
HAL Id: hal-04632943
https://hal.science/hal-04632943v1

Submitted on 3 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weighted Scheduling of Time-Sensitive Coflows
Olivier Brun, Rachid El-Azouzi, Quang-Trung Luu, Francesco De Pellegrini,

Balakrishna Prabhu, Cédric Richier

To cite this version:
Olivier Brun, Rachid El-Azouzi, Quang-Trung Luu, Francesco De Pellegrini, Balakrishna Prabhu, et
al.. Weighted Scheduling of Time-Sensitive Coflows. IEEE Transactions on Cloud Computing, 2024,
12 (2), pp.644-658. �10.1109/TCC.2024.3384514�. �hal-04632943�

https://hal.science/hal-04632943v1
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Weighted Scheduling of Time-Sensitive Coflows
Olivier Brun, Rachid El-Azouzi, Quang-Trung Luu, Francesco De Pellegrini,

Balakrishna J. Prabhu, and Cédric Richier

Abstract—Datacenter networks commonly facilitate the trans-
mission of data in distributed computing frameworks through
coflows, which are collections of parallel flows associated with
a common task. Most of the existing research has concentrated
on scheduling coflows to minimize the time required for their
completion, i.e., to optimize the average dispatch rate of coflows
in the network fabric. Nevertheless, modern applications of-
ten produce coflows that are specifically intended for online
services and mission-crucial computational tasks, necessitating
adherence to specific deadlines for their completion. In this
paper, we introduce WDCoflow, a new algorithm to maximize the
weighted number of coflows that complete before their deadline.
By combining a dynamic programming algorithm along with
parallel inequalities, our heuristic solution performs at once
coflow admission control and coflow prioritization, imposing a
σ-order on the set of coflows. With extensive simulation, we
demonstrate the effectiveness of our algorithm in improving up to
3× more coflows that meet their deadline in comparison the best
SoA solution, namely CS-MHA. Furthermore, when weights are
used to differentiate coflow classes, WDCoflow is able to improve
the admission per class up to 4×, while increasing the average
weighted coflow admission rate.

Index Terms—Time-sensitive coflow scheduling, weighted
coflow admission control, σ-order, deadline, datacenter network-
ing, task scheduling, resource allocation.

I. INTRODUCTION

THE concept of coflow, firstly introduced in [1], forms the
foundation of modern traffic engineering in datacenter

networks. This abstraction of traffic was initially developed
to capture the patterns of data exchange within distributed
computing frameworks like MapReduce or Spark [2, 3].
These frameworks employ the dataflow computing model
for processing large-scale data, which involves distributing
intermediate computation stages across multiple nodes and
transferring outputs to nodes responsible for the subsequent
stages. During the transitions between computation stages,
dataflows generate a set of network flows that traverse the
datacenter fabric. These flows are abstracted as a coflow. A
prominent example of a dataflow occurs in the shuffle phase
of the Hadoop MapReduce framework [2]. However, it has
been investigated in real traces [4] that coflow scheduling has
a significant impact on the completion time of applications
and the shuffle phase accounts for 33% of the running time
in observed coflows. Hence, the reference objective function

Parts of this work have been presented at IFIP Networking 2022.
Olivier Brun and Balakrishna J. Prabhu are with LAAS-CNRS, University

of Toulouse, CNRS, 31400 Toulouse, France (e-mails: {brun, bala}@laas.fr).
Rachid El-Azouzi, Francesco De Pellegrini, and Cédric Richier are

with CERI/LIA, University of Avignon, 84029 Avignon, France (e-mails:
{rachid.elazouzi, francesco.de-pellegrini, cedric.richier}@univ-avignon.fr).

Quang-Trung Luu is with the School of Electrical and Electronic Engineer-
ing, Hanoi University of Science and Technology, 100000 Hanoi, Vietnam
(e-mail: trung.luuquang@hust.edu.vn).

to measure acceleration at network layer is the makespan
or Weighted Coflow Completion Time (WCCT). Minimizing
the average WCCT or CCT is an appropriate objective for
maximizing the number of computing jobs dispatched per
hour in a datacenter fabric. Numerous works, such as [1, 5–
10], have addressed the minimization of WCCT and proposed
algorithmic solutions. Over the past decade, extensive research
has illuminated the complexity of this problem. It has been
proven to be NP-hard and inapproximable below a factor
of 2 through reduction to the job scheduling problem on
multiple correlated machines. Near-optimal methods have also
been proposed in the literature, with performance bounds
approximating a factor of 4 [6, 7, 11]. However, the context
radically changes when dealing with time-critical jobs that
impose strict deadlines on the coflow’s data transfer phase.

In such scenario, the scheduling of coflows is commonly
combined with admission control to minimize the number
of deadline violations, i.e., the number of coflows that are
unable to be completely transferred before their deadlines.
This gives rise to the Coflow Deadline Satisfaction (CDS)
problem, first introduced in [12]. Each coflow is assigned a
specific deadline, and the objective is to perform joint coflow
admission control and scheduling to maximize the number
of admitted coflows that can meet their respective deadlines.
This problem is also proven to be NP-hard, and it has been
shown to be inapproximable within any constant factor of the
optimal solution [12].

While the issue of time-sensitive coflows has been ac-
knowledged in the early literature [13], most works on coflow
scheduling have not focused on addressing this problem, with
a few exceptions [12]. However, our performance analysis
has revealed that even near-optimal algorithms designed for
minimizing CCT may fail to meet coflow deadlines. In reality,
the concept of time-sensitive coflows has become increasingly
prevalent in modern distributed datacenters. It is not only com-
puting frameworks that deal with time-sensitive tasks; modern
web and mobile applications are built using microservice ar-
chitectures, where user requests can trigger numerous services
across multiple servers to retrieve data. The completion time
of a batch of flows, i.e., the time instant at which the last bit of
data arrives, determines the lag to the response time of these
services, and significant delays can lead to a degraded user
experience. In the realm of cloud computing and data centers,
there is a rise in more time-sensitive applications, such as
web search [14] and machine learning [15], which impose
stricter deadline constraints. With this performance objective
in mind, a coflow is only considered beneficial when all of
its individual flows have completed their data transfer within
the required deadline.

To reduce the number of coflows missing their deadlines,

IEEE TRANSACTIONS ON CLOUD COMPUTING 2

i.e., the number of violations, existing solutions perform
admission control. On the other hand, in solving the CDS
problem one has to operate simultaneously both coflow ad-
mission control and scheduling. This allows to maximize the
number of admitted flows while respecting their deadlines,
i.e., the Coflow Acceptance Rate (CAR).

In this paper, we generalize the CDS problem to the case
when coflows have a priority in the form of a nonnegative
weight. The performance metric to maximize is the Weighted
Coflow Acceptance Rate (WCAR). Since maximizing CAR
is NP-hard [12], the same is true for maximizing WCAR and
exact solution methods are of little practical use. In principle,
it is possible to address the problem of time-sensitive coflows
by formulating a suitable Mixed Integer Linear Program
(MILP). However, when dealing with datacenters that handle
tens of thousands of coflows [5], techniques relying on MILPs
or their relaxations may not be practical or feasible. The com-
putational complexity and scalability challenges associated
with solving MILPs in such large-scale environments make
them less viable for real-time implementation.

To achieve scalability in coflow scheduling for datacenters,
the use of scalable algorithms is crucial. Many research works
propose the concept of scheduling coflows using a priority
order, known as the σ-order. Once the σ-order is determined,
a work-conserving transmission policy can be adopted. The
focus on σ-order schedulers is driven by their implementation
advantages. Specifically, in terms of rate control, any work-
conserving preemptive dynamic rate allocation can be used as
long as it is compatible with the assigned coflow priorities. It
has been shown that the maximum performance loss within
such rate allocation policies is bounded by a factor of 2 [7].
For example, using fixed coflow priorities under DiffServ
satisfies the definition of a σ-order scheduler. Additionally,
commercial switches often have built-in priority queues and
support per-flow tagging, which can be utilized to prioritize
active coflows without requiring per-flow rate control. This
allows for a greedy rate allocation that aligns with the desired
σ-order. The exact mapping between a coflow’s σ-order and
the switch’s priority queuing mechanism, as well as the lim-
itations imposed by legacy hardware, are interesting subjects
but beyond the scope of this paper.
Contributions. In this paper, we introduce lightweight algo-
rithms for coflow scheduling with deadlines. The proposed
algorithms surpass existing solutions in the literature and do
not rely on solving linear programs. The proposed approach
consists of an offline admission control policy combined with
a scheduler belonging to the class of σ-order coflow sched-
ulers. The output of the algorithm is a priority order restricted
to the set of admitted coflows. Our heuristic solutions, named
WDCoflow, leverage techniques such as dynamic programming
[16] (known for optimality in the single link case) and
parallel inequalities for completion times [17]. By employing
these techniques, our heuristics effectively capture the inter-
coflow impacts and determine the coflows that should be
admitted. The algorithms are further extended to handle joint
admission control and scheduling in online scenarios where
coflows are generated at runtime with unknown release times.
Through extensive numerical experiments on various scenar-

1

2

3

4

5

6

7

8

Ingress Ports Egress Ports

DC Fabric

1

1

1

1

Fig. 1. Example of a Big-Switch fabric having 4 ingress/egress ports
connecting to 4 machines. Flows in ingress ports are organized by destinations
and are color-coded by coflows. The example has 5 coflows. Coflow k1 (blue)
has 4 flows, with each ingress port sending 1 units of data to one egress port:
its deadline is 1; coflows k2 (green), k3 (red), k4 (orange) and k5 (purple)
have a single flow, each sending (1 + ε) unit of data. The deadline of these
coflows is 2.

ios, including both synthetic and real traces obtained from
the Facebook data [13], we demonstrate that our algorithm
consistently outperforms existing solutions in the literature.
The simulations encompass offline and online settings, and
the WDCoflow algorithm consistently achieves near-optimal
Weighted Coflow Arrival Rate (WCAR) for smaller fabrics.
Moreover, it outperforms state-of-the-art solutions across all
evaluated workloads, achieving significant improvements of
up to 4 times in certain cases, especially for overloaded
fabrics.

The remaining sections of the paper are structured as
follows. Sec. II presents an overview of the general problem
addressed in the paper, including the description of coflow
ordering models. Sec. III introduces the proposed algorithms,
detailing their design and methodology. Numerical results are
then presented in Sec. IV. Sec. V discusses the related work in
the field of scheduling time-sensitive coflows. Finally, Sec. VI
presents concluding remarks and outlines potential directions
for future research.

II. PROBLEM STATEMENT

In this section, we formally define the deadline scheduling
problems for coflows with weights as an MILP.

The datacenter network is modeled as a non-blocking
switch, as in Fig. 1. This is usually referred to as the Big-
Switch model, used for the first time for datacenter coflow
scheduling in [13]. In that model, two disjoint sets of ports,
namely the ingress ports and the egress ports, represent all the
ports of the Top of Rack (ToR) switches connecting machines
hosted in racks to the network fabric. The mathematical model
for a switch is set of ports (or links) L = {1, 2, . . . , 2M}
where ℓ ∈ {1, . . . ,M} are ingress ports and ℓ ∈ {M +
1, . . . , 2M} are egress ports. We assume that each port ℓ ∈ L
has a maximum rate of Bℓ.

A coflow is a set of flows, where each flow is a volume of
data to be transferred between an ingress port and an egress
port. In the example of Fig. 1, at each ingress port, flows are
organized in virtual output queues indicating the output port.

IEEE TRANSACTIONS ON CLOUD COMPUTING 3

TABLE I
MAIN NOTATIONS.

Symbol Description

M number of machines
L set of fabric ports, |L| = L
Bℓ available bandwidth of port ℓ ∈ L
C set of coflows, |C| = N
vk volume of coflow k
wk weight of coflow k
Tk deadline of coflow k
zk binary indicator for coflow k
ck completion time of coflow k
cℓ,k completion time of coflow k on port ℓ
pℓ,k processing time of coflow k on port ℓ
v̂ℓ,k total volume sent by coflow k on port ℓ
Fk set of flows of coflow k
Fℓ,k set of flows of coflow k that use port ℓ
vk,j volume of flow j ∈ Fk

T time horizon for coflow scheduling
rk,j (t) rate allocated to flow j ∈ Fk at time t

σ scheduling order of coflows, σ = {σ1, · · · , σN−1, σN}
α deadline threshold (coflow k has max deadline of αCCT0

k)
1k,i binary indicating whether coflow k is of class or not
δk′,k binary indicating coflow k′ has a higher priority that k

P (j) (w) minimum total processing time for any feasible subset
of coflows {1, · · · , j} that has total weight w

For clarity, the scheduling problem is formulated in the
offline setting. Hence, all the coflows are available at time
0, i.e., when the scheduling decision is taken. Later on,
the algorithms will be adapted for the online setting where
scheduling decision are taken over the course of a given
time horizon, and coflows arrive over time. In turn, the
characteristics of the future coflows are unknown.

Consider a batch of N coflows C = {1, 2, ..., N}. We
denote by wk the weight, i.e., the importance, of coflow k,
so that the acceptance rate can be optimized with regard to
its weight. Each coflow k is subject to a completion deadline
Tk. The set of flows of coflow k is denoted by Fk. A flow is
defined by its volume and the pair of ports that it uses. Let
vk,j be the volume of flow j of coflow k, and let Fℓ,k be the
set of flows in Fk that uses port ℓ ∈ L either as ingress port
or as egress port. Table I summarizes the main notations used
throughout the paper.

A. MILP Formulation

Let zk ∈ {0, 1} be an indicator of whether coflow k
finishes before its deadline Tk, and let rk,j(t) ∈ R+ be the
rate allocated to flow j ∈ Fk at time t. The target coflow
scheduling problem prescribes to identify the set of coflows
to be scheduled in order to maximize the corresponding
cumulative weight. We will refer to this scheduling problem as
Weighted Coflow Acceptance Rate (WCAR) problem, which
is formulated as

max
r

∑
k∈C

wkzk (WCAR)

s.t.
∑
k∈C

∑
j∈Fℓ,k

rk,j(t) ≤ Bℓ, ∀ℓ ∈ L,∀t ∈ T , (1)

∫ Tk

0

rk,j(t) dt ≥ vk,jzk, ∀j ∈ Fk,∀k ∈ C, (2)

where T is the time interval over which scheduling is per-
formed and can be set to [0,maxk Tk]. Constraint (1) ensures
that the total rate allocated on port ℓ at every time instant in
T does not exceed its capacity Bℓ. Constraint (2) ensures that
all flows of every accepted coflow are completely processed
before the deadline of that coflow. Note that solving the
WCAR problem requires to define optimal rate allocations
rk,j(t), ∀j ∈ Fk, ∀k ∈ C, and ∀t ∈ T .

Assume without loss of generality that coflows are num-
bered in the Earliest Due Date (EDD) order. It is then clear
that, given a feasible schedule, only coflows {k + 1, . . . , N}
are present in the system in time interval [Tk, Tk+1]. As-
suming that the rate allocations rk,j(t) are constant in the
time intervals [0, T1], [T1, T2], . . . , [TN−1, TN], we obtain a
MILP formulation of Problem (WCAR), which generalizes
the formulation proposed in [12] for unweighted coflows.

When all the coflows have the same weight, it was shown
in [12] that Problem (WCAR) is NP-hard.

Lemma 1 (Proposition 1 in [12]). When the weights are equal,
there exists a polynomial time reduction of Problem (WCAR)
to the problem of minimizing the number of late jobs in a
concurrent open shop [18]. Hence, Problem (WCAR) is NP-
hard.

For completeness, we restate the result for unequal weights
as well although it is direct consequence of the problem with
equal weights.

B. Upper Bound ILP for WCAR

Problem (WCAR) solves for the rate allocation and deter-
mines which coflows satisfy their deadline. It thus allows rate
allocations that share ports’ capacity possibly among several
coflows. An alternative approach is to determine an ordering
σ of coflows first and then assign full port rates to coflows
that have higher priority according to σ. Hence, flow j ∈ Fσk

is blocked if and only if either its ingress or egress port is
busy serving a flow j′ ∈ Fσk′ for some k′ < k in the σ-order.
The order thus implies a strict priority on the ports utilization.
A flow scheduling that follows this priority rule is called σ-
order-preserving.

The coflow ordering approach was first taken in [7] for the
minimization of Coflow Completion Times (CCT). It was then
applied to deadline scheduling but without weights in [19].
The advantage of this approach is that it does not require
rate computations. Once an order is determined, the rates can
be deduced directly from there. On the other hand, it has the
disadvantage of being an upper bound for deadline scheduling
as shown in [19].

Here, we give a short summary of those arguments. The
problem of finding the optimal σ-order is in fact an ILP.
To see this, we will need to define a couple of terms. The
processing time in isolation of coflow k at port ℓ is defined
as pℓ,k = v̂ℓ,k/Bℓ, where v̂ℓ,k =

∑
j∈Fℓ,k

vk,j is the total
volume sent by coflow k on port ℓ. That is, pℓ,k is the time
to transfer all the data of coflow k on port ℓ in the absence of
other coflows. Further, for k′ ̸= k, define the binary variable
δk′,k which is 1 if coflow k′ has a higher priority than k.

IEEE TRANSACTIONS ON CLOUD COMPUTING 4

and 0 otherwise. An ordering σ can then be derived from
the variables {δk,k′}k,k′∈C by subjecting them to the standard
disjunctive constraints

δk,k′ + δk′,k = 1, ∀k, k′ ∈ C, (3)
δk,k′ + δk′,k” + δk”,k ≤ 2, ∀k, k′, k” ∈ C. (4)

The only step remaining now is to express the constraint
that accepted coflows should have a CCT smaller than their
deadline in a linear form. Unfortunately, there are no known
linear inequalities to express the region of schedulability of
coflows in a switch. The difficult arises from the blocking
nature of the switch: a flow may be blocked because either
its ingress or egress port is being used by another flows.
Therefore, transmission times on a port depend on what
happens on the other ports.

Nevertheless, the following lower bound on the completion
time of coflow k on port ℓ, cℓ,k can be obtained by assuming
the ports are independent,

cℓ,k ≥
∑
k′ ̸=k

pℓ,k′δk′,kzk′ + pℓ,kzk, ∀ℓ ∈ L, k ∈ C. (5)

Here, only accepted coflows, i.e. those for which zk = 1, are
accounted for in the bound (5) (hence the term pℓ,kzk). The
lower bound on cℓ,k is then just the time it takes to transmit
all the coflows with priority higher than k on port ℓ. The
product δk′,kzk′ can easily be linearized by introducing binary
variables yk′,k satisfying the constraints

yk′,k ≤ zk′ ; yk′,k ≤ δk′,k; yk′,k ≥ zk′ + δk′,k − 1. (6)

The lower bound (5) can now be rewritten as the following
linear inequality:

cℓ,k ≥
∑
k′ ̸=k

pℓ,k′yk′,k + pℓ,kzk, ∀ℓ ∈ L, k ∈ C. (7)

Since the CCT of coflow k is given by ck = maxℓ∈L cℓ,k,
the constraint that the CCT of this coflow is smaller that its
deadline can be expressed as

cℓ,k ≤ Tkzk, ∀ℓ ∈ L, k ∈ C. (8)

Finally, the optimal σ-order coflow scheduling problem can
be formulated as the following ILP,

max
∑
k∈C

wkzk, s.t. (3, 4, 6, 7, 8). (σ-WCAR)

Recall that solutions of Problem (σ-WCAR) provide an upper
bound on the number of accepted coflows to that of Prob-
lem (WCAR).

C. Motivating Example

We now illustrate, with an example, some of the short-
comings of CS-MHA [20], an algorithm for maximizing the
acceptance ratio of coflows without weights (i.e., maximizing
the CAR). CS-MHA introduces a novel approach to solve the
scheduling problem by employing a static coflow prioritiza-
tion. This prioritization is utilized to approximate the solution
for the coflow scheduling problem that maximizes the CAR.
First, CS-MHA computes the scheduling order and the set

of admitted coflows at each port using the Moore-Hodgson
algorithm [21]. Since different ports may have different sets
of admitted coflows, a coflow is admitted only if it is admitted
by all ports simultaneously. Then, for the coflows that are
rejected, a second round is conducted to reassess if some of
them can actually meet their deadlines. In this case, CS-MHA
selects the coflow with the minimum bandwidth requirement
at the bottleneck port. This choice is based on the reasoning
that coflows with lower bandwidth requirements are more
likely to catch up with their deadlines.

Fig. 1 shows a simple example to illustrate the shortcomings
of CS-MHA. This will be used as a running example throughout
the paper. The example consists of five coflows: k1 with
four flows, and k2, k3, k4, and k5 with one flow each. To
facilitate the presentation, the flows are organized in virtual
output queues at the ingress ports, where the virtual queue
index represents the flow output port modulo the number of
machines. The numbers on the flows’ representations indicate
their normalized volumes. All fabric ports have the same
normalized bandwidth of 1.

In the first iteration, CS-MHA uses the Moore-Hodgson
algorithm to compute the scheduling order at each port, as
mentioned earlier. This algorithm is based on the EDD rule
with objective to minimize the number of missed deadlines
on a single machine (or port in the coflow context). In this
example, since coflow k1 uses all ports and has the smallest
deadline (T1 = 1), it will be scheduled first at each port.
Consequently, all other coflows are rejected because they
cannot meet their deadlines when scheduled after k1. This
results in a coflow scheduling with a CAR of 1

5 . However,
an optimal scheduling solution would be k2, k3, k4, k5, k1 or
any combination where coflow k1 is scheduled last. This
scheduling achieves a CAR of 4

5 .

To further illustrate the limitations of the CS-MHA, consider
now the case where there are M machines, coflow k1 uti-
lizes all ports, and coflows k2, . . . , kM have one flow each.
The other parameters remain unchanged. In this setting, we
shall demonstrate that the CAR obtained using CS-MHA and
DCoflow1 are respectively 1

M and M−1
M . With this setting,

when the M increases, CS-MHA yields a CAR close to zero,
while with DCoflow, it is close to one.

The key observation in this example is that how CS-MHA
neglects the impact that a coflow may have on other coflows
across multiple ports. Specifically, a coflow that leads to the
missing of multiple deadlines should have a lower priority,
even if its own deadline is the earliest. Neglecting this
consideration leads to a misjudgment in the coflow ordering,
resulting in a final schedule that significantly degrades the
CAR compared to an optimal solution. Building upon this
observation, in what follows, we propose a new class of σ-
order schedulers called WDCoflow to address the joint coflow
admission control and scheduling problem.

1DCoflow [19] is the variant of WDCoflow that deals with unweighted
coflows. Detailed differences between DCoflow and WDCoflow shall be given
in Sec. III-B.

IEEE TRANSACTIONS ON CLOUD COMPUTING 5

III. σ-ORDER SCHEDULING WITH WDCoflow

In this section, we present WDCoflow, an algorithm to solve
the problem of joint coflow admission control and scheduling.
Given a list of N coflows and their respective weights, it
provides a permutation σ = (σ1, σ2, .., σN) of these coflows,
with the aim of maximizing the coflow acceptance rate. A
key ingredient of our algorithm is a simple rule for deciding
which coflow to reject when there is no feasible schedule. This
rule is based on a necessary schedulability condition which
is established in Sec. III-A. We describe our algorithm for
solving offline instances in Sec. III-B and Sec. III-C, and
analyze their complexity in Sec. III-D. Finally, the online
implementation of WDCoflow is described in Sec. III-E.

A. A Necessary Schedulability Condition

Given a subset S ⊆ C of admitted coflows, a feasible
schedule of S is a processing order of coflows such that
ck ≤ Tk, ∀k ∈ S, where ck represents the completion time of
coflow k. We establish below a necessary condition for such
a schedule to exist and show how it can be used to decide
which coflows should be admitted.

Given S ⊆ C and a coflow k ∈ S, let S−
k be the set of

coflows in S which are scheduled before k (i.e., coflows of
higher priority). By assuming that the transmission of coflow
k on port ℓ can start as soon as all flows of all coflows j ∈ S−

k

have been transmitted on port ℓ, we can obtain a lower bound
on the completion time of coflow k

ck ≥ pℓ,k +
∑
j∈S−

k

pℓ,j , ∀ℓ ∈ L. (9)

Multiplying (9) on both sides by pℓ,k and summing over all
coflows k ∈ S yields

∑
k∈S

pℓ,kck ≥
∑
k∈S

(pℓ,k)
2
+
∑
k∈S

pℓ,k
∑
j∈S−

k

pℓ,j

=
1

2

∑
k∈S

(pℓ,k)
2
+

1

2

∑
k∈S

(pℓ,k)
2
+ 2

∑
k∈S

pℓ,k
∑
j∈S−

k

pℓ,j


= fℓ(S), (10)

where

fℓ(S) =
1

2

∑
k∈S

(pℓ,k)
2
+

1

2

(∑
k∈S

pℓ,k

)2

. (11)

From (10), we can conclude that the CCTs {ck}k∈S neces-
sarily satisfiy the condition

∑
k∈S pℓ,kck ≥ fℓ(S) for any port

ℓ ∈ L and for any subset S ⊆ C of admitted coflows. These
conditions are referred to as the parallel inequalities, and
they serve as valid inequalities for the concurrent open shop
problem [22]. It is important to note that these inequalities are
independent of the coflow ordering and solely depend on the
set of admitted coflows.

We now use the parallel inequalities to determine the
coflows that should be rejected, if any. More precisely, given
a set S of coflows, we define for each port ℓ ∈ L the quantity

Iℓ (S) ≜
∑
k∈S

pℓ,kTk − fℓ(S) ≥ 0, (12)

and use it as a measure of the schedulability of the set S of
flows. Indeed, if Iℓ (S) < 0, it follows from (10) and (12) that∑

k∈S pℓ,kTk < fℓ(S) ≤
∑

k∈S pℓ,kck, which implies that at
least one coflow in S is late, whatever the order in which
these coflows are scheduled. In other words, Iℓ (S) ≥ 0 for
all ℓ ∈ L is a necessary condition for a feasible schedule of
S to exist.

The set L⋆ = {ℓ ∈ L : Iℓ(S) < 0} then represents the set
of ports on which at least one coflow is late, whatever the
order in which the coflows are (locally) processed. Hence, if
L⋆ ̸= ∅, at least one coflow k⋆ using one or more ports in
L⋆ should be removed from S so that the remaining coflows
can meet their deadlines.

If there is only one port ℓ in L⋆, a natural choice is to
choose k⋆ so as to maximize the quantity Iℓ (S \ {k⋆}) in the
hope that it becomes positive. Observe that for any j ∈ S,

fℓ (S) =
1

2

p2ℓ,j + ∑
k∈S\{j}

p2ℓ,k +

pℓj +
∑

k∈S\{j}

pℓk

2


= fℓ (S \ {j}) + pℓ,j
∑
k∈S

pℓ,k, (13)

from which it follows that Iℓ (S \ {j}) = Iℓ (S)+Ψℓ,j , where

Ψℓ,j = pℓ,j

(∑
k∈S

pℓ,k − Tj

)
. (14)

Hence, maximizing Iℓ (S \ {j}) is equivalent to maximiz-
ing Ψℓ,j . As coflows with small weights should be rejected
in priority, we choose k⋆ ∈ argmaxj

1
wj

Ψℓ,j . In words, this
rule dictates to reject a coflow k⋆ with a small weight wk⋆

and which has either a large processing time pℓ,k⋆ or a large
deadline violation

∑
k∈S pℓ,k − Tk⋆ when scheduled as the

last one, or both.
When there is more than one port in L⋆, a straightforward

extension of the previous rule is to choose a coflow k⋆ with a
small weight so as to maximize

∑
ℓ∈L⋆ Iℓ (S \ {k⋆}). In this

case, we choose the coflow k⋆ with the largest value of the
index 1

w⋆
k

∑
ℓ∈L⋆ Ψℓ,k⋆ . An obvious advantage of this simple

rule is that it allows to account for the impact of the removal
of coflow k⋆ on all ports ℓ ∈ L⋆ used by this coflow.

B. Offline Algorithm

The proposed offline algorithm, namely WDCoflow, is in-
spired from the DCoflow algorithm proposed in [19], which
was devised for the unweighted setting. It takes as input a
set C = {1, 2, . . . , N} of coflows, which are all available
at time 0, and computes as output the scheduling order of
accepted coflows. The pseudocode of WDCoflow is described
in Algorithm 1. We have omitted the RemoveLateCoflows

subroutine in the pseudocode since it is the same as in [19].

IEEE TRANSACTIONS ON CLOUD COMPUTING 6

Algorithm 1: WDCoflow

1 Set S = {1, 2, . . . , N} and n = N ; ▷ initialization
2 while S ̸= ∅ do
3 Compute tℓ =

∑
k∈S pℓ,k ∀ ℓ ∈ L and ℓb = argmax

ℓ∈L
tℓ;

4 Set Sb =
{
k ∈ S : pℓb,k > 0

}
; ▷ coflows in S using ℓb

5 Set k′ = argmax
k∈Sb

Tk ▷ max-deadline coflow on ℓb

6 if tℓb ≤ Tk′ then
7 Set σn = k′ and σ⋆

n = 0 ▷ admit coflow k′

8 else
9 Set k⋆ = RejectCoflow(Sb); ▷ select a coflow to reject

10 Set σn = k⋆ and σ⋆
n = k⋆; ▷ pre-reject coflow k⋆;

11 S = S\ {σn}; ▷ remove coflow σn from S
12 n = n− 1; ▷ update the iteration index

13 σ = RemoveLateCoflows (σ, σ⋆);
14 return σ; ▷ final scheduling order
15 Function RejectCoflow(Sb):
16 Set R = Filter(Sb) ▷ candidate coflows for rejection
17 Set k⋆ = argmaxj∈R

1
wj

∑
ℓ∈L⋆ Ψℓ,j ▷ coflow to reject

18 return k⋆

In what follows, we highlight the main steps of WDCoflow

and its main differences to DCoflow.
There are two main phases in WDCoflow. In the first phase,

the algorithm works in iterations and in each iteration, it either
accepts or rejects one coflow. The selected coflow is then
removed from the current set of coflows S, which is initialized
to C. In each iteration, WDCoflow updates two vectors σ and
σ⋆ to keep track of candidate coflows: σN−n+1 is set to the
identity of the coflow selected in iteration n = 1, 2, . . . , N ,
and σ⋆

N−n+1 is set to the identity of the coflow rejected in that
iteration, if any (otherwise, we set σ⋆

N−n+1 = 0 and accept
coflow σN−n+1).

In iteration n, WDCoflow sweeps through the set of coflows
S to compute the total completion time tℓ =

∑
k∈S pℓ,k of

coflows in each port ℓ. It then determines the bottleneck port
ℓb, i.e., the port ℓ with the largest completion time tℓ. Let
k′ be the coflow using port ℓb with the largest deadline. If
tℓb ≤ Tk′ , then coflow k′ can be scheduled as the last one on
port ℓb and still satisfies its deadline. This coflow is therefore
accepted by the algorithm and we set σN−n+1 = k′ and
σ⋆
N−n+1 = 0. If on the contrary tℓb > Tk′ , this implies that

at least one coflow among those using the bottleneck port
will be late and therefore one of these coflows has to be
rejected. WDCoflow-DP, a variant of WDCoflow, then uses a
filtering algorithm described in Section III-C to compute a set
R ⊆ Sb of candidate coflows for rejection among those using
the bottleneck port. For WDCoflow, this filter is desactivated,
so that R = Sb. The coflow k⋆ ∈ R to be rejected is then
chosen as k⋆ = argmaxk∈R

1
wk

∑
ℓ∈L⋆ Ψℓ,k, as explained in

Section III-A. WDCoflow then sets σN−n+1 = σ⋆
N−n+1 = k⋆.

The second phase of WDCoflow is a post-processing phase
intended at accepting unduly rejected coflows. Indeed, some
coflows in σ⋆ could have been accepted if certain coflows
that were rejected later would have been rejected earlier. To
handle such cases, we use the function RemoveLateCoflows

proposed in [19]. At the end of the second phase of WDCoflow,
the estimated CCT of all coflows appearing in the order σ is
at most their deadline.

TABLE II
EXECUTION OF WDCoflow ON THE EXAMPLE OF FIG. 1.

Unscheduled coflows (set S) ℓb
{
Ψ1,Ψ2,Ψ3,Ψ4,Ψ5

}
S = {k1,k2, k3, k4, k5} 1 {−4 (1 + ε) ,−ε, · , · , · }
S = {k2, k3, k4, k5} 1 { · , 0, · , · , · }
S = {k3, k4, k5} 2 { · , · , 0, · , · }
S = {k4, k5} 3 { · , · , · , 0, · }
S = {k5} 4 { · , · , · , · , 0}

We revisit the example depicted in Fig. 1 to demonstrate
the difference between WDCoflow and CS-MHA. The execution
of WDCoflow on this example is presented in Table II. In
the initial step, WDCoflow selects bottleneck ingress port 1,
which is used by coflows k1 and k2. It then calculates Ψk =∑

ℓ:Ψℓ,k<0 Ψℓ,k for both coflows and chooses the coflow that
yields the largest Ψ̄k (in this case, k1) to be scheduled last.
Since the remaining unscheduled coflows do not share any
ports in the fabric, the specific ordering of these coflows does
not impact the average CAR. Given the final scheduling order,
WDCoflow yields a CAR of 4

5 , which is the optimal result, and
is better than the average CAR of 1

5 yielded by CS-MHA. In
a general setting with M machines, the CAR obtained using
CS-MHA and WDCoflow are respectively 1

M and M−1
M .

In the following, we consider three variants of WDCoflow,
namely DCoflow for unweighted coflows and WDCoflow

and WDCoflow-DP for weighted coflows. The first variant,
DCoflow corresponds to Algorithm 1 in [19] and therefore
assumes that all coflow weights are equal. The second variant,
WDCoflow, is similar to DCoflow but uses coflow weights in
the coflow rejection rule, as described in Section III-A. Finally,
the third variant, WDCoflow-DP, works as WDCoflow but uses a
Dynamic Programming (DP) algorithm which plays the role of
a filter that restricts the choice of coflows that can be rejected.
WDCoflow-DP is described in Section III-C below.

C. Filtering Algorithm in WDCoflow-DP

The coflow rejection rule discussed in Section III-A is not
necessarily optimal, even in the simple case of a single port2.
It turns out that, in this simple case, finding a maximum-
weight feasible set of coflows is equivalent to the well-known
scheduling problem of minimizing the weighted number of
late jobs on a single machine, a problem usually referred to
as3 1∥

∑
wjUj .

As it includes the ordinary knapsack problem as a spe-
cial case, this problem is NP-hard. Nevertheless, it can be
solved by a dynamic programming algorithm within a pseudo-
polynomial time bound of O(N W), where W =

∑
j wj , as

we now explain [16].
Without loss of generality, we assume that coflows are

numbered in the EDD order, i.e., T1 ≤ T2 ≤ . . . , TN . As we
assume that there is a single port ℓ, we denote the processing
time of coflow k by pk instead of pℓ,k. Let P (j)(w) denote
the minimum total processing time for any feasible subset of

2If there is only one input port and one output port, the problem reduces
to scheduling coflows on the minimum-capacity port.

3This follows the notable triple α|β|γ notation proposed in [23], where α
is the number of machines, β is an optional list of job characteristics (not
present in this case), and γ is the objective function.

IEEE TRANSACTIONS ON CLOUD COMPUTING 7

coflows 1, . . . , j that has total weight w. Initially, P (0)(0) = 0
and P (0)(w) = +∞ for all w ∈ {1, 2, . . . ,W}. In the
subsequent n iterations j = 1, 2, . . . , n, the variables P (j)(w)
are computed as follows

P (j)(w) =


min

{
P (j−1)(w), P (j−1)(w − wj) + pj

}
,

if P (j−1)(w − wj) + pj ≤ Tj ,

P (j−1)(w), otherwise.
(15)

At the end of the algorithm, the maximum weight of a
feasible set is the largest value of w such that P (n)(w) is
finite. The maximum-weight feasible set is easily obtained
with standard backtracking techniques. Interestingly, we note
that when coflows have equal weights, or more generally when
their processing times and weights are oppositely ordered, the
problem 1∥

∑
wjUj can be solved in O(N logN) time with

the Moore-Hodgson algorithm (MHA) [21].
The above DP algorithm is used by WDCoflow-DP in

function RejectCoflow to compute the set R of candidate
coflows for rejection among those using the bottleneck port.
The main advantage is that, as is easily proven, WDCoflow-DP
is optimal when there is only one input port and one output
port. This is not the case of DCoflow and WDCoflow, even
for coflows with equal weights. However, the downside is that
the running time of WDCoflow-DP is only pseudo-polynomial
in the sum of coflow weights, whereas the complexity of
WDCoflow is O(N2) (see below).

D. Complexity Analysis

The complexity of WDCoflow is O(N2), as the DCoflow

algorithm proposed in [19]. Specifically, in WDCoflow, the
values tℓ and Ψℓ,k can be initialized at cost O(NL), where
L = |L| is the number of ports. Then these values can
be updated at a cost O(L) per coflow at each iteration.
The number of operations required to determine the coflow
k′ ∈ Sb with the largest deadline is O(N) and the complexity
of RejectCoflow is O(N), so that finally across iterations
it adds to O(N2). As reported in [19], the complexity of
RemoveLateCoflows is O(NL).

The only difference between WDCoflow-DP and WDCoflow

is that the former uses a DP algorithm in RejectCoflow to
restrict the choice of coflows that can be rejected. As the
complexity of the DP algorithm is O(N W), where W =∑

j wj , the total complexity of WDCoflow-DP is O(N2 W).
In the special case when coflow weights and processing
times are oppositely ordered, the DP algorithm can be re-
placed by the Moore-Hodgson algorithm whose complexity
is O(N log(N)), so that the complexity of WDCoflow-DP
is reduced to O(N2 log(N)) (we refer to this variant as
WDCoflow-MHA).

The computational complexity of the different variants is
summarized in Table III.

E. Online Algorithm

The three variants of WDCoflow can also be performed
in an online setting where coflows arrive sequentially and

TABLE III
COMPUTATIONAL COMPLEXITY OF VARIANTS OF DCoflow.

DCoflow WDCoflow WDCoflow-MHA WDCoflow-DP

O(N2) O(N2) O(N2 log(N)) O(N2 W)

possibly in batches. For this, we introduce the update fre-
quency, denoted as f . This frequency represents the instances
at which WDCoflow recomputes the coflow scheduling order.
The updates can occur either when new coflows arrive (in
which case f is set to infinity) or periodically with a period
of 1/f . In the online scenario, the scheduler is aware of the
flow volumes of the coflows currently in the system. However,
it does not have knowledge of the volumes or release times
of future coflows.

During each update instant, the scheduler recalculates a new
order of the current coflows in the network. These include
coflows that were scheduled in the previous update but have
not yet completed, the ones that were rejected in the previous
update but still have remaining time before their deadline, and
the ones that have arrived during the update interval. The new
ordering is determined based on the remaining volumes of the
flows, rather than the original volumes. Note that coflows can
be preempted in this process [5]. This recomputation of the
schedule occurs at each update instant.

IV. PERFORMANCE EVALUATION

In this section, we conduct an evaluation of our algorithms
in comparison to state-of-the-art algorithms proposed in the
literature. To ensure fairness and clarity, we begin by assigning
equal weights to all coflows. This allows us to compare our
algorithms against others that were developed without the
ability to handle different coflow weights. In the second part
of this section, we extend our evaluation to consider the case
with different coflow weights.

A. Simulation Setup

We evaluate via simulations4 our proposed heuristics (three
variants: DCoflow, WDCoflow and WDCoflow-DP) along with
some existing algorithms such as CS-MHA5 and the solution
provided by the optimization method CDS-LP proposed in
[12]. The relaxed version of CDS-LP, named CDS-LPA, is also
implemented6. By using the solution obtained from CDS-LP
as an upper bound, we can gain insight into how closely the
evaluated algorithms approach the optimal solution. A concise
overview of the reference algorithms has been provided in
Sec. I. Furthermore, we conduct a comparative analysis by
comparing our schedulers against two established algorithms,

4The flow-level simulator and the implementation of all algorithms can be
found at https://github.com/luuquangtrung/CoflowSimulator.

5Only the centralized algorithm (CS-MHA) presented in [20] is reimple-
mented, as it has been shown, in the same paper, to be better than the
decentralized version (D2-CAS) in terms of CAR.

6It is worth noting that both CDS-LP and CDS-LPA use the same decision
variables {zk}k∈C as those introduced in Problem (WCAR). In CDS-LP, zk
are binaries, whereas in CDS-LPA, zk are continuous numbers and can take
values in the range [0, 1]. For any solution obtained using CDS-LPA, only
coflows k for which the corresponding zk strictly equals 1 are considered as
accepted ones.

IEEE TRANSACTIONS ON CLOUD COMPUTING 8

namely Sincronia [24] and Varys [13] that aim to minimize
the average CCT.

After obtaining the σ-order, the actual coflow resource
allocation for our solution is performed using the greedy rate
allocation algorithm GreedyFlowScheduling introduced in
[24]. This algorithm reserves the entire bandwidth of a port
for one flow at a time. It follows the order specified by σ,
taking into account the corresponding coflow to which each
flow belongs [24]. Note that for CDS-LP, CDS-LPA, and Varys,
the rate allocation is incorporated within the algorithm itself.

The network comprises M machines connected to a non-
blocking Big-Switch fabric, where each access port has a
normalized capacity of 1 unit. We assess the algorithms
on small-scale and large-scale networks denoted as [M,N],
representing the fabric size and number of coflows (N) in
the simulations. Small-scale networks consist of M = 10
machines, while large-scale networks have either 50 or 100
machines. Coflows in these networks are generated using
either synthetic or real traffic traces from the Facebook dataset.
CDS-LP and CDS-LPA are solved using the MILP solver

gurobi. Due to their high complexity, we only evaluate them
on small-scale networks. The subsequent sections provide a
comprehensive overview of the experimental setup, compari-
son metrics, and simulation results.

Synthetic Traffic Traces. The synthetic traffic consists of two
coflow types. Type-1 coflows have only one flow, whereas
Type-2 coflows have a varying number of flows following a
uniform distribution in [2M/3,M]. Each generated coflow is
randomly assigned to either Class 1 or Class 2 with probability
of respectively 0.6 and 0.4.

Additionally, each coflow k is assigned a random deadline
within [CCT0

k, αCCT0
k], where CCT0

k represents the CCT of
coflow k in isolation, and α is a positive real value in [2, 10].
A higher value of α indicates that the scheduler has more
flexibility in meeting the coflow deadlines.

Real Traffic Traces Real traffic traces are obtained from the
Facebook dataset [13]. This dataset is based on a MapReduce
shuffle trace collected from one of Facebook’s 3000-machine
cluster with 150 racks. The data traces contains a total of 526
coflows with varying widths, ranging from small ones with
only one flow to the largest ones with 21170 flows. Detailed
statistics of the Facebook dataset can be found in [5].

For each configuration [M,N], N coflows are randomly
sampled from the Facebook dataset. They are only chosen
from the coflows that have at most M flows. The volume of
each flow is already given by the dataset.

Weight Classes. For WDCoflow and WDCoflow-DP, we cate-
gorize coflows into two classes of weights for both synthetic
and real traffic. The weight assigned to each coflow reflects
its importance level. Class-1 coflows are assigned a weight
w1 = 1, while Class-2 coflows are assigned a weight w2 of
either 2 or 10. The probability that a generated coflow falls
into Class 1 and Class 2 are respectively p1 and p2 = 1− p1.

Metric. We evaluate the algorithms based on the average
weighted CAR, WCAR =

∑
k∈C wkzk∑
k∈C wk

for the weighted set-
ting. In the unweighted setting, WCAR is just the average

CAR, where wk = 1, ∀k ∈ C. We also present the gains
in percentiles of each algorithm with respect to the solu-
tion provided by CDS-LP in terms of WCAR. These gains
are calculated using the formula: average gain in WCAR =

compared WCAR
WCAR under CDS-LP − 1.

In addition, the per-class CAR is evaluated. For class i ∈
{1, 2}, it is defined as the number of admitted coflows of class
i divided by the total number Ni of coflows of this class, i.e.,(∑

k∈C 1k,izk
)
/Ni, where 1k,i = 1 if coflow k is of class i,

and 1k,i = 0, otherwise.

B. Scheduling Unweighted Coflows

In this section, we assess the performance of our un-
weighted algorithm, DCoflow, and compare it with other
algorithms described in section IV-A using the same weights
for all coflows. We recall that the unweighted case represents
the evaluation of DCoflow initially developed in [19].

1) Results with Offline Setting: In the offline setting, we
assume that all coflows arrive simultaneously with a release
time of zero. For each simulation with a specific scale of
the network and either synthetic or real traffic traces, we
randomly generate 100 different instances and calculate the
average performance of all algorithms over 100 runs.

a) Average CAR Under Synthetic Traffic: Figs. 2a–2b
show the average CAR with respectively small-scale networks
and large-scale networks. The percentile gains of each algo-
rithm with respect to CDS-LP are shown in Fig. 4a, in terms
of average CAR for the configuration [10, 60].

CDS-LP
CDS-LPA
CS-MHA

DCoflow
Sincronia
Varys

1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

Workloads
[10, 10] [10, 20] [10, 40] [10, 60]

(a) Synthetic traffic traces on small-scale networks.
1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

Workloads
[100, 100] [100, 200] [100, 300] [100, 400]

CS-MHA DCoflow
Sincronia Varys

(b) Synthetic traffic traces on large-scale networks.

Fig. 2. Average CAR with synthetic traffic traces using (a) small-scale and (b)
large-scale networks. Each point in the x-axis represents the network [M,N].

The results show that DCoflow exhibits the closest per-
formance to the optimal solution yielded by CDS-LP in
terms of CAR compared to all other algorithms. This holds
true for both small- and large-scale networks. Surprisingly,
DCoflow even outperforms CDS-LPA which is an approxi-
mation version of CDS-LP. These findings indicate the effec-
tiveness of DCoflow in achieving near-optimal performance

IEEE TRANSACTIONS ON CLOUD COMPUTING 9

for coflow scheduling. For instance, with the configuration
[10, 10], DCoflow improves the CAR on average by 6.5%,
11.5%, 15.1%, and 26.6%, compared respectively to CDS-LPA,
CS-MHA, Sincronia, and Varys. The improvement in aver-
age CAR becomes more pronounced as the load increases.
Specifically, the corresponding improvement on average CAR
a configuration [10, 60] are 67.2%, 98.3%, 59.9%, and 36.8%
(see Fig. 2a). The improvement in performance is even more
substantial when evaluated on a large-scale network. For
example, compared to CS-MHA, Sincronia, and Varys, with
the configuration [100, 400], the improvement in terms of av-
erage CAR are respectively 648.1%, 32.3%, and 17.9%. (see
Fig. 2b). It is worth noticing how the performance of CS-MHA
falls drastically when dealing with large-scale configurations.
This behavior can be attributed to the prioritization strategy of
CS-MHA, which favors coflows that utilize a large number of
ports over those that require only a few. In scenarios where
there are numerous coflows with a small number of ports,
the CAR of CS-MHA tends to approach zero (see detailed
explanation of this behavior with a motivating example in
Sec. II-C).

The results depicted in Figure 4a highlight that DCoflow
consistently achieves a smaller gap to the optimal solution
across a wide range of percentile values compared to other
algorithms. In particular, when compared to Sincronia,
DCoflow improves the CAR in 50% of the 100 instances by
50%, and it achieves an approximately 43% improvement at
the 99th percentile.

b) Average CAR Under Real Traffic Traces: This section
presents the results obtained with the Facebook traffic traces,
using the same configurations as those used in Sec. IV-B1a.
Figs. 3a–3b show the average CAR with respectively small-
and large-scale networks. The gains in percentiles of each
algorithm with respect to CDS-LP, in terms of average CAR
when using a [10, 60] network are shown in Fig. 4b. Sim-
ilar to the results obtained using the synthetic traces (see
Sec. IV-B1a), DCoflow demonstrates a substantial improve-
ment in terms of average CAR compared to other heuris-
tics. For instance, with a [10, 60] configuration, DCoflow

improves the average CAR by an average of 24.4%, 25%,
52.2%, and 93.1% compared respectively to CDS-LPA, CS-MHA,
Sincronia, and Varys(see Fig. 3a). The improvement is even
higher when performed on a large network configuration. For
example, compared to CS-MHA, Sincronia, and Varys, on a
[100, 400] network, the improvement in terms of average CAR
are respectively 36.6%, 55.3%, and 147.5%.

Moreover, the results in Fig. 4b show that DCoflow con-
sistently achieves a smaller gap to the optimal solution across
various percentiles compared to the other algorithms. Specif-
ically, compared to Sincronia, DCoflow improves the CAR
in 57% of 100 instances by 50%, and it achieves around 35%
at the 99th percentile.

c) Prediction Error of DCoflow: It is worth noticing that
the final solution provided by DCoflow does not necessarily
guarantee that every coflows in σ will eventually meet their
deadlines. The estimated CCT of coflows may differ from the
actual CCTs obtained after the rate allocation process due to
the coupling between input and output ports. The prediction

1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

Workloads
[10, 10] [10, 20] [10, 40] [10, 60]

CDS-LP
CDS-LPA
CS-MHA

DCoflow
Sincronia
Varys

(a) Facebook traffic traces on small-scale networks.
1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

Workloads
[100, 100] [100, 200] [100, 300] [100, 400]

CS-MHA DCoflow
Sincronia Varys

(b) Facebook traffic traces on large-scale networks.

Fig. 3. Average CAR with Facebook traces using (a) small-scale and (b)
large-scale networks. Each point in the x-axis represents network [M,N].

CDS-LPA

CS-MHA

Sincronia

Varys

DCoflow

Average gain in CAR
-0.9 -0.6 -0.3 0.30.0

(a) Synthetic traces.

CDS-LPA

CS-MHA

Sincronia

Varys

DCoflow

Average gain in CAR
-0.9 -0.6 -0.3 0.30.0

(b) Facebook traces.

Fig. 4. The 1st-10th -50th-90th-99th percentiles of the average gain in CAR
with small-scale network [10, 60] using (a) synthetic and (b) Facebook traces.

error of DCoflow represents the gap between the estimated
CAR and the actual CAR after resource allocation. This error
is given by (|σ| − |σ̂|)/|σ|, where σ̂ ⊆ σ is the subset of
coflows in σ that meet their deadlines after applying the actual
rate allocation using GreedyFlowScheduling.

In the simulations presented in Sec. IV-B, we observe an
average CAR prediction error of below 3.6% of DCoflow for
both synthetic and real traffic traces.

2) Online Setting: We now present a series of numerical
results regarding the performance of the online version of
DCoflow. The evaluation metric used is the average CAR
obtained from 40 instances. For the synthetic traffic, in each
instance, coflows arrive sequentially based on a Poisson pro-
cess with a rate of λ, i.e., the inter-arrival time of coflows is
exponentially distributed with rate λ. For real traffic traces,
since the inter-arrival time of coflows traces from Facebook
dataset drive a very low load on the network, we consider
the actual Facebook arrival traces (525 in total) and, to obtain
different arrival rates, we scale them over different time scales
to obtain a network load of between 0.8 and 0.98. In this
way, the inter-arrival distribution of the coflow used in our
experimentation is identical to that of the Facebook traces.
By default, coflow priorities are computed when a new coflow
arrives (f = ∞), unless otherwise specified.

We compare the average CAR achieved by DCoflow with

IEEE TRANSACTIONS ON CLOUD COMPUTING 10

1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

= 10 = 12= 8= 6
Arrival rate ()

CS-MHA
DCoflow

Sincronia
Varys

(a) Small-scale network.

1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

= 10 = 12= 8= 6
Arrival rate ()

CS-MHA
DCoflow

Sincronia
Varys

(b) Large-scale network.

Fig. 5. Average CAR using synthetic traffic with varying λ and (a) M = 10
and (b) M = 50.

the online version of Varys with deadline [25], CS-MHA, and
Sincronia. We examine the impact of two key parameters:
(i) the coflow arrival rate λ and (ii) the frequency f at which
coflow priorities are recomputed.

a) Impact of Arrival Rate: We begin by examining the
impact of the arrival rate λ on the CAR achieved by different
algorithms. The CAR is averaged over 40 instances, each
consisting of 4000 coflow arrivals. The deadline for each
coflow k is randomly selected from a uniform distribution
in the range [CCT0

k, 4CCT0
k]. Two scenarios are considered:

a small-scale networks with M = 10 machines and a large-
scale networks with M = 50 machines. In each scenario,
we present the results for the following values of λ: λ = 8,
λ = 12, λ = 16, and λ = 20.

Figs. 5a and 5b depict the results for respectively the small
and large network. These results show that DCoflow obtains
a higher average CAR for all values of λ. Moreover, the gain
performance of DCoflow with respect to the other algorithms
increases with the value of λ. While the other algorithms may
exhibit similar CAR in lightly loaded fabrics, DCoflow clearly
outperforms them when the network is heavily congested.

Figs. 6a and 6b show respectively the average CAR when
using the configuration of M = 10 and M = 100, both
with 4000 coflows, with the Facebook dataset. Similar to
what was observed with the synthetic traffic traces, DCoflow
significantly outperforms all other methods. When dealing
with a highly congested network (i.e., high value of λ), again
DCoflow yields a higher gain compared to the other methods.
For instance, when M = 10 (see Fig. 6a), DCoflow achieves
a gain of 13%–34% against CS-MHA and 19%–31% against
Sincronia for moderated network load. For high network
load, DCoflow achieves a gain of 62.25%–75.18% against
CS-MHA and 15%–43.33% against Sincronia. An important
observation is that CS-MHA obtains good performance when the
network load is slightly high, but its performance deteriorates
when the network load increases. On the other hand, DCoflow
performance is not affected by network load and always de-
livers the best performance under all network load conditions.
These observations also apply to large-scale networks, and the
performance of DCoflow compared to other schedulers is even
more better than in the case of M = 10 (see Fig. 6b).

b) Impact of Deadlines: Here we examine the impact of
the maximum deadline, i.e., αCCT 0, on the CAR achieved by
different algorithms. The CAR is averaged over 40 instances,
each consisting of 4000 coflow arrivals, with M = 10 and

CS-MHA
DCoflow

Sincronia
Varys

1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

= 10 = 12= 8= 6
Arrival rate ()

(a) Small-scale network.

1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

= 10 = 12= 8= 6
Arrival rate ()

CS-MHA
DCoflow

Sincronia
Varys

(b) Large-scale network.

Fig. 6. Average CAR using Facebook traffic with varying λ and (a) M = 10
and (b) M = 100.

M = 100. Fig. 7a and Fig. 7b show respectively the average
CAR when changing the maximum deadline from tight dead-
line (α = 2) to flexible deadline (α = 10). For large-scale
networks (see Fig. 7b), we observe that DCoflow achieves a
gain of up to 136% against CS-MHA when the deadline is tight,
and its gain decreases as the deadline becomes more flexible,
reaching 8% for α = 10. In comparison with Sincronia

the gain remains almost stable between 20% and 31%. The
same conclusion can be drawn for small-scale networks (see
Fig. 7a).

α = 2 α = 3 α = 4 α = 7 α = 10
Max deadline (α)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

C
A

R

CS-MHA

DCoflow

Sincronia

Varys

(a) Small-scale network, λ = 10.

α = 2 α = 3 α = 4 α = 7 α = 10
Max deadline (α)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

C
A

R

CS-MHA

DCoflow

Sincronia

Varys

(b) Large-scale network, λ = 12.

Fig. 7. Average CAR using Facebook traffic with real arrival times and
varying α and (a) M = 10 and (b) M = 100.

c) Impact of Update Frequency: To evaluate the impact
of the update frequency f on the average CAR, the following
values of f are considered: f = λ

2 , f = λ, f = 2λ, and f =
∞. Recall that f = ∞ indicates that priorities are recomputed
upon each arrival of a new coflow. We assume that M = 10
and compute the CAR by averaging over 40 instances. For
each instance, 8000 coflow arrivals are generated, following a
Poisson process of rate λ. The deadline of a coflow k follows a
uniform distribution in the range [CCT0

k, 2CCT0
k]. We examine

the average CAR for different values of f (f ∈ {λ
2 , λ, 2λ,∞})

and of the arrival rate which takes values in the range [2, 10].
Fig. 8a shows the results obtained from a simulation, in

which each arrival corresponds to one single coflow. Similar
to previous findings, for a low arrival rate λ, both DCoflow

and CS-MHA achieve a similar average CAR performance: for
λ = 2, CS-MHA achieves a slightly higher CAR than DCoflow).
But when the network is highly congested, DCoflow sig-
nificantly outperforms CS-MHA. Additionally, increasing the
frequency f has a noticeable positive impact on the CAR
for both algorithms. For example, for λ = 2 (resp. λ = 10),

IEEE TRANSACTIONS ON CLOUD COMPUTING 11

1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

= 2 = 4 = 10= 8= 6
Arrival rate ()

DCoflow,

DCoflow,
DCoflow,
DCoflow,

CS-MHA,

CS-MHA,
CS-MHA,
CS-MHA,

(a) Without batch.

1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
g
e

C
A
R

= 2 = 4 = 10= 8= 6
Arrival rate ()

DCoflow,

DCoflow,
DCoflow,
DCoflow,

CS-MHA,

CS-MHA,
CS-MHA,
CS-MHA,

(b) With batch.

Fig. 8. Average CAR of DCoflow_v1 and CS-MHA using synthetic traffic with
[10, 8000] and varying λ, when obtaining (a) one single coflow per arrival;
and (b) a random batch of coflow per arrival.

updating coflow priorities upon each arrival (i.e., f = ∞)
instead of using the periodic scheme with f = λ

2 leads to
an average CAR increase of 52% (resp. 46%). These results
suggest that there is a trade-off between the computational
complexity of updating coflow priorities at a high frequency
and the achieved CAR. Fig. 8b shows a similar analysis, but
this time we assume that coflows arrive in batches. The size
of each batch is randomly drawn from a uniform distribution
U([5, 15]). In this scenario, to ensure that the coflow arrival
rates are comparable to the previous setting (Fig. 8a), where
coflows arrive individually, we divide the batch arrival rate by
10. This adjustment allows us to maintain the same coflow
arrival rates for both settings.

The results achieved for simulations with batch arrivals are
similar to those obtained with the previous setting, but we
note that DCoflow continues to exhibit significant gains over
CS-MHA. Additionally, we observe that the benefits of using a
higher update frequency are relatively lower in this scenario.
For instance, when λ = 10, increasing the update frequency
from f = λ

2 to f = ∞ results in only a 17% increase in the
average CAR.

C. Scheduling Weighted Coflows

We now evaluate the weighted versions of our proposed
algorithm, WDCoflow and WDCoflow-DP, along with CS-DP,
CDS-LP, and CDS-LPA. CS-DP is the adapted version to the
weights of CS-MHA presented in [20] (in which the Moore-
Hodgson algorithm is replaced by the DP algorithm in Section
III-C), whereas CDS-LP and its relaxed variant CDS-LPA are
straightforward adaptations of the linear-programming meth-
ods proposed in [12] to account for coflow weights. By using
the solution derived from CDS-LP as an upper bound, we can
get the sense of how close the algorithms are to the optimum.

1) Offline Setting: In the offline setting, we consider that all
coflows arrive at the same time, i.e., their release time is zero.
For each simulation with a specific scale of the network and
either synthetic or real traffic traces, we randomly generate
100 different instances and compute the average performance
of algorithms over 100 runs. We evaluate WDCoflow and
WDCoflow-DP against existing algorithms for the offline case.

a) Synthetic Traffic: Figs. 9a and 9b shows the aver-
age WCAR with synthetic traffic traces using small-scale
(M = 10) and large-scale (M = 100) networks. It is observed

[10, 10] [10, 20] [10, 40] [10, 60]
Configurations

0.0

0.5

1.0

A
ve

ra
ge

w
ei

gh
te

d
C

A
R

CDS-LP

CDS-LPA

CS-DP

WDCoflow

WDCoflow-DP

(a) Small-scale networks.

[100, 100] [100, 200] [100, 400] [100, 600]
Configurations

0.0

0.2

0.4

0.6

A
ve

ra
ge

w
ei

gh
te

d
C

A
R

CS-DP WDCoflow WDCoflow-DP

(b) Large-scale networks.

Fig. 9. Average WCAR with coflows of all classes using synthetic traffic
traces and (a) small-scale and (b) large-scale networks. The values of (p2, w2)
are set to (0.2, 2). Each point in the x-axis represents the network [M,N].

that our proposed heuristics (WDCoflow and WDCoflow-DP)
are closest in terms of WCAR to the optimum (CDS-LP) than
all other algorithms in both small- and large-scale network
configurations. WDCoflow-DP yields a slightly higher perfor-
mance compared to WDCoflow (around 4.2%) when using
large-scale network settings (see Fig. 9b). For small scale
network, we observe that the optimum CDS-LP obtain only a
gain of 9% and 7% compared to WDCoflow and WDCoflow-DP
respectively for N = 10 . On the other hand, CDS-LPA and
CS-DP are far from the optimal solution by 17% and 30%
respectively. For the worst case when N = 60, WDCoflow
and WDCoflow-DP are far from the optimal solution by 19%
and 17% respectively, but CDS-LPA and CS-DP moves away
from the optimum by 42% and 58% respectively.

Now, for large-scale networks, we observe that WDCoflow
and WDCoflow-DP obtain a significant performance improve-
ment compared to CS-DP. Indeed, for N = 100, WDCoflow
and WDCoflow-DP obtain a gain of 14% and 18% respectively.
When the number of coflows increases, both algorithms obtain
gains up to 184% for WDCoflow and 192% for WDCoflow-DP
compared to CS-DP.

With respect to the performance of each class, Figs. 10a
and 10b show the average WCAR of each coflow class using
small and large-scale networks. As expected, the performance
is even more significant for traffic of Class 2 since WDCoflow

and WDCoflow-DP consider both the network conditions and
coflows’ importance to perform the scheduling, while CS-DP
prioritizes coflows that use a large number of ports over those
that use a few. In Fig. 10b, we can see that WDCoflow and
WDCoflow-DP perform about 21% and 51% for N = 100 and
247% and 258% for N = 600 better than CS-DP for Class 2.
For class-1 coflows, our heuristic achieves a moderate gain of
up to 10% for N = 600 compared to CS-DP.

Figs. 11a and 11b illustrate respectively the per-class
WCAR with synthetic traffic traces using network configu-
ration [10, 60] when varying p2 (with fixed w2) and w2 (with
fixed p2). We can see that both schedulers WDCoflow and
WDCoflow-DP obtain almost the same performance compared
to the optimal solution and they handle the priority between
classes as CDS-LP. But for Class 1, we can see that CS-DP
performs best for p2 = 0.5 and p2 = 0.8. This means that
WDCoflow and WDCoflow-DP take into account the importance
of weight on how to schedule the coflows.

IEEE TRANSACTIONS ON CLOUD COMPUTING 12

[10, 20]

Class 1 (w1 = 1)

[10, 60] [10, 20]

Class 2 (w2 = 2)

[10, 60]

Configurations

0.0

0.5

1.0

P
er

-c
la

ss
av

er
ag

e
C

A
R

CDS-LP

CDS-LPA

CS-DP

WDCoflow

WDCoflow-DP

(a) Small-scale networks.

[100, 200]

Class 1 (w1 = 1)

[100, 600] [100, 200]

Class 2 (w2 = 2)

[100, 600]

Configurations

0.0

0.2

0.4

0.6

P
er

-c
la

ss
av

er
ag

e
C

A
R

CS-DP WDCoflow WDCoflow-DP

(b) Large-scale networks.

Fig. 10. Average per-class CAR with synthetic traffic traces using (a) small-
scale and (b) large-scale networks. The value of p2 is set to 0.2. Each point
in the x-axis represents the network [M,N].

p2 = 0.2 p2 = 0.5
Class 1 (w1 = 1)

p2 = 0.8 p2 = 0.2 p2 = 0.5
Class 2 (w2 = 2)

p2 = 0.8

Probability of choosing Class 2 (p2)

0.0

0.2

0.4

0.6

0.8

A
ve

ra
ge

w
ei

gh
te

d
C

A
R

CDS-LP

CDS-LPA

CS-DP

WDCoflow

WDCoflow-DP

(a) Varying p2 with fixed w2.

w2 = 2

Class 1

w2 = 10 w2 = 2

Class 2

w2 = 10

Weight assigned to Class-2 coflows (w2)

0.0

0.2

0.4

0.6

0.8

A
ve

ra
ge

w
ei

gh
te

d
C

A
R

CDS-LP

CDS-LPA

CS-DP

WDCoflow

WDCoflow-DP

(b) Varying w2 with fixed p2.

Fig. 11. Average per-class CAR with synthetic traffic traces using network
configuration [10, 60] when (a) varying p2 with fixed w2 = 2 and (b) varying
w2 with fixed p2 = 0.2.

b) Real Traffic Traces: Now we use Facebook traces to
evaluate the performance of WDCoflow and WDCoflow-DP.

Figs. 12a and 12b show the average WCAR with Facebook
traffic traces using small and large-scale networks. The figures
show that WDCoflow and WDCoflow-DP provide near-optimal
solutions (the difference is less than 3%) while CDS-LPA and
CS-DP are far from the optimum of 5% and 8% respectively.
For high load (N = 60), WDCoflow and WDCoflow-DP lose
only 10% and 15% respectively compared to the optimal but
the other two algorithms lose more ground by about 53%
compared to the optimal. Moreover, the performance gap
becomes higher with the increase of the network scale. For in-
stance, with network [100, 100], WDCoflow and WDCoflow-DP
perform around 6.8% and 8.4% better than CS-DP while with
the network [100, 600], these gaps become 20% and 22%,
respectively.

We observe that WDCoflow and WDCoflow-DP approximate
the performance of the optimal solution for the small-scale
network and perform better than CS-DP w.r.t. average WCAR.
Moreover, the performance gap becomes higher with the
increase of the network scale. For instance, with network
[100, 100], WDCoflow and WDCoflow-DP perform around 10%
and 13% better than CS-DP while with network [100, 600],
these gaps become 331% and 345%, respectively.

Figs. 13a and 13b shows the average CAR of each coflow
class with Facebook traffic traces using small and large-scale
networks, with (p2, w2) = (0.5, 2). We can see that WDCoflow
and WDCoflow-DP achieve big improvement for Class 2, while
CS-DP obtains worse performance for both classes. The reason

[10, 10] [10, 20] [10, 40] [10, 60]
Configurations

0.0

0.5

1.0

A
ve

ra
ge

w
ei

gh
te

d
C

A
R

CDS-LP

CDS-LPA

CS-DP

WDCoflow

WDCoflow-DP

(a) Small-scale networks.

[100, 100] [100, 200] [100, 400] [100, 600]
Configurations

0.0

0.5

1.0

A
ve

ra
ge

w
ei

gh
te

d
C

A
R

CS-DP WDCoflow WDCoflow-DP

(b) Large-scale networks.

Fig. 12. Average WCAR with Facebook traffic traces using (a) small and (b)
large-scale networks. The values of (p2, w2) are set to (0.2, 2). Each point
in the x-axis represents the network [M,N].

[10, 20]

Class 1 (w1 = 1)

[10, 60] [10, 20]

Class 2 (w2 = 2)

[10, 60]

Configurations

0.0

0.5

1.0

P
er

-c
la

ss
av

er
ag

e
C

A
R

CDS-LP

CDS-LPA

CS-DP

WDCoflow

WDCoflow-DP

(a) Small-scale networks.

[100, 200]

Class 1 (w1 = 1)

[100, 600] [100, 200]

Class 2 (w2 = 2)

[100, 600]

Configurations

0.0

0.2

0.4

0.6

0.8

1.0

P
er

-c
la

ss
av

er
ag

e
C

A
R

CS-DP WDCoflow WDCoflow-DP

(b) Large-scale networks.

Fig. 13. Average per-class CAR with Facebook traffic traces using (a) small-
scale and (b) large-scale networks. Each point in the x-axis represents the
network [M,N].

for this is that CS-DP schedules coflows only according to
the network conditions, while WDCoflow and WDCoflow-DP
consider both network conditions and coflow weights. Under
WDCoflow and WDCoflow-DP higher weight coflows have
higher priority, thus the average WCAR greatly increases.

2) Online Setting: We now present numerical results com-
paring the performance of the online version of WDCoflow

and WDCoflow-DP against the online version of CS-DP. The
results are obtained on instances generated using our workload
generator, with 50 machines and 3000 coflow arrivals. Coflow
arrivals follow a Poisson process with an average rate of λ
(coflows/time slot). The arrival rate λ varies from 2 to 10,
and the probability and weight of Class-2 coflows are fixed
to respectively 0.5 and 10. For the sake of comparison, we
have used the greedy allocation algorithm (see the beginning
of Sec. IV) to perform the resource allocation after obtaining
the σ-order. For each algorithm the average performance is
calculated over 40 runs with 40 different instances of the same
setting.

Fig. 14a and 14b illustrate the WCAR and per-class CAR
of coflows. We observe that WDCoflow and WDCoflow-DP
improve the average WCAR as compared to CS-DP. For
instance, with λ = 4, the WCAR improvement of WDCoflow
and WDCoflow-DP compared to CS-DP are respectively 7% and
12%. In addition, they greatly improve the CAR for Class 2
for all λ compared to CS-DP (see Fig. 14b). This shows that our
proposed solution consider both network conditions and the
importance of coflows to determine the σ-order. This allows
to improve the average CAR and also to differentiate the CAR

IEEE TRANSACTIONS ON CLOUD COMPUTING 13

for a specific target class.

λ = 2 λ = 4 λ = 6 λ = 8 λ = 10
Arrival rate (λ)

0.4

0.6

0.8

1.0

A
ve

ra
ge

w
ei

gh
te

d
C

A
R

CS-DP WDCoflow WDCoflow-DP

(a) Average WCAR.

λ = 2

Class 1 (w1 = 1)

λ = 10 λ = 2

Class 2 (w2 = 2)

λ = 10

Arrival rate (λ)

0.4

0.6

0.8

1.0

P
er

-c
la

ss
av

er
ag

e
C

A
R

CS-DP WDCoflow WDCoflow-DP

(b) Per-class CAR.

Fig. 14. (a) Average WCAR and (b) per-class CAR with synthetic traffic
traces when varying λ and fixing p2 = 0.5 and w2 = 2.

V. RELATED WORK

In the literature, there has been a stronger emphasis on
minimizing the CCT of coflows rather than considering
deadline-sensitive scheduling. This discrepancy highlights the
relatively lower attention given to deadline scheduling. One of
the earlier algorithms that addresses deadline-sensitive coflow
scheduling is Varys [13]. Varys employs a cascade of coflow
admission control and scheduling mechanisms. The scheduler
aims to minimize CCT through a combination of strategies,
including (i) a heuristic for coflow ordering based on the
bottleneck’s completion time for each coflow and (ii) an
allocation algorithm that assigns bandwidth to individual flows
within each coflow. The rate allocation in Varys is designed
to approximately align the completion times of all coflows
with the bottleneck completion time.
Chronos [25] is another heuristic algorithm specifically

designed for deadline scheduling. It addresses the issue of
flow starvation by allocating residual bandwidth to flows
that do not meet their deadlines. The algorithm begins by
establishing a priority order among the coflows. Each coflow
is then allocated the minimum required bandwidth to meet its
individual deadline. If there is insufficient bandwidth available
for a particular coflow, it is removed from the allocation and
marked for multiplexing. After allocating bandwidth to all
flows that meet their deadlines, the remaining bandwidth is
distributed proportionally among the remaining coflows based
on their demands. This ensures that coflows that cannot fully
meet their deadlines still receive a fair share of the available
bandwidth.

In [20], the authors establish a connection between the
problem of deadline scheduling of coflows and the concurrent
open shop problem, which is a well-known NP-hard problem.
They propose a heuristic approach based on the Moore-
Hodgson algorithm [21], which deals with the case of single
link. A centralized and decentralized version of the heuristic
are introduced, namely CS-MHA and D2-CAS, respectively.

A formal formulation for the deadline scheduling problem
including bandwidth allocation of flows is introduced in [12].
The CDS maximization problem is cast as an MILP (called
CDS-LP). In the formulation, time is divided into intervals
based on the boundaries set by the coflows deadlines, ar-
ranged in increasing order. The objective of CDS-LP is to

determine which coflows to accept and the corresponding
amount of bandwidth to allocate in each interval to maximize
the overall satisfaction of coflow deadlines. The problem takes
into account the inherent trade-off between accepting more
coflows and allocating sufficient bandwidth to meet their
deadlines. CDS-LP is proven to be NP-hard, indicating that
finding an optimal solution is computationally challenging. As
an alternative, they propose an approximation algorithm based
on LP relaxation, referred to as CDS-LPA. CDS-LPA relaxes the
binary variables in the MILP formulation and retains only the
coflows that are completely accepted according to the relaxed
variables (i.e., their relaxed variables are strictly equal to 1).

An online heuristic to maximize coflow admissions, while
respecting their deadlines, is presented in [26]. The authors
only focus on comparing their heuristic with Varys, acknowl-
edging that other more efficient algorithms have been devel-
oped in the literature, such as those presented in [12, 20, 25].
MixCoflow [27] addresses the problem of simultaneous

optimization of coflows with and without deadline. The paper
formulates an optimization framework to schedule coflows,
with objective to minimize and balance the bandwidth usage
of coflows with deadlines, allowing coflows without deadlines
to be scheduled as soon as possible. The framework is fist cast
as an ILP, then an equivalent LP problem has been investi-
gated to obtain the optimal solution with lesser computational
complexity.

The work in [28] considers the scenario where the net-
work is overloaded and it becomes impossible to complete
all coflows within their respective deadlines. The proposed
solution, namely Poco, leverages the observation that certain
parallel time-sensitive data applications can tolerate incom-
plete or partial transmission of their data. Poco proposes a
mechanism to order the coflows at the limit of the tolerance
of each application.

For completeness, we also cite additional works focusing
on the problem of minimizing CCT of coflows [5–8, 29–33]
as well as the survey article [34]. For instance, [31] introduces
SmartCoflow to solve the joint problem of endpoint place-
ment and coflow scheduling, with objective to minimize the
average CCT of coflows across geo-distributed datacenters.
Another coflow scheduler, namely Parrot, is presented in
[32]. Parrot leverages the least per-coflow attained service
policy to infer the job with shortest remaining processing
time. Among these work on coflow CCT minimization, the
algorithm Sincronia [24] has gained popularity. It addresses
CCT minimization by scheduling coflows on network bot-
tlenecks and provides a scheduling order that achieves a 4-
approximation factor.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel approach for
handling coflow admission control and scheduling in the
context of batch processing with deadline constraints. Our
algorithm takes advantage of open-shop scheduling techniques
to identify a subset of coflows to be scheduled and determines
a σ priority order, for efficient execution. By utilizing this σ-
order, coflows are scheduled based on their priority, ensuring

IEEE TRANSACTIONS ON CLOUD COMPUTING 14

effective management of deadlines and improved overall per-
formance.

The experimental evaluation of our algorithms demonstrates
promising performance on small-scale networks, where they
either match or outperform other existing deadline-sensitive
algorithms proposed in prior works. However, the true strength
of our approach is revealed on large-scale networks, where it
exhibits substantial improvements compared to the existing
algorithms. For instance, in an offline setting, our scheme
achieves a significantly higher CAR, such as a remarkable
98% increase compared to CS-MHA. Additionally, our proposed
algorithm showcases a remarkable accuracy in prediction:
Even though the admission control is performed using a CCT
approximation with bottleneck ports, the proposed algorithm
ensures that nearly all accepted coflows are able to complete
within their assigned deadlines when they are actually sched-
uled.

This behavior is observed in various scenarios and network
settings, including offline and online scenarios, using a wide
range of network scales with either synthetic or real traces
from the Facebook data set. This demonstrates the robustness
and efficacy of the proposed algorithm when dealing with
different situations.

Several extensions of this research line are possible and
will be considered for future works. Specifically, the problem
of scheduling coflows with incomplete information, e.g., the
volume of flows of different coflows. This could occur when
the exact volume of a flow of a given coflow is not directly
available to the scheduler, but is instead inferred from a priori
distribution. Understanding how our algorithm performs under
such circumstances can provide insights into its robustness and
adaptability to uncertain or incomplete information. Finally,
fairness among coflows is also an important issue that has not
been addressed in our current work. Future research could
focus on developing new algorithms that promote fairness
among coflows, ensuring equitable treatment of coflows and
improving overall system performance.

REFERENCES

[1] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. ACM HotNets, Redmond, Washington,
2012, pp. 31–36.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al.,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[4] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 98–
109, 2011.

[5] M. Chowdhury, “Coflow: A networking abstraction for distributed
data-parallel applications,” Ph.D. dissertation, University of California,
Berkeley, Nov. 2015.

[6] M. Shafiee and J. Ghaderi, “An improved bound for minimizing the
total weighted completion time of coflows in datacenters,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1674–1687, 2018.

[7] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and
A. Vahdat, “Sincronia: Near-optimal network design for coflows,” in
Proc. ACM SIGCOMM, 2018, pp. 16–29.

[8] A. Arfaoui, R. El-Azouzi, F. De Pellegrini, C. Richier, and J. Leguay,
“Elite: Near-optimal heuristics for coflow scheduling,” in 2022 22nd
IEEE International Symposium on Cluster, Cloud and Internet Comput-
ing (CCGrid), 2022, pp. 665–674.

[9] S. Ahmadi, S. Khuller, M. Purohit, and S. Yang, “On scheduling
coflows,” Algorithmica, vol. 82, no. 12, pp. 3604–3629, 2020.

[10] M. Shafiee and J. Ghaderi, “An improved bound for minimizing the
total weighted completion time of coflows in datacenters,” IEEE/ACM
Transactions on Networking, vol. 26, no. 4, pp. 1674–1687, 2018.

[11] M. Chowdhury et al., “Near optimal coflow scheduling in networks,” in
Proc. ACM SPAA, Phoenix, AZ, USA, June 22-24 2019, pp. 123–134.

[12] S.-H. Tseng and A. Tang, “Coflow deadline scheduling via network-
aware optimization,” in Proc. Annu. Allert. Conf. Commun. Control
Comput., 2018, pp. 829–833.

[13] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient Coflow Scheduling
with Varys,” in Proc. ACM SIGCOMM, 2014, pp. 443–454.

[14] C. G. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R. Bodik,
“Parallelizing the web browser,” in Proc. the First USENIX Workshop
on Hot Topics in Parallelism, 2009.

[15] J. Xia, G. Zeng, J. Zhang, W. Wang, W. Bai, J. Jiang, and K. Chen,
“Rethinking transport layer design for distributed machine learning,” in
Proc. the 3rd Asia-Pacific Workshop on Networking 2019, 2019, pp.
22–28.

[16] J. K. Lenstra and D. B. Shmoys, “Elements of scheduling,” arXiv
preprint arXiv:2001.06005, 2020.

[17] A. S. Schulz, “Polytopes and Scheduling,” Ph.D. dissertation, Technis-
che Universität Berlin, 1996.

[18] B. Lin and A. Kononov, “Customer order scheduling to minimize the
number of late jobs,” Eur. J. Oper. Res., vol. 183, no. 2, pp. 944–948,
2007.

[19] Q.-T. Luu, O. Brun, R. El-Azouzi, F. De Pellegrini, B. J. Prabhu, and
C. Richier, “Dcoflow: Deadline-aware scheduling algorithm for coflows
in datacenter networks,” in 2022 IFIP Networking Conference (IFIP
Networking), 2022, pp. 1–9.

[20] S. Luo, H. Yu, and L. Li, “Decentralized deadline-aware coflow schedul-
ing for datacenter networks,” in Proc. IEEE ICC, 2016, pp. 1–6.

[21] J. M. Moore, “An n job, one machine sequencing algorithm for
minimizing the number of late jobs,” Manag. Sci., vol. 15, no. 1, pp.
102–109, 1968.

[22] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A.
Uhan, “Minimizing the sum of weighted completion times in a concur-
rent open shop,” Oper. Res. Lett., vol. 38, no. 5, pp. 390–395, 2010.

[23] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimiza-
tion and approximation in deterministic sequencing and scheduling: a
survey,” in Annals of discrete mathematics. Elsevier, 1979, vol. 5, pp.
287–326.

[24] S. Agarwal, R. Agarwal, S. Rajakrishnan, D. Shmoys, A. Narayan, and
A. Vahdat, “Sincronia: Near-Optimal Network Design for Coflows,” in
Proc. ACM SIGCOMM, 2018, pp. 16–29.

[25] S. Ma, J. Jiang, B. Li, and B. Li, “Chronos: Meeting Coflow Deadlines
in Data Center Networks,” in Proc. IEEE ICC, 2016.

[26] A. Hasnain and H. Karl, “Coflow scheduling with performance guaran-
tees for data center applications,” in 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), 2020,
pp. 850–856.

[27] R. Xu, W. Li, K. Li, X. Zhou, and H. Qi, “Scheduling mix-coflows
in datacenter networks,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 2002–2015, 2020.

[28] S. Luo, P. Fan, H. Xing, and H. Yu, “Meeting coflow deadlines in data
center networks with policy-based selective completion,” IEEE/ACM
Transactions on Networking, vol. 31, no. 1, pp. 178–191, 2023.

[29] L. Chen, W. Cui, B. Li, and B. Li, “Optimizing coflow completion
times with utility max-min fairness,” in Proc. IEEE INFOCOM, 2016,
pp. 1–9.

[30] W. Li, D. Guo, A. X. Liu, K. Li, H. Qi, S. Guo, A. Munir, and
X. Tao, “Coman: Managing bandwidth across computing frameworks in
multiplexed datacenters,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 5, pp. 1013–1029, 2018.

[31] W. Li, X. Yuan, K. Li, H. Qi, and X. Zhou, “Leveraging endpoint
flexibility when scheduling coflows across geo-distributed datacenters,”
in IEEE INFOCOM 2018 - IEEE Conference on Computer Communi-
cations, 2018, pp. 873–881.

[32] W. Li, S. Chen, K. Li, H. Qi, R. Xu, and S. Zhang, “Efficient
online scheduling for coflow-aware machine learning clusters,” IEEE
Transactions on Cloud Computing, vol. 10, no. 4, pp. 2564–2579, 2022.

[33] L. Shi, Y. Liu, J. Zhang, and T. Robertazzi, “Coflow scheduling in data
centers: routing and bandwidth allocation,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 11, pp. 2661–2675, 2021.

[34] S. Wang, J. Zhang, T. Huang, J. Liu, T. Pan, and Y. Liu, “A survey of
coflow scheduling schemes for data center networks,” IEEE Commun.
Mag., vol. 56, no. 6, pp. 179–185, 2018.

IEEE TRANSACTIONS ON CLOUD COMPUTING 15

Olivier Brun is a CNRS research staff member
at LAAS, in the SARA group. He graduated from
the Institut National des Télécommunication (INT,
Evry, France) and he was awarded his PhD degree
from Université Toulouse III (France). His research
interests lie in queueing and game theories as well
as network optimization.

Rachid El-Azouzi is a full professor at the Uni-
versity of Avignon. He received his PhD in Ap-
plied Mathematics from Mohammed V University
in 2000. He joined the National Institute for Re-
search in Computer Science and Control (INRIA),
in Sophia Antipolis, where he held positions as a
postdoctoral fellow and research engineer. In 2003,
he joined the University of Avignon as an associate
professor. His research interests include networked
games, resource allocation, wireless networks, com-
plex systems and performance evaluation.

Quang-Trung Luu is currently a lecturer at Hanoi
University of Science and Technology (HUST),
Hanoi, Vietnam. He received a Ph.D from Centrale-
Supélec, Paris-Saclay University, France in 2021
(in collaboration with Nokia Bell Labs France).
Before joining HUST, he was a postdoctoral fellow
at LAAS-CNRS and University of Avignon, France.
His research focuses on the optimization of resource
management in next-generation communication net-
works.

Francesco De Pellegrini received the MSc 2000,
and Ph.D. 2004, University of Padova, Italy, in In-
formation Engineering. He is professor in network-
ing and artificial intelligence at LIA, the Computer
Science department of the University of Avignon.
Before he was a researcher at Fondazione Bruno
Kessler, Italy. He applies algorithms on graphs,
stochastic control, and game theory for the design
and the perfomance evaluation of networked sys-
tems.

Balakrishna Prabhu is a CNRS researcher at
LAAS-CNRS, Toulouse, France. His research in-
terests are in performance analysis of communica-
tion systems using stochastic modelling and game
theory. He obtained his PhD from INRIA Sophia
Antipolis (France) in 2005 and M.Sc (Engg.) from
the IISc (India). Before joining LAAS-CNRS, he
did postdoctoral stints at VTT (Finland), CWI, Eu-
random and TU/e (The Netherlands).

Cédric Richier is a research engineer at CNRS
and the Avignon University, Avignon, France. He
was awarded his master’s degree in 2012 from
the Avignon University. He has worked on several
diverse research projects such as social networks,
multimedia, data centers and resource allocation.

