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AN EXAMPLE OF ACCURATE MICROLOCAL TUNNELING
IN ONE DIMENSION

ANTIDE DURAFFOUR AND NICOLAS RAYMOND

Abstract. We investigate the spectral analysis of a class of pseudo-differential opera-
tors in one dimension. Under symmetry assumptions, we prove an asymptotic formula
for the splitting of the first two eigenvalues. This article is a first example of extension
to pseudo-differential operators of the tunneling effect formulas known for the symmetric
electric Schrödinger operator.

1. Introduction

1.1. Motivation. This article is devoted to the spectral analysis of a microlocal version
of the Schrödinger operator −h2∆ + V (x). This differential operator has drawn a lot of
attention since the eighties, especially with the mathematical study of quantum tunnelling.
A manifestation of this phenomenon is the effect of symmetries of V on the spectrum of
the operator in the semiclassical limit h → 0 and has generated much interest lately. The
most prominent results in this direction go back to the papers by Simon [23, 24, 25, 26]
and the famous Helffer-Sjöstrand series of articles [12, 14, 13, 15] establishing tunneling
formulas. These articles motivated the study of purely magnetic tunneling effects, see for
instance [3, 5]. These recent works have cast a new light on the semiclassical analysis of
the magnetic Schrödinger operator by revealing the central role of the microlocal approach,
developped for instance in [27] and also in [17, 16, 18, 20, 19], to tackle spectral problems
(see [1] where this view point has recently been used). Especially, the core of the strategy is
a microlocal dimensional reduction that leads to an effective pseudo-differential operator in
one dimension, even though the original operator is differential. These recent advances lead
us to explore tunneling effect for pseudo-differential operators. In this context, there are no
known tunneling estimates as accurate as those established in the Helffer-Sjöstrand papers
(or in the works on the Witten Laplacian, see, for instance, [11, 21]). The reason for that is
the absence of exponentially sharp estimates for the eigenfunctions in general, even though
there exist a priori bounds, see for instance [18].

In the present article, we tackle the case of a family of pseudo-differential operators in
dimension one, whose form appears in [5] (where the tunneling effect is determined by sub-
principal terms). Namely, we consider the pseudo-differential operator Lh given by

Lh = (a+ hb)w ,

where a and b are real valued and belong to the symbol class

S(R2) = {p = p(x, ξ) ∈ C ∞(R2) : ∀α ∈ N2 ,∃Cα > 0 : |∂αp(x, ξ)| ⩽ Cα} ,
and where pw denotes the semiclassical Weyl quantization defined by

pwψ(x) = (Opwh p)ψ(x) =
1

2πh

∫
R2

ei(x−y)η/hp

(
x+ y

2
, η

)
ψ(y)dydη .
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The operator Lh is selfadjoint and bounded, from L2(R) into L2(R), in virtue of the Calderón-
Vaillancourt theorem.

1.2. Framework, heuristics and main result. In the whole article, one will work under
the following assumption on the principal symbol a.

Assumption 1.1. The real valued function a ∈ S(R2) depends on ξ only and we simply write
a(x, ξ) = a(ξ). It has a unique minimum at ξ = 0, assumed to be 0, which is non-degenerate
and not attained at infinity. Moreover, the function a has a holomorphic extension to the
strip Σr = R+ i(−r, r), for some r > 0.

Near ξ = 0, the symbol a shares the same features as the symbol of the Laplacian ξ2. One
could also consider a in a slightly more general class containing ξ2. To avoid the corresponding
technicalities and to keep the proof as transparent as possible, we choose to focus our attention
on the bounded case. Let us now describe the type of analytic perturbation that we want to
deal with.

Assumption 1.2. The function b belongs to S(R2) and it can be extended to R × Σr holo-
morphically in the sense that b(x, ·) ∈ O(Σr) for all x ∈ R and that b ∈ S(R× Σr).

We recall that we want to discuss the effect of symmetries on the spectrum of pw. That is
why we make the following assumption.

Assumption 1.3. The functions a and b are even in the sense that they satisfy p(−X) =
p(X) for all X = (x, ξ) ∈ R2. Moreover, x 7→ b(x, 0) is non-negative and attains its minima
at exactly two points xℓ < 0 and xr = −xℓ > 0, which are non-degenerate minima. We
assume that b(xℓ, 0) = 0 and we let

b∞ = lim inf
|x|→+∞

b(x, 0) > 0 .

Note that a(ξ) = ξ2 (which doesn’t satisfy Assumption 1.1 though) and b(x, ξ) = V (x)
satisfy Assumption 1.3 as soon as V is a non-degenerate symmetric double well, which is
covered by [12].

Let us now discuss the heuristics that will allow us to guess and formulate a tunneling
estimate for Lh. We notice that

Lh = Opwℏ (a(ℏξ) + hb(x, ℏξ)) , with ℏ = h
1
2 ,

which follows from a dilation in the integral defining the Weyl quantization. Naively, we write
the formal expansion

a(ℏξ) + hb(x, ℏξ) = h

(
a′′(0)

2
ξ2 + b(x, 0)

)
+Oξ(h

3
2 ) .

If we forget the a priori non uniform remainder, we are reduced to a Schrödinger operator
with double well potential. We denote

Mℏ = −ℏ2
a′′(0)

2
∂2x + b(x, 0) ,

and we can recall the classical tunneling estimate (see, for instance, [9, 10, 22] and the
pedagogical paper [4, Theorem 1.2]). The spectral gap between the lowest two eigenvalues
satisfies

λ2(Mℏ)− λ1(Mℏ) = (1 + o(1))Aℏ
1
2 e−

S
ℏ , (1.1)
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where

A = 4

(
a′′(0)

2

) 1
4 (κ

π

) 1
2
√
V (0) exp

(
−
∫ 0

xℓ

∂s
√
V (s)− κ√
V (s)

ds

)
,

and

S =

√
2

a′′(0)

∫ xr

xℓ

√
b(s, 0)ds , V (s) = b(s, 0) , κ = (

√
V )′(xℓ) .

Moreover, for some c > 0, λ3(Mℏ)− λ2(Mℏ) ⩾ cℏ.
Surprisingly, even though hMℏ is a rough approximation of our operator Lh, the estimate

(1.1) provides us with the one term asymptotics of the spectral gap for Lh. In fact, our ana-
lyticity assumptions will allow us to deal with the remainders and describe the eigenfunctions
and their exponential decay (see Section 1.3 below).

Here is the main theorem.

Theorem 1.4. Under Assumptions 1.1, 1.2 and 1.3, we have

λ2(Lh)− λ1(Lh) ∼
h→0

h(λ2(Mℏ)− λ1(Mℏ)) .

Moreover, for some c > 0, λ3(Lh)− λ2(Lh) ⩾ ch
3
2 .

1.3. Organization and strategy. We follow the same guidelines as in the "differential"
case (see, for instance, the Bourbaki exposé [22] and [7, Chapter 6]). On the one hand, we
will see that a corner stone of the analysis is the celebrated Fefferman-Phong inequality (in
an exponentially weighted space). This allows us to extend the Agmon estimates, which are
of local nature, and yields optimal WKB approximations adapted to the pseudo-differential
context. On the other hand, the stationary phase theorem reveals an effective Schrödinger
operator that makes our heuristics rigorous.

In Section 2, we explain why the bottom of the spectrum of Lh is discrete, see Lemma
2.1. Then, we start discussing the spectral analysis of the one-well operator Lh,ℓ obtained
after sealing the right well, see (2.1). The main result in Section 2 is Proposition 2.2, where
we describe WKB quasimodes for Lh,ℓ. The proof of Proposition 2.2 is given in Section 2.2
and it relies on a classical WKB construction for pseudo-differential operators, which is itself
based on the stationary phase theorem (see Appendices A & B).

In Section 3, we provide the reader with the one-term asymptotics of the low-lying eigenval-
ues of Lh,ℓ, see Proposition 3.1. In particular, we show that these eigenvalues are simple and
separated by gaps of order h

3
2 . The proof relies on Proposition 2.2 and on a microlocalization

lemma, namely Lemma 3.3, which shows that the eigenfunctions of Lh,ℓ are microlocalized
near (x, ξ) = (xℓ, 0). The localization in x is more subtle than the localization in ξ since
it originates from the behavior of the subprincipal symbol (which requires the use of the
Fefferman-Phong inequality to be analyzed). These microlocalization results can be adapted
to the two-well situation and they allow to prove a first estimate of the tunneling phenom-
enon, see Proposition 3.2. The spectrum of the double well operator is described, modulo
O(h∞), as the union of the spectra associated with the one-well operators. The eigenvalues
are distributed by duets, each duet being separated from the others by gaps of order h

3
2 .

In Section 4, we improve the localization result near xℓ by establishing optimal Agmon
estimates, see Proposition 4.1. This proposition is an elliptic estimate for the conjugated
operator L φ

h,ℓ = e
φ√
hLh,ℓe

− φ√
h . Of crucial use is again the Fefferman-Phong inequality, but
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this time in the refined symbol class Sδ1,δ2(R2), see Appendix A. In Section 4.2, we apply
Proposition 4.1 to get optimal exponential decay estimates of the one-well eigenfunctions
(see Proposition 4.4) and, most importantly, to a get a very accurate approximation of the
eigenfunctions by the WKB quasimodes, see Corollary 4.5. This approximation looks quite
similar to that in the Schrödinger case (see [4, Proposition 2.7]). However, we emphasize that
we are here in a pseudo-differential context (which is even rather degenerate) and that such
good approximations are rare.

Section 5 is devoted to the proof of Theorem 1.4. To do so, we follow the method originally
described in the Helffer-Sjöstrand papers. We first establish Proposition 5.1 by showing that
the space spanned by the WKB quasimodes is a good approximation of the space spanned
by the eigenfunctions associated with the first two eigenvalues. The key step is Lemma 5.3.

Then, we study the interaction term, see Proposition 5.5. Here, the analysis deviates from
the usual strategy consisting in representing the interaction term by means of an integral
running over an interface between the wells (see [4, Section 4.1] in dimension one). This
strategy cannot be used in our pseudo-differential context since it is based on an integration
by parts. Instead, we directly replace the one-well groundstates appearing in (5.2) by their
WKB expansions and we use the stationary phase theorem. We end up with an integral that
can be computed explicitely thanks to the transport equations determining the amplitude of
the WKB Ansätze.

2. The one-well operator and WKB constructions

This section is devoted to the analysis of the left "one-well" operator Lh,ℓ, obtained by
sealing the well on the right. This operator is defined as follows. We consider

Lh,ℓ := Lh + kℓ(x) , (2.1)

where kℓ is a non-negative smooth function with support in D(xr, η) and such that the
function x 7→ bℓ(x, 0) = b(x, 0) + kℓ(x) = V (x) + kℓ(x) has a unique global minimum at xℓ.

x

y

xℓ xr

V

kℓ

bℓ(x, 0)

x

y

Figure 1. Sealing a well

In a similar way, we define the operator on the right:

Lh,r := Lh + kℓ(−x) .
Considering the symmetry operator

U :

{
ψ 7−→ ψ(−·)

L2(R) −→ L2(R) , (2.2)

we observe that Lh,ℓ = U∗Lh,rU . Thus, by unitary equivalence, all the results that we prove
for Lh,ℓ will hold for Lh,r.
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The following lemma, which is proved in Section 2.1, shows that the one-well operators
have necessarily discrete spectrum below the threshold b∞h.

Lemma 2.1. Let C ∈ (0, b∞). There exists h0 > 0 such that, for all h ∈ (0, h0), the spectrum
of Lh,ℓ below Ch is discrete.

The non-emptiness of the discrete spectrum follows from WKB contructions. We let

Φℓ : x ∈ R 7−→

√
2

a′′(0)

∣∣∣∣∫ x

xℓ

√
bℓ(s, 0)ds

∣∣∣∣ , (2.3)

which is a C ∞(R) function since s 7−→ sgn(s− xℓ)
√
bℓ(s, 0) is smooth.

Proposition 2.2 (WKB quasimodes). Let n ∈ N∗. There exist
(i) a smooth function un(·, h) and a family (un,j)j∈N of elements of S(R) satisfying (in the

sense of asymptotic expansions in S(R) as defined in Appendix A)

un(x, h) ∼
h→0

∑
j⩾0

un,j(x)h
j
2 ,

where un,0 solves the transport equation(
iΦ′

ℓ(x)∂ξbℓ(x, 0) +
a′′(0)

2
Φ′′
ℓ (x) + a′′(0)Φ′

ℓ(x)∂x − (2n− 1)c0

)
un,0 = 0 ,

with c0 =
√

a′′(0)∂2x,xb(xℓ,0)

4
> 0;

(ii) a real number λWKB
n (h) and a family of real number (λn,j)j∈N satisfying

λWKB
n (h) ∼

h→0

∑
j⩾3

λn,jh
j
2 , with λn,3 = (2n− 1)c0 ;

such that the following holds.
Considering a smooth function χ with compact support1 that equals 1 in a neighbourhood

of xℓ and letting
ΨWKB
ℓ,n = h−

1
8χun,he

− Φℓ√
h , (2.4)

we have ∥∥(Lh,ℓ − λWKB
n (h)

)
ΨWKB
ℓ,n

∥∥ = O(h∞)∥ΨWKB
ℓ,n ∥ .

In particular, we have
λn(Lh,ℓ) ⩽ (2n− 1)c0h

3
2 + o(h

3
2 ) .

2.1. Proof of Lemma 2.1. For all z ⩽ C, we have

Lh,ℓ − zh = [a(ξ) + h(bℓ(x, ξ)− z)]w .

Thanks to the Taylor formula,

bℓ(x, ξ) = bℓ(x, 0) + ξR(x, ξ) , with R(x, ξ) =

∫ 1

0

∂ξbℓ(x, tξ)dt ,

so that
a(ξ) + h(bℓ(x, ξ)− z) = a(ξ) + hξR(x, ξ) + h(bℓ(x, 0)− z) .

1From now on, the space of such functions will be denoted C∞
0 (R)
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Let us consider a partition of the unity χ1(ξ) + χ2(ξ) = 1 with χ1 = 1 near ξ = 0. Moreover,
the support of χ1 si chosen so that

M := ∥ξR(x, ξ)∥L∞(suppχ1) + C < b∞ . (2.5)

Then, we write

a(ξ) + h(bℓ(x, ξ)− z) = [a(ξ) + hξR(x, ξ) + h(bℓ(x, 0)− z)]χ1(ξ)

+ [a(ξ) + hξR(x, ξ) + h(bℓ(x, 0)− z)]χ2(ξ) .

There exist ϵ, h0 > 0 such that for all h ∈ (0, h0), all (x, ξ) ∈ R2,

[a(ξ) + hξR(x, ξ) + h(bℓ(x, 0)− z)]χ2(ξ) ⩾ ϵχ2(ξ) ,

and
[a(ξ) + hξR(x, ξ) + h(bℓ(x, 0)− z)]χ1(ξ) ⩾ h(bℓ(x, 0)−M)χ1(ξ) .

Thanks to (2.5), there exist ϵ0 > 0 and W ∈ C ∞
0 (R) such that

bℓ(x, 0)−M +W (x) ⩾ ϵ0 .

Therefore,
a(ξ) + h(bℓ(x, ξ)− z) + hW (x)χ1(ξ) ⩾ min(ϵ, ϵ0h) = ϵ0h ,

as soon as h is small enough. With the Fefferman-Phong inequality (see Appendix A), we
deduce that, in the sense of quadratic forms and for h small enough,

Lh,ℓ − hz + hKh ⩾
ϵ0h

2
, Kh = (W (x)χ1(ξ))

w .

Thus, the selfadjoint operator Lh,ℓ − hz + hKh is bijective. Since Kh is compact, it follows
that Lh,ℓ − hz is Fredholm with index 0. The discreteness of the spectrum below Ch follows
from the analytic Fredholm theory.

Remark 2.3. The proof of Lemma 2.1 can easily be adapted to the double well operator Lh.
Therefore, it indeed makes sense to study the spectral gap.

2.2. Proof of Proposition 2.2.

2.2.1. WKB expansions. Proposition 2.2 is essentially a consequence of the following, stronger
one.

Proposition 2.4 (WKB constructions). Let n ∈ N∗. There exist a family of smooth functions
(un,j)j⩾0 and a family of real numbers (λn,j)j⩾3 such that the following holds. Let J ⩾ 1 and
χ ∈ C ∞

0 (R) equal to 1 on a segment I containing xℓ. Letting

u
[J ]
n,h =

J∑
j=0

h
j
2un,j , λ[J ]n (h) =

J+3∑
j=3

λn,jh
j
2 ,

we have ∥∥∥e Φℓ√
h

(
Lh,ℓ − λ[J ]n (h)

) (
χu

[J ]
n,he

− Φℓ√
h

)∥∥∥
L∞(I)

= O(h
J+4
2 ) . (2.6)

Explicitely, λn,3 = (2n− 1)c0 and we can take

u1,0(x) =

(
Φ′′
ℓ (xℓ)

π

)1/4

exp

(
−
∫ x

xℓ

(
Φ′′
ℓ (s)− Φ′′

ℓ (xℓ)

2Φ′
ℓ(s)

+
i

a′′(0)
∂ξb(s, 0)

)
ds

)
. (2.7)



7

Proof. In the following, we drop the reference to n. Setting L Φℓ
h,ℓ := e

Φℓ√
hLh,ℓe

− Φℓ√
h , we want

to find functions uj and numbers λj such that

(L Φℓ
h,ℓ − λ[J ](h))(χu

[J ]
h ) = OL∞(I)(h

J+4
2 ) . (2.8)

Thanks to Lemma B.2, the action of L Φℓ
h,ℓ on C ∞

0 (R) is that of a series of differential operators:
there exists a family of differential operators (Pγ(x,Dx))0⩽γ⩽J+3 such that

L Φℓ
h,ℓ (χu

[J ]
h ) =

∑
0⩽γ⩽J+3

hγ/2Pγ(x,Dx)(χu
[J ]
h ) +OL∞(R)(h

J+4
2 ) ,

where the first few operators are explicitely given by
P0(x,Dx) = a(0) = 0,
P1(x,Dx) = iΦ′

ℓ(x)a
′(0) = 0,

P2(x,Dx) = −a′′(0)
2

Φ′
ℓ(x)

2 + bℓ(x, 0) = 0,

P3(x,Dx) = iΦ′
ℓ(x)∂ξbℓ(x, 0) +

a′′(0)
2

Φ′′
ℓ (x) + a′′(0)Φ′

ℓ(x)∂x .

(2.9)

Therefore (L Φ
h,ℓ − λ[J ](h))(χu

[J ]
h ) = OL∞(I)(h

J+4
2 ) if and only if λ0 = λ1 = λ2 = 0 and the

(λj, uj) satisfy the transport equations{
(P3(x,Dx)− λ3)u0 = 0,
(P3(x,Dx)− λ3)uj = bj + λj+3u0 , j ⩾ 1,

(2.10)

where bj := −Pj+3(x,Dx)u0 −
j+2∑
γ=4

(Pγ(x,Dx)− λγ)uj−γ+3.

Let us start by solving the first transport equation, which can be written as(
ir(λ3, x) + Φ′′

ℓ (x)

(
1

2
− λ3
a′′(0)Φ′′

ℓ (xℓ)

)
+ Φ′

ℓ(x)∂x

)
u0 = 0 , (2.11)

where

r(λ3, x) =
1

a′′(0)

(
Φ′
ℓ(x)∂ξbℓ(x, 0)− iλ3

Φ′′
ℓ (x)− Φ′′

ℓ (xℓ)

Φ′′
ℓ (xℓ)

)
.

It satisfies that x 7−→ r(λ3,x)
Φ′

ℓ(x)
is in C ∞(R). Since Φ′

ℓ vanishes linearly at xℓ, for every λ3 ∈ R,
the differential equation (P3(x,Dx)− λ3)u0 = 0 can be solved on ]xℓ,+∞[ and on ]−∞, xℓ[.
In both cases, the space of solutions is spanned by the function

x 7−→ Φ′
ℓ(x)

λ3
a′′(0)Φ′′

ℓ
(xℓ)

− 1
2 exp

(
−i
∫ x

xℓ

r(λ3, s)

Φ′
ℓ(s)

ds

)
. (2.12)

Therefore, there is a smooth solution on R solution if and only if there exists n ∈ N⩾1 such
that

λ3
a′′(0)Φ′′

ℓ (xℓ)
− 1

2
= n− 1 . (2.13)

From now on, we take λ3 = λn,3 = (2n− 1)c0. With this choice, (2.12) becomes

x 7−→ Φ′
ℓ(x)

n−1 exp

(
−i
a′′(0)

∫ x

xℓ

∂ξb(s, 0)ds

)
exp

(
−(2n− 1)

∫ x

xℓ

Φ′′
ℓ − Φ′′

ℓ (xℓ)

2Φ′
ℓ

ds

)
. (2.14)
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The other transport equations in (2.10) become

(ir(λn,3, x)− (n− 1)Φ′′
ℓ (x) + Φ′

ℓ(x)∂x)un,j = bn,j + λn,j+3un,0 . (2.15)

Letting ũn,j := un,j exp
(
i
∫ x
xℓ

r(λn,3,s)

Φ′
ℓ(s)

ds
)

and b̃n,j := bn,j exp
(
i
∫ x
xℓ

r(λn,3,s)

Φ′
ℓ(s)

ds
)
, (2.16) becomes

(−(n− 1)Φ′′
ℓ (x) + Φ′

ℓ(x)∂x) ũn,j = b̃n,j + λn,j+3ũn,0 . (2.16)

Here again, by the theory of ODEs, the solutions in (−∞, xℓ) and (xℓ,+∞) form one
dimensional vector spaces. To prove that there exists global solutions it suffices to prove that
there exists a C ∞ solution well defined near xℓ.

The Taylor formula ensures the existence of (αkn,j)0⩽k⩽n−1 ∈ Rn and of rn,j ∈ C ∞(Neigh(xℓ))
such that, near xℓ,

b̃n,j(x) =
(
α0
n,j + α1

n,j(Φ
′
ℓ(x))

2 + · · ·+ αn−1
n,j (Φ′

ℓ(x))
n−1 + rn,j(x)(Φ

′
ℓ(x))

n
)
Φ′′
ℓ (x) .

Setting ṽn,j =
∑n−2

k=0

αk
n,j

k−(n−1)
(Φ′

ℓ)
k and choosing λn,j+3 = αn−1

n,j , we get(
−(n− 1)Φ′′

ℓ + Φ′
ℓ

d

dx

)
(ũn,j − ṽn,j) = (Φ′

ℓ)
nr̃n,j with r̃n,j ∈ C ∞(Neigh(xℓ)). (2.17)

This last equation has smooth solutions of the form (Φ′
ℓ)
ns̃n,j in a neighbourhood of xℓ. This

proves that the equations (2.10) have smooth solutions on R and concludes the proof. □

2.2.2. Proof of Proposition 2.2. For all n ∈ N⩾1, the Borel lemma provides us with
— a smooth function un(·, h) having the asymptotic expansion

∑
j⩾0 un,j(x)h

j
2 ,

— a number λWKB
n (h) having the asymptotic expansion

∑
j⩾3 λn,jh

j
2 ,

with the un,j and λn,j given by Proposition 2.4. Let us recall that ΨWKB
ℓ,n is defined in (2.4).

We first deal with n = 1,

∥ΨWKB
ℓ,1 ∥2 = h−

1
4

∫
R
χ(x)2|u1,h(x)|2e−

2Φℓ(x)√
h dx .

We recall that, on the support of χ, we have u1,h = u1,0 +O(h
1
2 ) and we apply the Laplace

method to get

∥ΨWKB
ℓ ∥2 =

√
π

Φ′′
ℓ (xℓ)

|u1,0(xℓ)|2 +O(h
1
2 ) = 1 +O(h

1
2 ) ,

where we used (2.7) (especially the normalization constant). Thanks to Proposition 2.4, we
obtain ∥∥(Lh,ℓ − λWKB

1 (h))
)
ΨWKB
ℓ

∥∥
L2(I)

= O(h∞) .

Then, we have∥∥(Lh,ℓ − λWKB
1 (h)

)
ΨWKB
ℓ

∥∥
L2(∁I)

=
∥∥∥e− Φℓ√

h (L Φℓ
h,ℓ − λWKB

1 (h))(h−
1
8χu1,h)

∥∥∥
L2(∁I)

⩽
∥∥∥e− Φℓ√

h

∥∥∥
L∞(∁I)

∥∥∥(L Φℓ
h,ℓ − λWKB

1 (h))(h−
1
8χu1,h)

∥∥∥
L2(∁I)

= O(h∞) ,

where we used min∁I Φℓ > 0 and Lemma B.2 for the last estimate. By using the spectral
theorem, this establishes Proposition 2.2 when n = 1.
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For n ⩾ 2, the estimate follows in the same way except for the estimate of the L2-norm
where we use Lemma B.3 (to deal with the fact that un,0 vanishes at xℓ), which gives O(h∞) =
O(h∞)∥ΨWKB

ℓ,n ∥.

3. First tunneling estimate

This section is devoted to establishing the following two propositions.

Proposition 3.1 (Microlocal harmonic approximation). We have, for all n ⩾ 1,

λn(Lh,ℓ) = (2n− 1)c0h
3
2 + o(h

3
2 ) .

Proposition 3.2 (Rough tunneling estimate). We have

λ2(Lh)− λ1(Lh) = O(h∞) , λ1(Lh) = λ1(Lh,ℓ) +O(h∞) ,

and for all c ∈ (0, c0), letting h small enough, λ3(Lh)− λ2(Lh) ⩾ ch
3
2 .

.

3.1. Microlocal harmonic approximation.

3.1.1. Microlocalization.

Lemma 3.3 (Localization of eigenfunctions). Let n ∈ N⩾1 and consider the n-th normalized
eigenfunction ψh,n of Lh,ℓ. Let δ ∈

(
0, 1

6

)
and ρ ∈ C ∞

0 (R) such that ρ = 1 in a neighbourhood
of 0. We denote ρδ : R ∋ s 7−→ ρ(h−δs). Then, we have

ψh,n = ρδ(ξ)
wψh,n +O(h∞)ψh,n , ψh,n = ρδ(x− xℓ)ψh,n +O(h∞)ψh,n .

Proof. In order to lighten the notations we will write, only in this proof, λn(h) = λn(Lh,ℓ)

and recall that λn(h) = O(h
3
2 ). We consider the auxilliary function ρ̃ ∈ C ∞

0 (R) equal to 1
near 0 and such that (1− ρ)ρ̃ = 0.

First, let us consider δ ∈ (0, 1
2
) and prove the microlocalization in ξ. It suffices to find some

pseudo-differential operator Qh solving

Qh(Lh,ℓ − λn(h)) = 1− ρδ(ξ)
w +O(h∞)

and evaluate the previous expression at ψh,n. By Taylor expanding a near 0 at first order, we
have c > 0 such that

a(ξ) + hb(x, ξ) + ρ̃δ(ξ)− λn(h) ⩾ ch2δ.

Using then the Fefferman-Phong inequality in Sδ(R2) this proves that Lh,ℓ − λn(h) + ρ̃δ(ξ)
w

is bijective (for h small enough). Thanks to the pseudo-differential calculus, we know that
(Lh,ℓ − λn(h) + ρ̃δ(ξ)

w)−1 is a pseudo-differential operator, of symbol qh ∈ h−2δS3δ and of
norm O(h−2δ). We obtain

qwh (Lh,ℓ − λn(h)) = 1− qwh ρ̃δ(ξ)
w. (3.1)

Finally, notice that (1 − ρδ)ρ̃δ = 0 and ∥qwh ∥ = O(h−2δ). Multiplying pseudo-differential
operators with disjoint supports (1− ρδ(ξ)

w)qwh ρ̃δ(ξ)
w = O(h∞) thus

(1− ρδ(ξ)
w)qwh (Lh,ℓ − λ) = 1− ρδ(ξ)

w − (1− ρδ(ξ)
w)qwh ρ̃δ(ξ)

w = 1− ρδ(ξ)
w +O(h∞). (3.2)

To conclude it suffices to use (1− ρδ(ξ)
w)qwh (Lh,ℓ−λn(h))ψh,n = 0 and the previous equality.
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Let us now turn to the localization in x. We solve once again, letting δ ∈ [0, 1
4
),

Qh(Lh,ℓ − λn(h)) = 1− ρδ(x− xℓ) +O(h∞) .

Notice that by Taylor expanding b to the first order and using Young’s inequality

a(ξ) + h(b(x, ξ) + ρ̃δ(x− xℓ))− λn(h) ≳ h1+2δ.

Using the Fefferman-Phong inequality in Sδ(R2), there exists c > 0 such that, in terms of
quadratic forms,

Lh,ℓ + hρ̃δ(x− xℓ)− λn(h) ≳ h1+2δ − h3−4δ ⩾ ch1+2δ.

This proves that Lh,ℓ + hρ̃δ(x− xℓ)− λn(h) is invertible. We then write

1 = (Lh,ℓ+hρ̃δ(x−xℓ))−λn(h))−1(Lh,ℓ−λ)+h(Lh,ℓ+hρ̃δ(x−xℓ)−λn(h))−1ρ̃δ(x−xℓ). (3.3)

By the pseudo-differential calculus we know that the operator (Lh,ℓ+ hρ̃δ(x− xℓ)−λn(h))
−1

is a pseudo-differential operator, we denote qh its symbol belonging to h−1−2δS3δ(R2) and
obtain

qwh (Lh,ℓ − λn(h)) = 1− hqwh ρ̃δ(x− xℓ). (3.4)
Finally, since (1 − ρδ)ρ̃δ = 0 and ∥qwh ∥ = O(h−1−2δ), by multiplication of pseudo-differential
operators with disjoint supports (1− ρδ(x− xℓ))q

w
h ρ̃δ(x− xℓ) = O(h∞) thus

(1− ρδ(x− xℓ))q
w
h (Lh,ℓ − λn(h)) = 1− ρδ(x− xℓ) +O(h∞). (3.5)

□

3.1.2. Proof of Proposition 3.1. We only have to prove the lower bound. For that purpose, let
us consider an orthonormal family of eigenfunctions (ψj)1⩽j⩽n associated with the eigenvalues
(λj(Lh,ℓ))1⩽j⩽n and set

E = span
1⩽j⩽n

ψj .

We have, for all ψ ∈ E,
⟨Lh,ℓψ, ψ⟩ ⩽ λn(Lh,ℓ)∥ψ∥2 .

Thanks to the Calderón-Vaillancourt theorem and Lemma 3.3, we find that

⟨Lh,ℓψ, ψ⟩ = ⟨(a(ξ) + hbℓ(x, ξ))
wψ, ψ⟩ = ⟨(a(ξ) + hbℓ(x, ξ))

wρδ(ξ)
wψ, ρδ(ξ)

wψ⟩+O(h∞)∥ψ∥2 .
Then, by using the composition theorems for pseudo-differential operators in the class Sδ(R2)
(see, for instance, [28, Theorems 4.17, 4.18 & 4.24]) and support considerations on ρ′δ, we get

⟨Lh,ℓψ, ψ⟩ = ⟨([a(ξ) + hbℓ(x, ξ)]ρ
2
δ(ξ))

wψ, ψ⟩+O(h∞)∥ψ∥2 .
By the Taylor formula, we have

hbℓ(x, ξ) = hbℓ(x, 0) + hξr(x, ξ) , r ∈ S(R2) ,

and, by using the Young inequality 2h|ξr(x, ξ)| ⩽ hδξ2 + h2−δ|r(x, ξ)|2, we get

[a(ξ) + hbℓ(x, ξ)]ρ
2
δ ⩾

[
a′′(0)

2
ξ2(1− C̃hδ) + hbℓ(x, 0)− Ch2−δ

]
ρ2δ .

The Fefferman-Phong inequality in Sδ(R) (recalled in Appendix A.2) yields

⟨Lh,ℓψ, ψ⟩ ⩾ Qelec
h (ρwδ ψ)− Ch2−4δ∥ψ∥2 ,
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where

∀φ ∈ H2(R), Qelec
h (φ) =

a′′(0)

2
(1− C̃hδ)∥hDxφ∥2 + h

∫
R
b(x, 0)|φ|2dx .

Hence, for all ψ ∈ E,

Qelec
h (ρwδ ψ) ⩽ (λn(Lh,ℓ) + Ch2−4δ)∥ρwδ ψ∥2 .

Due to Lemma 3.3, we have dim(ρwδ E) = n and the min-max theorem implies that

λn(Q
elec
h ) ⩽ λn(Lh,ℓ) + Ch2−4δ .

By choosing δ ∈ (0, 1
8
) and using the harmonic approximation

(2n− 1)c0h
3/2 + o(h3/2) ⩽ λn(Q

elec
h ) ⩽ λn(Lh,ℓ) + o(h3/2) ,

the lower bound follows.

3.2. Proof of Proposition 3.2.

3.2.1. Localization. Let us state a localization result for the eigenfunctions of the double well
operator, which follows from the same arguments as in the proof of Lemma 3.3.

Lemma 3.4 (Localization of Lh). Let M > 0 and ρ ∈ C ∞
0 (R) such that 0 ⩽ ρ ⩽ 1 and ρ is

equal to 1 in a small neighbourhood of 0. Letting δ ∈ (0, 1
8
) we set, for all x ∈ R,

ρδ(x) = ρ(h−δ(x− xℓ)) + ρ(h−δ(x− xr)) .

For all n ⩾ 1, we have
ρδ ψh,n = ψh,n +O(h∞) . (3.6)

Recalling the notation introduced at beginning of Section 2, we consider the tensored
operator

L mod
h = Lh,ℓ ⊕ Lh,r acting on L2(R)⊕ L2(R).

Its low-lying spectrum is made of eigenvalues of multiplicity two:

∀n ∈ N⩾1 , λ2n−1(L
mod
h ) = λ2n(L

mod
h ) = λn(Lh,ℓ). (3.7)

3.2.2. End of the Proof of Proposition 3.2. Let us consider the spaces

Fh,n = span(ψn,ℓ, ψn,r) ,

which is of dimension two thanks to Lemma 3.3. Then, for all ψh ∈ Fh, we have

(Lh − λn(Lh,ℓ))ψh = O(h∞)∥ψh∥ ,
where we used the O(h∞)-orthogonality of (ψn,ℓ, ψn,r). From the spectral theorem, we deduce
that there are at least two eigenvalues of Lh that are O(h∞)-close to λn(Lh,ℓ). Thus,

∀n ∈ N⩾1 , λn(Lh) ⩽ λn(L
mod
h ) +O(h∞) . (3.8)

For all ψ ∈ L2(R), we let

Q(ψ) := ⟨Lhψ, ψ⟩ , Q⋆(ψ) := ⟨Lh,⋆ψ, ψ⟩ for ⋆ = ℓ, r .

For all (ψ, ψ̃) ∈ L2(R)⊕ L2(R), we let

Q⊕(ψ, ψ̃) := Qℓ(ψ) +Qr(ψ̃) .
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Let us then consider an orthonormal family of eigenfunctions (ψj)1⩽j⩽n associated with the
eigenvalues (λj(Lh))1⩽j⩽n and set

E = span
1⩽j⩽n

ψj .

We have, for all ψ ∈ E,

Q(ψ) ⩽ λn(Lh)∥ψ∥2 . (3.9)

We consider χℓ ∈ C ∞
0 (R) supported outside (xr − η, xr + η) and satisfying χℓ = 1 near xℓ.

This allows to define by symmetry χr = χℓ(−·) and χ = χℓ + χr. Thanks to Lemma 3.3, we
have, for all ψ ∈ E,

Q(ψ) ⩾ Q(χψ) +O(h∞)∥ψ∥2 ,

and also χℓLhχrψ = O(h∞)∥ψ∥. We infer that

Q(ψ) ⩾ Q(χψ) +O(h∞)∥ψ∥2 ⩾ Q⊕(χℓψ, χrψ) +O(h∞)∥ψ∥2 .

Combining this last estimate with (3.9), we get

λn(Lh) ⩾ max
ψ∈E\{0}

Q⊕(χℓψ, χrψ)

∥ψ∥2
+O(h∞) ,

so that, again by Lemma 3.3, we have

λn(Lh) ⩾ max
ψ∈E\{0}

Q⊕(χℓψ, χrψ)

(1 +O(h∞))(∥χℓψ∥2 + ∥χrψ∥2)
+O(h∞) .

By noticing that E ∋ ψ 7→ (χℓψ, χrψ) is injective, we deduce that

λn(Lh) ⩾ (1 +O(h∞)) min
F⊂L2(R)⊕L2(R)

dimF=n

max
(ψ,ψ̃)∈F\{0}

Q⊕(ψ, ψ̃)

∥ψ∥2 + ∥ψ̃∥2
+O(h∞) .

By the min-max theorem, it follows that

λn(Lh) ⩾ (1 +O(h∞))λn(Lh,mod) +O(h∞) .

Recalling (3.8), (3.7), and Proposition 3.1, this ends the proof.

4. Exponential estimates of the eigenfunctions

Exponential decay estimates in the context of Schrödinger operators usually follow from
the famous Agmon estimates ([2, 12]). These estimates can be interpreted as elliptic estimates
for a conjugated operator (by a suitable exponential).

Let φ ∈ C ∞(R) such that φ′ = φ1 + h
1
4φ2 where φ1 ∈ S(R), φ2 ∈ S 1

4
(R). We will work

with the conjugated operator:

L φ
h,ℓ = e

φ√
hLh,ℓe

− φ√
h . (4.1)
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4.1. A functional inequality.

Proposition 4.1. Let C0, R > 0 and φ ∈ C ∞(R) such that φ′ = φ1+h
1
4φ2 where φ1 ∈ S(R),

φ2 ∈ S 1
4
(R) satisfy φ1(xℓ) = φ2(xℓ) = 0 and

∀x ∈ ∁B(xℓ, Rh
1/4), bℓ(x, 0)−

a′′(0)

2
φ′(x)2 ⩾ C0h

1
2 . (4.2)

We also assume that there exists C > 0 such that

∀x ∈ B(xℓ, Rh
1
4 ) |φ(x)| ⩽ Ch

1
2 . (4.3)

Then, for all M < C0, there exist c, h0 > 0 such that, for all h ∈ (0, h0) and λ < Mh
3
2 , for

all v ∈ L2(R),

h
3
2∥v∥2

L2(∁B(xℓ,Rh
1
4 ))

⩽ c∥(L φ
h,ℓ − λ)v∥∥v∥+ ch

3
2∥v∥2

L2(B(xℓ,Rh
1
4 ))
. (4.4)

4.1.1. An elliptic estimate. The proof of Proposition 4.1 is mainly a consequence of the
following coercivity estimate, which is based on quadratic form manipulations like in the
Schrödinger case.

Lemma 4.2. There exist h0, ϵ, C > 0 such that, for all h ∈ (0, h0), all v ∈ L2(R) and all
λ ∈ R, we have

Re ⟨(L φ
h,ℓ − λ)v, v⟩ ⩾ ⟨(hbℓ(x, 0)− h

a′′(0)

2
φ′(x)2 − λ)v, v⟩+ Ch

3
2
+ϵ∥v∥2L2(R) .

Proof. Thanks to Lemma A.2, we have

L φ
h,ℓ = pwφ +OS1/4(R)(h

2) , pφ(x, ξ) = a(ξ + ih
1
2φ′) + hbℓ(x, ξ + ih

1
2φ′) . (4.5)

Since φ′ is bounded and by the Taylor formula, we find rh belonging to S(R2) such that

Re(pφ) = a(ξ) + hbℓ(x, ξ)− hφ′(x)2
a′′(ξ)

2
+ h2rh(x, ξ) .

We have

Re(pφ) = a(ξ) + hbℓ(x, 0)− hφ′(x)2
a′′(0)

2
+ h(r0(ξ)φ

′(x)2 + ξr1(x, ξ)︸ ︷︷ ︸
=Rh

) + h2rh(x, ξ) , (4.6)

with r0(ξ) = a′′(ξ)
2

− a′′(0)
2

and r1 ∈ S(R2) given by the Taylor Formula. By using that
φ′ ∈ L∞(R), there exists C > 0 such that, for all (x, ξ) ∈ R2, we have |Rh(x, ξ)| ⩽ C

√
a(ξ).

Using Young’s inequality with ϵ ∈ (0, 1
6
), we get

Ch
√
a(ξ) ⩽

C

2
(hϵa(ξ) + h2−ϵ),

so that
hRh(x, ξ) + h2rh(x, ξ) + Chϵ

(
a(ξ) + h2−2ϵ

)
⩾ 0 .

The symbol in the left-hand side belongs to S 1
4
,0(R2) defined in (A.1). We can factor out hϵ

and then apply the Fefferman-Phong inequality in the class S 1
4
,0(R2) (see Theorem A.1 for

details). This gives, in the sense of quadratic forms,[
hRh(x, ξ) + h2rh(x, ξ) + Chϵ

(
a(ξ) + h2−2ϵ

)]w
⩾ −Ch

3
2
+ϵ .
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Combining this with (4.6) and (4.5), we obtain, for all v ∈ L2(R),

Re ⟨(L φ
h,ℓ − λ)v, v⟩ = ⟨(ReL φ

h,ℓ − λ)v, v⟩

⩾ ⟨(1− Chϵ)awv, v⟩+ ⟨(hbℓ(x, 0)− h
a′′(0)

2
φ′(x)2 − λ)v, v⟩ − Ch

3
2
+ϵ∥v∥2.

Since a is non-negative, the result follows. □

4.1.2. Proof of Proposition 4.1. Applying Lemma 4.2 and using the condition on λ, we get

h

∫
R

(
bℓ(x, 0)− φ′(x)2

a′′(0)

2
− (M + chϵ)h

1
2

)
|v|2dx ⩽ Re ⟨(L φ

h,ℓ − λ)v, v⟩ ,

so that, with (4.3),

h

∫
|x−xℓ|⩾Rh

1
4

(
bℓ(x, 0)− φ′(x)2

a′′(0)

2
− (M + chϵ)h

1
2

)
|v|2dx

⩽ Re ⟨(L φ
h,ℓ − λ)v, v⟩+ ch

3
2∥v∥2

L2(B(xℓ,Rh
1
4 ))
.

Then, (4.2) provides us with

h
3
2

∫
|x−xℓ|⩾Rh

1
4

(C0 − (M + chϵ)))|v|2dx ⩽ Re ⟨(L φ
h,ℓ − λ)v, v⟩+ ch

3
2∥v∥2

L2(B(xℓ,Rh
1
4 ))
.

It remains to use the Cauchy-Schwarz inequality and the conclusion follows.

4.2. Consequences. Let us now analyze the exponential decay of the eigenfunctions of Lh,ℓ.
We recall that Φℓ is given by (2.3)

Φℓ : x ∈ R 7−→

√
2

a′′(0)

∣∣∣∣∫ x

xℓ

√
bℓ(s, 0)ds

∣∣∣∣ . (4.7)

The behavior at infinity of Φℓ will not be important in the analysis. That is why we consider
a bounded version of it, denoted by Φ̃ℓ. We take A > 0 such that, for all x /∈ [−A,A],
Φℓ(x) > Φℓ(xr) and define the following.

Lemma 4.3. There exists a function Φ̃ℓ ∈ S(R) such that:

— Φ̃ℓ = Φℓ on [−A,A],
— Φ̃ℓ is constant on ∁[−2A, 2A],
— Φ̃ℓ(±2A) < Φℓ(±2A),
— for all x ∈ R, (x− xℓ)Φ̃

′
ℓ(x) ⩾ 0,

— |Φ̃′
ℓ| ⩽ |Φ′

ℓ| thus Φ̃ℓ ⩽ Φℓ.

Proof. We consider χ0 ∈ C ∞
0 (R) such that χ0 = 1 on [−A,A], χ0 = 0 on R \ [−2A, 2A] and

0 ⩽ χ0 ⩽ 1, and define

∀x ∈ R, Φ̃ℓ(x) =

∫ x

xℓ

χ0(s)Φ
′
ℓ(s)ds.

It is then straightforward that Φ̃ℓ satisfies the desired requirements. □
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Due to Proposition 3.1, there exist h0,M > 0 such that, for all h ∈ (0, h0),

λ1(Lh,ℓ) ⩽Mh
3
2 . (4.8)

In the following, we let µ(h) = λ1(Lh,ℓ) .

Corollary 4.4 (Agmon estimates). Let ε ∈ (0, 1) and ψh a normalized eigenfunction of Lh,ℓ

associated with the eigenvalue µ(h). There exist C, h0 > 0 such that, for all h ∈ (0, h0),

∥e(1−ε)Φ̃ℓ/
√
hψh∥ ⩽ C∥ψh∥ .

Proof. We let φ =
√
1− εΦ̃ℓ. It satisfies the assumptions of Proposition 4.1 with C0 > M

and φ2 = 0. Indeed, we have

bℓ(x, 0)−
a′′(0)

2
φ′(x)2 ⩾ bℓ(x, 0)−

a′′(0)

2
(Φ′

ℓ)
2 = ϵbℓ(x, 0) ,

and there remains to use the quadratic behavior of bℓ(·, 0) near xℓ and to choose R large
enough to get (4.2).

Then, we consider the eigenvalue equation

(Lh,ℓ − µ(h))ψh = 0 ,

which is equivalent to (
L φ
h,ℓ − µ(h)

)
v = 0 , v = e

φ√
hψh ,

where we recall the notation (4.1). Applying Proposition 4.1 to v = e
φ√
hψh, we find that

∥v∥ ⩽ C∥v∥
L2(B(xℓ,Rh

1
4 ))
.

Thus, by using that φ/
√
h is bounded on B(xℓ, Rh

1
4 ), we get some constant C > 0 such that

∥eφ/
√
hψh∥ ⩽ C∥ψh∥ .

□

Let us now turn to the WKB approximation of ψh. More precisely, we want to have an
exponentially sharp approximation of ψh on the interval K = [−A, xr − η], for η > 0 small
enough. This will follow from Proposition 4.1. We consider χ

ℓ
∈ C ∞

0 (R) such that χ
ℓ
⩾ 0,

χ
ℓ
= 1 on [−2A, 2A] and χ

ℓ
= 0 on (−∞,−3A) ∪ (3A,+∞).

We recall that our WKB quasimode is ΨWKB
ℓ := h−

1
8χ

ℓ
e
− Φℓ√

hu1,h, see Proposition 2.2.

Corollary 4.5 (WKB approximation). Let Πh,ℓ the projection on the groundstate of Lh,ℓ.
Then, we have ∥∥∥e Φℓ√

h (ΨWKB
ℓ − Πh,ℓΨ

WKB
ℓ )

∥∥∥
L2(K)

= O(h∞) .

Proof. The idea to use Proposition 4.1 with a weight φ that is a refined version of
√
1− ϵΦ̃ℓ

close to xℓ. For that purpose, for R > 0, N ∈ N, we let

φh(x) := Φ̃ℓ(x)−Nh
1
2

∫ x

xℓ

ρR,h(s)
Φ̃′
ℓ(s)

Φ̃ℓ(s)
ds ,
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where the function ρR,h is given by

ρR,h(s) := ρ

(
s− xℓ

Rh
1
4

)
,

with ρ ∈ C ∞
0 (R) satisfying ρ ≡ 1 on ∁B(0, 1), ρ ⩾ 0 and supp ρ ∈ ∁B(0, 1

2
). We notice that

φ′
h = Φ̃′

ℓ − h
1
4NρR,h

h
1
4 Φ̃′

ℓ

Φ̃ℓ

,

where Φ̃′
ℓ ∈ S(R) and NρR,h

h
1
4 Φ̃′

ℓ

Φ̃ℓ

∈ S 1
4
(R).

Let us establish (4.2) with C0 > M (M being given in (4.8)). Away from a small neigh-
bourhood of xℓ denoted by Neigh(xℓ), (independent of h), we have min∁Neigh(xℓ) Φ̃ℓ > 0 and
this implies, for all x ∈ ∁Neigh(xℓ),

(φ′
h(x))

2 ⩽ Φ̃′2
ℓ (x)

(
1− h

1
2

N

min∁Neigh(xℓ) Φ̃ℓ

)2

=
2bℓ(x, 0)

a′′(0)

(
1− 2h

1
2

N

min∁Neigh(xℓ) Φ̃ℓ

+O(h)

)
.

(4.9)
Thus (4.2) is satisfied outside Neigh(xℓ). Then, we choose R = R(N) so that Φℓ(xℓ ±
1
2
Rh1/4) ⩾ Nh

1
2 . Thus Nh

1
2

Φℓ
⩽ 1 on {ρR = 1}. Therefore, for all x ∈ ∁B(xℓ, Rh

1/4)∩Neigh(xℓ),

bℓ(x, 0)−
a′′(0)

2
φ′
h(x)

2 ⩾
a′′(0)

2
Φ′2
ℓ

(
1− (1− Nh

1
2

Φℓ

)2

)

⩾ Nh
1
2
a′′(0)

2
c

(
2− Nh

1
2

Φℓ

)

⩾ Nh
1
2
a′′(0)

2
c ,

where we used that (Φ′
ℓ)

2

Φℓ
is continuous near xℓ and bounded from below by a constant c > 0.

Taking N large enough the condition (4.2) is satisfied with C0 > M .

When getting further from xℓ, Φℓ increases, thus we have for h small enough and x ∈
B(xℓ, Rh

1
4 )

−Nh
1
2 ln 4 ∼ −Nh

1
2 ln

(
maxΦℓ(±Rh

1
4 )

minΦℓ(±1
2
Rh

1
4 )

)
⩽ φh(x) ⩽ Φℓ(x) ⩽ maxΦℓ(±Rh

1
4 ) = O(h

1
2 ) .

This proves that the condition (4.3) is fulfilled.

Let us consider v = e
φh√
h (ΨWKB

ℓ − ΠhΨ
WKB
ℓ ), which satisfies

(L φh

h,ℓ − µ(h))v = e(φh−Φℓ)/
√
h(L Φℓ

h,ℓ − µ(h))u1,h .

Recalling that χ
ℓ
= 1 on [−2A, 2A], by Proposition 2.4, the Borel lemma and using φh ⩽ Φℓ

on [−2A, 2A], we get
∥(L φh

h,ℓ − µ(h))v∥L2(−2A,2A) = O(h∞) . (4.10)
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Moreover, by using Lemma 4.3, especially because

∀s ∈ ∁(−2A, 2A), Φ̃ℓ(s)− Φℓ(s) < max
±

(
Φ̃ℓ(±2A)− Φℓ(±2A)

)
< 0 ,

we obtain

∥(L φh

h,ℓ − µ(h)))v∥L2(∁(−2A,2A)) = ∥e
φh−Φℓ√

h (L Φℓ
h,ℓ − µ(h))(h−

1
8χℓu1,h)∥L2(∁(−2A,2A))

⩽ |e
Φ̃ℓ−Φℓ√

h |L∞(∁(−2A,2A))∥L Φℓ
h,ℓ − µ(h)∥L(L2(R))∥h−

1
8χℓu1,h∥

= O(h∞) .

This gives
∥(L φh

h,ℓ − λ1(Lh,ℓ))v∥ = O(h∞) .

We apply Proposition 4.1 to get

∥v∥ ⩽ C̃∥v∥L2(B(xℓ,Rh1/4))
+O(h∞) . (4.11)

Moreover, by the spectral theorem and then Proposition 2.2, we get

∥ΨWKB
ℓ − ΠhΨ

WKB
ℓ ∥ ⩽ (λ2(Lh,ℓ)− λ1(Lh,ℓ))

−1∥(Lh,ℓ − λ1(Lh,ℓ))Ψ
WKB
ℓ ∥

= (λ2(Lh,ℓ)− λ1(Lh,ℓ))
−1O(h∞) = O(h∞) .

By using (4.11) and (4.3), we deduce that

∥e
φh√
h (ΨWKB

ℓ − Πh,ℓΨ
WKB
ℓ )∥ ⩽ C̃∥e

φh√
h (ΨWKB

ℓ − Πh,ℓΨ
WKB
ℓ )∥L2(B(xℓ,Rh1/4))

+O(h∞)

⩽ C̃eC∥ΨWKB
ℓ − Πh,ℓΨ

WKB
ℓ ∥L2(B(xℓ,Rh1/4))

+O(h∞)

= O(h∞).

Then, we find that

O(h∞) = ∥e
φh√
h (ΨWKB

ℓ − Πh,ℓΨ
WKB
ℓ )∥ ⩾ ∥e

φh√
h (ΨWKB

ℓ − Πh,ℓΨ
WKB
ℓ )∥L2(K)

⩾ inf
K
e

φh−Φℓ√
h ∥e

Φℓ√
h (ΨWKB

ℓ − Πh,ℓΨ
WKB
ℓ )∥L2(K) .

There remains to notice that

e
φh−Φℓ√

h ⩾

∣∣∣∣ |Φℓ|L∞(K))

Φℓ(±Rh1/4)

∣∣∣∣−N ∼
h→0

∣∣∣∣2|Φℓ|L∞(K)

Φ′′
ℓ (xℓ)R

2

∣∣∣∣−N hN
2 ,

which is absorbed by the O(h∞) in the left-hand-side. This concludes the proof. □

5. The interaction term

In this section, we prove Theorem 1.4. We recall that U is given in (2.2). We consider χℓ ∈
C ∞
0 (R) such that χℓ ⩾ 0, χℓ = 1 on [−A, xr − 2η] and χℓ = 0 on (−∞,−2A)∪ (xℓ − η,+∞).

We let χr = Uχℓ, ψh,r = Uψh,ℓ. The function ψh,r is a groundstate of Lh,r. We also set

fh,ℓ = χℓψh,ℓ , fh,r = Ufh,ℓ .

Recalling Proposition 2.2 we also denote uh,ℓ = u1,h and uh,r = Uuh,ℓ. Our WKB Ansätze
are, with χ

ℓ
defined in the previous section (and χ

r
= χ

ℓ
(−·))

ΨWKB
ℓ = h−

1
8χ

ℓ
e
− Φℓ√

huh,ℓ , ΨWKB
r = UΨWKB

ℓ = h−
1
8χ

r
e
− Φr√

huh,r .
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xℓ xr−A

χℓ V

Figure 2. The function χℓ

Since ∥ΨWKB
ℓ ∥ = 1 +O(h

1
2 ), we can write

Πh,ℓΨ
WKB
ℓ = c(h)ψh,ℓ with |c(h)| = 1 +O(h

1
2 ) , (5.1)

and, by symmetry, Πh,rΨ
WKB
r = c(h)ψh,r. Let us also denote by ψh,1, ψh,2 an orthonormalized

pair of eigenfunctions of Lh associated with its first two eigenvalues. We also consider the
orthogonal projection Πh : L

2(R) −→ span(ψh,1, ψh,2).

5.1. The interaction formula. The aim of this section is to establish the following propo-
sition.

Proposition 5.1. We have

λ2(Lh)− λ1(Lh) = 2|wh|+ Õ(e
− 2S√

h ) , (5.2)

with µ(h) = λ1(Lh,ℓ), wh = ⟨(Lh − µ(h))fh,ℓ, fh,r⟩ and S =
∫ xr
xℓ

√
b(s, 0) ds.

We recall that rh = Õ(e
− S√

h ) means that for every γ > 0, we have rh = O(e
−S−γ√

h ) up to
adjusting η.

5.1.1. The space span(fh,ℓ, fh,r) is a good approximation of span(ψh,1, ψh,2). The groundstates
of Lh,ℓ and Lh,r are good quasimodes for the double well operator Lh, with remainder of
order Õ(e

− S√
h ).

Lemma 5.2. For ⋆ = r, ℓ, we have

(Lh − λ1(Lh,⋆))ψh,⋆ = Õ(e
− S√

h ) .

Proof. By symmetry, it suffices to prove for ⋆ = ℓ. We recall that

Lhψh,ℓ = λ1(Lh,ℓ)ψh,ℓ − kℓψh,ℓ ,

where kℓ has support in D(xr, η).
Thanks to Corollary 4.4, we have

∥kℓψh,ℓ∥ ⩽ |kℓ|L∞e
− (1−ϵ)(S+O(η))√

h

∥∥∥∥e(1−ϵ) Φ̃ℓ√
hψh,ℓ

∥∥∥∥ ⩽ Ce
− (1−ϵ)(S+O(η))√

h ∥ψh,ℓ∥ ,

where we used that ∥Φℓ(x)− S∥L∞(xr−η,xr+η) = O(η). Up to choosing ϵ, η > 0 small enough,
we have the desired estimate. □

In fact, the same estimate holds if we insert the cutoff functions χ⋆.



19

Lemma 5.3. For ⋆ = r, ℓ, we have

(Lh − λ1(Lh,ℓ))fh,⋆ = Õ(e
− S√

h ) , (Id− Πh)fh,⋆ = Õ(e
− S√

h ) .

Moreover, we have ⟨fh,ℓ, fr,h⟩ = Õ(e
− S√

h ) and λj(Lh) = µ(h) + Õ(e
− S√

h )

Proof. Using again Corollary 4.4,

∥(1− χℓ)ψh,ℓ∥ ⩽ ∥e−(1−ϵ)Φ̃ℓ/
√
h(1− χℓ)e

(1−ϵ)Φ̃ℓ/
√
hψh,ℓ∥ = Õ(e

− S√
h ).

Combining this with the boundedness of Lh, we get

(Lh − λ1(Lh,ℓ))(ψh,ℓ − fh,ℓ) = Õ(e
− S√

h ).

Using Lemma 5.2, this gives (Lh − λ1(Lh,ℓ))fh,⋆ = Õ(e
− S√

h ) when ⋆ = ℓ. The case ⋆ = r
follows by symmetry.

Corollary 4.4 shows that ⟨fh,ℓ, fh,r⟩ = Õ(e
− S√

h ) (mainly because Φ̃ℓ + Φ̃r = S on [xℓ, xr]).
Therefore, the spectral theorem and Proposition 3.2 show that, for j = 1, 2,

λj(Lh) = µ(h) + Õ(e
− S√

h ) ,

and also
(Id− Πh)fh,⋆ = Õ(e

− S√
h ) .

□

5.1.2. Proof of Proposition 5.1. We let

g⋆ = Πhfh,⋆ ,

and

G =

(
⟨gℓ, gℓ⟩ ⟨gℓ, gr⟩
⟨gr, gℓ⟩ ⟨gr, gr⟩

)
=

(
gℓ
gr

)
·
(
gℓ gr

)
⩾ 0 .

We consider the matrix of the quadratic form associated with Lh in the basis (gℓ, gr),

L =

(
⟨Lhgℓ, gℓ⟩ ⟨Lhgℓ, gr⟩
⟨Lhgr, gℓ⟩ ⟨Lhgr, gr⟩

)
.

The following proposition is a classical consequence of Lemma 5.3, cf. the concise presentation
in [8, Section 4.1]

Proposition 5.4. The family (gℓ, gr) is asymptotically an orthonormal basis of F , in the
sense that

G = Id + T + Õ(e−2S/
√
h) , T =

(
0 ⟨fh,ℓ, fh,r⟩

⟨fh,r, fh,ℓ⟩ 0

)
= Õ(e

− S√
h ) . (5.3)

In addition, we have

L =

(
µ(h) wh
wh µ(h)

)
+µ(h)T+ Õ(e−2S/

√
h) , wh = ⟨(Lh−µ(h))fh,ℓ, fh,r⟩ = Õ(e

− S√
h ) . (5.4)
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Let us consider the new family (
gℓ
gr

)
= G− 1

2

(
gℓ
gr

)
,

which is orthonormal since(
gℓ
gr

)
·
(
gℓ gr

)
= G− 1

2

(
gℓ
gr

)
·
(
gℓ gr

)
G− 1

2 = Id .

The matrix of Lh in the orthonormal basis (gℓ, gr) is G− 1
2LG− 1

2 and we have

G− 1
2LG− 1

2 =

(
1− T

2

)((
µ(h) wh
wh µ(h)

)
+ µ(h)T

)(
1− T

2

)
+ Õ(e−2S/

√
h)

=

(
µ(h) wh
wh µ(h)

)
+ Õ(e−2S/

√
h) .

The splitting of
(
µ(h) wh
wh µ(h)

)
is 2|wh| thus by the min-max theorem for hermitian matrix

this proves Proposition 5.1.

5.2. Estimate of the interaction. Theorem 1.4 is a consequence of Proposition 5.1 and
the following proposition.

Proposition 5.5. We have

wh = (1 + oh→0(1))2

(
a′′(0)

2

) 1
4

h
5
4

√
V (0)

(κ
π

) 1
2
exp

(
−
∫ 0

xℓ

∂s
√
V (s)− κ√
V (s)

ds

)
e
− S√

h .

Proof. From Proposition 5.1 it suffices to compute wh. We have

wh = ⟨(Lh − µ)χℓψh,ℓ, χrψh,r⟩ = ⟨e−
(Φℓ+Φr)√

h (L Φℓ
h,ℓ − µ)e

Φℓ√
hχℓψh,ℓ, e

Φr√
hχrψh,r⟩

= e
− S√

h ⟨(L Φℓ
h,ℓ − µ)e

Φℓ√
hχℓψh,ℓ, e

Φr√
hχrψh,r⟩.

Support considerations and Corollary 4.5 give

∥χ⋆e
Φ⋆√
h (c(h)ψh,⋆ −ΨWKB

⋆ )∥ = O(h∞) ,

where c(h) is defined in (5.1). Hence,

⟨(Lh − µ(h))χℓψh,ℓ, χrψh,r⟩ = |c(h)|−2e
− S√

h ⟨(L Φℓ
h,ℓ − µ(h))χℓe

Φℓ√
hΨWKB

ℓ , e
Φr√
hχrΨ

WKB
r ⟩+O(h∞e

− S√
h )

= (1 + o(1))h−
1
4 e

− S√
h ⟨(L Φℓ

h,ℓ − µ(h))χℓuℓ,h, χrur,h⟩+O(h∞e
− S√

h ) .
(5.5)

Thanks to Lemma B.2 (or recalling the proof of Proposition 2.4),

⟨(L Φℓ
h,ℓ − µ(h))χℓuℓ,h, χrur,h⟩ = h

3
2 ⟨(P3(x,Dx)− c0)(χℓuℓ), χrur⟩+ o(h

3
2 e

− S√
h ).

Since, by construction, (P3(x,Dx)− c0)uℓ = 0 (see (2.10)), we get

⟨(L Φℓ
h,ℓ − µ(h))χℓuℓ,h, χrur,h⟩ = h

3
2 ⟨a′′(0)Φ′

ℓχ
′
ℓuℓ, χrur⟩+ o(h

3
2 e

− S√
h ) .
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Noticing that χ′
ℓχr = 1[xr−2η,xr−η] · χ′

ℓ, we get

⟨(L Φℓ
h,ℓ − µ(h))χℓuℓ,h, χrur,h⟩ = a′′(0)h

3
2 e

− S√
h

∫ xr−η

xr−2η

χ′
ℓ(x)Φ

′
ℓ(x)uℓ(x)ur(x)dx+ o(h

3
2 )e

− S√
h .

By definition of χℓ, we have
∫ xr−η
xr−2η

χ′
ℓ(x)dx = 1. In fact, the function Φ′

ℓuℓur is constant and
equal to Φ′

ℓ(0)|uℓ(0)|2. Indeed, by (2.10) bℓ(x, ξ) = b(x, ξ) + kℓ(x) we obtain ∂ξbℓ = ∂ξb and(
i
Φ′
ℓ(x)∂ξb(x, 0)

a′′(0)
+

1

2
Φ′′
ℓ (x) + Φ′

ℓ(x)∂x − λ3

)
uℓ = 0 ,(

i
Φ′
r(x)∂ξb(x, 0)

a′′(0)
+

1

2
Φ′′
r(x) + Φ′

r(x)∂x − λ3

)
ur = 0 .

(5.6)

Using then the fact that Φr+Φℓ is constant on (xℓ+η, xr−η) gives, denoting v(x) = Φ′
ℓ(x)∂ξb(x,0)

a′′(0)
,

Φ′
ℓ(x)∂xuℓ = (−iv(x)− 1

2
Φ′′
ℓ (x) + λ3)uℓ and Φ′

ℓ(x)∂xur = (iv(x)− 1

2
Φ′′
ℓ (x)− λ3)ur .

which implies that ∂x (Φ′
ℓuℓur) = 0. There remains to use the explicit formula (2.7) and to

recall (5.5) to end the proof.
□
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Appendix A. Pseudo-differential tools

A.1. Notation. Let us recall some usual notation (see, for instance, [28, Chapter 4]).
For δ1, δ2 ∈ (0, 1), we consider

Sδ1,δ2(R2) := {qh ∈ C ∞(R2) ; ∀(γ1, γ2) ∈ N2, ∃Cγ > 0, |∂γ1x ∂
γ2
ξ qh| ⩽ Cγh

−δ1γ1h−δ2γ2} . (A.1)

We let Sδ(R2) := Sδ,δ(R2) and S(R2) = S0(R2).
— We say that a symbol qh ∈ Sδ(R2) has asymptotic expansion q0 + h

1
2 q1 + hq2 + · · · with

qj ∈ Sδ(R2) for each j ∈ N, if

∀γ ∈ N2, ∀m ∈ N, ∃Cγ,m ∈ R+,

∣∣∣∣∣∂γ
(
qh −

m−1∑
j=0

h
j
2 qj

)∣∣∣∣∣ ⩽ Cγ,mh
m
2 h−|γ|δ. (A.2)

— We say that (uh)h∈(0,h0) a family of elements of2 Sδ(R), has asymptotic expansion u0 +

h
1
2u1 + hu2 + h

3
2u3 + · · · with each uj ∈ Sδ(R) if

∀γ ∈ N, ∀m ∈ N, ∃Cγ,m ∈ R+,

∣∣∣∣∣∂γ
(
uh −

m−1∑
j=0

h
j
2uj

)∣∣∣∣∣ ⩽ Cγ,mh
m
2 h−γδ. (A.3)

2Sδ(R) = {uℏ ∈ C∞(R) | ∀γ ∈ N, ∃Cγ > 0 |∂γuℏ| ⩽ Cγh
−δγ}
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— We say that (λh)h∈(0,h0) ∈ R(0,h0) has asymptotic expansion λ0 + h
1
2λ1 + hλ2 + h

3
2λ3 if

∀m ∈ N, ∃Cm ∈ R+,

∣∣∣∣∣λh −
m−1∑
j=0

h
j
2aj

∣∣∣∣∣ ⩽ Cmh
m
2 . (A.4)

A.2. Fefferman-Phong inequality and Kuranishi trick. We recall some results of [6]
concerning the Fefferman-Phong inequality. The first estimate concerns the class of symbols
S(R2). Letting qh ∈ S(R2), there exists C > 0 such that

∀u ∈ L2(R) , ⟨Opwh (qh)u, u⟩ ⩾ −Ch2∥u∥2. (A.5)

Theorem A.1 (Fefferman-Phong inequality). Let δ1, δ2 ∈ (0, 1) such that δ1 + δ2 < 1. If
qh ∈ Sδ1,δ2(R) is non-negative, then

∀u ∈ L2(R) ⟨qwh u, u⟩ ⩾ −Ch2−2(δ1+δ2)∥u∥2 . (A.6)

Proof. Let α ∈ R and consider the isometric scaling:

Vα :

{
L2(R) −→ L2(R)
u 7−→ h−αu(h−α·) . (A.7)

Notice that V −1
α = V ∗

α = V−α thus

V−δ1Opwh (qh(x, ξ))Vδ1 = Opwh (qh(h
δ1x, h−δ1ξ) = Oph1−(δ1+δ2)(qh(h

δ1x, hδ2ξ)), (A.8)

with qh(h
δ1·, hδ2·) ∈ S(R2) = S0,0(R2). The Fefferman-Phong inequality in S(R2) (with the

new semiclassical parameter h1−δ1−δ2) yields the result. □

In the following Lemma, the function φ satisfies the assumptions made at the beginning of
Section 4. Its proof is an adaptation of [20, Section 3].

Lemma A.2 (First Kuranishi trick). The operator L φ
h,ℓ defined in (4.1) is a pseudo-differential

operator of symbol

qφ(x, ξ) = a(ξ + ih
1
2φ′) + hbℓ(x, ξ + ih

1
2φ′) +OS1/4(R)(h

2). (A.9)

Proof. For all u ∈ S (R),

L φ
h,ℓu := eφ/h

1/2

Lh,ℓe
−φ/h1/2u =

1

2πh

∫
R

∫
R
p
(
x+y
2
, ξ
)
e

i
h [(x−y)ξ+h1/2(φ(x)−φ(y))]u(y)dydξ

=
1

2πh

∫
R

∫
R−ih1/2θ(x,y)

p
(
x+y
2
, ξ + ih1/2θ(x, y)

)
e

i
h
(x−y)ξu(y)dydξ ,

with θ : (x, y) 7−→
{

φ(x)−φ(y)
x−y if x ̸= y,

φ′(x) if x = y.
. Note that θ(x, y) =

∫ 1

0
φ′(y + t(x − y))dt,

which proves that θ ∈ S 1
4
(R2) and is bounded by ∥φ′∥L∞ . Thanks to Cauchy’s theorem and

Riemann-Lebesgue’s lemma, we have, for all u ∈ S (R),∫
R

∫
[−R,R]

p
(
x+y
2
, ξ + ih1/2θ(x, y)

)
e

i
h
(x−y)ξu(y)dξdy

−
∫
R

∫
[−R,R]−ih1/2θ(x,y)

p
(
x+y
2
, ξ + ih1/2θ(x, y)

)
e

i
h
(x−y)ξu(y)dξdy −−−−→

R→+∞
0 .
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This eventually proves that, in the sense of oscillatory integrals, we have

L φ
h,ℓu =

1

2πh

∫∫
R2

p
(
x+y
2
, ξ + ih

1
2 θ(x, y)

)
e

i
h
(x−y)ξu(y)dydξ . (A.10)

This equality extends to L2(R) by continuity (by the standard theory). Let us now use this
formula to prove that L φ

h,ℓ is a pseudo-differential operator. To do so, let us use the so-called
Kuranishi trick. The Taylor formula gives

φ(x) = φ

(
x+ y

2

)
+

(
x− y

2

)
φ′
(
x+ y

2

)
+

(
x−y
2

)2
2!

φ(2)

(
x+ y

2

)
+

(
x− y

2

)3 ∫ 1

0

(1− t)2

2!
φ(3)

(
x+ y

2
+ t

x− y

2

)
dt,

and a similar expression for φ(y). Hence, for all n ∈ N, there is a smooth function I(x, y)
such that

θ(x, y) = φ′
(
x+ y

2

)
+ (x− y)2 I(x, y) , (A.11)

where I(x, y) is expressed in terms of φ(3) only. Since the map R2 ∋ (x, y) 7−→ φ(x)−φ(y)
x−y is

bounded and φ′ as well, we obtain that the map R2 ∋ (x, y) 7−→ (x− y)2I(x, y) is bounded.
Therefore by the Taylor expansion at order 1 in h,

p

(
x+ y

2
, ξ + ih

1
2 θ(x, y)

)
= p

(
x+ y

2
, ξ + ih

1
2φ′
(
x+ y

2

))
+ h

1
2 (x− y)2rh(x, y, ξ)

where rh(x, y, ξ) ∈ S 1
4
, 1
4
,0(R3) (this space being the natural adaptation to R3 of Definition

A.1). Explicitely,

rh(x, y, ξ) = iI(x, y)

∫ 1

0

∂ξp(
x+ y

2
, ξ + ih

1
2φ′(

x+ y

2
) + ith

1
2 (x− y)2I(x, y))dt .

For all u ∈ S (R), by integration by parts,

Rhu =
1

2πh

∫∫
R2

e
i
h
(x−y)ξ(x− y)2rh(x, y, ξ)u(y)dξdy

=
1

2πh

∫∫
R2

e
i
h
(x−y)ξ(−hDξ)

2rh(x, y, ξ)u(y)dξdy ,

where we used that (x − y)e
i
h
(x−y)ξ = hDξe

i
h
(x−y)ξ. Thanks to the transformation formula

[28, Theorems 4.20 & 4.21], there exists r̃h ∈ S 1
4
(R2) such that Rh = h2Opwh (r̃h). This yields

qφ ∈ S 1
4
(R2) such that

L φ
h,ℓ = Opwh (qφ(x, ξ)) with qφ(x, ξ) = p(x, ξ + ih

1
2φ′) +OS 1

4
(R2)(h

2). (A.12)

□

Lemma A.3 (Second Kuranishi trick). The operator L Φℓ
h,ℓ defined in (4.1) is a pseudo-

differential operator of symbol

qΦℓ
(x, ξ) = a(ξ + ih

1
2Φ′

ℓ) + hbℓ(x, ξ + ih
1
2Φ′

ℓ) + h2rh (A.13)
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where rh ∈ S(R2) has a full asymptotic expansion in S(R2), rh = r0 + h
1
2 r1 + hr2 + · · · with

r0, r1, · · · independent of h.

The proof of this lemma is an adaptation of the proof of the previous lemma and left to
the reader.

Appendix B. Stationary phase and WKB constructions

Lemma B.1. Let ph ∈ S(R2) having asymptotic expansion p0 + h
1
2p1 + · · · and uh ∈ C ∞

0 (R)
(independent of h) having asymptotic expansion u0 +h

1
2u1 + · · · with each uk ∈ C ∞

0 (R). The
function Opwh (ph)uh belongs to C ∞(R) and has an asymptotic expansion in powers of h in
S(R) given by:

Opwh (ph)uh ∼
∑
k∈N

(hDy)
k

k!

(
∂kξ ph(x+ y/2, 0)uh(y)

)
|y=0 . (B.1)

Proof. It suffices to prove the lemma when ph(x, ξ) = p(x, ξ) and uh = u are independent of
h. Note that

Opwh (p)u =
1

2πh

∫∫
R2

ei(x−y)ξ/hp

(
x+ y

2
, ξ

)
u(y)dydξ

=
1

2πh

∫∫
R2

e−iyξ/hp

(
2x+ y

2
, ξ

)
u(x+ y)dydξ .

Thanks to the stationary phase results [28, Theorems 3.17 & 4.17], we get

Opwh (p)u ∼
∑
k∈N

(hDy)
k

k!

(
∂kξ p(x+ y/2, 0)u(y)

)∣∣∣∣∣
y=0

. (B.2)

□

Lemma B.2. There exist differential operators (Pγ(x,Dx))0⩽γ⩽J such that,

L Φℓ
h,ℓ (χu

[J ]
h ) =

∑
0⩽γ⩽J+3

hγ/2Pγ(x,Dx)(χu
[J ]
h ) +OL∞(R)(h

J+4
2 ) .

The first differential operators are
P0(x,Dx) = a(0) = 0,
P1(x,Dx) = iΦ′

ℓ(x)a
′(0) = 0,

P2(x,Dx) = −a′′(0)
2

Φ′
ℓ(x)

2 + bℓ(x, 0) = 0,

P3(x,Dx) = iΦ′
ℓ(x)∂ξbℓ(x, 0) +

a′′(0)
2

Φ′′
ℓ (x) + a′′(0)Φ′

ℓ(x)∂x .

(B.3)

Proof. Thanks to the holomorphy assumptions on a and b, we can use Lemma A.3. Then,
applying Lemma B.1, we get

L Φℓ
h,ℓ (χℓu

[J ]
h ) =

J+3
2∑
j=0

Opwh

(
ξj

j!
∂jξqΦ(x, 0)

)
(χℓu

[J ]
h ) +OL∞(R)(h

J+4
2 )

=
J+3∑
γ=0

hγ/2Pγ(x,Dx)u
[J ]
h +OL∞(R)(h

J+4
2 ) .
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The operators Pγ(x,Dx) are differential operators of degree lower than γ/2 obtained using
the expansion of qΦ(x, 0) in powers of h

1
2 . Explicitely, for the first few terms (J = 0), we can

write the Taylor expansion of the symbol in ξ + ih
1
2Φ′

ℓ and we get

L Φℓ
h,ℓ (χuh) =

(
a′′(0)

2
(hDx + ih

1
2Φ′

ℓ(x))
2 + hbℓ(x, 0) +ih

3
2∂ξbℓ(x, 0)Φ

′
ℓ(x)

)
χuh +OL∞(R)(h

2) .

□

The following last lemma proves that the norm of our normalized WKB quasimodes is
not O(h∞). We consider a symbol uh with asymptotic expansion u0 + h

1
2u1 + · · · , a cutoff

χ ∈ C ∞
0 (R) such that χ = 1 near xℓ.

Lemma B.3 (WKB and Laplace Integral). Let us suppose that there exists m ∈ N such that
u
(m)
0 (xℓ) ̸= 0 then ∥χuhe−Φℓ/

√
h∥L2(R) ⩾ ch

1
8
+m

4 .

Proof. Near xℓ the application ϕℓ := sgn(x − xℓ)
√
Φℓ is a C ∞ diffeomorphism satisfying

ϕ2
ℓ = Φℓ and we have the approximation ϕℓ(x) =

√
Φ′′

ℓ (xℓ)

2
(x − xℓ) + o(x − xℓ). Therefore,

modulo a term of order O(e
− ϵ√

h ) for some ϵ > 0 we can write

∥χuhe−Φℓ/
√
h∥2 =

∫
Neigh(0)

e
− 2y2√

h |uh ◦ ϕ−1
ℓ (y)|2(ϕ−1

ℓ )′(y)dy +O(e
− ϵ√

h )

=
h

1
4

√
2

∫
h−

1
4Neigh(0)

e−y
2|uh ◦ ϕ−1

ℓ (h
1
4y/

√
2)|2(ϕ−1

ℓ )′(h
1
4y/

√
2)dy +O(e

− ϵ√
h ) .

(B.4)
A Taylor expansion gives for some r ∈ [[0,m]],

uh ◦ ϕ−1
ℓ

(
h

1
4y√
2

)
= h

r
4

(
N−1∑
j=0

h
j
4Pj(y) +O(h

N
4 )

)
, (B.5)

where each Pj is a polynomial of degree at most j + r and P0 is non-zero because of the
assumption u(m)

0 (xℓ) ̸= 0. Therefore, we find other polynomials Qj such that:

|uh ◦ ϕ−1
ℓ (h

1
4y/

√
2)|2(ϕ−1

ℓ )′(h
1
4y/

√
2) = h

r
2

(
N−1∑
j=0

h
j
4Qj +O(h

N
4 )

)
, (B.6)

with Q0 =
(

Φ′′
ℓ (xℓ)

2

)− 1
2
P 2
0 . This yields

∥χuhe−Φℓ/
√
h∥2 = h

1
4h

r
2 (Φ′′

ℓ (xℓ))
− 1

2

∫
h−

1
4Neigh(0)

e−y
2

P0(y)
2dy +O(h

r+1
2 ) ,

which concludes the proof. □
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