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Abstract

The infinite pigeonhole principle for k colors (RT1
k) states, for every k-

partition A0⊔· · ·⊔Ak−1 = N, the existence of an infinite subsetH ⊆ Ai for
some i < k. This seemingly trivial combinatorial principle constitutes the
basis of Ramsey’s theory, and plays a very important role in computability
and proof theory. In this article, we study the infinite pigeonhole principle
at various levels of the arithmetical hierarchy from both a computability-
theoretic and reverse mathematical viewpoint. We prove that this hierarchy
is strict over RCA0 using an elaborate iterated jump control construction,
and study its first-order consequences. This is part of a large meta-
mathematical program studying the computational content of combinatorial
theorems.

1 Introduction

The infinite pigeonhole principle for k colors (RT1
k) states, for every k-partition

A0⊔· · ·⊔Ak−1 = N, the existence of an infinite subset H ⊆ Ai for some i < k. In
particular, for k = 2, it is equivalent to the existence, for every set A ⊆ N, of an
infinite set H ⊆ A or H ⊆ A. This statement is the basis of Ramsey’s theorem,
and more generally of Ramsey’s theory. Recall that Ramsey’s theorem for n-
tuples states, for every k-coloring of [N]n, the existence of an infinite set H ⊆ N
such that the coloring is monochromatic on [H]n. Here, [H]n denotes the set
of all subsets of H of size n. The classical proof of Ramsey’s theorem consists
of reducing a k-coloring of [N]n+1 to a k-coloring of [N]n by ω applications of
the pigeonhole principle. In the base case, Ramsey’s theorem for singletons is
nothing but RT1

k.
In reverse mathematics, the pigeonhole principle plays an equally important

role, both for theoretical and practical reasons. Reverse mathematics is a
foundational program at the intersection of computability theory and proof
theory, whose goal is to find the optimal axioms to prove theorems of ordinary
mathematics. The study of Ramsey’s theorem for pairs received a particular
attention as its strength escaped the empirical structural observation of reverse
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mathematics. [20] As it turns out, the computability-theoretic study of Ramsey’s
theorem for pairs is closely related to the study of the pigeonhole principle.
Practically, all the computability-theoretic and proof-theoretic subtleties of Ram-
sey’s theorem for pairs are already present in the study of RT1

2.[3, 13, 24, 25]
In this article, we study the pigeonhole principle viewed both as a statement

in second-order arithmetic and as a mathematical problem, formulated in terms
of instances and solutions. An instance of RT1

2 is a set A, and a solution is
an infinite subset H ⊆ A or H ⊆ A. We study a hierarchy of pigeonhole
principles based on the complexity of their instances, and use the frameworks of
computability theory and reverse mathematics, to give lower and upper bounds
to the complexity of finding a solution. We extend several known results to
higher levels of the arithmetic hierarchy, using a unifying framework of iterated
jump control for the pigeonhole principle initially developed by Monin and
Patey [28, 30]. This answers multiple open questions from Benham et al. [2]. In
particular, we prove that every Σ0

2 instance of RT1
2 admits a solution whose jump

is computable in any PA degree over ∅′. This surprising result is obtained by
an asymmetric construction whose dividing line is new in computability theory.

1.1 Reverse mathematics

Reverse mathematics is a foundational program started by Harvey Friedman in
1975, whose goal is to find optimal axioms to prove “ordinary mathematics”.
This program can be considered as a partial realization of Hilbert’s program [36],
and as an answer to the crisis of foundations. It uses the framework of subsystems
of second-order arithmetics, with a base theory, RCA0, capturing “computable
mathematics”. More precisely, here is a formal description of its axioms.

Robinson arithmetic Q (Peano arithmetic without induction) is composed of
the following axioms:

(1) x+ 1 ̸= 0

(2) x = 0 ∨ ∃y (x = y + 1)

(3) x+ 1 = y + 1 → x = y

(4) x+ 0 = x

(5) x+ (y + 1) = (x+ y) + 1

(6) x× 0 = 0

(7) x× (y + 1) = (x× y) + x

(8) x < y ↔ ∃z (z ̸= 0 ∧ x+ z = y)

A second-order formula is arithmetic if it contains only first-order quantifiers
(with second-order parameters allowed). Arithmetic formulas admit a natural
classification based on the number of alternations of their quantifiers in prenex
normal form. A formula is Σ0

0 (or Π0
0) if it contains only bounded first-order

quantifiers, that is, quantifiers of the form ∀x ≤ t or ∃x ≤ t where x is a first-
order variable and t is an arithmetic term. A formula is Σ0

n if it is of the form
∃x0∀x1 . . . Qxn−1φ(x0, . . . , xn−1), where φ is a Σ0

0 formula. Π0
n formulas are

defined accordingly, starting with a universal first-order quantifier. A set A ⊆ N
is Σ0

n or Π0
n if it is definable by a Σ0

n or Π0
n formula, respectively. It is ∆0

n if
it is simultaneously Σ0

n and Π0
n. By a theorem from Gödel, ∆0

1 sets are exactly
the computable ones. The ∆0

1-comprehension scheme is defined for every Σ0
1-
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formula φ(x) and every Π0
1-formula ψ(x) as

∀x(φ(x) ↔ ψ(x)) → ∃Z∀x(x ∈ Z ↔ φ(x))

The left-hand part of the implication ensures that the predicate defined by
φ(x) is ∆0

1, while the right-hand part is the classical comprehension axiom
for φ(x). Based on the correspondence between ∆0

1 and computable sets, the
∆0

1-comprehension scheme restricts the comprehension scheme to sets which can
be obtained computably from their parameters.

Last, the Σ0
1-induction scheme is defined for every Σ0

1-formula φ(x) as

[φ(0) ∧ ∀x(φ(x) → φ(x+ 1))] → ∀yφ(y)

In general, the induction scheme for Σ0
n-formulas is equivalent to a bounded

version of the Σ0
n-comprehension scheme, that is, the existence of every initial

segment of the Σ0
n-set. Restricting the induction therefore corresponds to restrict-

ing the complexity of the finite sets of the model. RCA0 is composed of Robinson
arithmetic, together with the ∆0

1-comprehension scheme, and the Σ0
1-induction

scheme.
Models of second order arithmetic are of the form M = (M,S,+,×, <, 0, 1),

where M is the first-order part, representing the integers in the model, and
S ⊆ P(M) is the second-order part, representing the sets of integers. An ω-
model is a structure M = (M,S,+,×, <, 0, 1) whose first-order part M consists
of the standard integers ω, together with the standard operations +, × and
the natural order <. Thus, ω-models are fully specified by their second-order
part S. In particular, ω-models of RCA0 admit a nice characterization in terms
of Turing ideals. A Turing ideal S ⊆ P(ω) is a non-empty collection of sets
which is downward-closed under the Turing reduction, and closed under the
effective join X ⊕ Y = {2n : n ∈ X} ∪ {2n + 1 : n ∈ Y }. In particular, RCA0

admits a minimal ω-model (for inclusion) whose second-order part is exactly
the collection of all computable sets.

Among models of second-order arithmetic, ω-models are of particular interest
due to their connection with classical computability theory, and most proofs of
non-implications over RCA0 consist of building a Turing ideal satisfying the
left-hand side but not the right-hand side. This will also be the case in this
article.

Since the beginning of reverse mathematics, many theorems from the core
of mathematics have been studied, and some empirical structure phenomena
emerged: there exist four main subsystems of second-order arithmetic, linearly
ordered by logical strength, such that the vast majority of mathematics is either
equivalent to one of these systems over RCA0, or already provable over RCA0.
See Simpson [37] or Dzhafarov and Mummert [14] for an introduction to reverse
mathematics and these main systems. Most of the theorems studied in reverse
mathematics are statements of the form (∀X)[ϕ(X) → (∃Y )ψ(X,Y )]. Any such
statement can be seen as a problem P, whose instances are sets X such that
ϕ(X), and whose solutions to X are any set Y such that ψ(X,Y ) holds. These
statements are called Π1

2-problems.
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1.2 Hierarchy of pigeonhole principles

The observation of structural phenomenon of reverse mathematics admits a few
counter-examples, mostly coming from Ramsey theory. Historically, the first
natural theorem escaping this phenomenon is Ramsey’s theorem for pairs (RT2

2),
which was proven not to be even linearly ordered with the main subsystems
above-mentioned. The computability-theoretic and proof-theoretic study of
Ramsey’s theorem for pairs raised many long-standing open questions, each
of them requiring the development of new techniques and breakthroughs in
computability theory [35, 3, 24, 29]. The computability-theoretic study of
combinatorial theorems from Ramsey theory is still currently the most active
branch of research in reverse mathematics. See Hirschfeldt [20] for an introduction
to the reverse mathematics of combinatorial principles.

Beyond the clear combinatorial link between Ramsey’s theorem for pairs and
the pigeonhole principle, the formal computability-theoretic relation between
these two principles was emphasized by the decomposition of RT2

2 into a cohesive-
ness principle (COH) and the pigeonhole principle for ∆0

2 instances (∆0
2-Subset).1

Given an infinite sequence of sets R⃗ = R0, R1, . . . , an infinite set C is R⃗-
cohesive if for every s ∈ N, C ⊆∗ Rs or C ⊆∗ Rs, where ⊆∗ denotes inclusion
up to finite changes. One can think of the sequence R⃗ as an infinite sequence
of instances of RT1

2, and an R⃗-cohesive set as an infinite set which is almost a
solution to every instances simultaneously.

Statement 1.1 (Cohesiveness). COH is the statement “Every infinite sequence
of sets has a cohesive set”.

Informally, Σ0
n-Subset and ∆0

n-Subset are the restriction of the pigeonhole
principle for 2-colorings of Σ0

n and ∆0
n sets, respectively. Technically, Σ0

n sets
do not necessarily belong to models of weak arithmetic, and therefore are
manipulated through formulas.

Statement 1.2. Fix n ≥ 1.

• Σ0
n-Subset is the statement “For every Σ0

n formula φ(x), there is an infinite
set H ⊆ N such that either ∀x ∈ H φ(x) or ∀x ∈ H ¬φ(x).”

• ∆0
n-Subset is the statement “For every Σ0

n formula φ(x) and every Π0
n

formula ψ(x) such that ∀x(φ(x) ↔ ψ(x)) holds, there is an infinite set H ⊆
N such that either ∀x ∈ H φ(x) or ∀x ∈ H ¬φ(x).”

Cholak, Jockusch and Slaman [3] and Mileti [27] proved the equivalence
of RT2

2 and COH + ∆0
2-Subset over RCA0 + I∆0

2, where IΓ denotes the induction
scheme for Γ-predicates 2. Later, Chong, Lempp and Yang [4] got rid of the use
of I∆0

2, yielding the following equivalence:

Theorem 1.3 ([3, 27, 4]). RCA0 ⊢ RT2
2 ↔ COH + ∆0

2-Subset.

1This principle is also known as D2
2 in the reverse mathematical litterature.

2Over RCA0, I∆0
n is equivalent to the better-known collection principle for Σ0

n-formulas
(BΣ0

n) for n ≥ 2.
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The cohesiveness principle is very weak from a reverse mathematical viewpoint.
It has the same first-order consequences as RCA0 [3] and preserves all the first-
jump control properties studied in reverse mathematics, such as cone avoidance,
PA avoidance, DNC avoidance, among others. From a more abstract perspective,
COH is equivalent over RCA0 + I∆0

2 to the statement “Every ∆0
2 infinite binary

tree admits an infinite ∆0
2 path”[1] and Towsner [39] proved that the ∆0

2-sets
are indistinguishable from arbitrary sets from the viewpoint of RCA0. Thus, a
statement of the existence of a ∆0

2-approximation of a set does not add any proof-
theoretic strength to RCA0. It follows from these considerations that the whole
reverse mathematical complexity of RT2

2 is already contained in ∆0
2-Subset.

More recently, Benham et al. [2] revealed a surprising connection between
a theorem of topology and RT1

2 for Σ0
2 sets. The Ginsburg-Sands theorem [16]

states that every infinite topological space has an infinite subspace homeomorphic
to exactly one of the following five topologies on N: indiscrete, discrete, initial
segment, final segment, and cofinite. When restricted to T1-spaces, it states
that every infinite topological space has an infinite subspace homeomorphic to
either the discrete or the cofinite topology on N. Benham et al. [2] proved that
the Ginsburg-Sands theorem for T1 spaces is equivalent over RCA0 to COH +
Σ0

2-Subset. The higher levels of the pigeonhole hierarchy are related to Ramsey-
type hierarchies such as the rainbow Ramsey and free set theorems [8, 40], whose
strictness remains an open question.

1.3 Strictness of the hierarchy

The main contributions of this article are the strictness of the hierarchy of
pigeonhole principles over RCA0, and conservation theorems at various levels
of the induction hierarchy. Separating a problem P from another problem Q
over RCA0 usually consists in finding an invariant computability-theoretic weakness
property such that every weak instance of P admits a weak solution, while
there is a weak instance of Q with no weak solution. Then, a simple iterated
construction yields an ω-model of RCA0 + P which is not a model of Q.

The most natural weakness properties are the levels of the arithmetic hierarchy,
but these are not invariant, as if a set X is ∆0

2(Y ) and Y is ∆0
2, then X is

not in general ∆0
2. Lowness properties are a strengthening of the levels of the

arithmetic hierarchy providing the desired invariant. A set X is of low degree
if X ′ ≤T ∅′. More generally, a set X is of lown degree if X(n) ≤T ∅(n), where
X(n) denotes the n-fold Turing jump of X. If a set X is lown over Y and Y
is lown, then X is lown, as X(n) ≤T Y (n) ≤T ∅(n). The lown degrees form a
subclass of the ∆0

n+1 degrees.

Definition 1.4. Fix n ≥ 1. A problem P admits a lown basis if every computable
instance of P admits a solution of lown degree.

Building a solutionG of lown degree consists of deciding the Σ0
n(G) properties

through a ∅(n)-computable process. This technique is called nth-jump control.
Second and higher jump controls are usually significantly more complicated than
first-jump control, as the forcing relation involves density properties. Thankfully,
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in many cases, (n+ 1)th-jump control can be obtained by an nth-jump control
with PA degrees. A set P is of PA degree over X if every infinite X-computable
binary tree admits an infinite P -computable path.

Definition 1.5. Fix n ≥ 1. A problem P admits a weakly lown basis if to every
computable instance of P, and for every set Q of PA degree over ∅(n), there is
a solution Y such that Y (n) ≤T Q.

Clearly, if a problem admits a lown basis, then it admits a weakly lown basis.
On the other hand, given n ≥ 1, by the low basis theorem for Π0

1-classes [21],
there is a set Q of PA degree over ∅(n) such that Q′ ≤T ∅(n+1). Thus, if Y is
a solution such that Y (n) ≤T Q, then Y (n+1) ≤T Q′ ≤T ∅(n+1), hence Y is of
lown+1 degree. It follows that if a problem admits a weakly lown basis, then it
admits a lown+1 basis. We therefore have the following implications

low basis → weakly low basis → low2 basis → weakly low2 basis → . . .

Due to its strong connections with Ramsey’s theorem for pairs, the statement
∆0

2-Subset was thoroughly studied in reverse mathematics. Lown and weakly
lown basis theorems for ∆0

2-Subset were studied in particular by Cholak, Jockusch
and Slaman [3] and Downey, Hirschfeldt, Lempp and Solomon [12]. The problem
∆0

n-Subset for n ≥ 2 was studied by Monin and Patey [30], and the problem
Σ0

2-Subset was more recently studied by Benham et al. [2]. The following table
summarizes the known literature on the subject.

Problem Non-basis Previous basis New basis

Σ0
n+1-Subset lown [12] weakly lown+1 [30] weakly lown

∆0
n+1-Subset lown [12] weakly lown [30]

Σ0
2-Subset low [12] low2 [2] weakly low

∆0
2-Subset low [12] weakly low [3]

Σ0
1-Subset computable solutions

Figure 1: Summary table of the previously known bounds and the new bounds
in terms of low basis theorems. The new basis theorem proven in this article
completes the table with tight bounds.

Our first main theorem is a weakly lown basis theorem for Σ0
n+1-Subset,

disproving a conjecture of Benham et al. [2].

Main Theorem 1.6. Fix n ≥ 1. For every Σ0
n+1 set A and every set Q of PA

degree over ∅(n), there is an infinite set H ⊆ A or H ⊆ A such that H(n) ≤T Q.

It follows that for every n ≥ 1, there is an ω-model of Σ0
n-Subset with only

lown sets. By Downey et al. [12], there is a computable instance of ∆0
n+1-Subset

with no lown solution. Thus, RCA0 + Σ0
n-Subset ⊬ ∆0

n+1-Subset for every n ≥ 1.
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Separating ∆0
n-Subset from Σ0

n-Subset is more complicated, as these princi-
ples satisfy the same lowness basis. A function f : N → N dominates g :
N → N if ∀x(f(x) ≥ g(x)). A function f : N → N is X-hyperimmune if it
is not dominated by any X-computable function. If X is computable, then
we simply say that f is hyperimmune. Benham et al. [2] separated ∆0

2-Subset
from Σ0

2-Subset by designing a very elaborate invariant in terms of preservation
of hyperimmunities and ∅′-hyperimmunities simultaneously. We simplify their
argument and generalize it to higher levels of the pigeonhole hierarchy.

Definition 1.7. Fix a multiset I ⊆ N. A problem P preserves hyperimmunity
at levels I if for every computable instance X of P and every family of functions
(fn)n∈I such that fn is ∅(n)-hyperimmune, there is a solution Y to X such that
for every n ∈ I, fn is Y (n)-hyperimmune.

Benham et al. [2] essentially proved that Σ0
2-Subset does not preserve hyper-

immunity at levels {0, 1} while ∆0
2-Subset does. A direct relativization of their

proof yields that Σ0
n-Subset does not preserve hyperimmunity at levels {n −

2, n− 1} for every n ≥ 2, but the positive preservation theorem requires a non-
trivial generalization. Our second main theorem generalizes and simplifies the
proof of Benham et al. [2] by stating that ∆0

n-Subset preserves hyperimmunity
at levels {n− 2, n− 1} for every n ≥ 2.

Main Theorem 1.8. Fix n ≥ 2. For every ∆0
n set A, every ∅(n−2)-hyperimmune

function f : N → N and every ∅(n−1)-hyperimmune function g : N → N, there is
an infinite set H ⊆ A or H ⊆ A such that f is H(n−2)-hyperimmune and g is
H(n−1)-hyperimmune.

It follows that RCA0 + ∆0
n-Subset ⊬ Σ0

n-Subset for every n ≥ 2. Thus, the
hierarchy of pigeonhole principles is strict, answering a question of Benham et
al. [2]. The separation being witnessed by ω-models, these separations also hold
when adding the full induction scheme to RCA0.

Main Theorem 1.9. Over RCA0, the following hierarchy is strict

Σ0
1-Subset < ∆0

2-Subset < Σ0
2-Subset < ∆0

3-Subset < . . .

1.4 Conservation theorems

The first-order part of a second-order theory T is the set of its first-order
theorems. Characterizing the first-order part of ordinary second-order theorems
is an important subject of study in reverse mathematics and is closely related
to Hilbert’s finitistic reductionism program.

The first-order part of the main subsystems studied in reverse mathematics
are well-understood. In particular, the first-order part of RCA0 + IΣ0

n for n ≥ 1
corresponds to Q + IΣn, where IΣn denotes the induction scheme restricted to
Σn-formulas, that is, with no second-order parameter allowed.

A good way to calibrate the first-order part of second-order theories is to
reduce it to existing benchmark theories through conservation. Given a family
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of sentences Γ, a theory T2 is Γ-conservative over T1 if every Γ-sentence provable
over T2 is provable over T1. A formula is Π1

1 if it starts with a universal
second-order quantifier, followed by an arithmetic formula. If a theory T2 is
Π1

1-conservative over T1, then the first-order part of T2 follows from the first-
order part of T1.

Characterizing the first-order part of ∆0
2-Subset is one of the most important

questions in reverse mathematics. Chong, Lempp and Yang [4] proved that
RCA0 ⊢ ∆0

2-Subset → I∆0
2. On the other hand, Cholak, Jockusch and Slaman [3]

proved that RCA0 + IΣ0
2 + ∆0

2-Subset is Π1
1-conservative over RCA0 + IΣ0

2 and
Chong, Slaman and Yang [6] proved that RCA0 + ∆0

2-Subset ⊬ IΣ0
2. Thus, the

first-order part of RCA0+∆0
2-Subset is above Q+ I∆2 and strictly below Q+ IΣ2.

Benham et al. [2] asked whether RCA0 + IΣ0
2 + Σ0

2-Subset is Π1
1-conservative

over RCA0 + IΣ0
2. We answer positively at every level of the hierarchy.

Main Theorem 1.10. Fix n ≥ 2. Then RCA0 + IΣ0
n + Σ0

n-Subset is Π1
1-

conservative over RCA0 + IΣ0
n.

It follows that the Ginsburg-Sands theorem for T1-spaces is Π1
1-conservative

over RCA0+IΣ0
2. On the other hand, it remains open whether RCA0+Σ0

n-Subset ⊢
IΣ0

2 for any n ≥ 2 or even whether RCA0 + I∆0
n + Σ0

n-Subset is Π1
1-conservative

over RCA0 + I∆0
n.

1.5 Notation

We assume the reader is familiar with notations from classical computability
theory. See Cooper [7] or Soare [38] for a reference. In particular, ≤T denotes
the Turing reduction, and Φ0,Φ1, . . . is a fixed enumeration of all the Turing
functionals. We write ΦA

e (x)↓ to say that the eth program with oracle A halts
on input x, and ΦA

e (x)↑ otherwise.
Integers. We let N denote the set of non-negative integers. When working

in models of weak arithmetic, we distinguish the formal set N representing the
integers in the model, from the set ω of standard integers, which corresponds
to the integers in the meta-theory. In particular, ω is always a (proper or not)
initial segment of N.

Binary strings. We let 2<N denote the set of all finite binary strings, and
2N denote the class of all infinite binary sequences. Note that 2N is in bijection
with P(N) and both are usually identified. Finite binary strings are written
with greek letters σ, τ, µ, . . . . The length of a binary string σ is written |σ|,
and the concatenation of two binary strings σ and τ is written σ · τ . Given an
infinite binary sequence X ∈ 2N and n ∈ N, we write X ↾n for its initial segment
of length n. A string σ is a prefix of a string τ , written σ ⪯ τ , if there is some µ
such that σ · µ = τ .

Finite sets. Finite binary strings, seen as finite characteristic functions, are
often identified with finite sets, that is, σ is identified with {n < |σ| : σ(n) = 1}.
Based on this correspondence, we extend the set-theoretic notations to binary
strings, and let for example σ∪ρ denote the binary string of length max(|σ|, |ρ|),
and such that (σ ∪ ρ)(n) = 1 iff σ(n) = 1 or ρ(n) = 1. In particular, one shall
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distinguish the cardinality cardσ = card{n < |σ| : σ(n) = 1} of a string seen as
a set, from its length |σ|.

Trees. A binary tree is a set T ⊆ 2<N closed under prefix. A path through
a binary tree T is an infinite binary sequence X ∈ 2N such that X ↾n∈ T
for every n ∈ N. We let [T ] denote the class of all paths through T . Every
closed class in the Cantor space can be written of the form [T ] for a binary
tree T ⊆ 2<N. A class C ⊆ 2N is Π0

1(X) if it is of the form [T ] for an X-
co-c.e. tree T , or equivalently an X-computable tree T , or even a primitive
X-recursive tree T . A set P is of PA degree over X if for every X-computable
infinite binary tree T ⊆ 2<N, P computes an infinite path. Note that if P is of
PA degree over X, then P computes X.

Formulas. A formula is Σ0
n(X1, . . . , Xk) (resp. Π0

n(X1, . . . , Xk)) if it is Σ0
n

(resp. Π0
n) with parameters X1, . . . , Xk. Given a family of sets M ⊆ P(N), a

formula is Σ0
n(M) (resp. Π0

n(M)) if it is Σ0
n(X1, . . . , Xk) (resp. Π0

n(X1, . . . , Xk))
for some X1, . . . , Xk ∈ M.

Ideals. Recall that a non-empty family of sets M ⊆ P(N) is a Turing ideal
if for every X ∈ M and Y ≤T X, then Y ∈ M, and for every X,Y ∈ M,
X ⊕ Y ∈ M. A Turing ideal M is a Scott ideal if furthermore, for every
infinite binary tree T ∈ M, there is an infinite path P ∈ [T ] ∩M. A countable
Turing ideal M = {Z0, Z1, . . . } is coded by a set M ⊆ N if M =

⊕
n Zn =

{⟨x, n⟩ : x ∈ Zn}. Here, ⟨·, ·⟩ : N2 → N denotes the usual Cantor bijection. An
M -index of an element X ∈ M is an integer n such that X = Zn. A Scott
code of a Scott ideal M is a code M such that the operations (m,n) 7→ p such
that Zp = Zm ⊕ Zn, and (e, n) 7→ p such that Zp is a completion of ΦZn

e , are
computable. A collection of sets M is topped by a set X if it is of the form
{Z ∈ 2N : Z ≤T X}. Note that every topped collection is a Turing ideal, and
that no Scott ideal is topped.

ω-structure. An ω-structure M = (ω, S) is fully specified by its second-order
part S. Thus, we identify both notions. In particular, we say that M is topped
if so is S. As mentioned, M |= RCA0 iff S is a Turing ideal.

Mathias forcing. A Mathias condition is an ordered pair (σ,X), where σ
is a finite binary string, and X ⊆ N is an infinite set with minX > |σ|. A
condition (τ, Y ) extends another condition (σ,X) if σ ⪯ τ , Y ⊆ X, and τ \ σ ⊆
X. The set X of a Mathias condition (σ,X) is considered as a reservoir of
elements which are allowed to be later added to the initial segment σ. By abuse
of notation, when minX ≤ |σ|, we shall write (σ,X) to denote the Mathias
condition (σ,X \ {0, . . . , |σ|}).

1.6 Organization of the paper

In Section 2, we present the big picture of the iterated-jump control techniques
used to achieve the main theorems. In particular, we emphasize the role of
the so-called “forcing question” in the preservation of computability-theoretic
weakness properties.

PA degrees play an essential role in computability theory, and are often
involved as intermediary objects to obtain a good iterated jump control construc-
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tion. Let weak König’s lemma (WKL) be the problem whose instances are
infinite binary trees and whose solutions are paths. In Section 3, we prove
that WKL preserves hyperimmunity at levels N, that is, at every level of the
arithmetic hierarchy simultaneously. This both serves as a gentle example to
iterated-jump control and a preliminary construction necessary to prove our
main theorems.

Solutions to combinatorial theorems from Ramsey theory are often constructed
using variants of Mathias forcing. However, Mathias forcing does not behave
well with respect to iterated-jump control. In Section 4, we introduce the
fundamental concepts of largeness, partition regularity, minimal and cohesive
class, which enable to define a refinement of Mathias forcing with the appropriate
iterated-jump control. Then, in Section 5, we introduce the common combinatorial
core of all the notions of forcing used in this article.

In Section 6, we define two notions of forcing, namely, main forcing and
witness forcing, to build lown+1 and weakly lown solutions to Σ0

n+1-Subset,
and use it to separate Σ0

n-Subset from ∆0
n+1-Subset over ω-models. Then, in

Section 7, we introduce a disjunctive notion of forcing to preserve multiple
hyperimmunities simultaneously, and use this framework to separate ∆0

n+1-Subset
from Σ0

n+1-Subset over ω-models. We formalize the constructions of Section 6
over weak models of arithmetic in Section 8 to prove that RCA0 + IΣ0

n+1 +
Σ0

n+1-Subset is Π1
1-conservative over RCA0 + IΣ0

n+1.
Last, in Section 9, we state some remaining open questions and research

directions.

2 Iterated jump control and forcing question

The main theorems of this article are proven by effective forcing, with an
iterated jump control. This technique consists of making the constructed set
inherit computability-theoretic weaknesses of the ground model by translating
arithmetical properties of the generic set into absolute arithmetical formulas of
the same complexity.

In what follows, we shall consider an arbitrary notion of forcing (P,≤),
together with an interpretation function [·] : P → P(2N) such that if d ≤ c,
then [d] ⊆ [c]. Intuitively, a condition c is an approximation of the constructed
set, and its interpretation is the class of all candidate sets which satisfy the
approximation. If d ≤ c, then the approximation d is more precise than c, thus
[d] ⊆ [c]. In all the notions of forcing we shall consider, the interpretation will
be a closed class in the Cantor space, and for every sufficiently generic filter F ,
the class

⋂
c∈F [c] will be a singleton {GF}. A condition c forces a formula φ(G)

if φ(GF ) holds for every sufficiently generic filter F containing c.
The computability-theoretic weaknesses of the generic set are closely related

to the existence of a so-called forcing question with a good definitional complexity.

Definition 2.1. Let Γ be a family of formulas. A forcing question is a relation
?⊢ : P× Γ such that for every c ∈ P and φ(G) ∈ Γ,

10



1. If c ?⊢φ(G), then there is an extension d ≤ c forcing φ(G) ;

2. If c ?⊬φ(G), then there is an extension d ≤ c forcing ¬φ(G).

Given a formula φ(G), the set P can be divided into three categories: the
conditions forcing φ(G), the conditions forcing ¬φ(G), and the conditions forcing
neither of those. A forcing question can be thought of as a dividing line within
the third category. There are therefore two canonical implementations, by
merging the third category with either the first, or the second one. In some cases,
however, there exist intermediary forcing questions with a better definitional
complexity.

Note that a forcing question for Σ0
n formulas induces a forcing question

for Π0
n formulas by negating the relation, thus we shall only consider forcing

questions for Σ0
n formulas. The notion of forcing question was introduced by

Monin and Patey [28, Section 2] who proved two abstract theorems. We recall
them for the sake of completeness.

Definition 2.2. Let Γ be a family of formulas. A forcing question is Γ-
preserving if for every c ∈ P and every formula φ(G, x) ∈ Γ, the relation
c ?⊢φ(G, x) is in Γ uniformly in x.

The first abstract theorem concerns the preservation of the arithmetic hierarchy.
It is used to prove cone avoidance, or its iterated versions.

Theorem 2.3 ([28]). Let (P,≤) be a notion of forcing with a Σ0
n-preserving

forcing question. For every non-Σ0
n set C and every sufficiently generic filter F ,

C is not Σ0
n(GF ).

Proof. For every e ∈ N, let De ⊆ P be the set of all conditions forcing WG(n−1)

e ̸=
C. We claim that De is dense. Indeed, given c ∈ P, consider the following set:

U = {x ∈ N : c ?⊢x ∈WG(n−1)

e }

Since the forcing question is Σ0
n-preserving, the set U is Σ0

n, thus U ̸= C. Let
x ∈ U∆C = (U \C)∪(C\U). Suppose first that x ∈ U \C. By Property 1 of the

forcing question, there is an extension d ≤ c forcing x ∈WG(n−1)

e . Suppose now
that x ∈ C\U . By Property 2 of the forcing question, there is an extension d ≤ c

forcing x ̸∈WG(n−1)

e . In both cases, the extension d ≤ c forces WG(n−1)

e ̸= C, so
the set De is dense. This proves our claim. Thus, for every sufficiently generic
filter F , F is {De : e ∈ N}-generic, hence C is not Σ0

n(GF ).

Many forcing questions, when answering positively a Σ0
n question, can actually

find a finite set of witnesses for the outermost existential quantifier. This can
be seen as a form of compactness.

Definition 2.4. A forcing question is Σ0
n-compact if for every c ∈ P and every

Σ0
n formula φ(G, x), if c ?⊢∃xφ(G, x), then there is some k ∈ N such that

c ?⊢(∃x < k)φ(G, x).

11



The existence of a Σ0
n-compact forcing question is closely related to the

ability to compute fast-growing functions. Recall that a function f : N → N is
hyperimmune if it is not dominated by any computable function.

Theorem 2.5 ([28]). Let (P,≤) be a notion of forcing with a Σ0
n-compact, Σ0

n-
preserving forcing question. For every ∅(n−1)-hyperimmune function f : N → N
and every sufficiently generic filter F , f is G

(n−1)
F -hyperimmune.

Proof. For every e ∈ N, let De ⊆ P be the set of all conditions forcing ΦG(n−1)

e

not to dominate f . More precisely, De is the set of all conditions forcing either

ΦG(n−1)

e to be partial, or ΦG(n−1)

e (x)↓< f(x) for some x ∈ N. We claim that De is

dense. Suppose first that c ?⊬ΦG(n−1)

e (x)↓ for some x ∈ N. Then by Property 2

of the forcing question, there is an extension d ≤ c forcing ΦG(n−1)

e (x)↑, hence

to be partial. Suppose now that for every x ∈ N, c ?⊢∃vΦG(n−1)

e (x)↓= v. By
Σ0

n-compactness of the forcing question, for every x ∈ N, there is some bound

kx ∈ N such that c ?⊢(∃v < kx)ΦG(n−1)

e (x)↓= v. Let h : N → N be the function

which on input x, looks for some kx ∈ N such that c ?⊢(∃v < kx)ΦG(n−1)

e (x)↓= v,
and outputs kx. Such a function is total by hypothesis, and ∅(n−1)-computable
by Σ0

n-preservation of the forcing question. Since f is ∅(n−1)-hyperimmune,
h(x) < f(x) for some x ∈ N. By Property 1 of the forcing question, there is

an extension d ≤ c forcing (∃v < kx)ΦG(n−1)

e (x)↓= v. Since f(x) ≥ kx, d forces

ΦG(n−1)

e (x)↓< f(x). This proves our claim. Thus, for every sufficiently generic

filter F , F is {De : e ∈ N}-generic, hence f is G
(n−1)
F -hyperimmune.

Additional structural properties on the forcing question, such as the ability to
find simultaneous answers to independent questions, yield PA or DNC avoidance,
as in Monin and Patey [29].

The forcing question plays an important role in conservation theorems as
well. Indeed, given a Π1

2-problem P, proving that RCA0 + IΣ0
n + P is Π1

1-
conservative over RCA0 + IΣ0

n consists in starting with a countable model M =
(M,S) of RCA0 + IΣ0

n, and given an instance X ∈ S of P, constructing a
solution G ⊆M such that M∪ {G} |= IΣ0

n, where M∪ {G} = (M,S ∪ {G}).

Definition 2.6. Given a notion of forcing (P,≤) and some n ∈ N, a forcing
question is (Σ0

n,Π
0
n)-merging if for every c ∈ P and every pair of Σ0

n formulas
φ(G), ψ(G) such that c ?⊢φ(G) but c ?⊬ψ(G), then there is an extension d ≤ c
forcing φ(G) ∧ ¬ψ(G).

The existence of a (Σ0
n,Π

0
n)-merging forcing question enables to preserve

Σ0
n-induction.

Theorem 2.7. Let M = (M,S) |= Q+ IΣ0
n be a countable model and let (P,≤)

be a notion of forcing with a Σ0
n-preserving (Σ0

n,Π
0
n)-merging forcing question.

For every sufficiently generic filter F , M∪ {GF} |= IΣ0
n.

Proof. For every Σ0
n-formula φ(x,G), let Dφ ⊆ P be the set of all conditions

forcing either ∀xφ(x,G), or ¬φ(0, G), or φ(a−1, G)∧¬φ(a,G), for some a ∈M
with a > 0. We claim that Dφ is dense.
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Let c ∈ P be a condition. If c forces ∀xφ(x,G), then we are done. Otherwise,
there is an extension d ≤ c and some b ∈ M such that d forces ¬φ(b,G). Let
A = {x ∈ M : d ?⊢φ(x,G)}. Since the forcing question is Σ0

n-preserving, the
set A is Σ0

n(M). Moreover, d forces ¬φ(b,G), so by definition of the forcing
question, d ?⊬φ(b,G), hence b ̸∈ A. Since M |= IΣ0

n, and A ̸= M , either 0 ̸∈ A,
or there is some a ∈ M with a > 0 such that a ̸∈ A, and a − 1 ∈ A. In
the first case, by definition of the forcing question, there is an extension of d
forcing ¬φ(0, G). Otherwise, since the forcing question is (Σ0

n,Π
0
n)-merging,

there is an extension of d forcing φ(a − 1, G) ∧ ¬φ(a,G). This proves our
claim. Thus, for every sufficiently generic filter F , F is {Dφ}-generic, hence
M∪ {GF} |= IΣ0

n.

The most natural way to define a forcing question consists in defining c ?⊢φ(G)
to hold if there exists some d ≤ c forcing φ(G). There exists an inductive
syntactic definition of the forcing relation, and when the partial order is computable,
this definition yields a Σ0

n-preserving forcing question. However, in most cases,
the partial order is not computable, and one uses a custom Γ-preserving forcing
relation to obtain a Γ-preserving forcing question.

Definition 2.8. Let Γ be a family of formulas. A forcing relation for Γ is a
relation ⊩⊆ P× Γ such that for every c ∈ P and φ(G) ∈ Γ,

1. If c ⊩ φ(G), then c forces φ(G) ;

2. The set of conditions c such that c ⊩ φ(G) or c ⊩ ¬φ(G) is dense ;

3. If c ⊩ φ(G) and d ≤ c then d ⊩ φ(G).

The first property, known as “forcing implies truth”, states the soundness of
the relation, while the second property states is completeness. The definition is
equivalent to the statement “for every sufficiently generic filter F and every φ(G) ∈
Γ, φ(GF ) holds iff c ⊩ φ(G) for some condition c ∈ F .”

3 Forcing with trees

PA degrees play an essential role in the computability-theoretic analysis of the
pigeonhole principle. Indeed, the notion of forcing used to build solutions to the
pigeonhole principle is a variant of Mathias forcing whose reservoirs belong to
a Scott ideal. Therefore, to prove an avoidance or preservation property for the
pigeonhole principle, one must first prove a similar basis theorem for Π0

1 classes.
PA degrees admit several characterizations and therefore form a robust

notion. A function f : N → N is diagonally non-X-computable (X-DNC) if
f(e) ̸= ΦX

e (e) for every e ∈ N. A set is of PA degree over X iff it computes
a diagonally non-X-computable {0, 1}-valued function, or equivalently if, given
an enumeration ψ0, ψ1, . . . of all Π0

1(X) formulas, it computes a function g :
N2 → {0, 1} such that (∀e0, e1)[(ψe0 ∨ ψe1) → ψeg(e0,e1)

]. Furthermore, there
exists an X-computable infinite binary tree whose paths are exactly the {0, 1}-
valued X-DNC functions, so there exists a maximally difficult tree whose paths
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are all of PA degree. It follows that any computability-theoretic result about
PA degrees can be stated equivalently over PA degrees or over members of Π0

1

classes.
For our purpose, we will need to prove the existence of PA degrees which

preserve multiple hyperimmunities relative to various levels of the arithmetic
hierarchy. For example, if f is hyperimmune and g is ∅′-hyperimmune, one wants
to prove the existence of a set P of PA degree such that f is P -hyperimmune and
g is P ′-hyperimmune. There exist, among others, two well-known basis theorem
which serve a large majority of the purposes: the low and the computably
dominated basis theorem [21]. A set X is of computably dominated degree if
every total X-computable function is dominated by a total computable function,
or equivalently if it does not compute any hyperimmune function.

Theorem 3.1 (Jockusch and Soare [21]). Let C ⊆ 2N be a non-empty Π0
1 class.

1. There exists a member X ∈ C of low degree (X ′ ≤T ∅′).

2. There exists a member X ∈ C of computably dominated degree.

Given such f and g, by the computably dominated basis theorem, there
exists a set P of PA and computably dominated degree. In particular, f is
P -hyperimmune. On the other hand, by the low basis theorem, there is a
set Q of PA and low degree, so since g is ∅′-hyperimmune and Q′ ≤T ∅′, g is Q′-
hyperimmune. The difficulty is to preserve both hyperimmunities simultaneously,
as every low degree is hyperimmune, so no set can be simultaneously of low and
computably dominated degree.

In order to prove the preservation of multiple hyperimmunities simultaneously,
we use a notion of forcing with primitive recursive trees introduced by Wang [41],
who showed the existence of a forcing question with good definability properties
at every level. For the sake of completeness, we state the properties of his notion
of forcing, and use it to prove the existence of PA degrees which preserve multiple
hyperimmunities simultaneously.

Definition 3.2. Let T be the notion of forcing whose conditions are infinite
primitive recursive trees, partially ordered by the inclusion relation. We write
S ≤ T for the inclusion and say that S extends T .

A class P ⊆ 2N is Π0
1 iff there is a co-c.e. pruned tree T ⊆ 2<N such that

P = [T ]. Using a time trick, for every co-c.e. tree T , there is a primitive
recursive tree S such that [T ] = [S] (see [41, Lemma 3.8]). It follows that there
is a primitive recursive tree whose paths are exactly the {0, 1}-valued DNC
functions.

The partial order (T,≤) being non-computable, the usual inductive definition
of the forcing relation does not have the right definitional complexity because
of the first level of the hierarchy. We shall therefore define a custom forcing
relation for Σ0

1 and Π0
1 formulas. At higher levels, the complexity of the partial

order is absorbed by the complexity of the forced formula, and therefore one
can use the standard inductive definition of the forcing relation.
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Definition 3.3. We define inductively a forcing relation for arithmetic formulas
as follows:
For ϕ(G, x) a Π0

0 formula:

• T ⊩ (∃x)ϕ(G, x) if (∃ℓ)(∀σ ∈ 2ℓ ∩ T )(∃x ≤ ℓ)ϕ(σ, x),

• T ⊩ (∀x)¬ϕ(G, x) if (∀σ ∈ T )(∀x)¬ϕ(σ, x).

For ϕ(G, x) a Π0
n formula for n ≥ 1:

• T ⊩ (∃x)ϕ(G, x) if T ⊩ ϕ(G, a) for some a ∈ N,

• T ⊩ (∀x)¬ϕ(G, x) if (∀S ≤ T )S ̸⊩ (∃x)ϕ(G, x).

The following lemma corresponds to [41, Lemma 3.13], and states that the
forcing relation has the same definitional complexity as the formulas it forces.

Lemma 3.4. Let n ∈ N, T ∈ T and ϕ(G, x) be a Π0
n formula. The formula

T ⊩ (∃x)ϕ(G, x) is Σ0
n+1, and the formula T ⊩ (∀x)¬ϕ(G, x) is Π0

n+1.

The following lemma corresponds to [41, Lemma 3.12] and states that the
forcing relation is sound and complete.

Lemma 3.5. Let F be a sufficiently generic filter. Then
⋂

T∈F [T ] contains a
single element GF and, for every arithmetic formula ϕ(G), ϕ(GF ) holds if and
only if there is a condition T ∈ F forcing ϕ(G).

We can now define a Σ0
n-preserving forcing question for Σ0

n formulas based
on the previously defined forcing relation.

Definition 3.6 (Forcing question). We define the Σ0
n-forcing question for n ≥ 1

as follows: Let ϕ(G, x) be a Π0
n−1 formula

• If n = 1, T ?⊢(∃x)ϕ(G, x) holds if T ⊩ (∃x)ϕ(G, x).

• If n > 1, T ?⊢(∃x)ϕ(G, x) holds if T ̸⊩ (∀x)¬ϕ(G, x).

The following lemma states that Definition 3.6 meets the specifications of
a forcing question. Moreover, by Lemma 3.4, this forcing question is Σ0

n-
preserving.

Lemma 3.7. Let n ≥ 1, let ϕ(G, x) be a Π0
n−1 formula, and let T ∈ T.

• If T ?⊢(∃x)ϕ(G, x), then ∃S ≤ T such that S ⊩ (∃x)ϕ(G, x).

• If T ?⊬(∃x)ϕ(G, x), then ∃S ≤ T such that S ⊩ (∀x)¬ϕ(G, x).

Proof. If T ?⊢(∃x)ϕ(G, x), there are two cases:

• If n = 1, then T ⊩ (∃x)ϕ(G, x).

• If n > 1, then T ̸⊩ (∀x)¬ϕ(G, x), hence there exists some S ≤ T such that
S ⊩ (∃x)ϕ(G, x).
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If T ?⊬(∃x)ϕ(G, x), there are two cases:

• If n = 1, then T ̸⊩ (∃x)ϕ(G, x), hence (∀ℓ)(∃σ ∈ 2ℓ ∩ T )(∀x ≤ ℓ)¬ϕ(σ, x).
Then the tree S = {σ ∈ T : (∀x ≤ |σ|)¬ϕ(σ, x)} is an infinite primitive
recursive subtree of T such that S ⊩ (∀x)¬ϕ(G, x).

• If n > 1, then T ⊩ (∀x)¬ϕ(G, x).

Since we are interested in preservation of iterated hyperimmunity, the following
lemma states that the forcing question is Σ0

n-compact.

Lemma 3.8. For all n ≤ 1, the ?⊢ relation for Σ0
n formulas is compact, i.e., if

T ?⊢(∃x)ϕ(G, x), then there exists some bound k such that T ?⊢(∃x < k)ϕ(G, x).

Proof. Assume T ?⊢(∃x)ϕ(G, x) for some Σ0
n formula (∃x)ϕ(G, x). There are

two cases:

• If n = 1, then T ⊩ (∃x)ϕ(G, x) and there exists some ℓ such that (∀σ ∈ 2ℓ∩
T )(∃x ≤ ℓ)ϕ(σ, x), hence T ⊩ (∃x ≤ ℓ)ϕ(G, x) and T ?⊢(∃x ≤ ℓ)ϕ(G, x).

• If n > 1, then T ̸⊩ (∀x)¬ϕ(G, x), hence there exists some S ≤ T such
that S ⊩ (∃x)ϕ(G, x). Fix such a tree S, there exists some k such that
S ⊩ ϕ(G, k), hence T ?⊢(∃x ≤ k)ϕ(G, x).

We are now ready to prove the main theorem of this section, based on the
abstract framework of the forcing question.

Theorem 3.9. Let {(fs, ns)}s∈N be a family such that for every s ∈ N, fs is
∅(ns)-hyperimmune. Let T ⊆ 2<N be an infinite computable tree. There exists
some path P in [T ] such that fs is P (ns)-hyperimmune for every s ∈ N.

Proof. By Lemmas 3.4, 3.7 and 3.8, the notion of forcing (P,≤) admits a Σ0
n-

compact, Σ0
n-preserving forcing question, so apply Theorem 2.5.

Remark 3.10. Wang [41] proved, given a family {(Cs, ns)}s∈N such that for
every s ∈ N, Cs is not Σ0

ns
, the existence of a set P of PA degree such

that for every s ∈ N, Cs is not Σ0
ns

(P ). Downey et al. [11] studied the
relationships between notions of preservations and avoidance, and proved in
particular that preservation of hyperimmunity is equivalent to preservation of
non-Σ0

1 definitions. Their proof relativizes to iterated jumps, but it is not
known to be equivalent when working with levels of the hierarchy simultaneously.
Therefore, the main theorem of this section (Theorem 3.9) is not a consequence
of Wang’s result.
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As mentioned, the degree-theoretic study of PA degrees and members of Π0
1

classes coincide, as there exists a maximal Π0
1 class containing only sets of PA

degree. The following well-known proposition shows that the degrees of Scott
codes coincide with PA degrees, hence it is not more complicated to compute
hierarchies of PA degrees than a single one.

Proposition 3.11 (Scott [34]). For every set X, there exists a non-empty
Π0

1(X) class C(X) containing only Scott codes of Scott ideals containing X.

Proof. Let C(X) be the class of all
⊕

n Zn such that for every a, b ∈ N, Z⟨0,a,b⟩ =
Za ⊕ Zb and for every e, a ∈ N, Z⟨1,e,a⟩ is a completion of the partial function
ΦZa

e . Let M =
⊕

i Zi ∈ C(X) and M = {Zi : i ∈ N}. By construction, M is
closed under effective join. We claim that M downward-closed under the Turing
reduction. Let Za ∈ M and Y ≤T Za. Then there is a Turing functional Φe

such that ΦZa
e = Y , so Z⟨1,e,a⟩ = Y ∈ M.

We now claim that M is a Scott ideal. Let Za ∈ M, and let Φe be a Turing
functional such that for every set X, every x ∈ N and i < 2, ΦX

e (x)↓= 1 − i
iff ΦX

x (x)↓= i. Then any completion of ΦX
e is a {0, 1}-valued X-DNC function,

hence of PA degree over X. It follows that Z⟨1,e,a⟩ ∈ M is of PA degree
over Za.

4 Largeness and partition regularity

Solutions to problems from Ramsey theory are often constructed using variants
of Mathias forcing, that is, with conditions consisting of a finite stem and
an infinite reservoir. Even in the case of computable Mathias forcing, where
the reservoirs are computable, the Σ0

2(G) and Π0
2(G) properties of the generic

object G are generally more complex than the Σ0
2 and Π0

2 properties of the
ground model. In particular, every sufficiently generic set for computable Mathias
forcing is of high degree. Recall that a function f : N → N is dominant if
it eventually dominates every computable function. By Martin’s domination
theorem [26], a degree is high iff it computes a dominant function. The principal
function of an infinite set X = {x0 < x1 < . . . } is the function pX : N → N
defined by n 7→ xn.

Proposition 4.1 (Folklore). Let F be a sufficiently generic filter for computable
Mathias forcing. Then the principal function of GF is dominant.

Proof. Given a total computable function g : N → N and a computable Mathias
condition (σ,X), one can computably thin out the reservoir X to obtain a
computable reservoir Y such that pσ∪Y eventually dominates g. The condition
(σ, Y ) is an extension of (σ,X) forcing the principal function ofGF to dominate g.

A condition can be seen as an invariant property that is preserved along
the construction of an infinite object: given a mathematical approximation
satisfying some structural properties, one can apply one step of the construction,
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and obtain another mathematical approximation satisfying the same structural
properties.

In the construction of solutions to the pigeonhole principle, Mathias forcing
over Scott ideals is an appropriate invariant for a good first-jump control,
but it is an over-generalization preventing from having a good second-jump
control: the forcing relation for Π0

2(G) properties is a density statement about
an infinite collection of Σ0

1(G) properties. It requires guaranteeing some positive
information about the future, while a reservoir forces some negative information,
as it restricts the candidate integers that can be added to the generic set. One
must therefore use a “reservoir of reservoirs”, which will restrict the possible
choices of reservoirs, hence will restrict the future negative information, which
is a way of forcing positive information.

This “reservoir of reservoirs” must still allow the necessary operations on
the reservoirs to ensure a good first-jump control. Looking a the combinatorics
of a first-jump control of the pigeonhole principle, the only operations on the
reservoirs are finite truncation, and splitting based on a 2-partition. This
naturally yields the notion of partition regular class. Partition regularity is
a generalization of the notion of infinity.

Definition 4.2. A class A ⊆ 2N is partition regular if :

• A is non-empty,

• for all X ∈ A, if X ⊆ Y , then Y ∈ A,

• for every X ∈ A, for every 2-cover Y0 ∪ Y1 ⊇ X, there exists i < 2 such
that Yi ∈ A.

By iterating the splitting, if A is partition regular, then for every integer k,
for every X ∈ A, and every k-cover Y1, Y2, . . . Yk of X, there exists some i ≤ k
such that Yi ∈ A. By the infinite pigeonhole principle, the class of all infinite
sets is partition regular. We will be interested in partition regular classes having
only infinite sets. These classes are called non-trivial. Equivalently, a partition
regular class is non-trivial if every set has at least 2 elements. For a set X,
let LX be the Π0

2(X) partition regular class containing all the sets having an
infinite intersection with X.

Given a partition regular class A ⊆ 2N, one can construct solutions to the
pigeonhole principle with a good first-jump control, using a variant of Mathias
forcing whose reservoirs belong to A. Cholak, Jockusch and Slaman [3] and
Dorais [9] first used variants of Mathias forcing with reservoirs in partition
regular classes to build generic sets of non-high degree. The technique was then
developed by Monin and Patey [28, 30, 29, 31] to prove several basis theorems
about the pigeonhole principle.

4.1 Large classes

One should expect from a notion of largeness that it is closed upward under
inclusion. The collection of all partition regular classes is not closed upward: for

18



example, letting X be any bi-infinite set, LX is partition regular, but LX ∪{X}
is not. The following notion of largeness is more convenient to work with, and
closely related to partition regularity.

Definition 4.3. A class A ⊆ 2N is large if :

• for all X ∈ A, if X ⊆ Y , then Y ∈ A,

• for every integer k, for every k-cover Y1, Y2, . . . Yk of N, there exists i ≤ k
such that Yi ∈ A.

The notion of largeness was introduced and studied by Monin and Patey [28].
They proved that a class is large iff it contains a partition regular subclass.
Furthermore, every large class contains a maximal partition regular subclass for
inclusion, which admits an explicit syntactic definition.

Definition 4.4. Given a large class A ⊆ 2N, let

L(A) = {X ∈ A : ∀k∀X0 ∪ · · · ∪Xk−1 ⊇ X ∃i < k Xi ∈ A}

Monin and Patey [28] proved that if A is large, then L(A) is the maximal
partition regular subclass of A. Large classes satisfy a very useful combinatorial
property that we shall use all over the article:

Lemma 4.5 ([28]). Let A0 ⊇ A1 ⊇ . . . a decreasing sequence of large classes,
then

⋂
i∈N Ai is large.

The contrapositive of Lemma 4.5 has some compactness flavor. Indeed, if an
intersection

⋂
i Ai of a collection of classes A0,A1, . . . is not large, then there

is some n ∈ N such that
⋂

i<n Ai is not large. We shall be interested only in Gδ

large classes, that is, intersections of open large classes. For this, we consider
W0,W1, · · · ⊆ 2<N as an effective enumeration of all c.e. sets of strings, and let
U0,U1, . . . be defined by

Ue = {X ∈ 2N : ∃ρ ⊆ X ρ ∈We}

Thus, U0,U1, . . . is a uniform enumeration of all upward-closed Σ0
1 classes. By

an immediate relativization, we let UZ
0 ,UZ

1 , . . . be a uniform enumeration of all
upward-closed Σ0

1(Z) classes. From now on, fix a Scott ideal M = {Z0, Z1, . . . }
with Scott code M (in other words, M =

⊕
i Zi and the basic operations on the

M -indices are computable). Given a set C ⊆ N2, we let

UM
C =

⋂
(e,i)∈C

UZi
e

Thanks to Lemma 4.5, largeness of an arbitrary intersection of Σ0
1 class can be

reduced to checking largeness of a finite intersection of Σ0
1 classes, which is a Π0

2

statement. The following lemma gives the relativized complexity of the general
statement:
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Lemma 4.6 ([30]). Let C ⊆ N2 be a set, the statement “UM
C is large” is

Π0
1(C ⊕M ′).

Proof sketch. By Lemma 4.5 and by compactness, this statement can be rephrased
as “for every k and every finite subset E of C, there exists some n such that for
every k-partition of {0, . . . , n}, one of its parts belongs to

⋂
(i,e)∈E UZi

e .”

Given a large Σ0
1 class U , its biggest partition regular subclass L(U) is Π0

2.
Still by Lemma 4.5, the biggest partition regular subclass of a large Π0

2 class is
again Π0

2. One can therefore switch from largeness to partition regularity with
no additional cost:

Lemma 4.7 ([30]). Let C ⊆ N2 be a set, then L(UM
C ) =

⋂
F⊆finC

L(UM
F ) is

Π0
1(C ⊕ M ′) and there exists a set D computable uniformly in C such that

L(UM
C ) = UM

D .

4.2 M-minimal classes

As mentioned above, the notion of forcing for constructing solutions to the
pigeonhole principle with a good first-jump control is a variant of Mathias
forcing whose conditions belong to a Scott ideal. To obtain a good second-jump
control, one must restrict the reservoirs to some well-chosen partition regular
class.

Given the computability-theoretic nature of the Σ0
2(G) and Π0

2(G) statements
that need to be forced, the appropriate partition regular class does not admit
a nice explicit combinatorial definition. One can either decide to start with the
simplest partition regular class of all the infinite sets, and refine this class over
the construction by considering partition regular subclasses which will ensure
stronger positive information about the reservoirs, or build once for all the
most restrictive partition regular class, in other words, the partition regular
class which will maintain as much positive information about the reservoirs as
possible. We adopt the latter approach.

Seeing a partition regular class as a “reservoir of reservoirs”, if A ⊆ B are two
partition regular classes, A will impose more restrictions on the possible choice
of reservoirs than B. Considering that a reservoir forces negative information
about the set, A will force more positive information than B. Therefore, minimal
partition regular classes will ensure as much positive information as possible.

Definition 4.8. A large class A is M-minimal if for every X ∈ M and e ∈ N,
either A ⊆ UX

e or A ∩ UX
e is not large.

Every large class containing a partition regular subclass, every M-minimal
large class of the form UM

C is also partition regular. There is a natural greedy
algorithm to build a set C ⊆ N2 such that UM

C is non-trivial and M-minimal.

Lemma 4.9. Let M be a Scott ideal with Scott code M and let D ⊆ N2 be a set
of indices such that UM

D is large and contains only infinite sets. Then (D⊕M ′)′

computes a set C ⊇ D such that UM
C is M-minimal.
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Proof. By the padding lemma, there is a total computable function g : N2 → N
such that for every e, s ∈ N and every set X, UX

g(e,s) = UX
e and g(e, s) > s. By

uniformity of the properties of a Scott code, there is another total computable
function h : N2 → N such that for every e, s ∈ N and every Scott code M , h(e, s)
and e are both M -indices of the same set, and h(e, s) > s.

We build a (D ⊕ M ′)′-computable sequence of D-computable sets C0 ⊆
C1 ⊆ . . . such that, letting C =

⋃
s Cs, UM

C is M-minimal and for every s,
C ↾ s = Cs ↾ s. Start with C0 = D. Then, given a set Cs ⊆ N2 such that
UM
Cs

is large, and a pair (e, i), define Cs+1 = Cs ∪{(g(e, s), h(i, s))} if UM
Cs

∩UZi
e

is large, and Cs+1 = Cs otherwise. The set C =
⋃

s Cs is the desired set.
Note that by choice of g and h, in the former case, UM

Cs+1
= UM

Cs
∩ UZi

e . By

Lemma 4.6, the statement “UM
Cs

∩ UZi
e is large” is Π0

1(Cs ⊕M ′), so it can be
decided (D⊕M ′)′-computably since Cs ≤T D. The use of g and h ensures that
Cs+1 ↾ s = Cs ↾ s.

One can apply Lemma 4.9 with D = {(es, i) : s ∈ N} where UZi
es = {Y ∈ 2N :

cardY ≥ s} to obtain a set C ≤T M ′′ such that UM
C is M-minimal. However,

being M ′′-computable is too complex for our purpose. Thankfully, one does
not need to explicitly have access to the set of indices of the M-minimal class,
but only to be able to check that a class is compatible with it. This yields the
notion of M-cohesive class.

4.3 M-cohesive classes

In the previous algorithm for constructing an M-minimal class, the order in
which one considers the pairs (e, i) matters. Indeed, if A is large and B, C ⊆ A
are two large subclasses, then B ∩ C is not necessarily large. Therefore, there
exist many M-minimal classes, depending on the ordering of the pairs. The
notion of M-cohesiveness is a way of choosing an M-minimal class without
explicitly giving its set of indices.

Definition 4.10. A large class A is M-cohesive if for every X ∈ M, either
A ⊆ LX or A ⊆ LX .

It follows from the definition that for every infinite set X ∈ M, if X ∈ A,
then A ⊆ LX . Indeed, otherwise, by M-cohesiveness, X ∈ A ⊆ LX , yielding
a contradiction. The cohesiveness terminology comes from the cohesiveness
principle (COH), which states for every infinite sequence of sets R0, R1, . . . , the
existence of an infinite set H ⊆ N such that for every n ∈ N, either H ⊆∗ Rn or
H ⊆∗ Rn. Such a set H is said to be cohesive for the sequence. There exists an
immediate correspondence between the cohesiveness principle and the existence
of M-cohesive classes. Indeed, given an infinite set H which is cohesive for the
sequence M = {Z0, Z1, . . . }, the class LH is partition regular and M-cohesive.

The following lemma shows that an M-cohesive class already contains the
information of an M-minimal class, in the sense that in the greedy algorithm to
build an M-minimal class from an M-cohesive one, the ordering on the pairs
does not matter.
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Lemma 4.11 ([30]). Let UM
C be an M-cohesive class. Let UM

D and UM
E be such

that UM
C ∩ UM

D and UM
C ∩ UM

E are both large. Then so is UM
C ∩ UM

D ∩ UM
E .

It follows that every M-cohesive class admits a unique M-minimal large
subclass.

Lemma 4.12 ([30]). For every M-cohesive class UM
C , there exists a unique

M-minimal large subclass:

⟨UM
C ⟩ =

⋂
e∈N,X∈M

{UX
e : UM

C ∩ UX
e is large}

Contrary to M-minimal classes, one can build a set C ⊆ N2 such that UM
C

is M-cohesive computably in any PA degree over M ′. There are two possible
constructions: either using the correspondence with the cohesiveness principle,
knowing that any PA degree over M ′ computes the jump of an infinite set H ⊆ N
cohesive of M = {Z0, Z1, . . . }, and computing in H ′ the set C, or directly
building the set C by deciding, given a set Cs ⊆ N2 and a set Zi, whether
UM
Cs

∩LZi
or UM

Cs
∩LZi

is large. We prove it formally with the latter approach.

Lemma 4.13. Let M be a Scott ideal with Scott code M and let D ⊆ N2 be a
set of indices such that UM

D is large and contains only infinite sets. Then any
PA degree over D ⊕M ′ computes a set C ⊇ D such that UM

C is M-cohesive.

Proof. Fix P a PA degree over D⊕M ′. Recall that P is able to choose, among
two Π0

1(D ⊕M ′) formulas such that at least one is true, a valid one.
First, consider twoM -computable enumerations of sets (En)n∈N and (Fn)n∈N

such that for every n ∈ N, UZn

En
= LZn

and UZn

Fn
= LZn

. By the padding
lemma, one can suppose that minEn,minFn ≥ n. The set C will be defined as⋃

n∈N Cn for C0 ⊆ C1 ⊆ . . . a P -computable sequence of M ⊕ D-computable
sets satisfying:

• C0 = D,

• UM
Ck

is large for every k ∈ N,

• Ck ↾ k = C ↾ k for every k ∈ N, and thus C will be P -computable.

Let C0 = D, then, by assumption, UM
C0

is large.

Assume Ck has been defined for some k ∈ N. Then, as UM
Ck

is large, one of

the two following Π0
1(D ⊕M ′) statements must hold: “UM

Ck
∩ LZk

is large′′ or

“UM
Ck

∩LZk
is large′′. Hence, P is able to choose one that is true. If UM

Ck
∩LZk

is large, let Ck+1 = Ck ∪Ek, and if UM
Ck

∩LZk
is large, let Ck+1 = Ck ∪Fk. By

our assumption that minEn,minFn ≥ n for all n, the value of Ck ↾ k will be
left unchanged in the rest of the construction.

The above construction of C carries the information, given an element X ∈
M, whether X ∈ UM

C or not (or equivalently whether X ∈ ⟨UM
C ⟩ or not, or again

whether UM
C ⊆ LX or not). The following lemmas shows that this information

can be recovered by any such set C independently of this construction, with the
help of M ′.
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Lemma 4.14. Let UM
C be an M-cohesive class. C ⊕M ′ computes a function

f : N → 2 such that for every a ∈ N, f(a) = 1 iff Za ∈ UM
C .

Proof. By M-cohesiveness, Za ∈ UM
C if and only if UM

C ⊆ LZa
. The statement

UM
C ⊆ LZa

is Π0
1(C⊕M ′) (as it is equivalent to UM

C ∩LZa
large). This statement

is also Σ0
1(C ⊕M ′), since it is equivalent to UM

C ∩ LZa
not large, hence it is

∆0
1(C ⊕M ′) and therefore decidable by C ⊕M ′.

The following lemma shows that, in some sense, the construction above of
an M-cohesive class can be done without loss of generality.

Lemma 4.15. Let UM
C be an M-cohesive class, then C ⊕M ′ is of PA degree

over X ′ for every X ∈ M.

Proof. Let X ∈ M. Fix an X-c.e. enumeration E0 ⊆ E1 ⊆ . . . of X ′. Given e ∈
N, let Ye be the set of all n such that ΦEn

e (e)[n]↓= 1. Note that if ΦX′

e (e)↓= 1
then Ye is cofinite, and if ΦX′

e (e)↓= 0 then Ye is finite. It follows that if ΦX′

e (e)↓,
then Ye ∈ UM

C iff ΦX′

e (e) = 1. Let g : N → N be the computable function which
to e associates an M -index for Ye and let f : N → 2 be the C ⊕M ′-computable
function of Lemma 4.14. Then e 7→ 1 − f(g(e)) is a C ⊕M ′-computable {0, 1}-
valued X ′-DNC function, hence C ⊕M ′ is of PA degree over X ′.

Note that in the case where M is of low degree, then C⊕M ′ is of PA degree
over M ′. It is not clear at first sight that the notions of M-cohesiveness and M-
minimality do not coincide, at least for classes of the form UM

C . The following
proposition shows that the two notions are always distinct. It is not of direct
use for the remainder of this article, but of independent interest.

Proposition 4.16. For every countable Turing ideal M, there exists a set C
such that UM

C is M-cohesive but not M-minimal.

Proof. Consider the following Π0
2 class P = {X : (∀n)(∃x)|[x, 2x) ∩X| ≥ n}.

Claim 1. The class P is partition regular. First, N ∈ P. Let X0 ∪X1 ∈ P
for some sets X0, X1, if X0, X1 /∈ P, then for all i < 2, there exists some
ni ∈ N such that for all x, and |[x, 2x) ∩ Xi| < ni. Thus, for all x ∈ N,
|[x, 2x)∩ (X0∪X1)| < n0 +n1, contradicting our assumption that X0∪X1 ∈ P.
This proves our claim.

Let UM
D be an M-cohesive partition regular subclass of P, which exists as P

is Π0
2. Let Z0, Z1, . . . be the list of all sets X in M such that UM

D ⊆ LX and let
UM
C =

⋂
n LZn

. By M-cohesiveness of UM
D , for every X ∈ M, either UM

D ⊆ LX

or UM
D ⊆ LX , so UM

C is M-cohesive. Moreover, UM
D ⊆ UM

C .

Claim 2. UM
C ̸⊆ UM

D Let X = {x0, x1, . . . } defined as follows: let xn be
the smallest element of

⋂
k≤n Zk bigger than 2xn−1 (or bigger than 0 if n = 0).

Note that
⋂

k≤n Zk is infinite, since {Zk : k ≤ n} ∪ {
⋂

k≤n Zk} is a cover of N
and none of Zk belongs to UM

C , so
⋂

k≤n Zk ∈ UM
C ⊆ LN. By construction X

cannot be an element of P as |X ∩ [x, 2x)| ≤ 1 for every x, and X ∈ UM
C as

X ∩ Zk is infinite for every k ∈ N. It follows that UM
C is M-cohesive, but not

M-minimal.
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4.4 Scott towers, largeness towers

In order to obtain notions of forcing with a good iterated jump control, we shall
often work with hierarchies of Scott ideals with good computational properties.

Definition 4.17. Fix n ≥ 0. A Scott tower of height n is a sequence of Scott
ideals M0, . . . ,Mn with Scott codes M0, . . . ,Mn, respectively, such that for
every i < n, M ′

i ∈ Mi+1.

Intuitively, a Mathias-like notion of forcing with a good iterated-jump control
will decide Σ0

k+1-properties with a question with parameters in Mk.

Remark 4.18. Note that for every Scott tower M0, . . . ,Mn and i < n, there
exists a computable function g : N → N translating Mi-indices into Mi+1-
indices, that is, such that for every a ∈ N, g(a) is an Mi+1-index of the set of
Mi-index a. Indeed, there is a computable function h : N → N such that ΦMi

h(a)

is a set of Mi-index a for every a ∈ N. For every a ∈ N, let Za be the set of
Mi+1-index a. By our definition of a Scott code, there exists a total computable
function q : N2 → N such that Zq(e,a) is a completion of ΦZa

e . Let b be an
Mi+1-index of Mi and let g(a) = q(h(a), b). By definition, Zg(a) is a completion

of ΦMi

h(a), hence is the set of Mi-index a.

The following proposition will be useful throughout this article.

Proposition 4.19. Fix n ≥ 0. There exists a Scott tower M0, . . . ,Mn with
Scott codes M0, . . . ,Mn, such that for every i ≤ n, Mi is low over ∅(i), that is,
(Mi ⊕ ∅(i))′ ≤T ∅(i+1).

Proof. For every setX, consider the Π0
1(X) class C(X) defined in Proposition 3.11.

By a relativized version of the low basis theorem [21], for every i ≤ n, there is a
Scott ideal Mi containing ∅(i) with Scott code Mi ∈ C(∅(i)) of degree low over
∅(i). Then, for every i < n, M ′

i ≡T ∅(i+1), and thus M ′
i ∈ Mi+1.

Given a Scott tower M0, . . . ,Mn, we shall define some sets C0, . . . , Cn−1

such that UMi

Ci
is Mi-cohesive, and work with notions of forcing with multiple

reservoirs, such that the reservoir Xi at level i belongs to Mi ∩ UMi

Ci
. The

combinatorics of the notions of forcing will require in particular that the various
cohesive classes are compatible, that is,

⋂
i U

Mi

Ci
is large. This is not the case

in general, as given a bi-infinite set X, LX and LX are partition regular, but
LX ∩ LX is not even large. We will therefore need to ensure structurally this
compatibility between the cohesive classes. This yields the notion of largeness
tower.

Definition 4.20. Fix n ≥ 0. A largeness tower of height n is a Scott tower
M0, . . . ,Mn together with a sequence of sets C0, . . . , Cn−1 such that for every i <
n:

1. UMi

Ci
is an Mi-cohesive large class containing only infinite sets ;

2. Ci ∈ Mi+1 ;
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3. UMi+1

Ci+1
⊆ ⟨UMi

Ci
⟩ if i < n− 1.

The following proposition shows that the compatibility requirements between
the various notions of largeness do not impose any constraints on the notion of
Scott tower, and thus that the two constructions can done separately.

Proposition 4.21 (Monin and Patey [30]). Every Scott tower can be completed
into a largeness tower.

Proof. Let M0, . . . ,Mn be a Scott tower with Scott codes M0, . . . ,Mn. The
Scott ideal M1 contains M ′

0 hence also contains a set X0 that is PA over M ′
0.

By Lemma 4.13, X0 computes a set C0 such that UM0

C0
is an M0-cohesive large

class. Note that C0 ∈ M1 since a Scott ideal is stable by Turing reduction.
Assume Ck has already been defined for some k < n − 1. In particular,

UMk

Ck
is Mk-cohesive, so by Lemma 4.9, (Ck ⊕M ′

k)′ computes a set Dk+1 such

that UMk

Dk+1
= ⟨UMk

Ck
⟩. By Remark 4.18, there is a set Ek+1 ≤T Dk+1 such that

UMk+1

Ek+1
= UMk

Dk+1
. Note that Ck ⊕M ′

k ∈Mk+1, so Ek+1 ≤T Dk+1 ≤T M ′
k+1. By

definition of a largeness tower, M ′
k+1 ∈ Mk+2 so there exists a setXk+1 ∈ Mk+2

of PA degree over M ′
k+1. By Lemma 4.13, Xk+1 computes a set Ck+1 ⊇ Ek+1

such that the class UMk+1

Ck+1
is an Mk+1-cohesive class. In particular, Ck+1 ∈

Mk+2.

5 Core forcing

Monin and Patey [30] designed a notion of forcing which will serve as the
common combinatorial core to all the notions of forcing introduced in this
article. We define it and state its main lemmas and re-prove them for the
sake of completeness. For the remainder of this section, fix n ≥ 0, and let
M0, . . . ,Mn+1 be Scott ideals with Scott codes M0, . . . ,Mn+1, respectively,
and let C0, . . . , Cn be forming a largeness tower, that is, for every i ≤ n:

• UMi

Ci
is an Mi-cohesive large class containing only infinite sets ;

• Ci,M
′
i ∈ Mi+1 ;

• UMi+1

Ci+1
⊆ ⟨UMi

Ci
⟩ if i < n.

This hierarchy is defined abstractly because of its multiple uses in Section 6 and
Section 7.

Following the intuition on M-minimal partition regular classes, ⟨UM0

C0
⟩ is a

collection of reservoirs with a maximum amount of positive information, that
is, satisfying a maximum amount of Σ0

1 properties. More generally, ⟨UMn

Cn
⟩

satisfies a maximum amount of Σ0
n+1 properties. Moreover, this hierarchy of

minimal classes is ordered under inclusion, so that any reservoir in ⟨UMn

Cn
⟩ will

satisfy simultaneously all these Σ0
k+1 properties for k ≤ n. The core forcing is a

refinement of Mathias forcing in which the reservoirs are required to maintain
as much positive information as possible.
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Definition 5.1 (Condition). For any set A ∈ ⟨UMn

Cn
⟩, let PA

n be the notion of
forcing whose conditions are Mathias conditions (σ,Xn) such that

• σ ⊆ A ;

• Xn ∈ Mn ∩ ⟨UMn

Cn
⟩.

Note that for every set A, either A or A ∈ ⟨UMn

Cn
⟩, hence either PA

n or PA
n is

a valid notion of forcing, and it might be the case for both. Actually, by Monin
and Patey [31, Proposition 2.7], the measure of sets A such that both A and A
belong to ⟨UMn

Cn
⟩ is 1.

The definition of a condition slightly differs from the original notion [30] by
two aspects: First, the reservoir is required to belong to Mn, while the original
definition did not impose any computability-theoretic constraint on it. Second,
the stem σ is required to be a subset of A. None of these variations will affect
the combinatorial properties of the notion of forcing, but they will be very useful
for the study of Σ0

n-Subset and ∆0
n-Subset.

Definition 5.2. The set PA
n is partially ordered using the Mathias extension

relation, that is, a PA
n -condition (τ, Yn) extends a PA

n -condition (σ,Xn) (and we
write (τ, Yn) ≤ (σ,Xn)) if Yn ⊆ Xn and σ ⪯ τ ⊆ σ ∪Xn.

Given a PA
n -condition (σ,Xn), requiring that the stem σ is included in A

might be an issue, since the reservoir Xn might have empty intersection with A.
The following lemma shows that not only A∩Xn is infinite, but Xn and Xn∩A
also satisfy the same large Σ0

k+1 properties forced by ⟨UMn

Cn
⟩ for every k ≤ n.

Lemma 5.3. Let (σ,Xn) ∈ PA
n be a condition. Then A ∩Xn ∈ ⟨UMn

Cn
⟩.

Proof. By partition regularity of ⟨UMn

Cn
⟩, since A ∈ ⟨UMn

Cn
⟩ and A = (A∩Xn)∪

(A∩Xn), either A∩Xn or A∩Xn belongs to ⟨UMn

Cn
⟩. Since Xn ∈ Mn∩⟨UMn

Cn
⟩

and UMn

Cn
is Mn-cohesive, ⟨UMn

Cn
⟩ ⊆ LXn

and therefore, A∩Xn /∈ ⟨UMn

Cn
⟩, hence

A ∩Xn ∈ ⟨UMn

Cn
⟩.

Every filter F ⊆ PA
n induces a set GF whose characteristic function is the

limit of {σ : (σ,Xn) ∈ F}, that is, x ∈ GF is σ(x) = 1 for some (σ,Xn) ∈ F .
It is often convenient to see a forcing condition c ∈ F as an approximation of
the constructed object GF . The following notion of cylinder gives the class of
“candidate” objects associated to a condition.

Definition 5.4 (Cylinder). The cylinder under a PA
n -condition (σ,Xn) is the

class
[σ,Xn] = {G : σ ⊆ G ⊆ σ ∪ (Xn ∩A)}

Given a filter F , using the “candidate” interpretation of a cylinder, one
should expect the resulting object GF to belong to the cylinder of each condition
of F . We shall see in Proposition 5.12 that this is the case. Moreover, still
following this intuition, if a condition d extends another condition c, then d is
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a more precise approximation than c, so there should be less candidate objects
associated to d than to c. This is indeed the case: if (τ, Yn) ≤ (σ,Xn), then
[τ, Yn] ⊆ [σ,Xn].

Monin and Patey[30] designed the following forcing question for the core
forcing. In order to obtain a forcing question with sufficiently good definitional
properties, the question does not directly involve the reservoir of the condition,
but over-approximates it by asking whether the collection of reservoirs with
the desired property is large. This results in a forcing question depending only
on the stem of the condition. Despite this over-approximation, the resulting
question for Σ0

n+1-formulas is not Σ0
n+1, but rather Π0

1(Mn+1). Because of
this, we shall refine this notion of forcing in the later sections to obtain better
definability properties.

Definition 5.5 (Forcing question, [30, Definition 3.3]). Let σ ∈ 2<M be a finite
string.

• For ϕ(G, x) a Π0
0 formula, let σ ?⊢(∃x)ϕ(G, x) hold if:

UM0

C0
∩ {X : (∃ρ ⊆ X)(∃x)ϕ(σ ∪ ρ, x)} is large.

• For 1 ≤ k ≤ n and ϕ(G, x) a Π0
k formula, we define inductively the relation

σ ?⊢(∃x)ϕ(G, x) to hold if:

UMk

Ck
∩ {X : (∃ρ ⊆ X)(∃x)σ ∪ ρ ?⊬¬ϕ(G, x)} is large.

As mentioned above, the forcing question does not have the appropriate
definability property.

Lemma 5.6. The statement σ ?⊢ϕ(G) is Π0
1(Mk+1) if ϕ(G) is a Σ0

k+1 formula
for k ≤ n.

Proof. By an immediate induction using Lemma 4.6.

The forcing question is defined by induction over the syntactical definition
of a formula. It is therefore sensitive to the presentation of a property. In
particular, logically equivalent formulas might yield a different answer through
the forcing question.

Every notion of forcing induces a forcing relation by letting c force φ(G) iff
φ(GF ) for every sufficiently generic filter F containing c. However, in many
situations, it is more convenient to work with a custom syntactical forcing
relation.

Definition 5.7 (Forcing relation, [30, Definition 3.5]). Let c = (σ,Xn) be a
PA
n -condition, we define the forcing relation ⊩ for Σ0

k and Π0
k formulas for every

0 < k ≤ n+ 1 as follows: For ϕ(G, x) a Π0
0 formula:

• c ⊩ (∃x)ϕ(G, x) if ϕ(σ, a) for some a ∈ N;

• c ⊩ (∀x)¬ϕ(G, x) if (∀ρ ⊆ Xn)(∀x ∈ N)¬ϕ(σ ∪ ρ, x).
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For 0 < k ≤ n and ϕ(G, x) a Π0
k formula:

• c ⊩ (∃x)ϕe(G, x) if c ⊩ ϕ(G, a) for some a ∈ N;

• c ⊩ (∀x)¬ϕ(G, x) if (∀ρ ⊆ Xn)(∀x ∈ N)σ ∪ ρ ?⊢¬ϕ(G, x).

Intuitively, a Π0
k+1-formula (∀x)¬ϕ(G, x) can be seen as a countable collection

{¬ϕ(G, x) : x ∈ N} of Σ0
k-formulas. Assuming that the forcing question meets

its requirements, the forcing relation for Π0
k+1 formulas is a density statement,

saying that for every Σ0
k-formula ¬ϕ(G, x), whatever the extension of the stem σ

into σ∪ρ, since σ∪ρ ?⊢¬ϕ(G, x), there is an extension forcing ¬ϕ(G, x). Thus,
if F is a sufficiently generic filter containing a condition c = (σ,Xn) such that
σ ?⊢(∀x)¬ϕ(G, x), then for every x ∈ N, there will be a condition in F forcing
¬ϕ(G, x).

Also note that the forcing relation for Π0
k formulas might seem too strong,

as one would expect to require ρ to range over Xn ∩A instead of Xn. We shall
see, thanks to Lemma 5.10, that it is still dense to force either a formula or its
negation. Together with Lemma 5.8 and Proposition 5.13, this shows that the
forcing relation satisfies the axioms of Definition 2.8.

Lemma 5.8. The forcing relations are closed downwards.

Proof. Let c = (σ,Xn) and d = (τ, Yn) be two PA
n -conditions, such that d ≤ c.

Let ϕ(G, x) be a Π0
0-formula.

• If c ⊢ (∃x)ϕ(G, x), then ϕ(σ, a) holds for some a ∈ N hence ϕ(τ, a) holds
and thus d ⊩ (∃x)ϕ(G, x).

• If c ⊢ (∀x)¬ϕ(G, x)φ(G), then (∀ρ ⊆ Xn)(∀x ∈ N)¬ϕ(σ ∪ ρ, x), hence
in particular, for µ = τ − σ, (∀ρ ⊆ Yn)(∀x ∈ N)¬ϕ(σ ∪ µ ∪ ρ, x), hence
d ⊩ (∀x)¬ϕ(G, x).

Now, let ϕ(G, x) be a Π0
k-formula for 1 ≤ k ≤ n:

• If c ⊢ (∃x)ϕ(G, x), then c ⊩ ϕ(G, a) for some a ∈ N. By induction
hypothesis, d ⊩ ϕ(G, a), and thus d ⊩ (∃x)ϕ(G, x).

• If c ⊢ (∀x)¬ϕ(G, x), then (∀ρ ⊆ Xn)(∀x ∈ N)σ ∪ ρ ?⊢¬ϕ(G, x), hence in
particular, for µ = τ − σ, (∀ρ ⊆ Yn)(∀x ∈ N)σ ∪ µ ∪ ρ ?⊢¬ϕ(G, x), hence
d ⊩ (∀x)¬ϕ(G, x).

In order to prove iterated lowness basis theorems, one will need to construct
generic filters effectively. For this, it is necessary to fix a finite representation
of PA

n -condition to talk about effectivity. Recall that an Mn-index of a set
X ∈ Mn is an integer a ∈ N such that X = Za. Note that Mn-indices are not
unique.

Definition 5.9. An index of a PA
n -condition (σ,Xn) is a pair ⟨σ, a⟩ where a is

an Mn-index of Xn.

28



The following lemma states that the forcing question meets its specifications,
that is, each case is witnessed by an extension forcing the answer.

Lemma 5.10 ([30, Lemma 3.8]). Let c = (σ,Xn) be a PA
n -condition and ϕ(G, x)

be a Π0
k formula for k ≤ n.

• If σ ?⊢(∃x)ϕ(G, x), then there exists d ≤ c such that d ⊩ (∃x)ϕ(G, x).

• If σ ?⊬(∃x)ϕ(G, x), then there exists d ≤ c such that d ⊩ (∀x)¬ϕ(G, x).

Deciding which case holds requires M ′
k+1, then given the answers to the forcing

question, finding an index of the extension can be done uniformly in an index
of c using A⊕Mn+1.

Proof. Suppose k = 0. Let U(σ, ϕ) denote {X : (∃ρ ⊆ X)(∃x)ϕ(σ ∪ ρ, x)}.

• If c ?⊢(∃x)ϕ(G, x), then the class UM0

C0
∩ U(σ, ϕ) is large. By definition of

the ⟨·⟩ operator, this yields that UM0

C0
∩ U(σ, ϕ) ⊇ ⟨UM0

C0
⟩ ⊇ ⟨UMn

Cn
⟩.

By Lemma 5.3, A∩Xn ∈ ⟨UMn

Cn
⟩, hence there exists some ρ ⊆ A∩Xn such

that (∃x)ϕ(σ∪ρ, x) holds. The PA
n -condition d = (σ∪ρ,Xn\{0, . . . , |ρ|−1})

is such that d ≤ c and d ⊩ (∃x)ϕ(G, x).

• If c ?⊬(∃x)ϕ(G, x), then the class UM0

C0
∩ U(σ, ϕ) is not large. This yields

the existence of a finite set F ⊆ C0 such that UM0

F ∩ U(σ, ϕ) is not large.
As such, there is some ℓ ∈ N and some (ℓ + 1)-partition Z0, . . . Zℓ of N
such that for all i ≤ ℓ, Zi ̸∈ UM0

F ∩U(σ, ϕ). Consider the Π0
1(M0) class of

such partitions. Since M0 is a Scott ideal, there is such a partition in M0.
Consider such a partition Z0, . . . Zℓ for ℓ ∈ N. Since ⟨UMn

Cn
⟩ is partition

regular, and as Xn ∈ ⟨UMn

Cn
⟩, there exists i ≤ ℓ such that Xn ∩ Zi ∈

⟨UMn

Cn
⟩, and thus Zi ∈ ⟨UMn

Cn
⟩. Moreover, since ⟨UMn

Cn
⟩ ⊆ UM0

C0
⊆ UM0

F ,

we have that Zi ̸∈ U(σ, ϕ), and thus Xn ∩Zi ̸∈ U(σ, ϕ). The PA
n -condition

d = (σ,Xn ∩ Zi) is such that d ≤ c and d ⊩ (∀x)¬ϕ(G, x).

Suppose 0 < k ≤ n. Let U(σ, ϕ) denote {X : (∃ρ ⊆ X)(∃x)σ ∪ ρ ?⊬¬ϕ(G, x)}.

• If c ?⊢(∃x)ϕ(G, x), then the class UMk

Ck
∩ U(σ, ϕ) is large. By definition of

the ⟨·⟩ operator, this yields that UMk

Ck
∩ U(σ, ϕ) ⊇ ⟨UMk

Ck
⟩ ⊇ ⟨UMn

Cn
⟩.

By Lemma 5.3, A∩Xn ∈ ⟨UMn

Cn
⟩, hence there exists some ρ ⊆ Xn∩A and

some a ∈ N such that σ ∪ ρ ?⊬¬ϕ(G, a). By induction hypothesis, there
exists d ≤ (σ ∪ ρ,Xn \ {0, . . . , |ρ| − 1}) ≤ c such that d ⊩ ϕ(G, a), hence,
d ⊩ (∃x)ϕ(G, x).

• This is proved the exact same way as in the k = 0 case, after redefining
U(σ, ϕ).

Regarding the complexity of finding such d, the main difficulty is finding, given
an (ℓ + 1)-partition Z0, . . . , Zℓ in Mn, some i ≤ ℓ such that Zi ∈ ⟨UMn

Cn
⟩. By

Lemma 4.14, this can be done uniformly in Cn ⊕M ′
n.
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Genericity is usually defined with respect to a collection of dense sets of
conditions. We define a hierarchy of notions of genericity depending on the
formulas which are decided by the filter.

Definition 5.11 (Generic filter). We say that a PA
n -condition c decides a

formula φ(G) if either c ⊩ φ(G), or c ⊩ ¬φ(G). A filter F decides a formula φ(G)
if it contains a PA

n -condition deciding φ(G).
A filter F is k-generic for 1 ≤ k ≤ n + 1 if it decides every Σ0

1, . . . ,Σ
0
k

formulas.

Thanks to Lemma 5.10, for every k ≤ n and every Σ0
k+1-formula φ(G), it

is dense to either force φ(G) or force ¬φ(G). It follows that every sufficiently
generic filter is (n+1)-generic. Given a filter F , we write [F ] for

⋂
(σ,Xn)∈F [σ,Xn].

Proposition 5.12. Let F be a 1-generic filter. There exists a unique set GF
belonging to [F ]. Furthermore, GF is infinite.

Proof. For every condition (σ,Xn) in F , the cylinder [σ,Xn] is a non-empty
closed subset of 2N. Assume by contradiction that [F ] = ∅, then as 2N is
compact, there exists a finite subfamily E of F such that

⋂
(σ,Xn)∈E [σ,Xn] = ∅.

By compatibility of the conditions in a filter, there is a condition c extending
every member of this family, which yields that the cylinder under c is empty,
contradiction. Therefore, [F ] is non-empty.

Let G be an element of [F ]. For every σ ≺ G, there exists a condition c ∈ F
forcing the Σ0

1 property σ ≺ G, otherwise, by 1-genericity of F , there would
exist a condition d in F forcing σ ̸≺ G and every element in the cylinder under
d (including G) would therefore not have σ as a prefix, contradicting σ ≺ G. All
the elements of [F ] share the same prefixes as G, hence G is the only element.

By Lemma 5.3, Xn ∩ A is in ⟨UMn

Cn
⟩ and therefore, Xn ∩ A is infinite by

hypothesis on ⟨UMn

Cn
⟩. Hence, for every s ∈ N, it is not possible to force the

property |G| ≤ s, as for every condition c = (σ,Xn), the cylinder under c will
contain infinite sets such as σ ∪ (Xn ∩ A). Hence, for every s ∈ N, there exists
a condition in F forcing |G| > s and GF is infinite.

As mentioned, the semantic definition of the forcing relation states that a
condition c forces a formula φ(G) if φ(GF ) holds for every sufficiently generic
filter containing c. The following lemma gives a quantitative refinement of this
definition by stating for every k-generic filter F , if a condition c ∈ F forces a
Σ0

k+1 or a Π0
k+1-formula φ(G), then φ(GF ) holds. It shows in particular that

the syntactic forcing relation is sound, in that it implies the semantic forcing
relation.

Proposition 5.13. Let F be a k-generic filter for some 1 ≤ k ≤ n. If there
exists some c ∈ F such that c ⊩ (∀x)ϕ(G, x) for some Σ0

k formula ϕ(G, x), then
for every a ∈ N, there exists some d ∈ F such that d ⊩ ϕ(G, a). Furthermore,
(∀x)ϕ(GF , x) will hold.

Proof. Proceed by strong induction on k:
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Let 1 ≤ k ≤ n and assume the property to be true for every ℓ < k. Let F be
k-generic, let c = (σ,Xn) ∈ F be such that c ⊩ (∀x)ϕ(G, x) for some Σ0

k formula
ϕ(G, x) and let a ∈ N. By k-genericity of F , there exists some d = (τ, Yn) ∈ F
such that d ⊩ ϕ(G, a) or d ⊩ ¬ϕ(G, a). By definition of a filter and by downward
closure of the forcing relation, we can assume that d ≤ c, hence τ ⪰ σ. Assume
for contradiction that d ⊩ ¬ϕ(G, a). Since c ⊩ (∀x)ϕ(G, x), there are two cases
depending on the value of k:

• If k = 1, then, for all ρ ⊆ Xn and all x ∈ N, σ ∪ ρ ?⊢ϕ(G, x) holds,
hence τ ?⊢ϕ(G, a) and the following class is large (and therefore includes
⟨UMn

Cn
⟩ ⊆ ⟨UM0

C0
⟩):

UM0

C0
∩ {X : (∃ρ ⊆ X)ϕ(τ ∪ ρ, a)}

As Yn ∈ ⟨UMn

Cn
⟩, there exists some ρ ⊆ Yn such that ϕ(τ ∪ ρ, a) holds,

contradicting d ⊩ ¬ϕ(G, a).

• If 1 < k ≤ n, then, write ϕ(G, x) = (∃y)ψ(G, x, y) for some Π0
k−1 formula

ψ(G, x, y). Then, for all ρ ⊆ Xn and all x ∈ N, σ ∪ ρ ?⊢(∃y)ψ(G, x, y)
holds, hence τ ?⊢(∃y)ψ(G, a, y) holds, and the following class is large (and

therefore includes ⟨UMn

Cn
⟩ ⊆ ⟨UMk−1

Ck−1
⟩):

UMk−1

Ck−1
∩ {X : (∃ρ ⊆ X)(∃y)τ ∪ ρ ?⊬¬ψ(τ ∪ ρ, a, y)}

As Yn ∈ ⟨UMn

Cn
⟩, there exists some ρ ⊆ Yn and some b ∈ N such that

τ ∪ ρ ?⊬¬ψ(τ ∪ ρ, a, b) holds, contradicting d ⊩ (∀y)¬ψ(G, a, y).

Therefore, d ⊩ ϕ(G, a) holds. If k = 1, then ϕ(GF , a) holds by definition of the
forcing relation for Σ0

1 formulas, hence (∀x)ϕ(GF , x) will hold. If k > 1, then,
writing ϕ(G, x) as (∃y)ψ(G, x, y) for some Π0

k−1 formula ψ(G, x, y) yields that
d ⊩ ψ(G, a, b), hence ψ(GF , a, b) holds for some b ∈ N (either by the inductive
hypothesis applied with ℓ = k − 2 if k > 2, or if k = 2, by definition of the
forcing relation), thus (∀x)ϕ(GF , x) will hold.

6 Iterated lowness basis

The goal of this section is to prove the following iterated basis theorem, which,
besides its intrinsic interest, will serve to separate Σ0

n-Subset from ∆0
n+1-Subset

over ω-models:

Main Theorem 1.6. Fix n ≥ 1. For every Σ0
n+1 set A and every set Q of PA

degree over ∅(n), there is an infinite set H ⊆ A or H ⊆ A such that H(n) ≤T Q.

Before proving Main Theorem 1.6, we deduce a few immediate consequences.

Corollary 6.1. Fix n ≥ 0. For every Σ0
n+1 set A, there is an infinite set H ⊆ A

or H ⊆ A of lown+1 degree.
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Proof. For n = 0, every Σ0
1 set A is either infinite, in which case it admits

an infinite computable subset, or A is finite, and therefore A is an infinite
computable solution. In particular, every computable set is low. Suppose n ≥ 1.
By the low basis theorem relativized to ∅(n) ([21]), there is a set Q of PA degree
over ∅(n) such that Q′ ≤T ∅(n+1). By Main Theorem 1.6, there is an infinite
set H ⊆ A or H ⊆ A such that H(n) ≤T Q. In particular, H(n+1) ≤T Q′ ≤T

∅(n+1), so H is of lown+1 degree.

The restriction of Main Theorem 1.6 to ∆0
n+1 sets was proven by Cholak,

Jockusch and Slaman [3] for the case n = 1 and in the general case by Monin
and Patey [30]. The case n = 1 of Corollary 6.1 was proven by Benham et
al. [2]. Corollary 6.1 can be used to separate Σ0

n-Subset from ∆0
n+1-Subset over

ω-models.

Corollary 6.2. Fix n ≥ 1. Then it an ω-model of RCA0 + Σ0
n-Subset which is

not a model of ∆0
n+1-Subset.

Proof. By Downey, Hirschfeldt, Lempp and Solomon [12] relativized to ∅(n−1),
there exists a ∆0

n+1 set B with no infinite subset H ⊆ B or H ⊆ B such that

H ′ ≤T ∅(n). In particular, B is a computable instance of ∆0
n+1-Subset with no

solution of lown degree.
Consider a chain N0 ⊆ N1 ⊆ . . . of countable ω-models of RCA0 such that

1. Ni is topped by some set Di of lown degree ;

2. For every Σ0
n(Ni) set A, there exists some j ∈ N and some infinite H ∈ Nj

such that H ⊆ A or H ⊆ A.

This chain can be constructed recursively as follows: let N0 be the ω-model
whose second order part are the computable sets and assuming N0, . . .Na have
been defined, let ⟨k, ℓ⟩ = a and consider A the k-th Σ0

n(Dℓ) set. The set A is also
Σ0

n(Da), thus using a relativized version of Corollary 6.1, there exists an infinite
set H ⊆ A or H ⊆ A of lown degree relative to Da. Let Da+1 = Da ⊕H that is
therefore of lown degree and let Na+1 be comprised of all the sets computable
by Da+1.

Since a union of an increasing sequence of Turing ideals is again a Turing
ideal, N =

⋃
n∈N Ni is again a Turing ideal, so N |= RCA0. By item 2,

N |= Σ0
n-Subset, as every instance of Σ0

n-Subset in N belongs to some Ni,
and therefore has a solution in some Nj ⊆ N . Last, by item 1, N contains only
sets of lown degree, hence, N contains no solution to B seen as an instance of
∆0

n+1-Subset. It follows that N ̸|= ∆0
n+1-Subset.

The remainder of the section is dedicated to the proof of Main Theorem 1.6.
Fix n ≥ 1. Let M0, . . . ,Mn be Scott ideals with Scott codes M0, . . . ,Mn,
respectively, and let C0, . . . , Cn−1 be forming a largeness tower, that is, for
every i < n:
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• UMi

Ci
is an Mi-cohesive large class containing only infinite sets ;

• Ci,M
′
i ∈ Mi+1 ;

• UMi+1

Ci+1
⊆ ⟨UMi

Ci
⟩.

Fix a Σ0
n+1 set A. By partition regularity of ⟨UMn−1

Cn−1
⟩, either A or A ∈ ⟨UMn−1

Cn−1
⟩,

and maybe both. Depending on which case holds, one will construct an infinite
subset of A or A. However, there is some asymmetry in the constructions, as
A is Σ0

n+1, while A is Π0
n+1. Intuitively, it is easier to build subsets of A, as

belonging to A is witnessed by a ∅(n)-c.e. process. Thus, if both A and A belong

to ⟨UMn−1

Cn−1
⟩, we will rather construct an infinite subset of A. It follows that we

will construct a subset of A only if A ̸∈ ⟨UMn−1

Cn−1
⟩. If so, it is witnessed by a

large Σ0
1(Mn−1) class U ⊇ ⟨UMn−1

Cn−1
⟩ such that A ̸∈ U . We will then exploit this

witness to construct an infinite subset of A.
We now present our two notions of forcing, called main forcing and witness

forcing, to build an infinite subset of A in the former case, and of A in the latter
case.

6.1 Main forcing

Throughout this section, fix a Σ0
n+1 set A ∈ ⟨UMn−1

Cn−1
⟩. The notion of forcing is

parameterized by the set A.

Definition 6.3 (Condition). Let MA
n be the PA

n−1 notion of forcing.

The MA
n -forcing coincides with the PA

n−1-forcing as a partial order, but one
will exploit the Σ0

n+1 extra-hypothesis on A to define a Σ0
n+1-preserving forcing

question for Σ0
n+1-formulas. Recall that PA

n -forcing admits a forcing question
for Σ0

n+1-formulas with a bad definitional complexity.
The forcing relation for MA

n -forcing inherits the forcing relation from PA
n−1-

forcing. However, PA
n−1-forcing does not define any forcing relation for Σ0

n+1

and Π0
n+1-formulas. We shall actually define a slightly different forcing relation

by making ρ range over Xn−1 ∩ A rather than Xn−1. This difference will be
justified by the design of the forcing question for Σ0

n+1-formulas.

Definition 6.4 (Forcing relation). Let c = (σ,Xn−1) be an MA
n -condition, we

define the forcing relation ⊩ for Σ0
n+1 and Π0

n+1 formulas as follows: For ϕ(G, x)
a Π0

n formula:

• c ⊩ (∃x)ϕ(G, x) if c ⊩ ϕ(G, a) for some a ∈ N;

• c ⊩ (∀x)¬ϕ(G, x) if for every ρ ⊆ Xn−1 ∩ A and every a ∈ N, σ ∪
ρ ?⊢¬ϕ(G, a).

As expected, the forcing relations for Σ0
n+1 and Π0

n+1 formulas satisfy the
axioms of Definition 2.8. The following lemma extends Lemma 5.8 to Σ0

n+1 and
Π0

n+1 formulas.
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Lemma 6.5. The forcing relations are closed downwards.

Proof. Let c = (σ,Xn−1) and d = (τ, Yn−1) be two MA
n -conditions, such that

d ≤ c. Let ϕ(G, x) be a Π0
n-formula.

• If c ⊩ (∃x)ϕ(G, x), then c ⊩ ϕ(G, a) for some a ∈ N. By Lemma 5.8,
d ⊩ ϕ(G, a), and thus d ⊩ (∃x)ϕ(G, x).

• If c ⊩ (∀x)¬ϕ(G, x), then for all ρ ⊆ Xn−1 ∩ A and for all x ∈ N, σ ∪
ρ ?⊢¬ϕ(G, x). This yields in particular for µ = τ −σ, for all ρ ⊆ Yn−1∩A
and for all x ∈ N, σ ∪ µ ∪ ρ ?⊢¬ϕ(G, x), hence d ⊩ (∀x)¬ϕ(G, x).

A forcing question is extremal if it forms a dividing line giving all the non-
deciding conditions the same answer. In other words, a forcing question for
Σ0

n+1-formulas is extremal if either it coincides with the forcing relation for
Σ0

n+1-formulas, or it coincides with the negation of the forcing relation of Π0
n+1-

formulas. Contrary to the lower levels, the forcing question for Σ0
n+1-formulas

is extremal.

Definition 6.6 (Forcing question for Σ0
n+1 formulas). Let c = (σ,Xn−1) be

an MA
n -condition. For ϕ(G, x) a Π0

n formula, write c ?⊢(∃x)ϕ(G, x) if c ̸⊩
(∀x)¬ϕ(G, x), that is, there exist some ρ ⊆ Xn−1 ∩ A and some a ∈ N such
that σ ∪ ρ ?⊬¬ϕ(G, a).

The following lemma shows that the forcing question for Σ0
n+1-formulas has

the right definitional property. In particular, if Mn is low over ∅(n), that is,
M ′

n ≤T ∅(n+1), then one can decide a Σ0
n+1-formula using ∅(n+1).

Lemma 6.7. The statement c ?⊢(∃x)ϕ(G, x) for ϕ(G) a Π0
n formula is Σ0

1(Mn).

Proof. The statement c ?⊢(∃x)ϕ(G, x) is equivalent to (∃ρ ∈ 2<N)(∃x ∈ N)(ρ ⊆
Xn−1 ∩A ∧ σ ∪ ρ ?⊬¬ϕ(G, x)).

The statement ρ ⊆ Xn−1 ∩ A is Σ0
1(M ′

n−1) since A is Σ0
n+1 (and Mn−1

contains ∅(n−1)) and Xn−1 ∈ Mn−1 and the statement σ ∪ ρ ?⊬¬ϕ(G, x) is
Σ0

1(Mn) by Lemma 5.6.

The following lemma states that the forcing question at the last level meets
its specifications, that is, each answer is witnessed by an extension forcing it.

Lemma 6.8. Let c = (σ,Xn−1) be an MA
n -condition and ϕ(G, x) be a Π0

n

formula.

• If c ?⊢(∃x)ϕ(G, x), then there exists d ≤ c such that d ⊩ (∃x)ϕ(G, x).

• If c ?⊬(∃x)ϕ(G, x), then there exists d ≤ c such that d ⊩ (∀x)¬ϕ(G, x).

Deciding which case holds and finding an index of the extension can be done
uniformly in an index of c using M ′

n.
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Proof.

• If c ?⊢(∃x)ϕ(G, x), there exists some ρ ⊆ Xn−1 ∩ A and some a ∈ N
such that σ ∪ ρ ?⊬¬ϕ(G, a). Therefore, by Lemma 5.10, there exists some
d ≤ (σ ∪ ρ,Xn−1 \ {0, . . . , |ρ| − 1}) ≤ c such that d ⊩ ϕ(G, a), hence
d ⊩ (∃x)ϕ(G, x).

• If c ?⊬(∃x)ϕ(G, x), then already c ⊩ (∀x)¬ϕ(G, x).

Regarding the complexity of finding such d, deciding whether c ?⊢(∃x)ϕ(G, x)
holds can be done usingM ′

n by Lemma 6.7 and in the case where c ?⊢(∃x)ϕ(G, x),
finding the extension d can be done using A⊕Mn by Lemma 5.10, hence using
M ′

n since A is ∅(n+1) computable and Mn contains ∅(n).

The following lemma is the counterpart of Proposition 5.13 and essentially
states that the syntactic forcing relation implies the semantic forcing relation,
with an explicit bound to the amount of genericity for it to hold.

Proposition 6.9. Let F be an n-generic MA
n -filter. If there exists some c ∈ F

such that c ⊩ (∀x)ϕ(G, x) for some Σ0
n formula ϕ(G, x), then for every a ∈ N,

there exists some d ∈ F such that d ⊩ ϕ(G, a). Furthermore, (∀x)ϕ(GF , x) will
hold.

Proof. Let F be n-generic, let c = (σ,Xn−1) ∈ F be such that c ⊩ (∀x)ϕ(G, x)
for some Σ0

n formula ϕ(G, x) and let a ∈ N. By n-genericity of F , there exists
some d = (τ, Yn−1) ∈ F such that d ⊩ ϕ(G, a) or d ⊩ ¬ϕ(G, a). By definition
of a filter and by downward closure of the forcing relation, we can assume that
d ≤ c, hence τ ⪰ σ. Assume for contradiction that d ⊩ ¬ϕ(G, a). Since
c ⊩ (∀x)ϕ(G, x), there are two cases depending on the value of n:

• If n = 1, then, for all ρ ⊆ X0 ∩ A and all x ∈ N, σ ∪ ρ ?⊢ϕ(G, x) holds,
hence τ ?⊢ϕ(G, a) and the following class is large (and therefore includes
⟨UM0

C0
⟩):

UM0

C0
∩ {X : (∃ρ ⊆ X)ϕ(τ ∪ ρ, a)}

As Y0 ∈ ⟨UM0

C0
⟩, there exists some ρ ⊆ Y0 such that ϕ(τ ∪ ρ, a) holds,

contradicting d ⊩ ¬ϕ(G, a).

• If n > 1, then, write ϕ(G, x) = (∃y)ψ(G, x, y) for some Π0
n−1 formula

ψ(G, x, y). Then, for all ρ ⊆ Xn−1∩A and all x ∈ N, σ∪ρ ?⊢(∃y)ψ(G, x, y)
holds hence τ ?⊢(∃y)ψ(G, a, y) holds and the following class is large (and

therefore includes ⟨UMn−1

Cn−1
⟩):

UMn−1

Cn−1
∩ {X : (∃ρ ⊆ X)(∃y)τ ∪ ρ ?⊬¬ψ(τ ∪ ρ, a, y)}

As Yn−1 ∩A ∈ ⟨UMn−1

Cn−1
⟩, there exists some ρ ⊆ Yn−1 ∩A and some b ∈ N

such that τ ∪ ρ ?⊬ψ(τ ∪ ρ, a, b) holds, contradicting d ⊩ (∀y)¬ψ(G, a).
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Therefore, d ⊩ ϕ(G, a) holds. If n = 1, then ϕ(GF , a) holds by definition of
the forcing relation for Σ0

1 formulas, hence (∀x)ϕ(GF , a) will hold. If n > 1, then,
writing ϕ(G, x) as (∃y)ψ(G, x, y) for some Π0

n−1 formula ψ(G, x, y) yields that
d ⊩ ψ(G, a, b), hence ψ(GF , a, b) holds for some b ∈ N (either by Proposition 5.13
if k > 2, or if k = 2, by definition of the forcing relation), thus (∀x)ϕ(GF , a)
will hold.

We are now ready to prove our first abstract construction. When considering
a set Mn such that M ′

n ≤T ∅(n+1), it states the existence of an infinite subset
of lown+1 degree.

Proposition 6.10. There exists an infinite subset H ⊆ A such that H(n+1) ≤T

M ′
n.

Proof. Note that MA
n ̸= ∅, since (ϵ,N) ∈ MA

n , with ϵ denoting the empty
sequence. We can build effectively in M ′

n an (n + 1)-generic filter F such

that the corresponding set GF will be a subset of A such that G
(n+1)
F ≤ M ′

n.
More precisely, we will build a uniformly M ′

n-computable decreasing sequence
of conditions

c0 ≥ c1 ≥ c2 ≥ . . .

where c0 = (ϵ,N), and for every s ∈ N, if s = ⟨e, k⟩ with k ≤ n, then cs+1

decides (∃x)ϕke(G, x) for (ϕke(G, x))e∈N a computable list of all the Π0
k formulas

with parameters G and x. Then, the set F = {d ∈ MA
n : (∃s)d ≥ cs} will be a

(n+ 1)-generic filter.

Let s ∈ N and assume cs = (σ,Xn−1) has already been defined.
If s = ⟨e, k⟩ for some k ≤ n, then, thanks to Lemma 5.10 in the case

where k < n and thanks to Lemma 6.8 in the case where k = n, uniformly
in M ′

n we can find an extension cs+1 ≤ cs such that cs+1 ⊩ (∃x)ϕke(G, x) or
cs+1 ⊩ (∀x)¬ϕke(G, x).

Let s ∈ N, as F is (n + 1)-generic, every property forced by cs will hold
for GF by Proposition 5.13 and Proposition 6.9, hence M ′

n decides every Σ0
k

property of GF for k < n+ 1, thus G
(n+1)
F ≤M ′

n. Finally, by Proposition 5.12,
GF is infinite, and by definition of a condition, GF ⊆ A.

Proposition 6.10 enables to reprove the theorem from Monin and Patey [30]
about ∆0

n-Subset.

Theorem 6.11 (Monin and Patey [30]). Let B be a ∆0
n+1 set, there exists an

infinite set H of lown+1 degree such that H ⊆ B or H ⊆ B.

Proof. By Lemma 4.19, there is a Scott tower M0, . . . ,Mn of height n with
Scott codes M0, . . . ,Mn, such that for every i ≤ n, Mi is of low degree over ∅(i).
By Lemma 4.21, it can be enriched with some sets C0, . . . , Cn−1 to form a
largeness tower of height n. We can therefore add the assumption that M ′

n ≤
∅(n+1) in Section 6.1. There are two cases:
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Case 1: B ∈ ⟨UMn−1

Cn−1
⟩. In that case, since B is Σ0

n+1, Proposition 6.10 will

hold for B and there exists some infinite subset H ⊆ B such that H(n+1) ≤T

M ′
n ≤T ∅(n+1).

Case 2: B ̸∈ ⟨UMn−1

Cn−1
⟩. In that case, B ∈ ⟨UMn−1

Cn−1
⟩ by partition regularity of

the class. Thus, since B is also Σ0
n+1, Proposition 6.10 will also hold, this time

for B, yielding an infinite subset H ⊆ B such that H(n+1) ≤T ∅(n+1).

6.2 Witness forcing

Throughout this section, fix a Π0
n+1 set A such that A ̸∈ ⟨UMn−1

Cn−1
⟩. The set A in

this section must be thought of as the complement of the set A in Section 6.1.
Contrary to the previous notions of forcing, witness forcing conditions need a
second reservoir of higher complexity.

Definition 6.12 (Condition). Let WA
n be the notion of forcing whose conditions

are tuples (σ,Xn−1, Xn) where:

• σ ⊆ A ;

• Xn−1 ⊇ Xn ;

• Xn ̸∈ ⟨UMn−1

Cn−1
⟩ ;

• Xn−1 ∈ Mn−1 and Xn ∈ Mn.

Given a WA
n -condition c = (σ,Xn−1, Xn), Xn ∈ ⟨UMn−1

Cn−1
⟩ by partition

regularity of the class, and Xn−1 ∈ ⟨UMn−1

Cn−1
⟩ by its upward-closure. Therefore,

c ↾ PA
n−1 = (σ,Xn−1) is a valid PA

n−1-condition. One can think of a WA
n -

condition (σ,Xn−1, Xn) either as a PA
n−1-condition (σ,Xn−1), or as a Mathias

condition (σ,Xn). The notion of extension follows from both approaches:

Definition 6.13. A WA
n -condition (τ, Yn−1, Yn) extends a WA

n -condition (σ,Xn−1,
Xn) if Yn−1 ⊆ Xn−1, Yn ⊆ Xn and σ ⪯ τ ⊆ σ ∪Xn.

The notion of cyclinder is naturally defined as follows:

Definition 6.14. The cylinder under a WA
n -condition (σ,Xn−1, Xn) is the class

[σ,Xn−1, Xn] = {G : σ ⊆ G ⊆ σ ∪ (Xn ∩A)}

The notion of index of a WA
n -condition is defined accordingly:

Definition 6.15. An index of a WA
n -condition (σ,Xn−1, Xn) is a tuple ⟨σ, a, b⟩

where a is an Mn−1-index of Xn−1 and b is an Mn-index of Xn.

Despite having a second reservoir, WA
n -forcing inherits abstractly many proper-

ties from PA
n−1-forcing. The following commutation lemma shows that any

density property over PA
n−1-forcing yields a density property over WA

n -forcing.
It follows in particular that WA

n -forcing inherits the forcing relation for Σ0
k-

formulas for k ≤ n and that Lemma 5.10 also holds with WA
n -conditions.
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Lemma 6.16. Let c = (σ,Xn−1, Xn) be a WA
n -condition and (τ, Yn−1) ≤ c ↾

PA
n−1 be a PA

n−1-extension. Then there is a WA
n -extension d ≤ c such that

d ↾ PA
n−1 = (τ, Yn−1). Furthermore, an index for d can be found computably

uniformly in an index for c and (τ, Yn−1).

Proof. Since c is a WA
n -condition, Xn /∈ ⟨UMn−1

Cn−1
⟩. Then, (τ, Yn−1) being a

PA
n−1-condition, we have Yn−1 ∈ Mn−1 ∩ ⟨UMn−1

Cn−1
⟩, thus ⟨UMn−1

Cn−1
⟩ ⊆ LYn−1

and

Yn−1 /∈ ⟨UMn−1

Cn−1
⟩. Combining those two results yields that Xn∪Yn−1 /∈ ⟨UMn−1

Cn−1
⟩

by partition regularity of ⟨UMn−1

Cn−1
⟩. Hence, d = (τ, Yn−1, Xn ∩ Yn−1) is a valid

WA
n -condition. It is clear that d ↾ PA

n−1 = (τ, Yn−1) and that d ≤ c.

By Remark 4.18, an Mn-index for the set Yn−1 can be found uniformly
computably using an Mn−1 index for Yn−1. Thus, by our assumptions on
the encodings of Scott ideals, an index for Xn ∩ Yn−1 can be found uniformly
computably using an Mn-index for the set Xn and an Mn−1-index for the set
Yn−1. Therefore, an index for d can be found uniformly computably in an index
for c and (τ, Yn−1).

The following forcing relation for Σ0
n+1 and Π0

n+1 formulas is closer to the one
from PA

n -forcing than MA
n -forcing, in that τ ranges over Xn instead of Xn ∩ A.

Contrary to MA
n -forcing, the complexity of the forcing relation for Π0

n+1-formulas
does not play any role in the constructions.

Definition 6.17 (Forcing relation). Let c = (σ,Xn−1, Xn) be a WA
n -condition,

we define the forcing relation ⊩ for Σ0
n+1 and Π0

n+1 formulas as follows: for
ϕ(G, x) a Π0

n formula,

• c ⊩ (∃x)ϕ(G, x) if there exists some a ∈ N such that c ⊩ ϕ(G, a).

• c ⊩ (∀x)¬ϕ(G, x) if (∀τ ⊆ Xn)(∀x ∈ N)σ ∪ τ ?⊢¬ϕ(G, x) .

As mentioned earlier in Section 6, if A ̸∈ ⟨UMn−1

Cn−1
⟩, then this is witnessed

by a large Σ0
1(Mn−1) class U ⊇ ⟨UMn−1

Cn−1
⟩ such that A ̸∈ U . This witness plays

an important role in the design of a forcing question with good definitional
properties. We therefore define the notion formally and state the complexity of
finding such a witness.

Definition 6.18. Let c = (σ,Xn−1, Xn) be a WA
n -condition. A witness for c is

a Σ0
1(Mn−1) class U ⊇ ⟨UMn−1

Cn−1
⟩ such that Xn ∪A ̸∈ U .

Lemma 6.19. For every WA
n -condition (σ,Xn−1, Xn), there exists some witness U .

An index for such a class U can uniformly be found using M ′
n.

Proof. By partition regularity of ⟨UMn−1

Cn−1
⟩, Xn∪A /∈ ⟨UMn−1

Cn−1
⟩, otherwise either

Xn or A would be in ⟨UMn−1

Cn−1
⟩ which is impossible by definition of a condition.
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The class ⟨UMn−1

Cn−1
⟩ being an intersection of Σ0

1(Mn−1) large classes, there

exists one of those Σ0
1(Mn−1) large class U such that U ⊇ ⟨UMn−1

Cn−1
⟩ and such

that Xn ∪A ̸∈ U .
To find such a witness, one first M ′

n-computes a set Dn−1 ⊇ Cn−1 such

that UMn−1

Dn−1
= ⟨UMn−1

Cn−1
⟩. Then, for every (e, i) ∈ Dn−1, ask whether for every

ρ ⊆ Xn ∪ A, ρ ̸∈ W
Zn−1

i
e (where Zn−1

i is the i-th element of Mn−1). This can
be done M ′

n-computably as A is Σ0
n+1 and Mn contains ∅(n) and Xn. One must

eventually find such a pair (e, i) for which the answer is positive.

We now define forcing questions for Σ0
n and Σ0

n+1-formulas in order to
preserve hyperimmunities. Contrary to MA

n -forcing, the set A is Π0
n+1, hence one

cannot ask for some ρ ⊆ Xn−1∩A to satisfy some property, as the corresponding
question would be too complex. We will therefore use an over-approximation by
quantifying universally over all sets. Thankfully, given a WA

n -condition c and
a witness U , one can restrict the over-approximation to all sets B such that
B ̸∈ U , as this is the case for Xn−1 ∩ A. This refined over-approximation has
two benefits: (1) it is still compact, hence yields a forcing question with the
appropriate definitional complexity, and (2) for every such set B, since B does
not belong to a large class, then B must contain many elements, hence one can
always ask for a subset of B.

Definition 6.20 (Forcing question). Let c = (σ,Xn−1, Xn) be a WA
n -condition

and ϕ(G, x) a Π0
k formula for k = n− 1 or k = n. Let U be a Σ0

1(Mn−1)-class

and define c ?⊢U (∃x)ϕ(G, x) to hold if for every B ∈ 2N such that B ̸∈ U , there
is a finite τ ⊆ B ∩Xk and some x ∈ N such that ϕ(σ ∪ τ, x) holds if k = 0 or
σ ∪ τ ?⊬¬ϕ(G, x) holds if k > 0.

The following lemma shows that the forcing question for Σ0
n and Σ0

n+1

formulas has the appropriate definitional complexity.

Lemma 6.21. Let ϕ(G, x) be a Π0
k formula for k = n − 1 or k = n and let U

be a Σ0
1(Mn−1)-class. For every WA

n -condition c, the relation c ?⊢U (∃x)ϕ(G, x)
is Σ0

1(Mk).

Proof. By compactness, the statement c ?⊢U (∃x)ϕ(G, x) is equivalent to the
following statement when k > 0 (the case k = 0 is similar), with β representing
the bitwise complement of β :

(∃ℓ)(∀β ∈ 2ℓ)([β] ⊆ U ∨ (∃τ ⊆fin β ∩Xk)(∃x)σ ∪ τ ?⊬¬ϕ(G, x))

The statement [β] ⊆ U is Σ0
1(Mn−1) as U is a Σ0

1(Mn−1)-class. The
statement σ ∪ τ ?⊬¬ϕ(G, x) is Σ0

1(Mk) by Lemma 5.6.

The following lemma states, as usual, that the forcing question meets its
specifications.

Lemma 6.22. Let c be a WA
n -condition, U be a witness for c and ϕ(G, x) a Π0

k

formula for k = n− 1 or k = n.
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• If c ?⊢U (∃x)ϕ(G, x), then there exists d ≤ c such that d ⊩ (∃x)ϕ(G, x).

• If c ?⊬U (∃x)ϕ(G, x), then there exists d ≤ c such that d ⊩ (∀x)¬ϕ(G, x).

Deciding whether c ?⊢U (∃x)ϕ(G, x) holds or not, and finding the appropriate
extension can be done uniformly in an index of U and c using M ′

n.

Proof. Say c = (σ,Xn−1, Xn) and let ϕ(G, x) be a Π0
k formula for k = n− 1 or

k = n. There are two cases:

• If c ?⊢U (∃x)ϕ(G, x). By definition of a witness, A ∩Xn /∈ U , hence there
exists a finite τ ⊆fin A∩Xn and some a ∈ N such that σ ∪ τ ?⊬¬ϕ(G, a).
By Lemma 5.10, there exists an extension (ρ, Yn−1) ≤ (σ ∪ τ,Xn−1 \
{0, . . . , |τ |}) forcing ϕ(G, a). Therefore, d = (ρ, Yn−1, Xn ∩ Yn−1) extends
c and forces (∃x)ϕ(G, x).

• If c ?⊬U (∃x)ϕ(G, x). The following class is Π0
1(Mk) and non-empty:

C = {B ∈ 2N : B /∈ U ∧ (∀τ ⊆fin B ∩Xk)(∀x ∈ N)σ ∪ τ ?⊢¬ϕ(G, x)}

Therefore, as Mk is a Scott ideal, there exists some B ∈ C∩Mk. Since B /∈
U , B /∈ ⟨UMn−1

Cn−1
⟩. As B and Xk are not in ⟨UMn−1

Cn−1
⟩, B ∩Xk /∈ ⟨UMn−1

Cn−1
⟩.

Hence, for k = n − 1, d = (σ,B ∩ Xn−1, B ∩ Xn) is a valid condition
extending c such that d ⊩ (∀x)¬ϕ(G, x) and for k = n, d = (σ,Xn−1, B ∩
Xn) is a valid condition extending c such that d ⊩ (∀x)¬ϕ(G, x).

By Lemma 6.21, the relation c ?⊢U (∃x)ϕ(G, x) is Σ0
1(Mk), hence can be decided

using M ′
n. In the first case, τ , a and the extension (ρ, Yn−1) can be found

(A⊕Mn)-computably, hence M ′
n-computably since A is Π0

n+1 and ∅(n) ∈ Mn.
In the second case, an Mk-index of a tree T ⊆ 2<N such that [T ] = C can be
found computably, and and since Mk is a Scott code, an Mk-index of B can
be found computably in the Mk-index of T . Thus an index of the extension
witnessing the second case is found computably in an index of c.

Given a WA
n -filter F , we write [F ] for

⋂
(σ,Xn−1,Xn)∈F [σ,Xn−1, Xn] and F ↾

PA
n−1 = {c ↾ PA

n−1 : c ∈ F}. Note that F ↾ PA
n−1 is a PA

n−1-filter and that [F ] ⊆
[F ↾ PA

n−1]. The following proposition is the counterpart of Proposition 5.12 for
the witness forcing.

Proposition 6.23. Let F be a 1-generic WA
n -filter. There exists a unique set

GF belonging to [F ]. Furthermore, GF is infinite.

Proof. For every condition (σ,Xn−1, Xn) in F , the cylinder [σ,Xn−1, Xn] is a
non-empty closed subset of 2N. Assume by contradiction that [F ] = ∅, then as
2N is compact, there exists a finite subfamily E of F such that⋂

(σ,Xn−1,Xn)∈E

[σ,Xn−1, Xn] = ∅
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By compatibility of a filter, there is a condition c extending every member of this
family, which yields that the cylinder under c is empty, contradiction. Therefore,
[F ] is non-empty.

For every condition (σ,Xn−1, Xn) in F , [σ,Xn−1, Xn] ⊆ [σ,Xn−1], hence by
Proposition 5.12, [F ] is a singleton GF , which is infinite as a set.

Proposition 6.24. Let F be a n-generic WA
n -filter. If there exists some c ∈ F

such that c ⊩ (∀x)ϕ(G, x) for some Σ0
n formula ϕ(G, x), then for every a ∈ N,

there exists some d ∈ F such that d ⊩ ϕ(G, a). Furthermore, (∀x)ϕ(GF , x) will
hold.

Proof. A similar proof as the one of Proposition 5.13 can be used to prove this
result, by discarting the reservoir Xn−1 of a condition (σ,Xn−1, Xn).

We are now ready to prove our second abstract construction. When considering
a set Mn such that M ′

n ≤T ∅(n+1), it states the existence of an infinite subset
of A of lown+1 degree.

Proposition 6.25. There exists an infinite subset H ⊆ A such that H(n+1) ≤T

M ′
n.

Proof. The proof is similar to that of Proposition 6.10:
An (n+1)-generic WA

n -filter F can be build effectively inM ′
n using Lemma 6.19

to find suitable over-approximations U of the class ⟨UMn−1

Cn−1
⟩, and using Lemma 6.22

and Lemma 5.10 to build extensions deciding every Σ0
k formulas for k ≤ n+ 1.

By Proposition 6.23, there exists an infinite M ′
n-computable set GF ⊆ A.

Furthermore, by Proposition 6.24 and Proposition 5.13, every property forced

by F will hold for GF . Hence, G
(n+1)
F ≤M ′

n.

6.3 Applications

First-jump control is often considered as simpler than second-jump control. This
is why the former technique is preferably used to the latter, when available. In
their seminar paper, Cholak, Jockusch and Slaman [3] constructed solutions to
∆0

2-Subset using both techniques, to show that it admits weakly low and a low2

basis. Very recently, Beham et al. [2] showed that the second-jump control of
Cholak, Jockusch and Slaman [3] could be extended to Σ0

2-Subset to produce
low2 solutions and asked whether it was also the case for first-jump control.

We now prove that Σ0
n-Subset admits solutions both with (n + 1)th jump

control and nth jump control, to prove a lown+1 basis and a weakly lown basis,
respectively. We first start with a direct (n+ 1)th jump control construction.

Theorem 6.26. Let n ≥ 1 and let B be a Σ0
n+1 set, then there exists an infinite

set H of lown+1 degree such that H ⊆ B or H ⊆ B.

Proof. By Lemma 4.19, there is a Scott tower M0, . . . ,Mn of height n with
Scott codes M0, . . . ,Mn, such that for every i ≤ n, Mi is of low degree over ∅(i).
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By Lemma 4.21, it can be enriched with some sets C0, . . . , Cn−1 to form a
largeness tower of height n. There are two cases:

Case 1: B ∈ ⟨UMn−1

Cn−1
⟩. Then Proposition 6.10 yields a set H such that

H ⊆ B and H(n+1) ≤T M ′
n.

Case 2: B /∈ ⟨UMn+1

Cn+1
⟩. Then Proposition 6.25 applied on the set B yields a

set H ⊆ B such that H(n+1) ≤T M ′
n.

Since Mn is low over ∅(n), M ′
n ≤T ∅(n+1) and H is lown+1.

We now turn to the nth jump control construction to prove that Σ0
n-Subset

admits a weakly lown basis. Due to the asymmetry of Σ0
n+1 sets, contrary to

∆0
n+1 sets, the construction is more complicated, involving some new combinatorics.

Note that the proof of Main Theorem 1.6 involves only the core forcing on both
sides.

Main Theorem 1.6. Fix n ≥ 1. For every Σ0
n+1 set B and every set P of PA

degree over ∅(n), there is an infinite set H ⊆ B or H ⊆ B such that H(n) ≤T P .

Proof. By Lemma 4.19, there is a Scott tower M0, . . . ,Mn−1 of height n − 1
with Scott codes M0, . . . ,Mn−1, such that for every i < n, Mi is of low degree
over ∅(i). Moreover, by Proposition 3.11, P computes a Scott code Mn of a
Scott ideal Mn containing ∅(n). Thus, M0, . . . ,Mn−1,Mn forms a Scott tower
of height n. By Lemma 4.21, it can be enriched with some sets C0, . . . , Cn−1 to
form a largeness tower of height n. There are two cases:

Case 1: B ∈ ⟨UMn−1

Cn−1
⟩.

Lemma 6.27. Let c be a PB
n−1-condition and ϕ(G, x) a Π0

k formula for some k <
n. An index of an extension deciding (∃x)ϕ(G, x) can be found P -computably
uniformly in an index of c and ϕ.

Proof. Say c = (σ,Xn−1). Let V = {Z : (∃ρ ⊆ Z)(∃x ∈ N)σ ∪ ρ ?⊬¬ϕ(G, x)} if
k > 0 and otherwise, if k = 0, let V = {Z : (∃ρ ⊆ Z)(∃x ∈ N)ϕ(σ ∪ ρ, x)}. We
claim that one of the following two statements is true:

(1.a) there is some ρ ⊆ Xn−1 ∩ B and some x ∈ N such that σ ∪ ρ ?⊬¬ϕ(G, x)
holds if k > 0 or ϕ(σ ∪ ρ, x) if k = 0;

(1.b) the class UMn−1

Cn−1
∩ V is not large.

Indeed, if (1.b) fails, then by Mn−1-cohesiveness of UMn−1

Cn−1
, ⟨UMn−1

Cn−1
⟩ ⊆ V.

Since Xn−1 ∩ B ∈ ⟨UMn−1

Cn−1
⟩, there exists some ρ ⊆ Xn−1 ∩ B and some a ∈ N

such that either σ ∪ ρ ?⊬¬ϕ(G, a) holds if k > 0 or ϕ(σ ∪ ρ, a) holds if k = 0, so
we are in case (1.a).

Note that the first statement is Σ0
n+1 as σ ∪ ρ ?⊬¬ϕ(G, x) is Σ0

1(Mk) by
Lemma 5.6, and the second statement is Σ0

1(Mn) by Lemma 4.6, so since P ≥T

Mn, both events are P -c.e. One can then wait P -computably for one of the two
facts to be witnessed.
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In Case 1.a, by Lemma 5.10, there exists an extension d ≤ (σ ∪ ρ,Xn−1 \
{0, . . . , |ρ|}) ≤ c forcing (∃x)ϕ(G, x).

In Case 1.b, by Lemma 4.5, there is a finite set F ⊆fin Cn−1, such that

UMn−1

F ∩ V is not large. Given k ∈ N, let Pk be the Π0
1(Mn−1) class of all

k-partitions Y0 ⊔ · · · ⊔Yk−1 = N such that for every i < k, either Yi ̸∈ UMn−1

F or
Yi ̸∈ V. By assumption, there is some k such that Pk ̸= ∅. Since Mn−1 is a Scott
ideal, there is a k-partition Y0 ⊔ · · · ⊔ Yk−1 = N in Pk ∩Mn−1. By construction
and Lemma 4.14, since the k-partition belongs to Mn−1, Cn−1 ⊕ M ′

n−1 can

computably find some i < k such that Yi ∈ UMn−1

Cn−1
, uniformly in an Mn−1-index

of the k-partition. By Mn−1-cohesiveness of UMn−1

Cn−1
, since Xn−1, Yi ∈ Mn−1

and Xn−1, Yi ∈ UMn−1

Cn−1
, then UMn−1

Cn−1
⊆ LXn−1 ∩ LYi , so Xn−1 ∩ Yi ∈ ⟨UMn−1

Cn−1
⟩.

In particular, Yi ∈ UMn−1

F so Yi ̸∈ V. It follows that (σ,Xn−1 ∩ Yi) forces
(∀x)¬ϕ(G, x).

Using Lemma 6.27, we can construct, computably in P , a sequence c0 ≥
c1 ≥ . . . of PB

n−1 conditions such that the set F = {c ∈ PB
n−1 : (∃s)c ≥ cs}

is a n-generic filter. By Proposition 5.12, the corresponding set GF is infinite,
P computable and satisfies GF ⊆ B. Furthermore, by Proposition 5.13, every

property forced will hold for GF , hence G
(n)
F ≤ P .

Case 2: B /∈ ⟨UMn−1

Cn−1
⟩. Then, there exists a Σ0

1(Mn−1) class U such that

⟨UMn−1

Cn−1
⟩ ⊆ U and B /∈ U .

Let WU be the Σ0
1(Mn−1) set of chains associated with U . Since B /∈ U , for

every ρ ∈WU , ρ ∩B ̸= ∅.

Lemma 6.28. Let c be a PB
n−1-condition and ϕ(G, x) a Π0

k formula for some k <
n. An index of an extension deciding (∃x)ϕ(G, x) can be found P -computably
uniformly in an index of c and ϕ.

Proof. Say c = (σ,Xn−1). Consider V the same class as in Lemma 6.27 and let
WV be the Σ0

1(Mn−1) set of chains associated with V.
We claim that one of the following two cases holds:

(2.a) There is some ℓ ∈ N and some ρ0, . . . , ρℓ−1 ∈WU such that ρi ⊆ Xn−1 for
all i < ℓ and for every µ ∈ ρ0 × · · · × ρℓ−1 (seen as finite sets of integers),
there exists some ρ ⊆ µ and some x ∈ N such that σ∪ ρ ?⊬¬ϕ(G, x) holds
if k > 0 or ϕ(σ ∪ ρ, x) holds if k = 0 ;

(2.b) UMn−1

Cn−1
∩ V is not large.

Indeed, if (2.b) fails, then by Lemma 4.11, UMn−1

Cn−1
∩V ∩U is large. It follows

that ⟨UMn−1

Cn−1
⟩ ⊆ V ∩ U . In particular, as Xn−1 ∈ ⟨UMn−1

Cn−1
⟩ and ⟨UMn−1

Cn−1
⟩ is

partition regular, there exists a depth p such that for every partition Y0 ∪ Y1 =
{0, . . . , p − 1} ∩ Xn−1, there exists some side i < 2 and some ρ ∈ WU and
ρ′ ∈ WV such that ρ, ρ′ ⊆ Yi. Fix ρ0, . . . , ρℓ−1 be all such ρ ∈ WU . We claim
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that this family satisfies (2.a). Indeed, let µ ∈ ρ0 × · · · × ρℓ−1, and consider the
partition µ ∪ (µ ∩Xn−1 ∩ {0, . . . , d− 1}) = Xn−1 ∩ {0, . . . , d− 1}, by definition
of the (ρk)k<ℓ, there exists some k < ℓ and some ρ′ ∈ WV such that ρk, ρ

′ ⊆ µ
or ρk, ρ

′ ⊆ µ. As µ ∈ ρ0 × · · · × ρℓ−1, it is not possible for ρk to be a subset
of µ for any k < ℓ. Hence, we are in the first case and, as ρ′ ∈ WV , we have
found some ρ′ ⊆ µ and some x ∈ N such that σ ∪ ρ′ ?⊬¬ϕ(G, x) holds if k > 0
or ϕ(σ ∪ ρ′, x) holds if k = 0, so we are in case (2.a).

Note that the first case is Σ0
1(Mn−1) and the second is Σ0

1(Mn), so both
events are P -c.e. since P ≥ Mn. One can then P -computably wait for one of
the two facts to be witnessed.

In Case 2.a, since ρ ∩ B ̸= ∅ for every ρ ∈ WU , there exists some µ ∈
ρ0 × · · · × ρℓ−1 such that µ ⊆ B ∩ Xn−1. Hence, there exists some ρ ⊆ µ
such that σ ∪ ρ ?⊢(∃x)ϕ(G, x), and by Lemma 5.10, there exists an extension
d ≤ (σ ∪ ρ,Xn−1 \ {0, . . . , |ρ|) ≤ c forcing (∃x)ϕ(G, x). Such a µ can be found
uniformly in P : there are only finitely many elements in ρ0 × · · · × ρℓ−1, hence
a PA over ∅′ can find one satisfying the Π0

n+1 property µ ⊆ B ∩Xn−1.
In Case 2.b, as in Case 1.b, there is a set Yi ∈ Mn−1 such that the

extension (σ,Xn−1∩Yi) forces (∀x)¬ϕ(G, x) and such an extension can be found
computably in P .

Similarly, we can P computably construct an infinite set G ⊆ B such that
G(n) ≤ P using Lemma 6.28. Thus, the theorem is proved.

Corollary 6.29. Let n ≥ 1 and let A be a Σ0
n+1 set, then there exists an infinite

set H of lown+1 degree such that H ⊆ A or H ⊆ A.

Recall that the Ginsburg-Sands theorem [16] restricted to T1-spaces states
that every infinite topological space has an infinite subspace homeomorphic to
either the discrete or the cofinite topology on N. This theorem was studied
by Benham et al. [2], who proved that it is equivalent over RCA0 to COH +
Σ0

2-Subset. Let GST1 be the Ginsburg-Sands theorem for T1-spaces. Benham
et al. [2] asked whether GST1 admits a weakly low basis. We answer positively
through the following theorems:

Proposition 6.30. Fix n ≥ 1. Let P0, . . . ,Pk−1 be Π1
2-problems admitting a

weakly lown basis. Then for every set Q of PA degree over ∅(n), there is an ω-
model M of RCA0 +P0 + · · ·+Pk−1 such that for every set X ∈ M, X(n) ≤T Q.

Proof. Fix Q of PA degree over ∅(n). By Scott [34], Q computes a Scott code of
a Scott ideal N containing ∅(n). Since P0, . . . ,Pk−1 admit a weakly lown basis,
construct a chain M0 ⊆ M1 ⊆ . . . of countable ω-models of RCA0 such that

• M0 is the ω-model whose second-order part are the computable sets;

• Mi is topped by a set Di such that D
(n)
i ∈ N ;
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• For every s < k and every instance X of Ps in Mi, there is some j ∈ N
such that Mj contains a Ps-solution to X.

Then M =
⋃

i∈N Mi is an ω-model of RCA0 + P0 + · · · + Pk−1 such that for

every set X ∈ M, X(n) ∈ N , hence X(n) ≤T Q.

Corollary 6.31. Fix n ≥ 1. Let P0, . . . ,Pk−1 and Q be Π1
2 problems such that

each Pi admits a weakly lown basis for i < k and RCA0 + P0 + · · · + Pk−1 ⊢ Q.
Then Q admits a weakly lown basis.

Proof. Let X be a computable instance of Q and let R be of PA degree over ∅(n).
By Proposition 6.30, there is an ω-model M of RCA0 + P0 + · · · + Pk−1 such
that for every set Y ∈ M, Y (n) ≤T R. In particular, M |= Q, so there is a
Q-solution Y to X in M. In particular, Y (n) ≤T R.

Note that Corollary 6.31 also holds when the implication RCA0 +P0 + · · ·+
Pk−1 ⊢ Q is restricted to ω-models, also known as computable entailment. The
following corollary states that GST1 admits a weakly low basis, answering the
question of Benham et al. [2]. We refer to Dorais [10] for the formalization of
countable second-countable spaces in second-order arithmetic.

Corollary 6.32. For every set Q of PA degree over ∅′ and every infinite
computable T1 CSC space ⟨X,U , k⟩, X has an infinite subspace Y which is
either discrete or has the cofinite topology, and such that Y ′ ≤T Q.

Proof. By Cholak, Jockusch and Slaman [3], COH admits a weakly low basis.
By the Main Theorem 1.6, so does Σ0

2-Subset. Moreover, by Benham et al. [2],
RCA0 ⊢ GST1 ↔ (COH + Σ0

2-Subset). Thus, by Corollary 6.31, GST1 admits a
weakly low basis.

7 Preservation of hyperimmunities

The goal of this section is to prove the following main theorem:

Main Theorem 1.8. Fix n ≥ 1. For every ∆0
n+1 setA, every ∅(n−1)-hyperimmune

function f : N → N and every ∅(n)-hyperimmune function g : N → N, there is
an infinite set H ⊆ A or H ⊆ A such that f is H(n−1)-hyperimmune and g is
H(n)-hyperimmune.

The preservation of multiple hyperimmunities is motivated by the separation
of ∆0

n+1-Subset from Σ0
n+1-Subset over ω-models. Before proving Main Theorem 1.8,

we prove this separation assuming the theorem holds.

Proposition 7.1 (Beham et al. [2]). Let n ≥ 1. There exists a Σ0
n+1 set B

which is ∅(n−1)-hyperimmune and whose complement is ∅(n)-hyperimmune.

Proof sketch. By relativizing to ∅(n) the finite injury priority construction of
a c.e. set whose complement is hyperimmune (see Post [33, Section 5]), and
interleaving steps to make B ∅(n−1)-hyperimmune.
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The case n = 1 of the following corollary was proven by Beham et al. [2].

Corollary 7.2. Let n ≥ 1. There exists an ω-model of RCA0 + ∆0
n+1-Subset

which is not a model of Σ0
n+1-Subset.

Proof. LetB be a Σ0
n+1 set which is ∅(n−1)-hyperimmune and whose complement

is ∅(n)-hyperimmune. Such as set exists by Proposition 7.1. Recall that the
principal function of an infinite set X = {x0 < x1 < . . . } is the function
k 7→ xk. Let fn−1 and fn be the principal functions of B and B, respectively.

Using Main Theorem 1.8, construct a chain N0 ⊆ N1 ⊆ . . . of countable
ω-models of RCA0 such that

1. N0 is the ω-model whose second order part are the computable sets ;

2. Ni is topped by a set Di such that fn−1 is D
(n−1)
i -hyperimmune and fn

is D
(n)
i -hyperimmune ;

3. For every ∆0
n+1(Ni) set X, there exists some j ∈ N such that Nj contains

an infinite subset of X or X.

Then N =
⋃

i∈N Ni is an ω-model of RCA0+∆0
n+1-Subset such that for every

set X of N , fn−1 is X(n−1)-hyperimmune and fn is X(n)-hyperimmune. Hence,
N contains no subset of B or B and therefore is not a model of Σ0

n+1-Subset.

The remainder of this section is devoted to the proof of Main Theorem 1.8.
Fix some n ≥ 1. Let M0, . . . ,Mn be Scott ideals with Scott codes M0, . . . ,Mn,
and let C0, . . . , Cn−1 be sets forming a largeness tower, that is, for every i < n:

• UMi

Ci
is an Mi-cohesive large class containing only infinite sets ;

• Ci,M
′
i ∈ Mi+1 ;

• UMi+1

Ci+1
⊆ ⟨UMi

Ci
⟩ if i < n− 1.

Let A be a ∆0
n+1 set. In particular, A and A are both Σ0

n+1, and by partition

regularity of ⟨UMn−1

Cn−1
⟩, either MA

n or MA
n is a valid notion of forcing. Say MA

n is

valid. To preserve hyperimmunities at levels {n−1, n}, one needs to have a Σ0
k+1-

preserving Σ0
k+1-compact forcing question for Σ0

k+1-formulas, for k ∈ {n−1, n}.

This is the case for MA
n -forcing for Σ0

n+1-formulas, but not for Σ0
n-formulas.

Indeed, the MA
n -forcing question for Σ0

n-formulas is neither Σ0
n-preserving, nor

Σ0
n-compact.

We will therefore design a new forcing question for Σ0
n-formulas, not formulated

in terms of largeness, but by over-approximation of the set A. This over-
approximation comes at one cost: this yields a disjunctive forcing question.
We must therefore work with a new notion of forcing, whose conditions are of
the form (σ0, σ1, Xn−1) where (σ0, Xn−1) is an MA

n -condition and (σ1, Xn−1) is

an MA
n -condition. This notion of forcing can be defined only in the case A and
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A both belong to ⟨UMn−1

Cn−1
⟩. If this is not the case, then we shall use witness

forcing WA
n or WA

n , depending on the case.
In what remains, we first introduce the disjunctive notion of forcing in

Section 7.1, then we study in Section 7.2 which forcing questions are compact
among the various notions of forcing. Last, we combine the various frameworks
to prove Main Theorem 1.8 in Section 7.3.

7.1 Disjunctive forcing

The disjunctive notion of forcing is a variant of Mathias forcing commonly
used in the reverse mathematics of Ramsey-type theorems, due to the intrinsic
disjunctive nature of the statements. Fix a ∆0

n+1 set A such that A and A both

belong to ⟨UMn−1

Cn−1
⟩.

We shall see thanks to Lemma 7.5 that a disjunctive condition is nothing
but two main forcing conditions sharing a reservoir. Thus, disjunctive forcing
inherits many properties of the main forcing, and in particular, each side admits
a non-disjunctive forcing question for Σ0

n+1 with the good definitional properties.
In particular, if g : N → N is Mn-hyperimmune, then every sufficiently generic

filter F will yield two infinite setsG0, G1 such that g will be bothG
(n)
0 -hyperimmune

and G
(n)
1 -hyperimmune. The only purpose of this disjunctive notion of forcing

is then to design a disjunctive forcing question for Σ0
n-formulas with the good

definitional properties. Then, if f : N → N is Mn−1-hyperimmune, it will be

either G
(n−1)
0 -hyperimmune, or G

(n−1)
1 -hyperimmune.

Definition 7.3 (Condition). Let DA
n be the notion of forcing whose conditions

are tuples (σ0, σ1, Xn−1) such that (σ0, Xn−1) ∈ MA
n and (σ1, Xn−1) ∈ MA

n .

For c = (σ0, σ1, Xn−1) ∈ DA
n and i < 2, we write c[i] for the MAi

n -condition
(σi, Xn−1), where A0 = A and A1 = A. The notion of DA

n -extension is naturally
induced by the notion of MA

n -extension on each side:

Definition 7.4. A DA
n -condition d = (τ0, τ1, Yn−1) extends a DA

n -condition
c = (σ0, σ1, Xn−1) (and we write d ≤ c) if d[i] ≤ c[i] for both i < 2, that is,
Yn−1 ⊆ Xn−1 and σi ⪯ τi ⊆ σi ∪Xn−1.

Since a reservoir forces only negative information, having two Mathias condi-
tions share a common reservoir does not impact their ability to force properties.
This is made clear in the following lemma, which plays the same role as Lemma 6.16
for witness forcing.

Lemma 7.5. Let c = (σ0, σ1, Xn−1) be a DA
n -condition and (τ, Yn−1) ∈ PAi

n−1

such that (τ, Yn−1) ≤ c[i] for some i < 2. Then there is a DA
n -extension d ≤ c

such that d[i] = (τ, Yn−1). Furthermore, an index for d can be found computably
uniformly in an index for c and (τ, Yn−1).

Proof. Simply take d = (τ, σ1, Yn−1) if i = 0 and d = (σ0, τ, Yn−1) if i = 1. It is
clear that d ≤ c and that d[i] = (τ, Yn−1).
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We now define the disjunctive forcing question to decide Σ0
n-formulas with

better definitional properties. Since the set A is too complex with respect to the
forcing question, one uses an over-approximation by quantifying universally over
all possible sets. By compactness, this universal second-order quantification
can be translated into an existential first-order quantification, yielding the
appropriate complexity.

Definition 7.6 (Forcing question). Let c = (σ0, σ1, Xn−1) be a DA
n -condition

and ϕ0(G, x), ϕ1(G, x) two Π0
n−1 formulas, the relation

c ?⊢(∃x)ϕ0(G0, x) ∨ (∃x)ϕ1(G1, x)

holds if for every partition Z0, Z1 of Xn−1, there exist some side i < 2, some
ρ ⊆ Zi and some x ∈ N such that either ϕi(σi ∪ τ, x) holds in the case where
n = 1 or σi ∪ ρ ?⊬¬ϕi(Gi, x) holds if n > 1.

The following lemma shows that the forcing question for Σ0
n-formulas has

the good definitional complexity. In particular, if Mn−1 is low over ∅(n−1), that
is, (Mn−1 ⊕ ∅(n−1))′ ≤T ∅(n), then the forcing question is ∅(n)-decidable.

Lemma 7.7. The relation c ?⊢(∃x)ϕ0(G0, x) ∨ (∃x)ϕ1(G1, x) is Σ0
1(Mn−1).

Proof. By compactness, the statement c ?⊢(∃x)ϕ0(G0, x)∨(∃x)ϕ1(G1, x) is equivalent
(in the case where n > 1) to the following:

(∃ℓ)(∀Z0 ∪ Z1 = Xn−1 ↾ ℓ)(∃i < 2)(∃ρ ⊆ Zi)(∃x)σi ∪ ρ ?⊬¬ϕi(Gi, x)

which is Σ0
1(Mn−1) by Lemma 5.6. The case n = 1 is similar.

The following lemma states that the disjunctive forcing meets its specifications.
Note that in the negative case, the negation is forced only on one side of the
condition. The disjunction of the question should therefore not be considered
as a single formula, but rather as two separate questions.

Lemma 7.8. Let c = (σ0, σ1, Xn−1) be a DA
n -condition and let ϕ0(G0, x) and

ϕ1(G1, x) two Π0
n−1 formulas.

• If c ?⊢(∃x)ϕ0(G0, x)∨(∃x)ϕ1(G1, x) holds, then there exist some side i < 2
and some condition d ≤ c such that d[i] ⊩ (∃x)ϕi(Gi, x).

• If c ?⊬(∃x)ϕ0(G0, x)∨(∃x)ϕ1(G1, x) holds, then there exist some side i < 2
and some condition d ≤ c such that d[i] ⊩ (∀x)¬ϕi(Gi, x).

Proof. Assume c ?⊢(∃x)ϕ0(G0, x) ∨ (∃x)ϕ1(G1, x) holds. Let Y0 = A ∩ Xn−1

and Y1 = A ∩ Xn−1 and consider the partition Xn−1 = Y0 ∪ Y1. There exists
some side i < 2, some τ ⊆ Yi and some a ∈ N such that ϕi(σi ∪ τ, a) holds if
n = 1 or σi ∪ τ ?⊬¬ϕi(Gi, a) holds if n > 1. As τ ⊆ Ai ∩Xn−1, the condition

ei = (σi ∪ τ,Xn−1 \ {0, . . . , |τ |}) ≤ c[i] is in PAi

n−1, hence, if n = 1, ei already
forces ϕi(Gi, a) and if n > 1, using Lemma 5.10, there exists some di ≤ ei such
that di ⊩ ϕi(Gi, a).
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Therefore, in both case, using Lemma 7.5 we have found some extension
d ≤ c and some i < 2 such that d[i] ⊩ ϕi(Gi, a), hence d[i] ⊩ (∃x)ϕi(Gi, x).

Assume c ?⊬(∃x)ϕ0(G0, x) ∨ (∃x)ϕ1(G1, x) holds. The class of all partitions
Xn−1 = Y0 ∪ Y1, such that for every side i < 2, every τ ⊆ Yi and every
x ∈ N, ¬ϕi(σi ∪ τ, x) holds if n = 1 or σi ∪ τ ?⊢¬ϕi(Gi, x) holds if n > 1 is
Π0

1(Mn−1) and non-empty. Therefore, as Mn−1 is a Scott ideal, there exists

such a partition Xn−1 = Y0 ∪ Y1 in Mn−1. As Xn−1 ∈ ⟨UMn−1

Cn−1
⟩, there exists

some i < 2 such that Yi ∈ ⟨UMn−1

Cn−1
⟩, then d = (σ0, σ1, Yi) ≤ c is an extension

duch that d[i] ⊩ (∀x)¬ϕi(Gi, x).

7.2 Compact forcing questions

As explained in Section 2, there is a close relationship between preservation
of hyperimmunities and the existence of compact forcing questions with good
definitional properties. For the purpose of Main Theorem 1.8, one needs to use
notions of forcing whose forcing questions for Σ0

k+1-formulas are Σ0
k+1-preserving

and Σ0
k+1-compact for k ∈ {n− 1, n}. The proof of Main Theorem 1.8 uses the

disjunctive forcing (DA
n ) if A and A both belong to the appropriate partition

regular class, and the witness forcing (WA
n or WA

n ) if either fails. The disjunctive
forcing inherits its forcing question for Σ0

n+1-formulas from the main forcing

(MA
n and MA

n ) and defines a new disjunctive forcing question for Σ0
n-formulas.

The witness forcing defines new forcing questions for both Σ0
n-formulas and

Σ0
n+1-formulas.

In this section, we study the forcing questions of the main forcing, the
disjunctive forcing, and the witness forcing, and prove that MA

n -forcing question
for Σ0

n+1-formulas, the disjunctive DA
n -forcing question for Σ0

n-formulas, and the
WA

n -forcing questions for both Σ0
n-formulas and Σ0

n+1-formulas are all compact.

Remark 7.9. Σ0
n+1-compactness of a forcing question states that if c ?⊢(∃x)ϕ(G, x)

for some Π0
n-formula ϕ, then there is some bound k ∈ N such that c ?⊢(∃x ≤

k)ϕ(G, x). Traditionally, bounded quantification is treated as syntactic sugar,
where (∃x ≤ y)ϕ(x) is translated into (∃x)[x ≤ y ∧ ϕ(x)] and (∀x ≤ y)ϕ(x)
becomes (∀x)[x ≤ y → ϕ(x)]. However, due to the lack of robustness of the
forcing question, it might be that two logically equivalent formulas do not yield
the same answer.

To circumvent this issue, in the case of of Σ0
n+1-compactness, bounded

existentials will be treated natively, requiring to define the forcing question
for formulas of the form (∃x ≤ k)ϕ(G, x) where ϕ is Π0

n. The definition of
c ?⊢(∃x ≤ k)ϕ(G, x) will be very similar to that of c ?⊢(∃x)ϕ(G, x), except that
the existential quantifier for x will be bounded by k accordingly. The lemma
stating that the forcing question meets its specifications remains true when
working with bounded formulas.

We start with the main forcing.
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Lemma 7.10. In MA
n -forcing, the ?⊢ relation for Σ0

n+1 formulas is compact,
i.e., if c ?⊢(∃x)ϕ(G, x) for some Π0

n formula ϕ(G, x), then there exists some
bound ℓ ∈ N such that c ?⊢(∃x ≤ ℓ)ϕ(G, x).

Proof. Let c = (σ,Xn−1) and assume c ?⊢(∃x)ϕ(G, x) holds for some Π0
n formula

ϕ(G, x). There exists some a ∈ N and some ρ ⊆ Xn−1 ∩ A such that σ ∪
ρ ?⊬¬ϕ(G, a), therefore c ?⊢(∃x ≤ a)ϕ(G, x) .

Lemma 7.11. For every MA
n -condition c, every Mn-hyperimmune function fn

and every Turing index e ∈ N, there is an extension d ≤ c forcing ΦG(n)

e not to
dominate fn.

Proof. If there exists some x ∈ N such that c ?⊬ΦG(n)

e (x)↓, then by Lemma 6.8,

there exists some extension d ≤ c forcing ΦG(n)

e (x)↑, hence forcing ΦG(n)

e to be
partial.

If for all x ∈ N, c ?⊢ΦG(n)

e (x)↓, then by Lemma 7.10, for every x, there is a

bound ℓx such that c ?⊢ΦG(n)

e (x)↓≤ ℓx. By assumption, the function x 7→ ℓx is
total, and by Lemma 6.7, it is Mn-computable, and therefore does not dominate
fn. Take some x ∈ N such that fn(x) > ℓx and by Lemma 6.8 let d ≤ c be an

extension forcing ΦG(n)

e (x)↓≤ ℓx. Therefore, d forces ΦG(n)

e (x)↓< fn(x), hence

forces ΦG(n)

e not to dominate fn.

We now turn to the study of the disjunctive forcing question for Σ0
n-formulas

in DA
n .

Lemma 7.12. Let c = (σ0, σ1, Xn−1) be a DA
n -condition and let ϕ0(G, x) and

ϕ1(G, x) be two Π0
n−1 formulas. If

c ?⊢(∃x)ϕ0(G0, x) ∨ (∃x)ϕ1(G1, x)

then there exists some bound ℓ ∈ N such that

c ?⊢(∃x ≤ ℓ)ϕ0(G, x) ∨ (∃x ≤ ℓ)ϕ1(G1, x)

Proof. If c ?⊢(∃x)ϕ0(G0, x) ∨ (∃x)ϕ1(G1, x), then, by compactness, there exists
some bound ℓ ∈ N such that every partition Xn−1 ↾ {0, . . . ℓ} = Y0 ∪ Y1 there
exists some side i < 2, some τ ⊆ Yi and some x ∈ N such that ϕi(σi∪τ, x) holds
if n = 1 or σi∪ρ ?⊬¬ϕi(Gi, x) holds if n > 1. There are only finitely many such
partitions, hence finitely many such witnesses x. Therefore, there exists some
bound ℓ such that c ?⊢(∃x ≤ ℓ)ϕ0(G, x) ∨ (∃x ≤ ℓ)ϕ1(G1, x).

Lemma 7.13. For every DA
n -condition c = (σ0, σ1, Xn−1), every Mn−1-hyper-

immune function fn−1 and every pair of Turing indices e0, e1 ∈ N, there exist

a side i < 2 and an extension d ≤ c forcing Φ
G

(n−1)
i

ei not to dominate fn−1.

Proof. If there exists some x ∈ N such that c ?⊬Φ
G

(n−1)
0

e0 (x)↓ ∨Φ
G

(n−1)
1

e1 (x)↓, then
by Lemma 7.8, there exist some side i < 2 and some extension d ≤ c such that

d ⊩ Φ
G

(n−1)
i

ei (x)↑, hence, forces Φ
G

(n−1)
i

ei to be partial.
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If for all x ∈ N, c ?⊢Φ
G

(n−1)
0

e0 (x)↓ ∨Φ
G

(n−1)
1

e1 (x)↓, then by Lemma 7.12, for

every x, there is a bound ℓx ∈ N such that c ?⊢Φ
G

(n−1)
0

e0 (x)↓≤ ℓx ∨Φ
G

(n−1)
1

e1 (x)↓≤
ℓx. The function x 7→ ℓx is total and by Lemma 7.7, it is Mn−1-computable, and
therefore does not dominate fn−1. Take some x ∈ N such that fn−1(x) > ℓx and

by Lemma 7.8 let i < 2 and let d ≤ c be an extension forcing Φ
G

(n−1)
i

e (x)↓≤ ℓx.

Then, d forces Φ
G

(n−1)
i

ei (x)↓< fn−1(x), hence forces Φ
G

(n−1)
i

ei not to dominate
fn−1.

Last, we study the forcing questions for Σ0
n and Σ0

n+1 formulas in the witness
forcing.

Lemma 7.14. In WA
n -forcing, the ?⊢U relation for Σ0

n and Σ0
n+1 formulas is

compact, i.e., for k = n−1 or k = n, for every WA
n -condition c = (σ,Xn−1, Xn),

every Π0
k formula ϕ(G, x), and every U witness for c , if c ?⊢U (∃x)ϕ(G, x), then

there exists some bound ℓ ∈ N such that c ?⊢U (∃x ≤ ℓ)ϕ(G, x).

Proof. Assume c ?⊢U (∃x)ϕ(G, x). By compactness, there exists some bound
ℓ ∈ N such that for every β ∈ 2ℓ, letting β be the bitwise complement of β,
either we already have [β ] ⊆ U or there is some x ≤ ℓ and ρ ⊆fin β ∩ Xk

such that ϕ(σ ∪ ρ, x) holds if k = 1 or σ ∪ ρ ?⊬¬ϕ(G, x) holds if k > 1. Then
c ?⊢U (∃x ≤ ℓ)ϕ(G, x).

Lemma 7.15. Let k = n−1 or k = n, for every WA
n -condition c = (σ,Xn−1, Xn)

in WA
n , every Mk-hyperimmune function fk and every Turing index e ∈ N, there

exists an extension d ≤ c forcing ΦG(k)

e not to dominate fk.

Proof. If there exists some x ∈ N such that c ?⊬ΦG(k)

e (x)↓, then by Lemma 6.22,

there exists some extension d ≤ c forcing ΦG(k)

e (x)↑, hence forcing ΦG(k)

e to be
partial.

If for all x ∈ N, c ?⊢ΦG(k)

e (x)↓, then by Lemma 7.14, for every x, there is

a bound ℓx ∈ N such that c ?⊢ΦG(k)

e (x)↓≤ ℓx. By assumption, the function
x 7→ ℓx is total and by Lemma 6.21, it is Mk-computable, and therefore does
not dominate fk. Take some x ∈ N such that fk(x) > ℓx and by Lemma 6.22

let d ≤ c be an extension forcing ΦG(k)

e (x)↓≤ ℓx. Therefore, d forces ΦG(k)

e (x)↓<
fk(x), hence forces ΦG(k)

e not to dominate fk.

7.3 Applications

We now have all the necessary ingredients to prove our next main theorem about
simultaneous preservation of hyperimmunities, enabling to separate ∆0

n+1-Subset
from Σ0

n+1-Subset over ω-models.

Main Theorem 1.8. Fix n ≥ 1. For every ∆0
n+1 setB, every ∅(n−1)-hyperimmune

function f : N → N and every ∅(n)-hyperimmune function g : N → N, there is
an infinite set H ⊆ B or H ⊆ B such that f is H(n−1)-hyperimmune and g is
H(n)-hyperimmune.
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Proof. For every X, let C(X) be the Π0
1(X) class of Proposition 3.11. By

Lemma 4.19, there is a Scott tower M0, . . . ,Mn−2 of height n − 2 with Scott
codes M0, . . . ,Mn−2, such that for every i ≤ n−2, Mi is of low degree over ∅(i).
By relativizing Theorem 3.9 to ∅(n−1) and applying it on the family {(f, 0), (g, 1)},
there is a Scott code Mn−1 ∈ C(∅(n−1)) of a Scott ideal Mn−1 such that f is
Mn−1-hyperimmune and g is M ′

n−1-hyperimmune. In particular, M ′
n−2 ≤T

∅(n−1) ∈ Mn−1. By the computably dominated basis theorem [21] relativized
to M ′

n−1, there exists some Scott code Mn ∈ C(M ′
n−1) of a Scott ideal Mn

containing M ′
n−1, and such that every Mn-computable function is dominated

by an M ′
n−1-computable function. In particular, since g is M ′

n−1-hyperimmune,
g is Mn-hyperimmune. The Scott ideals M0, . . . ,Mn therefore form a Scott
tower such that f is Mn−1-hyperimmune, and g is Mn-hyperimmune.

By Lemma 4.21, it can be enriched with some sets C0, . . . , Cn−1 to form a
largeness tower of height n. There are two cases:

Case 1: Both B and B are in ⟨UMn−1

Cn−1
⟩. We will build an infinite subset

of B or B using DB
n -forcing. Given e0, e1 ∈ N, let De0,e1 be the set

{c ∈ DB
n : (∃i < 2)c ⊩ Φ

G
(n−1)
i

ei does not dominate fn−1}

By Lemma 7.13, De0,e1 is dense for every e0, e1 ∈ N. Therefore, for F a

sufficiently generic DB
n -filter, for every e0, e1 ∈ N, either Φ

G
(n−1)
0,F

e0 or Φ
G

(n−1)
1,F

e1

does not dominate fn−1. By a standard pairing argument, there exists some

side i < 2 such that Φ
G

(n−1)
i,F

e does not dominate fn−1 for any e ∈ N, hence fn−1

is G
(n−1)
i,F -hyperimmune.

For e ∈ N, let De be the set

{c ∈ MBi

n : c ⊩ Φ
G

(n)
i

e do not dominate fn}

By Lemma 7.11, the set De is dense for every e ∈ N. Hence, F being a
sufficiently generic DB

n -filter, the MBi

n -filter F [i] = {c[i] : c ∈ F} is sufficiently
generic by Lemma 7.5. Then, by Lemma 5.10 and Lemma 6.8, F [i] is n-generic.
In particular, by Proposition 5.12, Gi,F exists and is an infinite subset of Bi,
where B0 = B and B1 = B. By Proposition 5.13 and Proposition 6.9, every
property forced for the set Gi,F is true. Thus, H = Gi,F is an infinite subset of
Bi such that fn−1 is H(n−1)-hyperimmune and fn is H(n)-hyperimmune.

Case 2: B is not in ⟨UMn−1

Cn−1
⟩ (the case B /∈ ⟨UMn−1

Cn−1
⟩ is symmetrical). We

will build an infinite subset of B using WB
n -forcing. For e ∈ N, let Ce be the set

{c ∈ WB
n : c ⊩ ΦG(n−1)

e do not dominate fn−1}

And let De be the set

{c ∈ WB
n : c ⊩ ΦG(n)

e do not dominate fn}
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By Lemma 7.15, Ce and De are dense for every e ∈ N. Let F be a sufficiently
generic filter, so F intersect every Ce and De. By Lemma 5.10 (which can be
applied to WA

n -conditions thanks to Lemma 6.16) and Lemma 6.22, F will
be n-generic. Thus, by Proposition 5.13 and Proposition 6.24, every property
forced for the set GF will hold. Moreover, GF is an infinite subset of B by
Proposition 5.12. Thus, we have found an infinite subset H = GF of B such
that fn−1 is H(n−1)-hyperimmune and fn is H(n)-hyperimmune.

8 Conservation theorems

We now turn to the last main application of the previous notions of forcing:
conservation theorems. The goal of this section is to prove the following main
theorem:

Main Theorem 1.10. Let n ≥ 1. RCA0+IΣ0
n+1+Σ0

n+1-Subset is Π1
1 conservative

over RCA0 + IΣ0
n+1.

The techniques will be very similar to the standard realm, but working with
a formalized version of the notions of forcing in models of weak arithmetic. We
start with a short introduction to the techniques of Π1

1-conservation over RCA0+
IΣ0

n+1, then prove that the previous notions of forcing satisfy the necessary
combinatorial features to preserve induction, and finally prove Main Theorem 1.10.

8.1 Conservation over RCA0 + IΣ0
n+1

The standard model-theoretic approach for proving that a theory T2 is Γ-
conservative over a theory T1 is the following:

• First, assume by contrapositive that T1 does not prove some formula ϕ ∈ Γ.

• Using Gödel completeness theorem, there exists some model M of T1+¬ϕ.

• From this model, construct another model N , this time of T2 + ¬ϕ.

• Therefore, T2 does not prove ϕ either.

The heart of these proofs lies in the construction of the model of T2 + ¬ϕ.
In this article, Γ will be the set of all the Π1

1-formulas. This allows to easily
ensure that the model constructed will be a model of ¬ϕ: this came free if the
model constructed is an ω-extension of the initial model.

Definition 8.1. A model N = (N,T,+N ,×N , <N , 0N , 1N ) is an ω-extension3

of a model M = (M,S,+M,×M, <M, 0M, 1M) if N = M , +N = +M, ×N =
×M, <N=<M, 0N = 0M, 1N = 1M and T ⊇ S.

3The terminology “ω-extension” should not be confused with the notion of “ω-model”.
Indeed, if N is an ω-extension of a non-standard model M, then neither N nor M are ω-
models.
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In other words, a model N is an ω-extension of M if N is obtained from M
by adding new sets to the second-order part, and leaving the first-order part
unchanged. The following lemma states that Σ1

1-formulas are left unchanged by
considering ω-extensions.

Lemma 8.2. Let ϕ be a Π1
1-formula and M of model of ¬ϕ. If N is an ω-

extension of M, then N |= ¬ϕ.

Proof. Write ϕ = (∀X)θ(X) for θ(X) an arithmetical formula and write M =
(M,S). By assumption, M |= (∃X)¬θ(X), thus there exists some set A ∈ S
such that M |= ¬θ(A).

An ω-extension N of M can be written as N = (M, Ŝ) with Ŝ ⊇ S, hence
A ∈ Ŝ. As θ(A) is an arithmetical formula, its truth value only depends on
the first order part of the model, therefore, we also have N |= ¬θ(A) and
N |= ¬(∀X)θ(X).

When the theory T1 is included in the theory T2, we say that T2 is a
conservative extension of T1. In our case, the theory T1 will be RCA0 + IΣ0

n

and the theory T2 will be equal to T1 + P for some Π1
2-problem P. Having to

preserve a Π1
2 problem allows us to further break down the construction step.

Proposition 8.3. Let P be a Π1
2-problem and T be a theory composed solely of

Π1
2 axioms.
Assume that for every countable model M = (M,S) of T and every instance

X ∈ S of P, there exists some countable ω-extension M′ of M containing a
solution to X and such that M′ |= T . Then there exists a countable ω-extension
N of M such that N |= T + P.

Proof. The model N will be defined as (M,
⋃

n∈ω Sn) for M0 = (M,S0) ⊆
M1 = (M,S1) ⊆ . . . a sequence of ω-extensions obtained recursively using the
assumption and having the following properties:

1. M0 = M and Mk |= T for every k ∈ ω.

2. Mk is countable for every k ∈ ω.

3. For every instance X of P contained in some Mk, there exists some ℓ ∈ ω
such that Mℓ contains a solution to X.

Claim 1: N |= P. Let X be an instance of P belonging to N . By definition
of N , X belongs to some Mk, thus there exists some index ℓ such that Mℓ,
contains a solution to X, therefore, N also contains it. Hence, N |= P.

Claim 2: N |= T . Let ϕ ∈ T be a Π1
2 formula of the form (∀X)(∃Y )θ(X,Y )

with θ(X,Y ) an arithmetical formula. Let A ∈ M be a set, A belongs to
some Sk for k ∈ ω. Since Mk |= T , there exists some B ∈ Sk such that
Mk |= θ(A,B), thus N |= θ(A,B) as θ(X,Y ) is an arithmetical formula and N
is an ω-extension of Mk. The set A being arbitrary, N |= T .
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The theory RCA0 + IΣ0
n is composed of Π1

2 axioms, so the result may be
applied. The assumption that the initial model has to be countable is not a
problem thanks to the downward Löwenheim-Skolem theorem.

So, the problem of showing that a Π1
2-problem P is Π1

1-conservative over the
base theory RCA0 + IΣ0

n has been reduced to showing that for any countable
model M = (M,S) of RCA0 + IΣ0

n and any instance X ∈ S of P, there is a
countable ω-extension M′ = (M,S′) of M such that M′ |= RCA0 + IΣ0

n and S′

contains a solution Y to X.

The only axioms of RCA0 + IΣ0
n stating the existence of sets are the one from

the ∆0
1-comprehension scheme, so when adding a solution Y to the structure

M, the only other subsets that need to be added are the one computable using
Y and the elements of M.

Definition 8.4. For M = (M,S) a structure and G ⊆ M , write M ∪ {G}
for the ω-extension of M whose second-order part is S ∪ {G}, and M[G] for
the ω-extension of M containing all the sets ∆0

1-definable using parameters in
M∪ {G}.

For Y ⊆ M a solution to the instance, the structure M ∪ {G} does not
necessarily satisfy the ∆0

1-comprehension scheme, as it may not contain all the
Y -computable sets. This is not the case for the structure M[Y ], as shown by
the following lemma.

Lemma 8.5 (Folklore). Let M = (M,S) |= RCA0 and G ⊆ M . Then M[G]
satisfies the ∆0

1-comprehension scheme.

Proof sketch. It suffices to prove that every Σ0
1(M[G])-formula can be translated

into a Σ0
1(M∪{G})-formula. Then, any ∆0

1(M[G]) predicate is ∆0
1(M∪{G}),

hence belongs to M[G].
Let ϕ(x) be a Σ0

1(M[G])-formula. Let X be a second-order parameter in ϕ
belonging to M[G]. By definition of M[G], X is ∆0

1(M ∪ {G})-definable, so
there are two ∆0

0(M∪{G})-formulas θ(x, y) and ζ(x, y) such that M∪{G} |=
∀x(∃yθ(x, y) ↔ ∀yζ(x, y)). Every occurrence of the atomic formula x ∈ X in ϕ

can be either replaced by ∃yθ(x, y) or ∀yζ(x, y), so that the resulting formula ϕ̂
is a again Σ0

1. One can iterate the operation for every second-order parameter
in M[G] \M∪ {G} appearing in ϕ.

So, the ω-extension M′ can always be assumed to be of the form M[Y ] for
some solution Y .

The only thing that remains is to find Y such that M[Y ] satisfies IΣ0
n. To

do so, some care is needed, as choosing an inadequate Y ⊆ M may break
induction: for example, if Y computes some Σ0

1-cut of M , no ω-extension of
M can contain Y and be a model of IΣ0

1. The following lemma shows that the
problem of preserving induction for M[Y ] can be reduced to the problem of
preserving induction for M∪ {Y }.
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Lemma 8.6 (Folklore). Let M = (M,S) |= RCA0 + IΣ0
n and G ⊆ M . If

M∪ {G} |= IΣ0
n, then M[G] |= IΣ0

n.

Proof sketch. Let ϕ(x) be a Σ0
n formula with set parameters from M[G]. A

similar proof to that of Lemma 8.5 yields that ϕ(x) is equivalent in M to a
formula ψ(x) with parameters from M∪ {G}. Then, as M∪ {G} |= IΣ0

n, ψ(x)
will satisfy that

ψ(0) ∧ (∀xψ(x) → ψ(x+ 1)) → (∀yψ(y))

thus this is also the case for ϕ(x) and M[G] |= IΣ0
n.

Using Theorem 2.7, finding such a Y can be done with a Σ0
n-preserving

(Σ0
n,Π

0
n)-merging forcing question.

Thanks to the following theorem amalgamation theorem of Yokoyama [42],
the proofs that some Π1

2-theorem P is a Π1
1-conservative extensions of RCA0+IΣ0

n

are quite modular and can easily be combined.

Theorem 8.7 ([43]). Let T0, T1, T2 be Π1
2 theories such that T0 ⊇ RCA0 and

T1 and T2 are both Π1
1-conservative extensions of T0. Then T1 + T2 is a Π1

1-
conservative extension of T0.

8.2 Merging forcing questions

As mentioned in Section 2, preservation of Σ0
n-induction is closely related to

the existence of a Σ0
n-preserving, (Σ0

n,Π
0
n)-merging forcing question. A forcing

question is left Σ0
n-extremal if for every condition c and every Σ0

n-formula φ(G),
c ?⊢φ(G) iff c forces φ(G). It is right Σ0

n-extremal if for every condition c and
every Σ0

n-formula φ(G), c ?⊢φ(G) iff c does not force ¬φ(G). Any left or right
Σ0

n-extremal forcing question is (Σ0
n,Π

0
n)-merging.

The goal being to prove that RCA0+ IΣ0
n+1+Σ0

n+1-Subset is Π1
1-conservative

over RCA0 + IΣ0
n+1, one needs to consider the merging properties of the forcing

question for Σ0
n+1-formulas for the main and witness forcing. The forcing

question for Σ0
n+1-formulas in the MA

n -forcing is right Σ0
n+1-extremal, hence

is (Σ0
n+1,Π

0
n+1)-merging. On the other hand, the forcing question for Σ0

n+1-
formulas in the WA

n -forcing is not Σ0
n+1-extremal. The following lemma shows

that it is however somehow (Σ0
n+1,Π

0
n+1)-merging, by considering the appropriate

witnesses.

Definition 8.8. Given a class A ⊆ 2N, let L2(A) be the class

{X : (∀X0 ∪X1 ⊇ X)(∃i < 2)Xi ∈ A}.

Note that if the class A is open, then so is L2(A). Moreover, there is a
computable function g : N → N such that UX

g(e) = L2(UX
e ) for every index e ∈ N

and every oracle X. Also note that if A is large, then so is L2(A). Indeed,
L(A) ⊆ L2(A).
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Lemma 8.9. Let c = (σ,Xn−1, Xn) be a WA
n -condition and let U be a witness

for c. Let φ(G), ψ(G) be two Σ0
n+1 formulas such that c ?⊢L2(U) φ(G) and

c ?⊬U ψ(G). Then there exists an extension d ≤ c such that d ⊩ φ(G) and
d ⊩ ¬ψ(G).

Proof. Since c ?⊬U ψ(G), the proof of Lemma 6.22 gives us a set B ∈ Mn such
that B /∈ U and such that e = (σ,Xn−1, Xn ∩B) is a valid condition extending
c and forcing ¬ψ(G).

Write φ(G) = (∃x)θ(G, x) for some Π0
n formula θ(G, x). We claim that

e ?⊢U φ(G): let D ∈ 2N be such that D /∈ U . For every such D, D ∪B /∈ L2(U)

(otherwise, either D or B would be in U), hence, as c ?⊢L2(U) φ(G), there exist
some finite τ ⊆ D ∩ (Xn ∩ B) and some x ∈ N such that σ ∪ τ ?⊬¬θ(G, x).
Therefore, e ?⊢U φ(G) and by Lemma 6.22, there exists some extension d ≤ e
forcing φ(G).

8.3 Applications

We are now ready to prove Main Theorem 1.10. As explained above, thanks to
Proposition 8.3, it is reduced to proving that any countable model of RCA0 +
IΣ0

n+1 can be ω-extended into another model of RCA0 + IΣ0
n+1 containing a

solution to a fixed instance of Σ0
n+1-Subset.

Proposition 8.10. Let n ≥ 1 and consider a countable model M = (M,S) |=
RCA0 + IΣ0

n+1 topped by a set Y ∈ S. There exist some M0,M1, . . . ,Mn ⊆ M
and some C0, . . . , Cn−1 ⊆M such that:

• M[Mi] |= RCA0 + IΣ0
n+1−i for i ≤ n ;

• Mi is a Scott code of Mi |= WKL0 + IΣ0
n+1−i for i ≤ n ;

• Y ∈ M0 and M ′
i ⊕ Ci ∈ Mi+1 for i < n ;

• UMi

Ci
is Mi-cohesive for i < n ;

• UMi+1

Ci+1
⊆ ⟨UMi

Ci
⟩ for i < n− 1.

Proof. By a formalization of Proposition 3.11 in second-order arithmetic (see
for example Fiori-Carones et al. [15, Lemma 3.2]), for every set X, there is an
infinite ∆0

1(X)-definable tree T (X) ⊆ 2<M such that if M0 ∈ [T (X)], then, M0

is a Scott code of an ideal containing X.
By Hajek [18], there is a path M0 ∈ [T (Y )] such that M[M0] |= RCA0 +

IΣ0
n+1. Let M0 be the Scott ideal coded by M0, since M[M0] |= IΣ0

n+1, then
M0 |= WKL0 + IΣ0

n+1. Assume Mi has been defined for i < n. Note that
M[M ′

i ] |= IΣ0
n−i. Again by Hajek [18] if i < n − 1 and by Harrington (see

[3, Lemma 8.2] if i = n − 1, there is a set Mi+1 ∈ [T (M ′
i)] coding a Scott

ideal Mi+1 such that M[Mi+1] |= IΣ0
n−i. In particular, Mi+1 |= WKL0 + IΣ0

n−i

and M ′
i ∈ Mi+1.
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By a formalization of Lemma 4.21, there are sets C0, . . . , Cn1 such that

Ci ∈ Mi+1 and UMi

Ci
is Mi-cohesive for every i < n, and UMi+1

Ci+1
⊆ ⟨UMi

Ci
⟩ for

i < n− 1.

Given a condition c and a formula φ(G, x), we say that c forces φ(G, x) to
satisfy induction if either c forces ∀xφ(G, x), or c forces ¬φ(G, 0), or there is
some a > 0 such that c forces ¬φ(G, a) and forces φ(G, a− 1).

Proposition 8.11. Let n > 0 and consider a countable model M = (M,S) |=
RCA0 + IΣ0

n+1 topped by a set Y , and let A ⊆ M be Σ0
n+1 in M. Then there

exists some infinite set H ⊆ M such that H ⊆ A or H ⊆ A and such that
M[H] |= RCA0 + IΣ0

n+1.

Proof. Let M0, . . . ,Mn ⊆ M and C0, . . . , Cn−1 ⊆ M be the sets obtained from
Proposition 8.10. There are two cases:

Case 1: A ∈ ⟨UMn−1

Cn−1
⟩. Let MA

n (M) be a formal version of MA
n , where

conditions (σ,Xn−1) are such that σ is M -coded, and X ∈ Mn−1. We need the
following density lemma.

Lemma 8.12. For every Σ0
n+1 formula ϕ(G, x) and every condition c ∈ MA

n (M),
there is an extension d ≤ c forcing ¬ϕ(G, x) to satisfy induction.

Proof. Let c ∈ MA
n (M) be a condition. If c ?⊬(∃x)ϕ(G, x), then by Lemma 6.8,

there exists some extension d ≤ c forcing (∀x)¬ϕ(G, x), and we are done. So
suppose c ?⊢(∃x)ϕ(G, x) and let e ≤ c forcing ϕ(G, b) for some b ∈ M . Let
I = {x ≤ b : e ?⊢ϕ(G, x)}. The set is Σ0

1(Mn) and b ∈ I. Since Mn |= IΣ0
1,

there exists some minimal element a of I. If a = 0, then by Lemma 6.8, there
exists some extension d ≤ e forcing ϕ(G, 0). If a ̸= 0, then e ?⊬ϕ(G, a−1) hence
e ⊩ ¬ϕ(G, a−1) and e ?⊢ϕ(G, a). By Lemma 6.8, there exists an extension d ≤ e
forcing ϕ(G, a). By Lemma 6.5, d still forces ¬ϕ(G, a− 1).

Let F be a sufficiently generic MA
n (M)-filter, and let H = GF . Every

sufficiently generic filter is n-generic by Lemma 5.10 and Lemma 6.8, thus F
is n-generic. By construction, H ⊆ A, and by Proposition 5.12, the set H
is M-infinite. By Lemma 8.12, F being sufficiently generic, it forces every
Π0

n+1 formula to satisfy induction. Finally, by Proposition 5.13, every Σ0
n+1 or

Π0
n+1 property forced by F will hold for H, thus M∪ {H} |= IΠ0

n+1, which is
equivalent to IΣ0

n+1. Thus, by Lemma 8.6, M[H] |= IΣ0
n+1. Last, by Lemma 8.5,

M[H] |= RCA0.

Case 2: A /∈ ⟨UMn+1

Cn+1
⟩. Let WA

n (M) be a formal version of WA
n where

conditions (σ,Xn−1, Xn) are such that σ is M -coded, Xn−1 ∈ Mn−1 and Xn ∈
Mn.

Lemma 8.13. For every Σ0
n+1 formula ϕ(G, x) and every condition c ∈ WA

n (M),
there is an extension d ≤ c forcing ¬ϕ(G, x) to satisfy induction.
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Proof. Let c = (σ,Xn−1, Xn) ∈ WA
n (M) be a condition and let U be a witness

for c. If c ?⊬U (∃x)ϕ(G, x), then by Lemma 6.22, there exists some extension
d ≤ c forcing (∀x)¬ϕ(G, x), otherwise, if c ?⊢U (∃x)ϕ(G, x), there exists some
extension e ≤ c forcing ϕ(G, b) to hold for some b ∈ M . Note that e can
be chosen to have the same reservoirs as c up to finite changes, hence U is
also a witness for c. Define inductively the following sequence of Σ0

1(Mn−1)
classes (Un)n≤b by letting U0 = U and Un+1 = L2(Un) and let I = {x ≤
b : e ?⊢Ux ϕ(G, x)}. The set I is Σ0

1(Mn), and non-empty (it contains b). As
Mn |= IΣ0

1, there exists some minimal element a of I. If a = 0, then by
Lemma 6.22, there exists some extension d ≤ e forcing ϕ(G, 0) and if a ̸= 0,
then e ?⊬Ua−1 ϕ(G, a − 1) and e ?⊢Ua ϕ(G, a). By Lemma 8.9, there exists an
extension d ≤ e such that d ⊩ ϕ(G, a) and d ⊩ ¬ϕ(G, a− 1).

Let F be a sufficiently generic filter for the WA
n (M) forcing, and let H = GF .

H is an M -infinite subset of A and, just as in case 1, M[H] |= RCA0+ IΣ0
n+1

Main Theorem 1.10. Let n ≥ 1. RCA0+IΣ0
n+1+Σ0

n+1-Subset is Π1
1 conservative

over RCA0 + IΣ0
n+1.

Proof. Assume RCA0 + IΣ0
n+1 ̸⊢ ∀Xϕ(X) for ϕ(X) an arithmetic formula. By

completeness, and the Löwenheim-Skolem theorem, there exists some countable
model M = (M,S) |= RCA0 + IΣ0

n+1 + ¬ϕ(B) for some B ∈ S.
Proposition 8.3 cannot be applied on its current form to Proposition 8.11

in order to build an ω-extension N of M such that N |= RCA0 + IΣ0
n+1 +

Σ0
n+1-Subset, this is because Proposition 8.11 has the added assumption that

the model considered is topped.
This added assumption is not a problem: the initial model M can be

assumed to be topped by B (by restricting it to keep only the elements ∆0
1-

definable using B), and the property of being topped is preserved by every
application of Proposition 8.11 (If a model M̂ is topped by a set Y , then M̂[H]
is topped by Y ⊕H). Therefore, in the proof of Proposition 8.3, all the models
can be assumed to be topped.

Therefore, there exists an ω-extension N of M such that N |= RCA0 +
IΣ0

n+1 + Σ0
n+1-Subset. By Lemma 8.2, N |= (∃X)¬ϕ(X). Hence, RCA0 +

IΣ0
n+1 + Σ0

n+1-Subset ̸⊢ (∀X)ϕ(X).

Thanks to the characterization of the Ginsburg-Sands theorem for T1-spaces
in terms of Σ0

2-Subset+COH by Beham et al. [2] and the amalgamation theorem
from Yokoyama [43], we deduce the following corollary.

Corollary 8.14. RCA0 + IΣ0
2 + GST1 is Π1

1-conservative over RCA0 + IΣ0
2.

Proof. By Cholak, Jockusch and Slaman [3], RCA0+IΣ0
2+COH is Π1

1-conservative
over RCA0+IΣ0

2. By Main Theorem 1.10, so is RCA0+IΣ0
2+Σ0

2-Subset. It follows
by the amalgamation theorem (Theorem 8.7) that RCA0 + IΣ0

2 + Σ0
2-Subset +

COH is Π1
1-conservative over RCA0 + IΣ0

2. We conclude as RCA0 ⊢ GST1 ↔
(Σ0

2-Subset + COH) by Beham et al. [2].
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It is currently unknown whether RCA0+Σ0
2-Subset is Π1

1-conservative over RCA0+
BΣ0

2. We now prove that this is not the case for ∆0
3-Subset.

Proposition 8.15. Let n ≥ 1. RCA0 + ∆0
n+2-Subset is not Π1

1 conservative
over RCA0 + BΣ0

n+1.

Proof. Given a family of formulas Γ, let CΓ be the statement that no Γ-formula
defines a total injection with bounded range. This scheme was introduced by
Seetapun et Slaman [35]. The principle CΣn+2 satisfies the following properties:

1. IΣ0
n+1 ̸⊢ CΣn+2, see Groszek and Slaman [17]

2. BΣ0
n+2 ⊢ CΣn+2. Indeed, by [19, Theorem 2.23], BΣ0

n+2 is equivalent to
the pigeonhole principle for Σ0

n+2 (PHP(Σ0
n+2)) which immediately implies

CΣn+2.

3. BΣ0
n+1 ∧ ¬IΣ0

n+1 ⊢ CΣn+2, see Ko lodziejczyk et al. [22]

The first item yields that RCA0 + IΣ0
n+1 ̸⊢ CΣn+2, the first-order part of

RCA0 + IΣ0
n+1 being IΣn+1, hence RCA0 + BΣ0

n+1 ̸⊢ CΣn+2. The two others
items yield that BΣ0

n+2∨ (BΣ0
n+1∧¬IΣ0

n+1) ⊢ CΣn+2, hence BΣ0
n+1∧ (IΣ0

n+1 →
BΣ0

n+2) ⊢ CΣn+2. By Chong, Lempp and Yang [4], RCA0 + ∆0
n+2-Subset ⊢

IΣ0
n+1 → BΣ0

n+2, so RCA0+BΣ0
n+1+∆0

n+2-Subset ⊢ BΣ0
n+1∧(IΣ0

n+1 → BΣ0
n+2),

hence RCA0 + BΣ0
n+1 + ∆0

n+2-Subset ⊢ CΣn+2. Therefore, ∆0
n+2-Subset is not

Π1
1 conservative over RCA0 + BΣ0

n+1.

9 Open questions

Many questions remain open concerning the pigeonhole hierarchy in reverse
mathematics. Due to its connections with Ramsey’s theorem for pairs, ∆0

2-Subset
was significantly more studied than the other levels. It was proven not to imply
COH over non-standard models by Chong, Slaman and Yang [5], and more
recently over ω-models by Monin and Patey [29]. The question is open for
higher levels of the hierarchy:

Question 9.1. Does Σ0
n-Subset imply COH over RCA0 for some n ∈ N?

The first-order part of ∆0
2-Subset received a lot of attention. It is known to

follow strictly from IΣ0
2 and to imply BΣ0

2. However, the following question is
one of the most important questions of modern reverse mathematics:

Question 9.2. Is RCA0 + ∆0
2-Subset Π1

1-conservative over RCA0 + BΣ0
2?

The answer is conjectured to be negative. By Proposition 8.15, RCA0 +
∆0

3-Subset is not Π1
1 conservative over RCA0 +BΣ0

2, but it might still be the case
for Σ0

2-Subset.

Question 9.3. Is RCA0 + Σ0
2-Subset Π1

1-conservative over RCA0 + BΣ0
2?
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In Section 8, we proved that RCA0 + IΣ0
n + Σ0

n-Subset is Π1
1-conservative

over RCA0 + IΣ0
n, for n ≥ 2. It is however still unknown whether any sufficiently

high level of the pigeonhole hierarchy even implies IΣ0
2.

Question 9.4. Does RCA0 + Σ0
n-Subset imply IΣ0

2 for some n ∈ N?

The well-foundedness principle WF(α) states that there is no infinite decreasing
sequence of ordinals smaller than α. In particular, WF(ωω) admits several
characterizations, among which the statement of the totality of Ackermann’s
function (see Kreuzer and Yokoyama [23]). The principle WF(ωω) is known to
follow strictly from IΣ0

2 and be incomparable with BΣ0
2. Patey and Kokoyama [32]

proved that RCA0 + ∆0
2-Subset is ∀Π0

3-conservative over RCA0, hence does not
imply WF(ωω) over RCA0.

Question 9.5. Does RCA0 + Σ0
n-Subset imply WF(ωω) for some n ∈ N?

A positive answer to Question 9.4 would yield a positive answer to Question 9.5,
while a positive answer to Question 9.5 for n = 2 would yield a negative answer
to Question 9.3.
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