
HAL Id: hal-04633237
https://hal.science/hal-04633237v1

Submitted on 22 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards Digital Sustainability: Involving Cloud Users as
Key Players

Anas Mokhtari, Baptiste Jonglez, Thomas Ledoux

To cite this version:
Anas Mokhtari, Baptiste Jonglez, Thomas Ledoux. Towards Digital Sustainability: Involving Cloud
Users as Key Players. IC2E 2024 - 12th IEEE International Conference on Cloud Engineering, Sep
2024, Paphos, Cyprus. pp.126-132, �10.1109/IC2E61754.2024.00021�. �hal-04633237�

https://hal.science/hal-04633237v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Towards Digital Sustainability:
Involving Cloud Users as Key Players

Anas Mokhtari
IMT Atlantique, INRIA, LS2N, UMR CNRS 6004, F-44307

Nantes, France
anas.mokhtari@imt-atlantique.fr

Baptiste Jonglez
IMT Atlantique, INRIA, LS2N, UMR CNRS 6004, F-44307

Nantes, France
baptiste.jonglez@inria.fr

Thomas Ledoux
IMT Atlantique, INRIA, LS2N, UMR CNRS 6004, F-44307

Nantes, France
thomas.ledoux@imt-atlantique.fr

Abstract—Due to the rapid growth of Cloud services, data
centers have become major energy consumers, resulting in sig-
nificant CO2 emissions. Several infrastructure-focused strategies,
such as resource consolidation, have been used to reduce the
carbon footprint of Cloud infrastructure. However, end-users are
often left out of the picture. Since they are the primary target
of Cloud applications, it would be beneficial to actively involve
them in reducing the carbon footprint of Cloud applications.

In this paper, we offer end-users a way to influence the carbon
footprint of Cloud applications they use. To this end, we ask end-
users to select a high-level mode to control the carbon footprint
of a Cloud application. We then design a dynamic adaptation
algorithm that determines an appropriate configuration for the
application for each request, based on the end-user mode and on
the carbon intensity of the infrastructure energy sources.

We implement and evaluate our system on a simple image-
resizing application. We run experiments on SeDuCe, a Cloud
infrastructure testbed partially powered by solar panels. Our
results show that we save energy consumption by up to 84% when
all end-users agree to degrade the quality of the application’s
output, and we provide a good quality-energy trade-off when
end-users make heterogeneous choices. In addition, we are able to
improve quality by leveraging the available green energy budget.

Index Terms—cloud computing, human-centered computing,
digital sustainability, carbon footprint, green energy

I. INTRODUCTION

Digital services and infrastructure account for a significant
share of global greenhouse gas emissions. This carbon foot-
print is set to increase further as the use of new technologies is
growing while efficiency improvements are expected to slow
down [1]. Several research studies aim to reduce the carbon
footprint of the IT sector by optimizing Cloud infrastructure:
reducing their energy consumption [2], using renewable energy
sources [3], or consolidating workloads on fewer physical
servers [4]. However, most of these studies consider end-user
behavior as a fixed input parameter, i.e., they assume that
users generate a workload that must then be managed by the
infrastructure. Similarly, Cloud (SaaS) applications running on
the infrastructure are often considered black-box systems that
simply consume resources such as CPU, memory or disk.

This research was supported by the French project OTPaaS.

We believe that actively involving end-users is beneficial
and can help to reduce the overall carbon footprint of digital
services. By ”end-user”, we refer to the final user accessing
a given application running on a Cloud infrastructure. Our
approach is based on the realization that end-users actually
have flexible needs: they may have different requirements
regarding the level of quality offered by the hosted application,
such as the number of results of a search query, the quality of
an image, the response time to a query, etc. In addition, we
are witnessing a growing awareness of digital sustainability:
end-users may be ready to accept a further degradation of
the quality if they are informed of a difficult situation, such
as when the infrastructure is overloaded or when renewable
energy is not available.

In this work, we go one step further: we enable end-users
to play an active role in the energy consumption of their use
of the software. We allow end-users to choose a high-level
carbon footprint-related ”mode of operation” for the SaaS
application they are using. This mode is then used to determine
an appropriate quality-energy trade-off for the application,
given the current state of the infrastructure. This relies on
a level of flexibility offered by Cloud applications: we ask
developers to add parameters to the application, so that our
system can dynamically configure the application to prioritize
either high quality or low energy consumption.

The structure of this paper is as follows: Section II outlines
our approach, while Section III illustrates the approach with
a concrete use-case. Section IV introduces our adaptation
algorithm. Experimental validation of our approach is detailed
in Section V, and Section VI highlights the current scope of the
work and associated challenges. Section VII reviews related
work, and Section VIII concludes with our findings and future
work.

II. OVERVIEW

In this section, we present our approach for reducing the
application’s carbon footprint through user involvement. Many
SaaS applications follow the same pattern: a service – such
as an e-commerce website or a map service – is generally



Service (App)

Users

(a) Usual operation.

Users Users Users

Sustainable
mode

Balanced
mode

Performance
mode

Adapter

Service (App)

(b) Carbon footprint-aware opera-
tion through user involvement.

Fig. 1: Involving or not Cloud users.

accessed via a web browser. The browser sends user requests
to the application, which is hosted on a server in a datacenter.
Traditionally, all requests are processed in the same way for
any user, regardless of the energy context of the underlying
infrastructure (see Figure 1a). As a result, all users benefit
from the same quality of service.

The idea of our approach is to enable each individual user
to control their carbon footprint when using a digital service.
We then want the service to adapt each response according to
each user’s choice, for instance by returning more or fewer
results or by adjusting the output quality of the response. In
practice, the choice of the user is expressed in a web browser
extension that offers several carbon footprint-related modes.
The selected mode is then transmitted to the Cloud application
through an HTTP header.
We currently offer users three different modes (Figure 1b):

• Performance mode is chosen by a user when they
want the best quality, regardless of the resulting carbon
footprint. This mode corresponds to the operation of
standard SaaS applications;

• Sustainable mode is chosen by a user when they wish
to use the service with minimum carbon impact. In this
case, the quality of the responses may be degraded, but
in a controlled manner;

• Balanced mode is a balance between the other two
modes: the user wants the best quality with the smallest
possible carbon footprint. In this case, we have to find
a trade-off between the quality and the carbon footprint
in the current energy context. The ”energy context”
represents the current carbon intensity of each energy
source used to power the datacenter infrastructure.

To make our approach applicable to a large class of Cloud
applications, we introduce an adaptation layer that intercepts

each request, looks at the HTTP header indicating the mode
selected by the user, looks at the current energy context, and
uses an adaptation algorithm to dynamically determine which
application-specific parameters should be added to the request.
Finally, the adaptation layer forwards the modified request to
the application itself, and then forwards the response from the
application back to the user (see Figure 1b).

To enable our adaptation layer to select good energy-quality
trade-offs, the Cloud application must be flexible enough.
We ask application developers to introduce per-request pa-
rameters in their application: the value of the parameters
should influence the energy consumption for processing the
request, as well as the quality of the response. We call each
possible combination of parameters a configuration. We give
an example of such a flexible application in the next section.

III. EXAMPLE APPLICATION

We consider an image-resizing service that creates low-
resolution images based on a larger original image (thumbnails
or previews). Typically, a resampling filter is applied to the
output image to improve its visual quality. This kind of service
is CPU-intensive: the larger the output image size, the more
processing is required; in addition, each resampling filter
algorithm has a different processing cost. We select five values
for the resolution parameter (144, 360, 480, 720 and 1080
pixels) and four techniques for the filter parameter (Nearest,
Bilinear, Bicubic and Lanczos) [5], which gives 20 different
configurations.

Each configuration requires a different amount of energy
to resize an image. The configuration (360, Nearest), which
resizes an image to 360 pixels using the Nearest filter, con-
sumes 75 mJ for each image. However, the configuration
(1080, Lanczos) requires almost ten times as much energy
with 741 mJ . We describe the measurement methodology in
Section V-A and the full results in Section V-B.

To assess the quality of each configuration, we rely on
the visual perception of users to evaluate the output image
quality. We define five levels of output quality: Excellent
(⋆⋆⋆⋆⋆), Very good (⋆⋆⋆⋆), Good (⋆⋆⋆), Medium (⋆⋆) and
Poor (⋆). For the evaluation in Section V, we classified our 20
configurations by visually inspecting example output images:
the resulting quality levels are shown in Figure 4. We discuss
this methodology in more details in Section VI.

The Python snippets in Listing 1 and 2 are example imple-
mentations of this image-resizing application in Python, using
the Flask web framework. The first version of this application,
in Listing 1, is not flexible: it simply reduces the input image
to a fixed size.

To make it more flexible, we define two configuration
parameters: the output image height (height) and the resam-
pling filter (r_filter) to be applied to the resized image.
The modified code is shown in Listing 2. The developer has
updated the resize function to add the two new arguments.
Most importantly, the developer has specified the possible
values for each parameter and exposed them to the adapter
using the Decorator pattern [6]. The decorator function can



extract the parameters as well as the acceptable values, and
feed them as input to our adapter.

Any other software engineering method can be used to
parameterize the application. The sole constraint is that our
adapter must be configured with a list of parameters as well
as a set of acceptable values for each parameter.

Listing 1 Code before modification
app = Flask(__name__)
@app.route('/resize/')
def resize_img(image):

height = 480
width = 480
size = (width, height)
image.thumbnail(size)
...
return image

Listing 2 Code after modification
app = Flask(__name__)
@param('height', [144, 360, 480, 720,

1080])↪→

@param('r_filter', [0, 1, 2, 3])
@app.route('/resize/<int:height>/

<int:r_filter>')↪→

def resize_img(image, height, r_filter):
ratio = (height / image.height)
width = int(image.width * ratio)
size = (width, height)
image.thumbnail(size, r_filter)
...
return image

IV. ADAPTATION ALGORITHM

In this section, we describe our adaptation algorithm. We
consider the case of an infrastructure powered by two different
types of electrical energy source:

• Power grid: considered to be an ”unlimited” source of
electrical power, but with a potentially significant carbon
footprint;

• Solar panels: their maximum power is limited and vari-
able. However, they provide low-carbon electricity.

This infrastructure is powered solely by solar panels as long as
they can meet the energy needs. If solar energy is insufficient,
the power supply system switches to hybrid mode, adding the
grid as a complementary energy source.

For Performance mode users, reducing the carbon footprint
is not a priority: their workload will be processed using power
from the grid (i.e., brown energy). It means that we can devote
all the available green power to processing the workload of
the other two modes (Sustainable and Balanced). Within this
green power budget, we would like to maximize the quality
of responses for sustainable and balanced users.

To do so, we have to find the configuration of parameters to
assign to each user mode according to three different inputs:
the workload of user requests, its distribution according to the
modes chosen by these users, and the green power available.
These inputs are variable over time, and we therefore need a
dynamic adaptation algorithm.

At each time step, solar panels deliver a power of Ps watts
for the SaaS service. Our algorithm (See Algorithm 1) consists
of four main steps, shown in Figure 2:

1) For sustainable mode workload, find the parameter con-
figuration that minimizes the output quality (Quality of
Experience, QoE). It will consume Psust watts (Lines 1
and 2);

2) For balanced mode workload, find the parameter config-
uration that maximizes quality using only the remaining
(Ps − Psust) power. If this remaining power is insuffi-
cient for any configuration, take the one that minimizes
quality. It will consume Pbal watts (Lines 3-6);

3) Return to sustainable mode to search for a new pa-
rameter configuration that maximizes the quality using
only the remaining (Ps − Pbal) power. If no other
configuration satisfies the power condition, keep the
configuration from Step 1 (Line 7);

4) For performance mode workload, select the parameter
configuration that maximizes quality, regardless of the
remaining power (Ps − Psust − Pbal) (Line 9).

Algorithm 1 The adaptation algorithm

Inputs: solar power Ps (watts) ; workloads Lsust, Lbal

and Lperf (req/s); set of configurations {conf} ; quality
function qoe : conf→ int
Outputs: triplet of configurations (confsust, confbal,
confperf ), one for each user mode
Algorithm:

1: confmin ← argmin
conf

(qoe(conf))

2: confsust ← confmin

3: if P (confsust, Lsust) + P (confmin, Lbal) ≥ Ps then
4: confbal ← confmin

5: else
6: confbal ← argmax

conf
(qoe(conf) | (P (confsust, Lsust)+

P (conf, Lbal)) ≤ Ps)
7: confsust ← argmax

conf
(qoe(conf) | (P (conf, Lsust)+

P (confbal, Lbal)) ≤ Ps)
8: end if
9: confperf ← argmax

conf
(qoe(conf))

We note that our algorithm works in all cases of green
power availability: if we have no green power (e.g., at night),
it will simply select the minimal quality for both sustainable
and balanced users.



Performance

Sustainable Sustainable

Balanced

Performance

Sustainable

Balanced

Sustainable

Balanced

1 2 3 4

S
ol

ar
 P

ow
er

G
rid

 P
ow

er

Fig. 2: Our adaptation algorithm steps.

Workload distribution

Locust

Service (App)

%Sust %Bal %Perf

Req. (+parameters)

Config.
Algorithm

Scenario

Fig. 3: Experimental setup.

V. EVALUATION

A. Experimental Setup

To validate our approach, we deployed a prototype on
the physical servers of the ecotype cluster (Figure 3). The
special feature of this cluster, which is part of the Grid’5000
experimental testbed [7], is that it is powered by solar panels
and the electricity grid, thanks to the Seduce project [8]. The
characteristics of these servers are detailed on the official
Grid’5000 website [9].

To ensure reproducibility of our experiments, we used
the EnOSlib library [10] that provides a modern toolkit for
automatic deployment and configuration systems. At the plat-
form level, we used Kubernetes [11] to easily deploy and
manage the application services to be evaluated. In addition,
we deployed the Kepler software probe [12] to measure the ap-
plication’s energy consumption. This will help us evaluate our
approach. We developed the image resizing application [13],
described on Section III, using Python and Flask.

Fig. 4: Application calibration results. The four resampling
filters (nearest, bilinear, bicubic and Lanczos) are denoted
from 0 to 3, respectively, for ease of reading.

The Locust load generator [14] plays two roles in our case:
the first is to generate user requests based on a specific load
distribution according to the three usage modes (Performance,
Balanced and Sustainable). The second is to apply the config-
uration parameters recommended by our adaptation algorithm
to these requests.

B. Calibration

Our adaptation algorithm needs to know the energy con-
sumption and the quality of each configuration of the SaaS
service. We measure the energy consumption by benchmarking
the application on our experimental setup, in a preliminary
calibration phase where we iterate on all configurations.

Figure 4 shows the calibration results for the twenty param-
eter configurations (x-axis) of our image resizing application.
Each bar reflects the energy consumption (in Joules) needed
to process a single user request using a given parameter
configuration. This energy consumption is measured with the
Kepler software probe. In addition, Figure 4 also shows the
level of output quality determined in Section III for each
parameter configuration.

C. Adaptation scenarios and results

For our experiment, we assume that our application has
13 W of available green power, with a workload of 120 Req/s
for the entire 60-second experiment. The green power and
workload values are chosen to provide sufficient energy for
sustainable and balanced user modes, which is the most
interesting case. Other cases are not described in this paper
due to limited space. We consider nine scenarios with various
distributions of user-selected modes.

The results of our adaptation algorithm are shown in
Figure 5. On the x-axis, we show the different scenarios,
expressed as the relative percentage of each user mode in the
workload. On the y-axis, each bar represents the average power



(in Watts) consumed by the application while it processes all
user requests. This power is again measured with the Kepler
software probe. The amount of available green power is shown
as a horizontal dotted line. Finally, we also use stars on the
figure to represent the quality level obtained by each user mode
in the configuration. The first bar represents a ”Baseline” with
no adaptation algorithm. We consider it as the 0th scenario
in the rest of the paper. We note that it is equivalent to
the scenario with 100% of Performance-mode users: this is
because our algorithm produces the maximum output quality
in this case, just like the baseline.

In Figure 5, we see that for Performance mode, Excellent
quality is guaranteed in all scenarios, and that Balanced mode
users always obtain a higher quality than Sustainable mode
users. When no user selects the Performance mode (1st, 5th

and 7th scenarios), the energy consumed is predominantly
green: the configurations selected by the adaptation algorithm
have succeeded in achieving the goal. In the case of a single
mode (1st and 5th scenarios), the adapter is able to ensure
Medium quality for all users, thanks to the available green
energy budget. On the other hand, in the case of Sustainable
and Balanced modes (7th scenario), users of the first mode
are set to Poor quality, so that users of the second mode
benefit from Very good quality. This corresponds exactly to
our definitions of these modes (see Section II).

The impact of involving users is clearly visible on energy
consumption in this experiment. With the exception of the
100% performance scenario, we are always able to reduce
the application’s energy consumption thanks to our adaptation
algorithm. In the best scenarios (1st and 5th), we manage to
reduce energy consumption by up to 84.7% compared to the
baseline, and we emit almost no CO2 by using only green
energy. This comes at the price of degraded quality. Even
more interesting: in the 3rd, 6th and last scenarios, energy
consumption is reduced by up to 32.7% without any visible
degradation in quality, even for Balanced and Sustainable
users.

To conclude, the results of our experiment show that the
adapter successfully strikes a balance between quality and
carbon footprint, depending on the user’s priorities and the
overall green power budget.

VI. CURRENT SCOPE AND CHALLENGES

Quality evaluation. Unlike Quality of Service (QoS) and
measurable metrics such as response time and service avail-
ability, Quality of user Experience (QoE) is influenced not
only by technical factors, but also by social and psychological
ones. This is why we felt it was more important to use
an illustration of the QoE (image perception) to involve
the end-user, as their psychology is very different from one
individual to another. However, evaluating QoE this way is
challenging, since it is very application-dependent and may
require costly campaigns with human subjects. The next step
to improve quality evaluation is to use test protocols developed
by ergonomists or human science specialists to help us better
assess user satisfaction and thus better qualify QoE.

Online calibration. Our current proposal requires prelim-
inary calibration of all possible application configurations.
We realize that this may be hard to scale, because it is
both time-consuming and energy-consuming. We could instead
rely on online learning during actual application usage: the
consumption of each configuration would be measured with
real requests, eventually stabilizing to an energy consumption
model equivalent to our calibration. The main challenge is
to attribute the observed energy consumption back to each
configuration: at each time step, we can only measure a single
value of energy consumption, while different users may be
using different configurations during this time step.

Exploit other forms of application flexibility. Request
parameterization, like in our image resizing application, is one
way of adding flexibility to the application. In the context
of a microservices architecture, an alternative would be to
dynamically reconfigure the structure of the architecture. This
would alter the flow of internal calls, allowing for instance
to eliminate the most energy-hungry microservices when re-
quired.

Extension to public Clouds. Our approach requires mea-
suring the energy consumption of the SaaS application with
different configurations to be able to perform the calibration
step. Measuring the energy consumption is usually not possible
on a public Cloud infrastructure, because the virtualization
layer prevents access to low-level CPU hardware counters. As
such, our calibration step cannot be performed on a public
Cloud infrastructure. However, our adaptation algorithm can
be used on a public Cloud infrastructure, since we only need
an estimation of the energy consumption (given by the result
of the calibration).

VII. RELATED WORK

Several research work have investigated the SLO guarantee,
energy-efficiency and their trade-off on Cloud applications.

Brownout. A pathfinder approach to the adaptive man-
agement of resources and applications in Cloud computing
is ”brownout” by Klein et al. [15]. The authors proposed
that Cloud applications should be divided into two parts:
mandatory and optional. Mandatory parts must be permanently
active; optional parts, on the other hand, need not be per-
manently active and can be temporarily deactivated to avoid
over-provisioning of resources. The authors of [16] identified
the challenges and propose directions for future brownout
research. Notably, leveraging microservice architectures and
renewable energy, Xu et al. [17] offered a self-adaptive
approach to resource management for interactive and batch
workloads. These contributions essentially propose a dynamic
trade-off between resource consumption and QoS. Although
we consider energy consumption instead of computing re-
source consumption, our approach achieves a similar goal with
different means.

Trade-off quality – performance. In [18], the authors studied
in-depth analysis of energy consumption and performance
trade-offs, enabling intelligent use of green energy for in-
teractive Cloud applications. Larsson et al. [19] introduced



Fig. 5: Evaluation of the application’s power consumption and output quality after adaptation. Each column is a different user
mode distribution scenario (numbered from 0 to 9, Baseline is the 0th one).

the notion of Quality-Elasticity to deal with poor resource
utilization. The concept of Quality-Elasticity goes beyond the
Brownout application: instead of a simple binary choice to
reduce the quality or not, it introduces degrees of quality.

Users involvement. The authors of [20] gave IaaS/PaaS users
a choice of three execution modes (large, medium, small) for
their jobs. Smaller execution modes require fewer resources,
but take longer to complete. They achieve gains through spatial
consolidation with a bin-packing algorithm. Madon et al. [21]
focused on ”direct” data-center users, i.e. IaaS and PaaS
users such as DevOps developers, to study four types of job
submit behavior: delaying, output degrading, reconfiguring,
and renouncing. They study the impact of these behaviors
on several different parameters, including energy consumption
and performance.

Conclusion. To the best of our knowledge, there is no related
work involving end-users in the energy consumption of SaaS
applications. End-users choose a carbon footprint-related mode
for their use of the Cloud application, being masters of their
own trade-offs between quality and energy footprint.

VIII. CONCLUSION

In this paper, we proposed an adaptation approach that re-
duces the carbon footprint of Cloud applications by involving
end-users. It achieves this thanks to a controllable quality-
energy trade-off. We have evaluated our proposal with a simple
application on an experimental testbed, and found that our
algorithm can reduce energy consumption while finding good
trade-offs depending on end-user preferences.

Future work will focus on the challenges mentioned above,
such as quality evaluation protocols and online calibration. We
will also investigate a more realistic applications, for which we
expect the quality-energy trade-off to be more challenging to
design.

Finally, we plan to extend the adaptation algorithm to work
with more diverse energy sources, for instance by taking into
account the carbon intensity of the energy sources instead of
relying on a simple distinction between ”clean” green energy
and ”dirty” brown energy.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and
A. Friday, “The real climate and transformative impact of ICT: A critique
of estimates, trends, and regulations,” Patterns, vol. 2, no. 9, 2021.

[2] S. Long, Y. Li, J. Huang, Z. Li, and Y. Li, “A review of energy efficiency
evaluation technologies in cloud data centers,” Energy and Buildings,
vol. 260, p. 111848, 2022.

[3] W. Deng, F. Liu, H. Jin, B. Li, and D. Li, “Harnessing renewable energy
in cloud datacenters: opportunities and challenges,” iEEE Network,
vol. 28, no. 1, pp. 48–55, 2014.



[4] P. Jacquet, T. Ledoux, and R. Rouvoy, “SweetspotVM: Oversubscribing
CPU without Sacrificing VM Performance,” in CCGrid’24 - 24th
IEEE/ACM international Symposium on Cluster, Cloud and Internet
Computing. Philadelphia, United States: IEEE, May 2024, pp. 1–10.
[Online]. Available: https://hal.science/hal-04454043

[5] “Resampling filters,” https://pillow.readthedocs.io/en/latest/handbook/
concepts.html#filters, 2024, [Online; accessed 01-02-2024].

[6] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley Professional, 1994.

[7] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jégou, P. Primet,
E. Jeannot, S. Lanteri, J. Leduc, N. Melab et al., “Grid’5000: A large
scale and highly reconfigurable grid experimental testbed,” in The 6th
IEEE/ACM International Workshop on Grid Computing, 2005. IEEE,
2005, pp. 8–pp.

[8] J. Pastor and J. M. Menaud, “SeDuCe: Toward a testbed for research
on thermal and power management in datacenters,” in Proceedings of
the Ninth International Conference on Future Energy Systems, 2018, pp.
513–518.

[9] Ecotype, https://www.grid5000.fr/w/Nantes:Hardware#ecotype, 2024,
[Online; accessed 01-02-2024].

[10] R.-A. Cherrueau, M. Delavergne, A. Van Kempen, A. Lebre, D. Pertin,
J. R. Balderrama, A. Simonet, and M. Simonin, “Enoslib: A library for
experiment-driven research in distributed computing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 33, no. 6, pp. 1464–1477,
2021.

[11] Kubernetes, https://kubernetes.io, 2024, [Online; accessed 01-02-2024].
[12] Kepler, https://sustainable-computing.io, 2024, [Online; accessed 01-02-

2024].
[13] “Image resizing application,” https://gitlab.imt-atlantique.fr/

fil-a3-frontback-2023-energy, 2024, [Online; accessed 01-02-2024].

[14] Locust, https://locust.io, 2024, [Online; accessed 01-02-2024].
[15] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,

“Brownout: Building more robust cloud applications,” in Proceedings
of the 36th International Conference on Software Engineering, 2014,
pp. 700–711.

[16] M. Xu and R. Buyya, “Brownout approach for adaptive management
of resources and applications in cloud computing systems: A taxonomy
and future directions,” ACM Comput. Surv., vol. 52, no. 1, jan 2019.
[Online]. Available: https://doi.org/10.1145/3234151

[17] M. Xu, A. N. Toosi, and R. Buyya, “A self-adaptive approach for
managing applications and harnessing renewable energy for sustainable
cloud computing,” IEEE Transactions on Sustainable Computing, vol. 6,
no. 4, pp. 544–558, 2020.

[18] M. S. Hasan, F. Alvares, T. Ledoux, and J.-L. Pazat, “Investigating
energy consumption and performance trade-off for interactive cloud
application,” IEEE Transactions on Sustainable computing, vol. 2, no. 2,
pp. 113–126, 2017.

[19] L. Larsson, W. Tärneberg, C. Klein, and E. Elmroth, “Quality-elasticity:
Improved resource utilization, throughput, and response times via ad-
justing output quality to current operating conditions,” in 2019 IEEE
International Conference on Autonomic Computing (ICAC). IEEE,
2019, pp. 52–62.

[20] D. Guyon, A.-C. Orgerie, C. Morin, and D. Agarwal, “Involving users
in energy conservation: a case study in scientific clouds,” International
Journal of Grid and Utility Computing, vol. 10, no. 3, pp. 272–282,
2019.

[21] M. Madon, G. Da Costa, and J.-M. Pierson, “Characterization of differ-
ent user behaviors for demand response in data centers,” in European
Conference on Parallel Processing. Springer, 2022, pp. 53–68.


