =
H(t) + H,(t) from (13), we can write V(t) < 0, implying
that V(t) < V(0). Smce 20(¢) = 20(¢), Z(¢) = 0, and
V(0) = H,(0) = 164 Q,00. Then, since V(t) < V(0)
we can conclude that for all ¢ > 0, the following is
satisfied %G(t)TQOG(t) < 269 Qobo. The last implies that

10(t))2 < ||0~0||§, implying as well that the diagonal
elements of R(t) = R(t) = R can not be bigger than
R(0) = R(0) — R, i.e., R(t) < R(0) or R(t) < R(0). Then,

since R(0) < Rq + R (by definition) and R(t) < R(0),
0 < Rg— R(t) + R for all t. This allows to conclude that
for all ¢, y(t) # 0 and r(¢t) = 0, the Hamiltonian is strictly
decreasing, i.e., H(t) < 0, implying that z((,t) converges
to zero asymptotically. Finally, since Rg — R(t) + R > 0,
H(t) < y(t)Tr(t) for all t and r(t) # 0. This concludes the
proof.

Remark 5. The condition on the initialization of the ob-
server in Proposition 4 is restrictive in the sense that this
is not always possible due to the fact that the state is not
always measured. However, this is only needed to preserve
the passivity of the system with respect to the original
Hamiltonian (3). Since by Proposition 2, the convergence
of the observer is guaranteed for any initial condition on
the Ly space, the matrix Rqy — R(t) + R = Rq — R(t)
is guaranteed to converge to Ry (since R(t) converges to
zero). However, the free initialization of the observer may
cause H(t) > 0 before the convergence of R(t).

Remark 6. As for lumped linear time-invariant systems
there is a trade-off on the design of the observer and
the controller. In this case, the design parameter of the
controller is the desired damping R; and the design

Jesus-Pablo Toledo-Zucco et al. / IFAC PapersOnLine 56-2 (2023) 6807—6812

parameters of the observer are the matrices L; and La(y).
The gains Ly and Ly (y) have to be designed such that the
convergence of the observer is faster than the convergence
of the state z((,t). This is important for the case in
which r(t) = 0, where due to the asymptotic stability
of the closed-loop system, the state z({,t) converges to
zero, implying ¢(¢) = 0 and thus, loosing the asymptotic
behaviour of the estimation error.

5. THE TRANSMISSION LINE EXAMPLE

Consider infinite-dimensional model of a transmission line
with zero voltage at one end and an unknown resistor
with a voltage source at the other end. The voltage source
is considered as the actuator and we assume that the
supply current to the transmission line is measured. In
Fig. 2, we show a diagram of the circuit where t > 0
is the time, ¢ € [a,b] is the spatial variable, v(¢) is the
voltage of the source, # € R is the unknown resistor, and
i(a,t), u(a,t), and u(b,t) = 0 are respectively, the input
current, the input voltage, and the voltage at the end of
the transmission line.

0

i(a,t)
—AAA
u(t) u(a,t) u(b,t) =0
(=a ¢=15b

Fig. 2. Transmission line diagram.

The dynamic can be described by the following equations

e 5(¢.) _
T =5 (1) a0 = o
D=5 ( YD) otc.0) = an(@),

o Jewn
Qo) __ ot
C(a) Z(_i)L(a) s (t)
yi(t) = L(;) ;

where Q(¢,t) € R is the electric charge with initial
condition Qo(¢), ¢#((,t) € R is the magnetic flux with
initial condition ¢y(¢), C(¢) > 0 for all { € [a,b] is the
capacity density and L(¢) > 0 for all ¢ € [a,}] is the
inductance density. The voltage of the transmission line is

given by u(¢,t) = Q((C §) and the current by i(¢,t) = ¢L(f<t>)

The previous system can be represented as the BC-PHS
in (1) with
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_ (0, 0\ 6 =9,
R—(o 92>’ 6, = 0,

Now, we use the fact that the system is approximate
observable with respect to y1(t) (since ||H(a)z(a,t)]| <
lur (8)]|2 + [Jy1 (£)]|? (see [Mattioni, 2021, Theorem 3.2.1])).
This makes also applicable Proposition (2) (see Remark 3)
using w1 (), ua(t) and yi(t), only. Then, the observer (8)
is designed with the following boundary conditions:

o (£18) = (MO + 0 1 G0 —n()

éa(t)

and the finite-dimensional part:

0(t) = —La(y2) (@1 () — 1 (1)),
where
Ly(y) = =By, M(y1) = 1,

with @ > 0 and 8 > 0 represent two degrees of freedom
of design. Finally, by applying the following control law
(equivalent to (6), but reduced to one actuator only):

vs(t) = =k (Oyr () +r1(t),  Fa(t) = 04— 01(1),
where 64 is the degree of freedom related to the desired

resistor, 0y (t) is the estimation of 6; = 6, and r1(t) is an
external input.

lea,

Simulation The system and the observer are simulated
in Matlab using the solver ode25t. The infinite-dimensional
transmission line and the observer are spatially discretized
using the finite differences method described in [Trenchant
et al., 2018] with 200 states per state variable. In total
there are 400 states for the system and 401 states for the
observer (400 states for the infinite-dimensional part and
1 state for the finite-dimensional one) .

Scenario 1  The transmission line is commissioned
from the zero equilibrium through sinusoidal voltages and
currents. To this end, we use the external input r(t) =
sin(t). The resistance 6 is unknown by the controller.
In this case, we consider a poorly damped system with
6, = 6 = 0.1, and such a low damping generates long peaks
in the storage energy of the transmission line, as shown in
Fig. 3. The objective is to assign a desired damping 6; = 1.
To do so, we use @ = 2 and § = 2 for the design of the
observer. The system and the observer are initialized with
zero initial conditions. In Fig. 3, we show the Hamiltonian
obtained using the observer-based damping assignment
and the desired one. Similar behaviors can be observed,
since the estimation 6 is always close to the real value of
6. The damping estimation is illustrated in Fig. 4, taking
around 40 second to estimate the true value in this case.

Scenario 2 Now, consider the same design and initial
conditions as Scenario 1, but in two different scenarios: (7)
the open-loop system is unstable with a negative damping,
and (i7) the system is overdamped (6 > 1). In both cases,
the observer-based approach achieves the desired behavior,
as show in Fig. 5. For the unstable case, one can see a big
peak on the Hamiltonian during the first seconds. This is
due to the poor estimation of the initial condition 6(0) = 0
and the unstable nature of the transmission line. For the
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‘;;1.5 —H (t) in open loop

= —H( ) desired

g ) observer-based approach
3

=) /\ /\/\/\A’\A’\A’\A’\N\/\/\/\/\/\/\/\/\
= 4l

Tlme (s)

Fig. 3. Hamiltonian in open loop (blue), desired one (red)
and in closed-loop with the observer-based approach.

0.1

= —0
<> A
< —0(t)
00.05
)
2
A 0
0 10 20 30 40 50 60 70 80

Time (s)

Fig. 4. Estimation of the parameter § = 0.1.

overdamped case, the Hamiltonian takes more time to
achieve the desired behavior. This is also due to the poor
initialization of 6(0) and the design of the observer. The
time response can be improved by modifying the observer
design parameters « and .

— 1
\;/ —H (t) desired
o — H (t) negative damping § = —1
= 05! H(t) overdamped =2
AW
5]
= o
0 10 20 30 40 50 60 70 80
Time (s)
Fig. 5. Hamiltonian with desired damping (blue), negative

damping (red), and overdamped (yellow).

6. CONCLUSIONS AND PERSPECTIVES

In this paper, a novel method for the assignment of
damping in closed-loop for boundary-controlled port-
Hamiltonian systems under the assumption that the
damping at the spatial boundaries is unknown. To do
so, we have proposed a dynamic observer composed of
an infinite-dimensional model and a finite-dimensional one
for the state and damping estimation. The convergence of
the observer is guaranteed to be globally asymptotically
stable if the conjugated output is not static. Then, an
adaptive output feedback control law has been proposed
to assign a desired damping to the closed-loop system.
The conditions that guarantee closed-loop stability and
passivity preservation are presented in terms of the initial
conditions of the observer, being restrictive in the sense
that the observer initialization should be identically to
the state of the system and close enough to the param-
eters. The transmission line has been used to exemplify
the proposed approach. The incorporation of the energy
shaping technique is part of the future work, as well as
the estimation of the damping inside the spatial domain.
The application to the detection and suppression of (pos-
sibly unstable) mechanical oscillations (e.g., flutter) are
currently under investigation.
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