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Semi-distributed Coflow Scheduling in Datacenters
Rachid El-Azouzi, Francesco De Pellegrini, Afaf Arfaoui, Cédric Richier, Jeremie Leguay,

Quang-Trung Luu, Youcef Magnouche, and Sebastien Martin

Abstract—With the advent of big data applications, coflow
scheduling has become a cornerstone for the engineering of traffic
in datacenters. Minimizing the average weighted Coflow Com-
pletion Times (CCT) is a crucial step to minimize the execution
time of jobs running in distributed computing frameworks.

In this paper, we present a new σ-order coflow scheduling
solution, ONE-PARIS, an online semi-clairvoyant and semi-
distributed implementation suitable to minimize the weighted
CCT in production environments. We achieves this through
ONE-PARIS scheduler for ordering coflows and a decentralized
resource allocation mechanism, called Sync-Rate, enabling to
respect the order of priority of coflows provided by ONE-PARIS
and ensuring efficient synchronization between flows of the same
coflow in order to free up bandwidth for low-priority flows.
Extensive simulations on both synthetic and real traffics show
that our proposed coflow scheduler outperforms other state-of-
art schemes.

Index Terms—Coflow scheduling, σ-order, distributed rate
allocation, pricing, task scheduling, resource allocation.

I. INTRODUCTION

Most cloud providers nowadays feature the provisioning
of cluster computing as a service. Customers can launch
their compute-intensive tasks on big data frameworks such as
MapReduce [1] or Spark [2]. Such software frameworks rely
on the so called dataflow computing model for large-scale data
processing. It consists in a distributed computing paradigm
where each intermediate computation stage is distributed over
a set of nodes and its output is transferred to nodes hosting
the next stage. In between two computation stages, these
dataflows are producing a set of flows, called a coflow [3],
that are bound together by the same application task. Coflows
represent a standard traffic pattern abstraction in datacenters.
In MapReduce for instance, a coflow is a set of concurrent
flows sent from mapper nodes, i.e., senders, to a set of
reducer nodes, i.e., receivers. Such flows are launched after
the mappers have completed their computing tasks. The data
transfer phase between the mappers and reducers is called the
shuffle phase and completes only when all constituent flows
are over.

Research on the scheduling of coflows has started with
the seminal work in [3], [4], proving that accounting for the
coflow structure in traffic management significantly improves
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application-level performance. Since then, coflow scheduling
has become a core topic in datacenter traffic engineering. The
main challenge lies in the fact that computing frameworks
can generate simultaneously tenths of thousands of flows per
job [4]. When many jobs run in parallel, network congestion
occurs due to concurrent coflows.

However, datacenter fabrics are largely over-provisioned
with respect to bisection capacity [5] in order to cope with
congestion events. Modern leaf-spine architectures enable load
balancing with ECMP to prevent inner network congestion
[6]. Nevertheless, congestion can still happen at the edge
and a careful scheduling of application traffic is needed. The
standard abstraction for resource allocation used in this context
is hence based on the Big Switch model [7] (e.g., see Fig. 1),
capturing the fact that congestion occurs at Top-of-Rack (ToR)
switches only. Coflow scheduling performs the bandwidth
allocation at ToR switch ports in the datacenter fabric.

The acceleration of big data frameworks is a wide research
topic and various technologies have been proposed for packet
scheduling, congestion control or load balancing [8]. However,
it has been observed in real traces that coflow scheduling has a
significant impact on the completion time of applications [9].
On average, the shuffle phase accounts for 33% of the running
time in observed jobs. In 26% of the jobs with reduce tasks, it
accounts for more than 50%. The reference objective function
to measure acceleration at network layer is the weighted
Coflow Completion Time (CCT) [4], [10].

One popular idea appearing in many research works sug-
gests to equalize flow transfer times per coflow [9], i.e., to let
all flows of a coflow finish at the same time. In fact, finishing
some flows before the bottlenecked one is irrelevant w.r.t.
the CCT of a coflow. In standard flow scheduling, shortest-
flow-first heuristics grant average flow service time minimiza-
tion [11]. Varys [7] is a baseline reference for clairvoyant
heuristics. Even though recent scheduling algorithms like [12],
[13] outperform it, Varys has introduced several key concepts
at once. First, it combines shortest-flow-first, with coflow
equalization. Furthermore, it works based on the notion of
a bottleneck link of a coflow, i.e., the port of the fabric which
experiences the maximal data transfer time. The schedule is
performed using a priority order: the priority of coflows is
assigned dynamically and given to the coflow that would end
the soonest in isolation (i.e, if it was alone in the network).
Hence, its traffic on the bottleneck link is served in priority,
possibly pre-empting lower-priority coflows.

In general, the coflow scheduling problem to minimize
CCT is strongly NP-hard and exact solutions based on time-
indexed MILPs (Mixed Integer Linear Programs) suffer ob-
vious scalability issues [14]. Most theoretical works have
focused on coflow scheduling in Big Switch model, where the



communication graph is a complete bipartite graph. Since this
problem is NP-hard, the main results concern the development
of approximation algorithms. A series of papers [13], [15]–
[21] reduced the approximation factor from 67

3 to 4 for the
case without release time, i.e., the time at which the coflow or
flow is available. In order to design scalable algorithms, the
main idea appearing in many research works is to give coflows
a static priority order, known as a σ-order. For a given σ
order, it is sufficient to adopt a work-preserving transmission
policy which consists of never allowing the port to remain
inactive when there is data from any flow (of any priority) to
be transmitted. e.g., using priority queuing in the data plane.
Inspired by the work [22] on open-shop scheduling problem,
many different schemes have been developed to provide a
σ-order that determines priority between coflows [13], [15]–
[18]. Here, we highlight two of them, namely [12], [13],
that are more relevant to ours. In both papers, the authors
proposed an algorithm based on the primal-dual optimization
problem: their solution is practical since it does not require to
solve a linear program. Also, a deterministic 4-approximation
guarantee is provided when all release time are zero. On top of
this, Sincronia [12] proved that the approximation factor holds
as long as flow-rate allocations are work-conserving and as-
signed by respecting the proposed σ-order. Ahmadi et al. [13]
developed a centralized resource allocation scheme using the
edge-shifting technique to avoid wasting resources if coflows
are scheduled independently and sequentially. The main idea
behind their scheme is to let all flows belonging to the same
coflow to finish at almost the same time. A different class of
algorithms rely on linear programming relaxation techniques.
They return a solution whose value is guaranteed to be within a
constant fraction of the optimal [19], [21], [23], [24]. However,
when dealing with datacenters that handle a high number of
coflows, techniques relying on linear programming relaxation
may not be practical or feasible, due to the high number of
variables involved.

Several types of schedulers have been proposed in the
literature when no prior knowledge is available (e.g. flow
volumes, flow arrivals). Semi-clairvoyant schedulers, where
only volumes aggregated at ingress ports are available, have
been studied in [25]. The proposed solution shows that it is
robust to the lack of information about the egress ports. Non-
clairvoyant methods have been studies as well in [4], [26]–
[28], when prior knowledge (e.g., flow volumes, flow arrivals)
is not available. A similar scheduler based on scheduling with-
out prior knowledge of coflows was introduced in Aalo [29].
In [30], another joint scheduling and routing of flows in data
center networks was presented, where similar heuristics based
on a minimum time remaining first policy were developed.

It is important to observe that, up to now, all schedulers
proposed in the literature cannot not offer tight approximation
factors. This leaves room to explore heuristics beyond, e.g.,
those due to the open shop scheduling problem. The key idea
we adopt in this work is based on the idea of measuring the
impact of each coflow on the CCT, considering not only the
gain per coflow, but also the impact that one coflow has on
the average CCT of other coflows. This permits to design a
new algorithm, called ONE-PARIS (ONE-steP-Ahead-loweR-

Impact-firSt), to provide a σ-order. The main idea of ONE-
PARIS is to approximate at each step the impact of scheduling
a certain coflow onto the CCT of the remaining ones to
be scheduled afterwards. In other words, the coflow to be
scheduled at each step is the one that has the least impact
on the other coflows in term of average CCT.
Main contributions. The proposed coflow scheduling frame-
work has two components: (i) a robust coflow ordering algo-
rithm; and (ii) a decentralized rate allocation scheme. First,
we introduce ONE-PARIS, which outperforms state-of-the-art
solutions such as Sincronia [12] (currently the best in-class
algorithm). Similarly to Sincronia, it belongs to the scalable
class of σ-order schedulers that decouple coflow prioritization
from rate allocation. The main novelty though is to combine
the feed-forward scheduling from Varys with the σ-order
concept introduced by [12], [13]. But, while those algorithms
establish the priority of coflows based on the bottleneck
only, ONE-PARIS accounts for all links engaged by coflows
and evaluates the priority based on the per-flow bottleneck
evolution. Finally, we describe how to use the algorithm to
schedule coflows in the online scenario, i.e., when coflow
release times are unknown since coflows are generated at
runtime.

Second, we propose a distributed bandwidth sharing al-
gorithm, called Sync-Rate, that respects a given σ-order. It
is proved to outperform Greedy, an algorithm for bandwidth
sharing proposed along with Sincronia [12] that allocates rates
accordingly to what priority queuing would do in the data
plane. To further minimize the weighted CCT and address scal-
ability issues, Sync-Rate allocates flow rates in a distributed
manner striving to let flows in the same coflow finish at the
same time while respecting the σ-order. It is rooted in Kelly’s
work [31] for network utility maximization. We further discuss
how it can be implemented, in practice, in ToR switches and
end-hosts.

Finally, we provide a performance evaluation for our com-
prehensive semi-decentralized coflow scheduling solution. For
larger-scale instances, we present extensive numerical experi-
ments to highlight the gains compared to existing schedulers,
in particular Varys and Sincronia. Theses experiments are
performed on both offline and online settings as well as clair-
voyant and semi-clairvoyant settings using synthetic traces and
real traces. Our solution is proved to outperform them in both
clairvoyant and semi-clairvoyant cases, i.e., when the exact
size of flows is unknown and only aggregated volumes are
available from MapReduce APIs. In addition, when compared
to Varys, ONE-PARIS provides very consistent improvements
for almost all the coflows (about 96%) while Sincronia de-
grades the performance of up to 30% of them. The experiment
results also show the comparison of Sync-Rate when compared
to Greedy algorithm, the baseline rate allocation proposed
along with Sincronia [12]. Our distributed algorithm achieves
a moderate improvement up to 3.7%. Finally, we evaluate
the performance of ONE-PARIS and Sincronia over a testbed
composed of 60 machines. We use priority queuing in the data
plane in order to perform rate allocation. Baseline performance
figures are obtained when no coflow scheduling is applied. The
results show that ONE-PARIS achieves a 187% gain against
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Varys, while Sincronia improves completion time by 151%.
The rest of the paper is organized as follows. Sec. II

introduces the general reference model for coflow scheduling.
Sec. III derives the σ-order feedforward procedure of ONE-
PARIS and Sec. IV presents the online version. Sec. V
describes our distributed rate allocation procedure. Sec. VI
reports numerical results and Sec. VII summarizes previous
studies on coflow scheduling. Sec. VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

This section presents the coflow scheduling problem and
discusses the limitations of state of the art approaches.

A. Problem Formulation

We consider a datacenter where K coflows are running in
parallel. We consider a batch of coflows C = {1, 2, ...,K}. For
the sake of clarity, we suppose that all coflows arrive at the
same time. However, in Section IV, we adapt our scheduler
when coflows arrive sequentially and possibly in batches. The
datacenter network can be modeled as a directed graph G =
(V,L), representing a Big Switch fabric, where L is the set
of ingress/egress ports and V is the set of source/destination
nodes. Each port l has a capacity bl equals to the corresponding
port’s capacity; in the rest of the paper, all ports have unitary
capacity.

Each coflow k is composed of nk flows with Fk =
{fk1, fk2, .., fknk

}. Each constituent flow fkj is defined by
a 3-tuple (skj , dkj , vkj) where skj , dkj ∈ V are source and
destination nodes, and vkj is the flow volume, i.e., the total
amount of data to be transferred. Since a coflow is considered
completed only when all its constituent flows are over, the
Coflow Completion Time (CCT) for coflow k is given by

Tk = max
j∈{1,...,nk}

vkj

r̄kj
, (1)

where r̄kj represents the average rate of flow fkj through its
lifetime. It is defined as follows

r̄kj =
1

CT kj

∫ CTkj

0

rkj(t)dt,

with rkj(t) is the bandwidth allocated to flow fkj at time
t and CT kj its completion time. This quantity r̄kj rules the
transfer time of the data volume traversing the so-called coflow
bottleneck and determines in fact the CCT of the coflow. We
use wk to denote the weight, i.e., the importance of each
coflow k ∈ C, that is typically given by the application
scheduler so that the overall completion time can be optimized
with regard to priorities. Define

S =
∑
k∈C

∑
j∈Fk

vkj

minl∈L bl

The value of S can be viewed as the upper bound of mini-
mum time required for scheduling all the coflows. The total

Weighted Coflow Completion Time Minimization (WCCT)
problem is defined as follows:

min
r

∑
k∈C

wkTk (2a)

s.t. rk1j(t) ≥ 0, ∀t ∈ [0, S], (2b)∑
k∈C

∑
j∈Fk

rkj(t)xkj
l ≤ bl, ∀l ∈ L,∀t ∈ [0, S]. (2c)

where xkj
l is an indicator of whether flow fkj passes through

port l. Constraints (2c) express that, at any instant t ∈ [0, S],
the total flow cannot exceed the port capacity.

As showed in [7], for preemptive scheduling, the WCCT
problem is proved NP-hard by reduction to the concurrent
open-shop problem.

B. Motivating Example

Using a simple example, we illustrate to what extent ig-
noring the cumulative impact that a coflow has on others
in terms of resources utilization can ultimately harm the
average CCT. As depicted in Fig. 1, we consider a batch
of 4 coflows that are represented by different color bands:
C1 is composed by 5 flows (blue) and C2, C3 and C4, are
composed by only one flow each (green, black and orange,
respectively). We used the standard pictorial representation
of a Big Switch fabric [7], where the vertical position of
the color band indicates the egress port. We consider unitary
capacity on all ports and unitary weights for all coflows, i.e.,
wk = 1, k ∈ {1, ...,K}. Finally, the number in the input band
represents the flow volume, normalized in traffic units. Using

Table I
COFLOWS AND THEIR FLOWS AT THE 4 INGRESS AND 4 EGRESS PORTS

Coflow Flow Id Volume Ingress Ports Egress Ports
C1 f11 6.6 4 5

f12 6.6 3 5
f13 6.6 1 6
f14 3.3 2 8
f15 3.3 1 8

C2 f21 10 + ϵ 4 7
C3 f31 10 1 7
C4 f41 10 + 2ϵ 2 7

Varys algorithm introduced in [7], the CCT of each coflow
is computed first considering all of them in isolation. As
coflow C3 has the smallest CCT in isolation, Varys schedules
it first and gives all the bandwidth to its unique flow f31. This
decision blocks coflows C2 and C4 on egress port 7 and coflow
C1 on ingress port 1 since flows f13 and f15 use these ports.
According to the Minimum-Allocation-for-Desired-Duration
(MADD) algorithm used in Varys, no bandwidth is allocated
to any of the flows of C1 during this round. Overall, Varys
provides 25.8s as average CCT.

Now we characterize the coflow ordering produced by
Sincronia [12]. At each step, the algorithm selects the bot-
tleneck ingress or egress port. It chooses the coflow with the
largest weighted processing time and places it last among all
unscheduled coflows. Finally, Sincronia scales the weights of
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Figure 1. Coflow scheduling over a Big Switch datacenter fabric with 4×4
ingress/egress ports. Flows in ingress are organized vertically by destination
(i.e., egress) ports and color-marked per coflow: C1 in blue, C2 in orange,
C3 in green and C4 in black.

Table II
EXECUTION OF SINCRONIA ON THE EXAMPLE OF FIG. 1. THE AVERAGE

CCT IS (13.2 + 26.6 + 19.9 + 33.3)/4 = 23.25S (USING GREEDY RATE
ALLOCATION).

Unscheduled coflows Bottleneck Sincronia’s weights
(set Cu) {w1, w2, w3, w4}

{1, 1, 1, 1}
Cu = {C1, C2, C3, C4} 7 {1, ϵ

100+2ϵ
, 2ϵ
100+2ϵ

, 0}
Cu = {C1, C2, C3} 7 {1, 0, ϵ(100−2ϵ)

(100+2ϵ)(100+ϵ)
, 0}

Cu = {C1, C3} 7 {1, 0, 0, 0}
Cu = {C1} 5 {0, 0, 0, 0}

all unscheduled coflows active on the same bottleneck. Table
II shows the execution on the example of Fig. 1. At the
first iteration, Sincronia chooses bottleneck egress port 7, and
selects the largest coflow (in volume) to schedule last, i.e.,
coflow C4. The algorithm then scales the weights of coflow
C2 and C3 while keeping coflow C1’s weight unchanged.
The weights of Coflow C2 and C3 are scaled as follows:
wk ←− wk − w4

vk1

v41 , k = 2, 3. At the second iteration,
the egress port 7 is still the bottleneck and coflow C2 is
selected. By following the same procedure, the ordering given
by Sincronia in that example is {C1, C3, C2, C4}. Given this
coflow ordering, the Greedy algorithm [12] used by Sincronia
to allocate flow rates obtains 23.5s as the average CCT.

In this example Sincronia and Varys are proved to perform
very far from the optimal solution.Indeed, we observe that
coflow C4 uses ingress ports 2 and 7 and ingress port 2 is
only used by flow f14. Hence, it is more efficient to schedule
C4 first since its impact on other coflows is limited compared
to other coflows. If coflow C4 is scheduled first, then coflow
C1 will monopolize all other ports since coflow C2 and C3 are
blocked by coflow C4. At 10s, coflow C4 finishes to transfer
its demand, and then C1 can use ingress port 2 to transfer
the demand of flow f14 and obtains 13.3s as CCT. After C1,
coflows C2 and C3, will subsequently inherit the bottleneck
port bandwidth to transfer their demands. The order of coflow
C2 and C3 has no impact on the average CCT. As a result,
all coflows C4, C1, C2, C3 finish at times 10s, 13.3s, 20s and

30s, respectively. The average CCT is 18.325s, which can be
proved to be optimal via ILP: it improves by 22% compared
to Sincronia and by 31.8% compared to Varys.

The need for an all-port approach. In this example, Varys
and Sincronia neglect the impact that scheduling a coflow has
on the average CCT of the other ones. The root cause is that
both evaluate the impact of one coflow on other coflows by
looking to its bottleneck and not through all ports where it
is active. Therefore, they misjudge the order of coflows and
degrade the average CCT. In this sense, Sincronia does much
better than Varys because, in constructing its schedule, it can
decreases the weight of each coflow using the bottleneck. In
this case, if a coflow uses more links, its weight may decrease
rapidly, increasing the chance that it will be scheduled in
lower priority. On the other hand, Sincronia needs several steps
before evaluating the impact of a coflow on other coflows. The
need for an all-port approach motivates the design of a new
σ-order scheduler, called ONE-PARIS.

We further design a distributed rate control algorithm, called
Sync-Rate, that complies with the given σ-order.

III. σ-ORDER SCHEDULING WITH ONE-PARIS

In this section, we present the core of ONE-PARIS (ONE-
steP-Ahead-loweR-Impact-firSt) for coflow scheduling. Given
a list of K coflows and their weights, it provides a permuta-
tion (σ(1), σ(2), . . . , σ(K)) that indicates the order in which
coflows must be transmitted to minimize the weighted average
completion time.

When a coflow is scheduled, it will impact other lower
priority (i.e., rank) coflows. Hence our primary objective is to
evaluate the impact of such scheduled coflow on the weighted
CCT. In practice, this makes the search space exponentially
large because there are K! possible coflow orderings. Hence,
we propose a new approach that approximates at each step
the impact of scheduling a certain coflow on the remaining
coflows scheduled afterwards. The main idea of ONE-PARIS
is to give priority to the coflow that has the least impact on
other coflows.

We suppose that all coflows arrive at the same time to ease
the analysis. Note that our scheduler applies also to coflows
with different arrival times (by using updated information on
volumes). ONE-PARIS only needs to compute an estimation of
the CCT of each coflow based on their respective bottlenecks.
The algorithm is described in Alg. 1.

For ease of notation, let Cs = {σ(1), σ(2), .., σ(n− 1)} be
the set of coflows that have already been scheduled at step
n − 1. For each coflow k ∈ C\Cs, we compute the CCT of
coflow k and k′ ∈ C\Cs ∪ {k} when coflow k is scheduled
after all coflows in Cs, and coflow k′ after k:

T Cs

k = max
l∈L

{∑
i∈Cs∪{k} v̄

i
l

bl

}
(3)

T Cs

(k,k′) = max
l∈L

{∑
i∈Cs∪{k,k′} v̄

i
l

bl

}
(4)

where v̄il is the total data volume of coflow i transferred
through port l. Thus, the total weighted CCT of coflow k and
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Algorithm 1 ONE-PARIS.
Input: Sets of unscheduled coflows Cu = {1, . . . ,K} and associ-
ated weights W = {w1, . . . , , wK}.
Output: Coflow ordering Cs = (σ(1), σ(2), . . . , σ(K)).

1: Cs ← ∅.
2: while Cu is not empty do
3: for k ∈ Cu do
4: for k′ ∈ Cu\{k} do
5: T

Cs
(k,k′) = wk.T

Cs
k + wk′ .T Cs

(k,k′), (Eq. (5));
6: end for
7: Compute T̂Cs

k =
∑

k′∈Cu\{k} T
Cs
(k,k′) (Eq. (6));

8: end for
9: Select the coflow with lowest impact on unscheduled coflows:

σ(n) = arg min
k∈Cu

T̂Cs
k ;

10: Update the set of unscheduled coflows: Cu ← Cu\{σ(n)};
11: Update orderred coflows: Cs ← (Cs, σ(n));
12: end while

k′ under coflow ordering (Cs, k, k′) is (Line 7 in Algo. 1)

T
Cs

(k,k′) = wkT
Cs

k + wk′ .T Cs

(k,k′) (5)

Then, for each coflow, we calculate the following quantity in
order to estimate the global impact of coflow Ck on others
coflows if it is scheduled after coflows in Cs

T̂Cs

k =
∑

k′∈Cu\{k}

T
Cs

(k,k′) (6)

The coflow that will be scheduled at step n, i.e. σ(n), is the
coflow that has minimal value T

Cs

k , i.e.,

σ(n) = arg min
k∈Cu

T̂Cs

k . (7)

We then update the set of coflows that have been scheduled
till step n, i.e., Cs = {σ(1), σ(2), .., σ(n− 1), σ(n)}

To illustrate the difference between ONE-PARIS, Varys and
Sincronia, we consider again the example of Fig. 1.

Table III shows the execution of ONE-PARIS on the ex-
ample of Fig. 1. In the first step, the algorithm evaluates the
impact of each coflow on other coflows if it is scheduled first.
To do that we compute the value T̂Cs

k using Eq. (6). The
algorithm chooses coflow C4 since it achieves the minimum
T̂Cs

k , i.e., 833. At the next iteration, the algorithm makes a
similar calculation considering unscheduled coflows until all
of them are scheduled. In that example, the final σ-ordering
produced by ONE-PARIS is Cs = (C4, C1, C3, C2). Using the
Greedy algorithm developed in [12]1 to allocate bandwidth
based on a σ-order, the average CCT is 18.325s. Hence, we
observe that the average CCT is decreased by 22% compared
to Sincronia and by 31.8% compared to Varys.

Now, we evaluate ONE-PARIS when only a partial prior
knowledge on flow volumes is available. In particular, we
consider the case when the exact volume per flow is unknown.
From our analysis in a real MapReduce cluster, the aggregated

1At any time, a flow of a coflow is blocked if only and if its ingress or egress
port is fully occupied by other flows of higher priority coflows. It mimics a
strict priority scheduling of flows in the data plane with order priorities.

Table III
EXECUTION OF ONE-PARIS ON THE EXAMPLE OF FIG. 1. THE AVERAGE

CCT IS (13.3 + 30 + 20 + 10)/4 = 18.325S (USING GREEDY RATE
ALLOCATION ).

Set Cs CCs
1 CCs

2 CCs
3 CCs

4

Cs = ∅ 894 866 899 833
Cs = {C4} 631 866 899

Cs = {C4, C1} 500 500
Cs = {C4, C1, C3} 300

Cs = {C4, C1, C3, C2}

Algorithm 2 Online Algorithm for Coflows Scheduling
1: if a new coflow arrives at time tn then
2: Update previous coflow batch based one of the scheme: Full

update strategy or or Weighted update strategy → Cn;
3: Include the newly arrived coflow in Cn;
4: Calculate the remaining volume of coflows in Cn;
5: if Weighted update strategy is used then
6: Update the weight of each coflow using (8);
7: end if
8: Compute σ(n)-order ONE-PARIS algorithm for coflows in Cn;
9: Bandwidth allocation rkj ← Sync-Rate(σn) or Greedy(σn);

10: end if

volume sent by mappers at each ingress port can be col-
lected through the management API. Hence, under such semi-
clairvoyant setting, only the aggregated volumes at ingress
ports are available. Using just this information, ONE-PARIS
obtains the order C4, C2, C3, C1, attaining same average CCT
as for the case with full information. Sincronia obtains the
order (C2, C4, C1, C3) since the bottleneck at step 1 is egress
port 4 instead of ingress port 7. Curiously, Sincronia achieves
better performance than in the case of full information, since
the average CCT obtained by this order is 19.15s. This shows
clearly that ONE-PARIS is more robust even when using
partial volume information, as Sincronia doesn’t take into
account the real full impact of a coflow on other coflows.

IV. FROM OFFLINE TO ONLINE SCHEDULING

We now study how to incorporate the ONE-PARIS sched-
uler into a system where coflows may arrive at arbitrary times.
The output σ-order is modified in order to adapt at arrival
events depending on the input traffic. To this aim, we provide
a high-level description of the online version of ONE-PARIS.
Let us consider a batch C of coflows which arrive at different
times. In the online setting, the information on coflow k,
namely its flow set Fk = {fk1, .., fkq} and the each flow 4-
tuple fkj = (skj , dkj , vkj , Tn), is disclosed at arrival time. The
main idea of the online version of the algorithm is that when
a new coflow arrives or a flow completes its transmission,
the rate allocation for each existing flows in the fabric has
to be updated. However, a new σ-order should be generated
just when a new coflow arrives. The pseudocode of the online
algorithm is reported in Alg. 2. The Online version of ONE-
PARIS is detailed in Algo. 2. It has three parts: lines 1-7
detail the list of coflows that the scheduler recalculate the σ-
order when a new arrival coflow happened; line 8 calls one
of the coflow ordering algorithm to update the new order of
coflows. Actually, as indicated in Alg. 2, after computing the
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order of coflows, we can use either our decentralized resource
allocation algorithm Sync-Rate, presented in Sec. V, or the
Greedy rate allocation algorithm described in [12].

In particular, as seen in line 2, the algorithm can use two
different schemes to re-compute the order of existing coflows
by including the newly arrived one:

• Full Update Strategy (FUS): We update the remaining
volume for each flow and based on the updated volume
of all existing coflows;

• Weighted Update Strategy (WUS) The weighted update
scheme makes a tradeoff between weighted CCT mini-
mization and coflow starvation. The weight of a coflow
already scheduled is increased over time as follows

wk(tn+1) = wk(tn) + ηmax(0, (T tn
k − T 0

k )), (8)

where η is a positive scaling factor and T tn
k (resp. T 0

k )
is the estimated CCT of flow k at time tn (resp. upon
arrival). This scheme allows to avoid starvation since the
weights of the existing coflows increase if their CCT
increases due to new coflow arrivals. This scheme allows
to keep priorities between coflows while taking into
account the impact of new coflow arrivals on existing
ones. We note that if a coflow is not impacted by an
arrival, its weight remains unchanged. This scheme makes
our online algorithms more fair when treating big-coflows
against small coflows without sacrificing the average
WCCT.

For both WUS and FUS, once the input coflow batch is
updated, the σ-order is re-calculated by using ONE-PARIS.

V. SYNC-RATE: DISTRIBUTED RATE CONTROL

As the total number of active flows may be in the order of
tenths of thousands in a production datacenter, a centralised
rate allocation is not viable. Actually, the σ-order could simply
be used to enforce priorities in the data plane using a strict
priority DiffServ scheduler [32]. But, in practice, the number
of queues is limited in standard devices (e.g., to 8 typically
in production switches). Also, priority queuing performs a
local greedy allocation of bandwidth, similarly to Greedy [12],
which is not necessarily the most efficient choice for rate
allocation. The average CCT can be further improved with a
better control over bandwidth sharing. Indeed, individual flow
rates need to be continuously updated based on their progress,
i.e., based on the volume of data transferred.

To make rate allocation scalable and fit to real-time net-
work performance, we design Sync-Rate, a new distributed
algorithm for rate allocation. It takes as input the σ-order
of coflows (i.e., priorities) given by ONE-PARIS and decides
how network bandwidth must be shared among the different
flows. Sync-Rate performs a distributed rate control of flows
and, as shown later, it can be implemented at end-hosts and
ToR switches. It is based on a distributed pricing mechanism
and performs a real-time rate allocation based on the actual
congestion and the actual data volumes transferred by flows.
It strives to let all flows of each coflow finish at the same time
or as close as possible. This is known to be beneficial for the
average CCT as it strives to leave bandwidth for lower-priority

coflows. The algorithm is based on a backpressure signaling,
able to converge to the optimal rate allocation.

The intuition behind Sync-Rate is as follows: once the σ-
order is established, priority in bandwidth allocation is granted
by that order. As such, in between the departure of flows, it
is possible to consider the equivalent stationary system, where
rates are allocated respecting the pre-emption order and trying
to equalise the completion of flows belonging to the same
coflow by using Kelly’s theory for rate allocation [31].

A. Network Utility Maximization

Since the publication of the seminal work [31] by Kelly et
al., the Network Utility Maximization (NUM) framework has
found many applications for rate allocation in networks. In
[33], Dynamic Bandwidth Allocation (DBA) is proposed as a
scheme based on pricing mechanism for resource allocation for
coflows, but it requires the knowledge of the total remaining
completion time of coflows. Moreover, it cannot control flow
rates according to a given priority in a dynamic case (e.g.,
after a departure of flow). In our scheme we adapt the NUM
framework to the case where coflows are scheduled based on a
σ-order and the rate control is operated at each source without
direct coordination with other sources.

Let now consider a set of coflows that should be scheduled
with following order σ = (σ1, σ2, .., σK). The NUM problem
associated to coflow σn is

Pσn
:max
rσn

∑
j∈Fσn

vσnj log
(
rσnj

)
(9a)

subject to rσnj ≥ 0, ∀j ∈ Fσn
, (9b)∑

j∈Fσn

rσnjxσnj
l ≤ max(0, bl −

n−1∑
z=1

∑
j′∈Fσz

rσzjxσzj
′

l ),∀l ∈ L.

(9c)

The solution of Pσn depends on the solution of problems Pσz ,
where σz with z = 1.., n − 1 are coflows of higher-priority
than σn. Indeed, Pσn

aims at maximizing the overall utility of
σn on the remaining capacity left by higher-priority coflows.
As such, it is by design compliant with the input σ-order.

As showed by Kelly, the weighted log-sum objective func-
tion in Pσn can be seen as the network utility function
associated to coflow σn. Such function, as it will be clear
in the rest of the discussion, serves the purpose to attain a
proportional fair share of the link capacity among the flows
of the same coflow at each time interval. In practice, this
optimisation problem forces all flows of a coflow sharing
a common link to finish at the same time. The fairness
criterion avoids the use of a complicated model with additional
constraints between flows belonging to the same coflow. The
constraints (9c) represent capacity constraints, which limit the
sum of the rates to be less than or equal to the remaining
capacity left by the highest priority coflows. The optimisation
problem Pσn can be solved in centralized way, since each
optimisation problem concerns a coflow is mathematically
fairly tractable (with a strictly concave objective function and
a convex feasible region). However, with a very high number
of flows in each coflow, this may not be practical or feasible
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in datacenters handling a high number of coflows. For this
reason, we focus only on the distributed solution, as it’s more
scalable than the centralized one.

We consider the dual problem for Pσn
, whose structure sug-

gests treating the ingress-egress ports and flows as processes
of a distributed computation system by means of a gradient
projection method. Indeed, each flow of coflow σn can execute
a local algorithm based on the dual variables λσn

l associated
to capacity constraints (9c).

To derive the algorithm steps, we first define the Lan-
grangian function as follows

Lσn(rσn , λσn) =∑
j∈Fσn

vσnj log
(
rσnj

)
−

∑
l∈Ln

λσn

l (

n∑
z=1

∑
j∈Fσz

rσzjxσzj
l − bl)

=
∑

j∈Fσn

vσnj log
(
rσnj

)
− rσnj

∑
l∈Ln

λσn

l xσnj
l (10)

−
∑
l∈Ln

λσn

l (

n−1∑
z=1

∑
j∈Fσz

rσzjxσzj
l − bl),

where Ln is the set of links used by coflow σn. As the two
terms in (10) are separable in rσnj , we have

max
rσn

∑
j∈Fσn

vσnj log
(
rσnj

)
− rσnj

∑
l∈Ln

λσn

l xσnj
l

=
∑

j∈Fσn

max
rσnj

(vσnj log
(
rσnj

)
− rσnj

∑
l∈Ln

λσn

l xσnj
l )

def
=

∑
j∈Fσn

Gσnj(λ⃗
σn)

where λ⃗σn = (λσn

l )l∈L. The dual problem is

Dσn
: max

λ⃗σn

∑
j∈Fσn

Gσnj(λ⃗
σn)−

∑
l∈Ln

λσn

l (

n−1∑
z=1

∑
j′∈Fσz

rσzj
′
xσzj

′

l −bl)

(11)
We observe that the first term of (11) can be decomposed into
|Fσn
| separable subproblems. If we interpret the Lagrangian

multiplier λσn

l as the price per unit of bandwidth on port l
paid by coflow σn, thus the total price paid by each flow
j ∈ Fσn is µσnj =

∑
l∈Ln

λσn

l xσnj
l . The second term of the

dual problem takes into account the priority of coflow σn and
in particular higher-priority coflows σz , with z = 1, .., n− 1.

The price vector λ⃗k, k ∈ C is used to handle the resource
allocation for all flows of coflows. It allows to satisfy the σ-
order and to perform rate control for each flows depending
only on its remaining volume. It ensures that all flows of a
coflow finish at the same time if they share a bottleneck link.

Hence each flow of a coflow σn continuously solves the
following maximization problem:

Pf : Gσnj(λ⃗
σn) = max

rσnj
(vσnj log

(
rσnj

)
−rσnj

∑
l∈Ln

λσn

l xσnj
l )

(12)
For each fixed λ⃗σn , there exists an unique optimal rate rσnj

for each flow j since the function log is strictly concave.
In practice, the optimization problem (12) allows each flow,

given a fixed price, to find the optimal rate allocation without

having to coordinate with the other flows. Let bkj denote the
minimum bandwidth of ingress and egress ports used by flow
fkj . Thus bkj = minl∈L{ bl|xkj

l = 1}. The optimal rate of
flow fσnj satisfying the KKT conditions is:

rσnj(µσnj) =

{
vσnj

µσnj µσnj ≥ vσnj

bσnj

bσnj otherwise
(13)

We can see that if several flows of a coflow share a common
link their rate will be proportional to their remaining volume.

Now If the solution provided by the optimization problem
Pf via equation (13), is incorporated into the optimization
problem Dσn , then the resulting solution (rσn , λ⃗σn) satisfies
the optimality condition of Pσn

.

B. Sync-Rate Design and Implementation

We now discuss a possible implementation of Sync-Rate
where its functions are distributed between end-hosts and
ToR switches. Indeed, rate control can be operated at end-
hosts while congestion management (i.e, pricing of network
resources) can be handled at switches. Implementations with
all functions running either at sources or switches are also
possible, we will omit them to ease presentation.

1) Congestion Management at Switches: Each ToR switch
can maintain for each of its outgoing links l ∈ L the price
λσn

l for each coflow σn based on the σ-order. To update the
price of each coflow at each link (i.e., port in the Big Switch
model) periodically, the switch solves the dual problem (11)
using the following low-complexity gradient descent step

λσn

l (t+ 1) =
[
λσn

l (t) + γσn

( n∑
z=1

∑
j∈Fσz

rσzjxσzj
l − bl

)]
+
,

(14)
where γσn

> 0 denotes the step-size. In Theorem 1 we show
the condition on γσn

that ensures the convergence of λσn

l (t).
We observe that price λσn

l (t + 1) depends on the network
traffic of higher-priority coflows and coflow σn. Thus, the
price should be interpreted as a measure of congestion: it
increases when traffic approaches link capacity and decreases
otherwise. By design, the price of coflow σn is not affected
by coflows with lower priority than coflow σn. This ensures
that the resource allocation of flows belonging to the coflow
σn is not affected by the resource allocation of coflows σn′ ,
n′ > n flows, i.e., coflows whose priority is lower than
that of the coflow σn. Hence the Langrange multipliers λ⃗σn ,
n = 1 . . .K, act as a coordinator to manage the priorities
given by ONE-PARIS. Incidentally, λ⃗σn can be interpreted as
the congestion price, which only takes into account flows with
a higher priority than coflow σn and itself.

As we shall indicate in the following, in order to over-
come the signaling overhead, it is possible to directly embed
the price inside IP forward packet headers. Thus, prices
piggybacked via transport layer ACK packets can drive the
backpressure mechanisms accordingly.

2) Rate allocation at end-hosts: Each source (i.e., end-host)
collects the total price µσnj , which corresponds to the marginal
utility function vσnj log

(
rσnj

)
. When the source of flow j

of coflow σn receives a new value of the total price, it then
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Figure 2. Sync-Rate resource allocation on the example of Fig. 1.

updates the rate according to Eq. (13). Here we summarize
how Sync-Rate operates:

1) Every switch computes the total price for all active flows
based on their order σ. It adds a field into ACK headers
to indicate µσnj to sources, the cumulative congestion
along ingress/egress ports. When the packet of flow j of
coflow σn passes through a port l, µσnj is increased by
λσn

l ;
2) The source adjusts its rate rσnj according to Eq. (13),

considering the updated volume and the coflow price
received through in-band signaling.

Theorem 1. Let {λ⃗σn} be a sequence generated by Eq. (14)
such that λ⃗σn(0) ∈ R|L| and γσn

∈ (0, 2
Mσn

) where

Mσn
=

√
| L |

∑
j∈Fσnj

2
(bσnj)2

vσnj

the sequence λ⃗σn(t) converge to optimal solution λ̄σn of the
dual problem (11), i.e., limt→∞ λσn(t) = λ̄σn .

Proof. The proof is given in the appendix.

A run of Sync-Rate on is depicted in the example in Fig. 1
using the order provided by ONE-PARIS. We observe in
Fig. 2(a) that Sync-Rate is able to allocate rates in a distributed
way similar to offline mechanisms. In particular, note that
Sync-Rate guarantees all flows of coflow C1 sharing the same
port do terminate at the same time. This is why flows f11 and
f12 or f13 and f15 share the capacity of a port in proportion to
their volume. Now, if the σ order is σ = {C4, C1, C2, C3}, we
can see in Fig. 2(b) that the flow f31 of coflow 3 is interrupted
when the f21 flow starts using output port 7 making ONE-
PARIS a pre-emptive scheduler, as required by σ-order rate
allocation theory [12].

VI. PERFORMANCE EVALUATION

We now present the performance evaluation of ONE-PARIS
and Sync-Rate. The results are obtained on the instances gener-
ated by our workload generator and a self-developed flow-level
simulator in MATLAB®. We compare the performance of our
solutions against state of the art schedulers, namely Varys and
Sincronia. As the solution proposed in [13] achieves almost

the same performance as Sincronia2, we keep only Sincronia
as a reference for comparison with our solution.

We first generated different workloads to reflect typical
coflow patterns observed in data centers [34]. We then used
popular workloads from Facebook traces [7].

We tested our solutions both in the clairvoyant and the
semi-clairvoyant settings. For the semi-clairvoyant setting, we
relaxed the prior knowledge assumption on flow volumes by
assuming that only the aggregated volume at ingress ports is
known. In a specific set of results, we evaluated our distributed
rate control solution against Greedy, the baseline rate allo-
cation algorithm proposed along with Sincronia [12], which
schedules flows in an order-preserving manner. Furthermore,
we evaluated the online version against the online versions of
Sincronia and Varys. Finally, we evaluated ONE-PARIS in a
testbed with 60-machines.

A. Simulation Setup

Synthetic Traffic: We considered M machines or end-hosts
connected to a non-blocking Big Switch fabric. Access links
have unitary capacity. For each workload, we generated 1000
instances by fixing the number of machines, the number of
coflows and the average of flow volume. The number of
coflows ranges from 10 to 50 for workloads 1 and 2, with
M = 10 and from 50 to 200 for for workloads 3 and 4, with
M = 200. Each workload comprises two types of coflows:
coflows with a single flow, named type 1, and coflows with
multiple flows, named type 2. Coflows of type 2 coflows have
a random number of flows uniformly generated in M

3 and
M , where M is the number of machines. The percentage of
coflows of type 2 equals to 80% for workloads 1 and 3, and
20% for workloads 2 and 4.

Real Traffic: Real traffic datasets are obtained by the Face-
book traces dataset [7], based on a MapReduce shuffle trace
collected from one of Facebook’s 3000-machine cluster with
150 racks. The data traces contains 150 ports and 526 coflows
(more than 7 × 105 flows). It has a skewed coflow width
distribution, ranging from coflows with a single flow to very
large ones (the largest coflow has 21, 170 flows). For each
configuration [M,N ], N coflows are randomly sampled from
the Facebook dataset. Coflows are only selected from the ones
that have fewer than K flows. The volume of each flow is
given by the dataset.

Metric: We evaluate the algorithms based on the average
CCT, i.e, we consider all coflows having same weight. For
each workload, we report on the gains for ONE-PARIS and
Sincronia over Varys for the CCT using the following formula:

Average gain CCT :=
CCT under Varys-Compared CCT

CCT under Varys

We also present the gains in percentiles of each algorithm with
respect to the solution yielded by Varys in terms of CCT.

2Sincronia and the scheduler in [13] achieve the same order σ for at least
97% of instances in all workloads
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Figure 3. Gain in CCT of ONE-PARIS and Sincronia against Varys using
Greedy rate allocation (with and without full information).

B. Offline Setting

In the offline setting, we consider that all coflows arrive
at the same time, i.e., their release time is zero. For each
simulation with a specific scale of the network and either
synthetic or real traffic traces, we randomly generate 1000
different instances and compute the average performance of
algorithms over 1000 runs.

1) Clairvoyant Setting Under Synthetic Traffic: The com-
parison is made based on the σ-order induced by the two
algorithms. For the sake of fairness, in fact, we used Greedy
Flow Scheduling [12] to calculate the CCT for both ONE-
PARIS and Sincronia. As a result, any difference in perfor-
mance between the two solutions is solely due to the σ-order
they produce. Also, we have assessed the gain in percentiles to
outline how much such gain is distributed across the coflows
in each workload.

Fig. 3 shows the gains in CCT for all workloads. For work-
load 1 and 2, ONE-PARIS improves the CCT by 13%−22% on
average over Varys while Sincronia achieves only 8.4%−18%
as improvement compared to Varys. More importantly, CCT
improvement covers 96% of coflows, while Sincronia degrades
CCT for 30% of coflows compared to Varys. Indeed, for
workload 2, where there are 80% of coflows with a single
flow, Sincronia’s average performance improvement is not
fully consistent as 40% of the coflows experience performance
degradation compared to Varys. The improvement of ONE-
PARIS is even higher on a large-scale network, i.e., workloads
3 and 4. The average CCT performance gap is larger for
workload 4 where, as before, coflows with a single flow are
more frequent. In fact we observed that Sincronia sometimes
prioritizes larger flows over smaller ones, as its scheduling is
based on the bottleneck. Overall ONE-PARIS performs better
than Sincronia in terms of average CCT for all percentiles.
These results are expected, since ONE-PARIS can measure the

cumulative impact of each coflow on all the others, whereas
Sincronia is an elimination procedure which ranks coflows
iteratively based only on the bottleneck. Finally, in this set of
experiments, the percentile breakdown of the gain with respect
to Varys demonstrates that the gain of ONE-PARIS is rather
uniform across instances. Conversely, Sincronia experiences a
larger variance, as reflected in the results for higher percentiles.

2) Semi-Clairvoyant Setting Under Synthetic Traffic: In this
section, we discuss the results in the semi-clairvoyant case
reported in Fig. 3 (i.e., with partial information). This scenario
is very interesting in practice, as we have observed during
the implementation of ONE-PARIS. In fact, while developing
a tool to collect information about the coflow structure, we
engineered a solution to gather the information on the data
transfers between mappers and reducers. However, the avail-
able MapReduce APIs only allow to collect the volume of data
to be transferred from each mapper to the respective set of
reducers. Thus, even though we cannot access the volume per
flow, it is possible to collect the total volume at each ingress
port for each coflow before the shuffle phase starts and get
updates along with the progress of the computing tasks.

Based on the previous observations, in the non-clairvoyant
setting the σ-order is obtained by considering only the volume
sent by each coflow into each ingress port. The results are
shown in Fig. 3 in comparison with the full information case.
It can be observed that the loss in performance for ONE-
PARIS is limited and all workloads show that under the semi-
clairvoyant setting performance are equivalent to those of Sin-
cronia with full information. More precisely, semi-clairvoyant
ONE-PARIS performs about 19−42% better than clairvoyant
Varys and 2% better than clairvoyant Sincronia. As in the
clairvoyant setting, the performance of ONE-PARIS for the
non-clairvoyant setting is consistent across all workloads and
coflows. This shows that ONE-PARIS brings an improvement
on all coflows compared to Varys, which is not the case for
Sincronia and in particular when there are more coflows with
just one flow.

3) Clairvoyant and Non-Clairvoyant Settings Under Real
Traffic Traces: Now we evaluate the performance of ONE-
PARIS using Facebook traces. As observed in the literature
[4], the number of simultaneously active coflows in this trace
is small. In order to reproduce a congested data center fabric,
we have up-sampled the trace using our generator. The new
workload contains more than 104 coflows and 3 million flows.
For a thorough comparison, we classify coflows according
to their length (i.e, size of its largest flow) and width (i.e.,
number of flows). As in [4], we consider 4 types of coflows
Narrow&Short (N-S), Narrow&Long (N-L), Wide&Short (W-
S) and Wide&Long (W-L), where a coflow is considered to be
short if its length is less than 100MB and wide if it contains
at least 20 flows.

Fig. 4 shows that ONE-PARIS reduces the average CCT
across all coflow types. It performs 17% − 25% better than
Varys especially for N-L types. For the 95th percentile, over
all coflows in the N-L case, ONE-PARIS performs about 40%
better than Varys, while Sincronia achieves only a 34% gain.
As in previous tests, semi-clairvoyant ONE-PARIS approxi-
mates the performance of clairvoyant Sincronia and allows
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Figure 4. Gain in CCT of ONE-PARIS and Sincronia against Varys for all
coflow types in Facebook traces (with and without full information).
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Figure 5. Gain in CCT of ONE-PARIS and Sincronia against Varys for Sync-
Rate and Greedy.

an improvement for all coflows (more 99% of coflows in the
fabric).

4) Sync-Rate Evaluation: We now evaluate Sync-Rate us-
ing previous workloads by only testing 100 instances per
workload. We compared ONE-PARIS and Sincronia to Varys
when either Sync-Rate or Greedy is used for rate allocation.
We set RTT to 1 ms (i.e., algorithm iterations) and γ = 0.02
to satisfy the condition of Thm. 1. In Fig. 5, we observe that
Sync-Rate performs better than Greedy for all workloads. The
gap between Sync-Rate and Greedy is about 2.3 − 3.7% on
average. We have observed that Sync-Rate let most flows of
a coflow finish practically at the same time. This is a desired
feature to leave bandwidth for coflows of lower priority. Note
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Figure 6. Progress of rates (actual and decided) and prices for flow f14 from
example of Fig. 1 with Sync-Rate.
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Figure 7. Progress of rates (actual and decided) and prices for flow f31 from
example of Fig. 1 with Sync-Rate.

that Sync-Rate strives to perform flow equalization by design.
Also, numerical results not reported here for the space’s
sake confirm that Sync-Rate has negligible loss w.r.t. the
corresponding optimal solution of (9a-9c).

Fig. 6 and Fig. 7 show, for a typical run, the flow rates and
prices on the example of Fig. 1. We observe that the initial
rate of flow 1.4 is zero since it shares the egress port with
flow 4.1, which has a high priority. When flow 4.1 is over,
flow 1.4 starts at full capacity on egress ports 4 and 5. In fact,
the price of flow 1.4 reacts quickly after departure of flow 4.1,
granting priority. Similar behavior is observed for flow 3.1.

C. Online Setting

We now present a series of numerical results comparing the
performance of the online version of ONE-PARIS. The results
are obtained on instances generated by our workload generator
and the comparison by running our flow-level simulator. We
assess the performance of our algorithms against the online
version of Varys and Sincronia. The online version of Varys
uses a specific strategy to avoid starvation. Coflow arrivals fol-
low a Poisson process with an average rate of λ coflows/slot.
The values of λ are chosen in order to cover different trafic
load in the fabric (from 0.7 to 0.99).
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Figure 8. Gain in CCT of online versions of ONE-PARIS and Sincronia
against Varys using synthetic traffic with varying λ and (a) M = 10 and (b)
M = 100.
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Figure 9. Gain in CCT of online versions of ONE-PARIS and Sincronia
against Varys using real traffic traces with varying λ and (a) M = 10 and
(b) M = 100.

For each scheduling algorithm at each input load (obtained
by varying λ), we simulate 8000 coflow arrivals to get the
average CCT of all completed coflows. For the sake of
comparison, we have used the Greedy algorithm to calculate
the CCT for all σ-order schedulers. We also consider two
scenarios: a small fabric with M = 10 machines, and a large
fabric with M = 100 machines.

a) Synthetic Traffic: As in the offline scenario, we con-
sider two types of coflow; in the online setting the percentage
of coflows of type 1 equals to 60% for all values of λ. We
observe that ONE-PARIS achieves a higher gain in term of
average CCT for all values of λ, and that the gain with
respect to the other scheduling algorithms increases with
the value of λ. It is worth observing that ONE-PARIS and
Sincronia achieve more or less the same gain for a lightly
loaded fabric, but, when the fabric is highly congested, ONE-
PARIS clearly outperforms the other algorithms. Fig. 8 shows
an improvement of 22–72% over Varys, whereas Sincronia
achieves only 17–52%.

b) Real Traffic Traces: For real traffic traces, we evalu-
ate ONE-PARIS against Varys and Sincronia under different
values of arrival rate λ. Fig. 9 shows the gains in CCT for
all values of λ. ONEPARIS improves CCT by 32–54% on
average over Varys, while Sincronia achieves only 22–40%.
As expected, the improvements are even more significant for
large fabric and larger load.

1) Full Update versus Weighted Update Strategies: In the
following, we evaluate how WUS can attain a good trade-
of between efficiency and starvation in coflow scheduling.
The trade-off is measured with respect to system performance
(e.g., average CCT) on the one hand and individual coflow
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Figure 10. Gain in CCT and Slowdown of ONE-PARIS and Sincronia against
Varys for the online setting with λ = 0 : 6.

performance (e.g., isolation guarantee) on the other. Most
works use static progression to avoid starvation [7]. Thus,
while the static progress guarantees a minimum rate allocation
per coflow, the CCT of some of the coflows can be degraded
without any actual gain for the slowdown of the other ones.

We use the slowdown as a metric [35], which measures the
ratio of the CCT of a coflow in the presence of other flows to
the CCT when the flow is scheduled alone in the fabric. We
recall that Varys has a specific strategy to avoid the starvation
problem.

Fig. 10 illustrates the comparison between FUS, the strat-
egy used in the previous online simulations, and WUF with
q = 0.001 and q = 0.01. In Fig. 10(a), we observe that
WUS decreases slightly the gain of ONE-PARIS compared
to Varys since it tries to make a tradeoff between average
CCT and coflow starvation. However, as shown in Fig. 10(b),
the average slowdown is highly decreasing when SUS is used
with q = 0.01, indicating a better trade-off.

D. Testbed Evaluation

Finally, we have built a testbed that contains 15 servers
connected to a Gigabit Ethernet switch. Each server is a Dell
OptiPlex 7080 that contains 4 virtual servers running Ubuntu
22.04 LTS kernel. The network fabric is then represented by
60 virtual end-hosts connected to a non-blocking Big-Switch
fabric. Each end host has access link with capacity of 1 GB.
The algorithms have been evaluated on both small-scale and
large-scale networks, where a network is denoted by [M,N ]
to indicate different sized fabrics and the number of coflows,
N , used in the simulations. The small-scale network has a
fabric of size M = 10, whereas the large-scale network
has a fabric with either 60 machines. The coflows in these
networks have been generated using real traffic traces. For
ONE-PARIS and Sincronia, we used the TC (Traffic Control)
in Linux by considering two different types of qdisc: ttb and
prio. This allows to implement the strict priority queuing at
each port which realizes the intended σ-order of coflows. In
practice, this corresponds to what the Greedy algorithm does
to implement bandwidth sharing. Fig. 11 shows the gain in
CCT of ONE-PARIS and Sincronia when compared to the case
without coflow scheduling (i.e., no QoS policy or rate control).
ONE-PARIS improves the CCT by 52–187%, while Sincronia
improves it by 41–151%, confirming the performance figures
obtained before via simulation.

11



[15,30] [30,60] [60,100]
0

0.5

1

1.5

2

2.5

A
v
e
ra

g
e
 g

a
in

 i
n

 C
C

T

Sincronia
ONEPARIS

Figure 11. Gain in CCT with Facebook traces of ONE-PARIS and Sincronia
against the case without coflow scheduling. Each point in the x-axis represents
network [M ;N ]

VII. RELATED WORKS

Research on the scheduling of coflows has started with early
research works of Chowdhury and Stoica [4], [7], [36]. There,
they proved that, by accounting for the coflow structure in traf-
fic management, they could significantly improve application-
level performance. Efficient coflow scheduling methods to
minimize the average CCT have been studied in the literature
since then. One of the first schedulers is Varys [7], a clairvoy-
ant scheduler under perfect information on traffic sources (e.g.,
engaged ports, flow volumes and flow release times). Varys
uses a cascade of coflow admission control and scheduling.
The scheduler strives for CCT minimization combining (i) a
coflow ordering heuristic based on the per coflows bottleneck’s
completion time; and (ii) an allocation algorithm to assign
bandwidth to individual flows of each coflow. It then uses
the Minimum-Allocation-for-Desired-Duration (MADD) pro-
cedure to calculate the bandwidth allocation per flow. Other
works have been developed to reduce the average CCT of
coflows [12], [35], [37]–[40]. Popular among average CCT
minimization algorithms is Sincronia, proposed in [12]. It
considers scheduling on the network bottlenecks and returns a
scheduling coflow order achieving a 4–approximation factor.
While the aforementioned works are efficient in reducing the
CCTs of non-deadline coflows, they do not consider the effect
of non-bottleneck traffic in the design of coflow schedules.

A number of efforts have also been devoted to minimizing
the CCT without full prior knowledge of the coflow traffic,
i.e., the total size of its constituent flows, see for example
[27], [41], [42], [17], [29]. CODA [27] relies on a fully
blind approach, i.e., neither routing nor flow information is
available. A classifier is proposed, DBSCAN, to group coflows
based on certain specific characteristics, which are showed
to help scheduling coflows effectively. This work, conversely,
proposes a semi-clairvoyant scheduler of the type of Aalo,
[29], IAOA [17] or Elite [41]. They assume that coflow size
is unknown but the information on to which flows belongs to
which coflow is known. Aalo leverages on the current received
size of all coflows. Similarly, IAOA [17] measures coflows
volumes cumulatively online, ranks them and performs greedy
rate allocation afterwards. Elite [41] extends Sincronia to cover
multi-bottleneck case. FAI [42] introduces a non-clairvoyant

scheduler that improves the the bottleneck performance of a
coflow without affecting other coflows. Note that all of the
above solutions require a centralised solution, which results
in high costs to collect data from applications and end-hosts.
More recently, a decentralised solution of the type proposed
in this work, has been proposed for the fully blind approach
in [43].

VIII. CONCLUSION

We presented a comprehensive semi-distributed coflow
scheduling solution. It relies on a new σ-order coflow sched-
uler, called ONE-PARIS, that operates in the controller with
full or partial information on flow volumes. Contrary to exist-
ing solutions in the literature, which mostly establish coflow
priorities based on the bottleneck only, ONE-PARIS accounts
for all links engaged by coflows and evaluates the priority
based on the per-flow bottleneck evolution. Furthermore, to
efficiently share network bandwidth, we proposed a scalable
distributed rate allocation solution, called Sync-Rate, that
respects the σ-order given by ONE-PARIS.

The numerical results demonstrate the significant perfor-
mance improvements of ONE-PARIS with respect to existing
schedulers. This behavior is observed in both offline and online
settings, both for synthetic and for the real traces obtained
from the Facebook data set. We have also created a testbed
to evaluate ONE-PARIS in a real network environment. The
performance figures we obtained demonstrate a net advantage
against a standard TCP-based data transfer, and the superiority
of our approach compared to state of art in coflow scheduling
in a real setting.

Several extensions of this work are possible, including
the integration of the coflow scheduler within a big data
framework like MapReduce and the extensions of ONE-
PARIS to support deadlines and fairness. In that context,
an interesting direction of research is the joint optimization
of coflow scheduling and workload assignment to servers to
further reduce the completion time of computing jobs.

APPENDIX: PROOF OF THEOREM 1

Proof. We first start to prove the convergence for the coflow
with highest priority, i.e. n = 1, and by induction we show
the convergence for all n = 2, . . . ,K. The core of the proof
is to show that the gradient of the dual function in (11) is
Mσn

-Lipschitz continuous.
From the definition of rσ1j in (13), we can show easily

that the function rσ1j(p) is (b(σ1j)2

vσ1j -Lipschitz. On the other
side, the objective function of the dual problem (11) can be
rewritten as

Dσ1
(λ⃗σ1) =

∑
j∈Fσ1

Gσ1j(λ⃗
σ1) +

∑
l∈L1

λσ1

l bl, (15)

and the partial derivatives are determined as follows:

∂Dσ1
(λ⃗σ1)

∂λσ1

l

= −
∑

j∈Fσ1

vσ1jxσ1j
l∑

l∈L1
λσ1

l xσ1j
l

+ bl (16)

= −(
∑

j∈Fσ1

rσ1j(λ⃗σ1)xσ1j
l − bl). (17)
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Thus, the gradient descent step (14) for the coflow σ1 becomes

λσ1

l (t+ 1) =
[
λσ1

l (t)− γσ1

∂Dσ1(λ⃗
σ1)

∂λσ1

l

]
+
. (18)

For each link l ∈ L, let define the function Xσ1
l : R|L| → R+

as
Xσ1

l (λ⃗) =
∑

j∈Fσ1

rσ1j(λ⃗)xσ1j
l .

Then we can drive the following

|Xσ1

l (λ⃗)−Xσ1

l (λ⃗′)| =
∑

j∈Fσ1

|rσ1j(λ⃗)− rσ1j(λ⃗′)|xσ1j
l

≤
∑

j∈Fσ1

(bσ1j)2

vσ1j

∥∥∥λ⃗− λ⃗′
∥∥∥
1
xσ1j
l ,

(19)

where ∥·∥1 is the L1 norm in vector space in RL. Since each
flow cross only two links in the fabric, we have

|Xσ1

l (λ⃗)−Xσ1

l (λ⃗′)| ≤ 2
∑

j∈Fσ1

(bσ1j)2

vσ1j

∥∥∥λ⃗− λ⃗′
∥∥∥
1
(20)

For any λ⃗ ∈ RL, we have
∥∥∥λ⃗∥∥∥ ≤ ∥∥∥λ⃗∥∥∥

1
≤
√
L

∥∥∥λ⃗∥∥∥, where
∥.∥ is the L2 norm. Thus we have the following result∥∥∥Xσ1(λ⃗)−Xσ1(λ⃗′)

∥∥∥ ≤ 2
√
L

∑
j∈Fσ1

(bσ1j)2

vσ1j

∥∥∥λ⃗− λ⃗′
∥∥∥ .
(21)

Therefore, the gradient of Dσ1(.) is K-Lipschitz where Mσ1 =

2
√
L
∑

j∈Fσ1

(bσ1j)2

vσ1j . According to the proof in [44], if the
gradient of Dσ1

(.) is K-Lipschitz continuous, then given a
step-size γσ1 ∈ (0, 2/Mσ1 ], gradient descent step λ⃗σ1(t) in
(14) converges to the optimal solution of the dual problem
Dσn

.
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