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Moments approaches for asymptotic inverse problems of

depolymerisation and fragmentation systems

Marie Doumic

Abstract. Shrinkage of large particles, either through depolymerisation (i.e. progres-
sive shortening) or through fragmentation (breakage into smaller pieces) may be mod-
elled by discrete equations, of Becker-Döring type, or by continuous ones. In this note,
we review two kinds of inverse problems: the first is the estimation of the initial size-
distribution from moments measurements in a depolymerising system, in collaboration
with Philippe Moireau and inspired by experiments carried out by Human Rezaei’s team;
the second is the inference of fragmentation characteristics from size distribution sam-
ples, in collaboration with Miguel Escobedo and Magali Tournus, based on biological
questions and experiments of Wei-Feng Xue’s team.

In collaboration with Miguel Escobedo, Philippe Moireau and Magali Tournus

1. Introduction

Polymers are large macromolecules formed out of small molecular units, called monomers.
They are ubiquitous in nature and industry - e.g. plastics, biopolymers such as DNA,
actin filaments or protein fibrils. Their shortening, either through depolymerisation (i.e.,
loss of monomers) or through fragmentation into smaller pieces are dynamical phenomena
which appear in many applications. More specifically, the departure point of our research
has been protein fibrils depolymerisation and breakage, thought to be key mechanisms
for many diseases (Parkinson’s, Alzheimer’s, Creuzfeldt-Jakob’s etc.) as well as for many
functional biomolecular systems (actin filaments). The dynamic nature of the experiments,
as well as their nanoscale, makes it very challenging to estimate their features, i.e. their
reaction rates or size distributions, leading to an urgent need for mathematical models
and estimation methods to be developed. In this note, we consider two case studies of
such inverse problems, directly inspired by modern experimental setups.

The first problem is based on experiments carried out in H. Rezaei’s lab (INRAE,
Jouy-en-Josas, France) where the observation consists in the time evolution of a moment
of the size distribution of protein polymers called PrP, responsible for Prion diseases.
The moment observed may be the total polymerised mass (first moment) or the average
molecular weight (second moment). The original model is a discrete depolymerisation
system, based on the constant coefficient case of the Becker-Döring equations, namely the
reactions

Ci −→ Ci−1 + C1. (1.1)

Our aim is to estimate the initial polymer size distribution from such moment obser-
vations. We first evaluate the impact of using continuous approximations of the initial
discrete model to solve this inverse problem. At first order, the model is approximated
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by a backward transport equation, for which the inverse problem turns to be mildly ill-
posed (of order k + 1 when used to invert the time evolution of the kth-moment of the
solution). This remains true when polymerisation is also considered [10], as in the full
Becker-Döring system, though the inversion reveals more intricate due to the fact that the
problem becomes nonlinear.

At second order, the asymptotic model becomes an advection-diffusion equation, where
the diffusion is a corrective term, complemented with an original transparent boundary
condition at x = 0. This approximation is more accurate, but we face an accuracy versus
stability trade-off: the inverse reconstruction reveals to be severely ill-posed. Thanks to
Carleman inequalities and to log-convexity estimates, we prove observability results and
error estimates for a Tikhonov regularisation. We then develop a Kalman-based observer
approach, which reveals very efficient for the numerical solution. This is a joint work
with Philippe Moireau (Inria) [14], inspired by depolymerisation experiments carried out
by Human Rezaei and collaborators (Inrae). We sketch the main results of this study in
Section 2.

The second problem is based on fragmentation experiments carried out on several pro-
tein polymers by W.-F. Xue’s team (Univ. of Kent, Canterbury, United Kingdom), namely
reactions of the kind

Ci −→ Ci−j + Cj. (1.2)

The biophysical question which interested our collaborators was to estimate the (size-
dependent) fragmentation rate, as well as the so-called fragmentation kernel, which char-
acterise the stability of the polymers and the places where they are more likely to break.
We have proposed several approaches based on the continuous fragmentation equation,
studying and making use either of the long-term, the transient or the short-term dynam-
ics. Error estimates in Bounded Lipshitz norm are obtained for this last approach. This
is a joint work with Miguel Escobedo and Magali Tournus [12], and the project is a long-
standing collaboration with Wei-Feng Xue and collaborators [11, 24, 5], that we develop
in Section 3.

2. Asymptotic inverse problems for depolymerisation systems

2.1. Original inverse problem: a discrete system

At the basis of this research program lies experimental protocols which follow the time
dynamics of average quantities over a size distribution of polymers. Typical measurements
consist either in the total polymerised mass (e.g. through a Thioflavine T or Th.T pro-
tocol [23]) or the average molecular weight (e.g. with Static Light Scattering [2]). In a
discrete setting, denoting Ci(τ) the concentration of polymers containing i monomeric
units, such measurement may be modelled by

Mk(τ) :=
∞∑

i=i0

ikCi(τ), (2.1)

with k = 1 for the polymerised mass, k = 2 for the average weight, i0 ≥ 1 either a detection
level or the smallest stable polymer, and the measurement of Mk is made up to a noise.
The first questions asked by our biologist collaborators were: what can we identify from
such measurements, and what cannot we? We have addressed this question in different
experimental settings [2, 3], and then decided to focus on the question of initial-state
observability and estimation, both because it is interesting in itself and because it is a
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prerequisite to parameter estimation: even in cases where a priori knowledge of the initial
state is known, it is always partial and noisy [2], requiring stability analysis.

We assume a constant depolymerisation rate b > 0, so that the mass balance equation
of (1.1) leads to the elementary system

d

dτ
Ci = b(Ci+1 − Ci), Ci(0) = C0

i . (2.2)

2.2. Asymptotic approximations by continuous equations

A fundamental characteristics of the systems we are interested in is that the average poly-
mer size is very large - from some hundreds to some thousands of hundreds of monomers.
For this reason, we rescale the system by accelerating the time, which is an alternative of
size rescaling as done in [7] for instance. We define, for a given ε ≪ 1, t := ετ ∈ [0, T ],
cε

i (t) := Ci(
t
ε), and obtain the rescaled system

d

dt
cε

i =
b

ε
(cε

i+1 − cε
i ), cε

i (0) = c0
i , i ≥ i0. (2.3)

We recognise a first-order finite difference scheme for the transport equation, which led us
to define a stepwise interpolant and grid:

∀ i ≥ i0, xε
i := ε(i − i0), uε(t, x) := cε

i , t ≥ 0, x ∈ [xε
i , xε

i+1). (2.4)

A Taylor expansion leads us to the following backward transport equation as a first order
approximation: {

∂tu∞ − b∂xu∞ = 0, (t, x) ∈ [0, T ] × R

+ ,

u∞(0, x) = u0(x), x ∈ R

+ ,
(2.5)

whereas the second order approximation is given by




∂tu
ε
∞ − b∂xuε

∞ − bε

2
∂2

xuε
∞ = 0, (t, x) ∈ [0, T ] × R

+ ,

∂tu
ε
∞(0, t) − b∂xuε

∞(0, t) = 0, t ∈ [0, T ],

uε
∞(0, x) = uε(0, x), x ∈ R

+ .

(2.6)

The transport-diffusion equation comes from the Taylor expansion, whereas the transport
boundary condition at x = 0 may be obtained by two considerations:

• as a boundary layer, we keep only the first order term, see e.g. [18],

• we require that the balance for the total number of polymers is preserved. This is
given in the discrete setting by

d

dt
M ε

0 =
d

dt

∞∑

i=i0

cε
i = −bcε

i0
(t),

and doing the asymptotic expansion on this equality, where we identify cε
i0

with
uε

∞(t, 0), leads to the transport boundary condition.

Well-posedness for (2.6) follows for instance from the Lumer-Phillips theorem applied
to a well-chosen maximal accretive operator. To state error estimates, we introduce the
following discrete norm

‖u‖2
2,ε :=

∑

i≥i0

ε|u(xε
i )|2.

This norm is well defined for functions in H1(R∗
+) and is consistent with the L2(R+)-norm

as ε tends to 0. Moreover, it is well defined and equal to the L2(R+)−norm for piecewise
constant functions defined on the grid (xε

i ), as uε(t, ·) defined by (2.4) is.
We prove the following error estimates for the two approximate systems.
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Proposition 1 (Prop. 2.1. and 2.2. of [14]). Let u0 ∈ H2(R+) and u∞ ∈ C0((0, T ); H2(R∗
+))∩

C1((0, T ); L2(R+)) solution to (2.5), uε
∞ ∈ C0((0, T ); H2(R+ )) ∩ C1((0, T ); L2(R+)) solu-

tion to (2.6) with u0 as an initial condition. Let (c0,ε
i ) ∈ ℓ2(N), (cε

i ) solution to (2.3) and
uε defined by (2.4) such that

‖uε(0, ·) − u0‖2,ε ≤ εα,

for α > 0. There exists a constant Cst > 0 depending only on b such that for all t > 0, we
have

‖uε(t, ·) − u∞(t, ·)‖2,ε ≤ εα + Cst‖u0‖H2(0,L) ε t,

and

‖uε(t, ·) − uε
∞(t, ·)‖2,ε ≤ εα + Cst‖u0‖H2(0,L) ε

3
2 t

1
2 .

The proof is obtained through the Taylor expansion, using the Cauchy-Schwarz inequal-
ity and a Gronwall lemma. For the second order approximation, we also use an energy
estimate for ∂2

xxuε
∞, which satisfies the same transport-diffusion equation as uε

∞ comple-
mented with an homogeneous Dirichlet boundary condition at x = 0.

2.3. Original and asymptotic inverse problems

The two approximations (2.5) and (2.6) may then be used to solve the original discrete
inverse problem, which states: From a noisy measurement of (2.1) for τ ∈ [0, T ], how to
estimate the initial distribution Ci(0)? We first apply the rescaling by t = ετ and define

M ε
k(τ) := ε

∞∑

i=i0

(εi)kcε
i (t), (2.7)

so that we have the following moments dynamics

d

dt
M ε

k =





−bcε
i0

, if k = 0,

−bM ε
0 − bεi0cε

i0
, if k = 1,

−bkM ε
k−1 + O(ε2), if k ≥ 2.

(2.8)

The term O(ε2) is formally obtained, but for a compactly supported initial condition,
Prop. 1 implies that it is at most O(ε3/2). We now restrict ourselves to such cases, namely
εi ≤ L, or equivalently x ∈ [0, L].

The original inverse problem may be formulated as: Invert

Ψ
u0→Mε

k

T,ε :

∣∣∣∣∣
L2(0, L) → L2(0, T )

u0 7→ M ε
k .

The system (2.8) links M ε
k to cε

i0
(t) = u(t, 0), so that writing Ψ

u0→Mε
k

T,ε = Ψu0→Tr
T,ε ◦Ψ

T r→Mε
k

T,ε

we decompose our problem into two steps:

(1) Invert

Ψu0→Tr
T,ε :

∣∣∣∣∣
L2(0, L) → L2(0, T )

u0 7→ u(·, 0) ∈ R)

(2) Invert

Ψ
T r→Mε

k

T,ε :

∣∣∣∣∣
L2(0, T ) → L2(0, T )

u(·, 0) 7→ M ε
k .
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In the case of the first order inverse problem, the method of characteristics implies that

u(t, 0) = u0(bt) so that inverting Ψu0→Tr
T,ε is a well-posed problem if and only if bT ≥ L.

Moreover, we may neglect the term −bεi0cε
i0

in (2.8) and obtain

dk+1

dtk+1
M ε

k(t) = (−b)k+1k!cε
i0

(t) + O(ε) = (−b)k+1k!u0(bt) + O(ε),

which shows that inverting Ψ
T r→Mε

k

T,ε is moderately/mildly ill-posed of degree k + 1, and

from which we immediately infer the following observability/stability inequality

∀T ≥ T0 :=
L

b
, ‖u0‖2

L2(0,L) .

∥∥∥∥∥
dk+1

dtk+1
Mk

∥∥∥∥∥

2

L2(0,T )

, (2.9)

see [1] for more details and a full solution of the inverse problem - theoretical, numerical
with the implementation of a Kalman-type sequential approach, and also applied to ex-
perimental data. Let us only mention that for u0 ∈ Hs(0, L), s > 0, an observation yδ and
a measurement error

‖M ε
k − yδ‖L2(0,L) ≤ δ,

we obtain an optimal error estimate in the order of ε
s

k+s+1 - as expected given the degree
of ill-posedness k + 1.

In the case of the second order problem, the step (1) reveals severely ill-posed, as linked
to the time-reversal of the (infinitely smoothing) heat equation. On the contrary, the
second step, given by inverting (2.8), is slightly less ill-posed, of degree k instead of k + 1
if k ≥ 1, thanks to the corrective term −bεi0cε

i0
. In the following, we thus focus on Step (1):

inverting u0 7→ u(·, 0).

2.4. Observability of the second-order inverse problem

A necessary step before solving the inverse problem is to prove that it is observable - other
said, that we have a unique solution in a certain space and continuity in a certain sense.
To do so, we first restrict ourselves to a bounded domain [0, L], and look for solutions to





∂tu − b∂xu − bε

2
∂2

xu = 0, (t, x) ∈ [0, T ] × [0, L],

∂tu(t, 0) − b∂xu(t, 0) = 0, t ∈ [0, T ],

u(t, L) = 0, t ∈ [0, T ],

u(0, x) = u0(x), x ∈ (0, L).

(2.10)

The homogeneous Dirichlet boundary condition at x = L comes naturally from the dis-
crete problem, for which, if initially, for i ≥ ε−1L, we have cε

i (0) = 0, then cε
i (t) = 0

for any t ≥ 0. In this respect, the bounded problem is thus even more faithful than
the unbounded one for compactly-supported initial data. The system is solved, as for
the unbounded problem (2.6), by introducing an appropriate accretive operator, and the
following observability inequality is obtained.

Theorem 2 (Th. 4.5 in [14]). Let u0 ∈ H1
R(0, L) ∩ H2(0, L), with ‖u0‖H1(0,L) ≤ M .

Let u ∈ C0((0, T ); H1
R(0, L)) ∩ C1((0, T ); L2(0, L)) the unique solution to (2.10).

Defining the increasing function ρ : x 7→ xex, we have the following observability in-
equality, for constants c, C depending only on b and L :

‖u(0, ·)‖2
L2(0,L) + ε|u(0, 0)|2 .

Ce
L
ε M2

ρ−1

(
CT e−

c
ε (1+T −1)

1+T −4
M2∫ T

0
|u|2(t,0)dt

) T

ε
. (2.11)

5



Marie Doumic

Sketch of the proof. The inequality (2.11) relies on two main ingredients:

• a log-convexity inequality, inspired by [4, 22, 26], which gives a bound of the initial
condition with respect to the final time solution. This allows us to bypass a more
standard exponential stability estimate, which bounds the final time solution by
the initial condition.

• A Carleman inequality, inspired by [8, 9], which proves a controllability inequality
for a very similar system. This technical part is an adaptation of the proof of
Proposition 10 of [8].

A first interest of the inequality (2.11) is to provide uniqueness for the inversion of Ψu0→Tr
T,ε

and stability of a reconstruction. Moreover, thanks to the diffusion term, we no longer have
a lower-bound condition on T like the condition T ≥ T0 for (2.9). There is a price to pay
however, which is the logarithmic rate of convergence given by 1/ρ−1.

2.5. Solution and error estimate for the second-order inverse problem

A second benefit of (2.11) is to indicate how a Tikhonov regularisation strategy may be
built, and an estimate for the reconstruction. Since the bound M of the H1(0, L) norm
appears in (2.11), we define the following quadratic functional to minimise:

J|T (u0) :=
1

2M2
‖u0‖2

H1 +
1

2δ2

∫ T

0

∣∣∣yδ(t) − u|u0(t, 0)
∣∣∣
2

dt, (2.12)

and we obtain the following error estimate.

Theorem 3 (Th. 4.6 in [14]). Let u0 ∈ H1
R(0, L) with ‖u0‖H1 ≤ M, y = uu0(t, ·) =

Ψu0→Tr

T,ε (u0), δ > 0. We assume that we observe yδ such that

‖y − yδ‖L2(0,T ) ≤ δ.

Let û0 an estimate for u0 defined by

û0 = argmin
u0∈H1

R
(0,L)

J|T (u0). (2.13)

Then there exist constants C1 and C2, depending only on the parameters L, b, T and ε,
such that

‖u0 − ū0
|T ‖2

L2(0,L) ≤ C1M2

ρ−1(C2
M2

δ2 )
. (2.14)

As expected, the speed of convergence is logarithmic with respect to the noise δ, to be
compared with an algebraic rate of convergence for the first-order system. We give here the
proof, which is very short and emblematic of error estimates for Tikhonov regularisation
method.

Proof. Let us denote ũ0 = u0 − û0 and ũ = u|ũ0 the solution of (2.10) with ũ0 as an initial

condition. We apply (2.11) to ũ (and replace M by ‖ũ0‖H1), and obtain

‖ũ(·, 0)‖2
L2(0,L) + ε|ũ(0, 0)|2 .

Ce
L
ε ‖ũ0‖2

H1

ρ−1

(
CT e−

c
ε (1+T −1)

1+T −4

‖ũ0‖2
H1∫ T

0
|ũ|2(t,0)dt

) T

ε
.

From J|T (û0) ≤ J|T (u0) ≤ 1 we have
∫ T

0
|ũ|2(t, 0)dt ≤ 2

∫ T

0
|u

|û0
− yδ|2(t, 0)dt + 2

∫ T

0
|yδ − y|2(t, 0)dt ≤ 6δ2.
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By the triangular inequality, we obtain

‖ũ0‖2
H1 ≤ 2‖û0

|T ‖2
H1 + 2‖u0‖2

H1 ≤ 2M2 + 2‖û0
|T ‖2

H1 .

To estimate ‖û0
|T ‖2

H1 , we use the fact that it minimises J|T : by definition, we have

‖û0‖2
H1 ≤ 2M2J|T (ȳ0) ≤ 2M2J|T (u0)

≤ 2M2
(

1

2M2
‖u0‖2

H1 +
1

2

)
J|T (ȳ0) ≤ 2M2,

hence
‖ũ0

|T ‖2
H1 ≤ 4M2

and we conclude by the fact that x 7→ x
ρ−1(x)

is increasing on (0, ∞): we compute that

ρ′(x) = ex(1 + x), hence taking x = ρ(y) we get

d

dx
(

·
ρ−1(·)) (ρ(y)) =

1

y
− ρ(y)

y2ρ′(y)
=

1

y
− 1

y(1 + y)
=

1

1 + y
> 0

for y > 0. �

To conclude, we proposed a sequential approach based on Kalman filtering to solve
the estimation problem. Despite the severely ill-posed character of the second-order prob-
lem, it reveals more accurate in simulation tests than the pure transport approximation.
Moreover, the information contained in the corrective diffusion is visible in the fact that
even for T ≤ T0 = L

b we are able to estimate the distribution for x > bT. How to refine
the Carleman estimate cited above, in order to quantify precisely how this information
content vanishes for small times and, on the contrary, stop improving for T0 . T, remains
a very interesting open problem.

3. Inverse problems for the fragmentation equation

Let us now turn to reactions of fragmentation type as given by (1.2). Writing a first-order
asymptotics in the same spirit as (2.5) leads to the fragmentation equation:

∂

∂t
u(t, x) = −αxγu(t, x) + α

∫ ∞

x
κ

(
x

y

)
yγ−1u(t, y)dy, (3.1)

where αxγ represents the breakage rate of a particle of size x, that we have assumed to be
given by a power law, and κ(z) is linked to the probability for a particle of size y to give
rise to a particle of size x = zy. This model appeared as the best-fit one in experiments
on β2−microglobulin [27], where the experimental measurements consisted in samples of
fibril sizes observed at several time points. This led us to formulating the following inverse
problem: How to estimate the fragmentation features given by the parameters (α, γ, κ)
from such data, with α, γ > 0 and κ a probability measure on [0, 1]?

For mass conservation considerations we assume here binary fragmentation and no atom
at z = 0 and z = 1, hence

κ ∈ M+((0, 1)),

∫ 1

0
κ(dz) = 2,

∫ 1

0
zκ(dz) = 1, κ(z) = κ(1 − z). (3.2)

For simplicity we have assumed binary fragmentation, which corresponds to N = 2 in [12],
but the study is unchanged.

This section explains the various stages in our approach, and how we successively used
asymptotic behaviour, then large-time dynamics, and finally short-time behaviour, to try
to estimate κ, α and γ. The common thread running through our studies is the use of
moments of the solution to interpret the data observed, either integer moments or through
the Mellin transform.
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3.1. Using the asymptotic profile

First inspired by our knowledge on long-time asymptotics for the fragmentation equa-
tion [16] and for the growth-fragmentation equation [20] - note that this field of research
has been continuously active for several decades, with remarkable new results inspired by
stochastic methods [6] or optimal transport [17] - and by previous studies of the inverse
problem based on the asymptotic steady size distribution [21, 15, 13], we first studied the
information content of the self-similar asymptotic profile g solution to

2g(z) + zg′(z) + αγzγg(z) = αγ

∞∫

z

κ(
z

u
)uγ−1g(u)du,

∫
g(z)dz = 1. (3.3)

This idea was guided by the fact that, as proven in Theorem 3.2 of [16] and Theorem 3.2.
of [20], under suitable assumptions on κ and for γ > 0, we have

lim
t→∞

∞∫

0

∣∣∣u(t, y) − t
2
γ g
(
t

1
γ y
)∣∣∣ ydy = 0, (3.4)

so that we can guess that, after rescaling, the profile g may be experimentally observed.
The inverse problem can then be reduced to: From observations on g, is it possible to
estimate (α, γ, κ)?

In [11], we used the Mellin transform, defined for measure-valued functions by

M [g](s) :=

∫ +∞

0
xs−1g(x)dx, M [κ](s) :=

∫ 1

0
xs−1κ(dx), (3.5)

and the multiplicative convolution (which plays a similar role for the Mellin transform as
the standard convolution product for the Fourier transform)

(f ∗ g)(x) :=

∫

R

+
f(y) g

(
x

y

)
dy

y
, M [f ∗ g](s) = M [f ](s).M [g](s). (3.6)

We moreover notice that M [z 7→ zγg(z)](s) = M [g](s + γ), hence taking the Mellin
transform of (3.3) leads to an explicit formula for κ, namely

M [κ](s) = 1 +
(2 − s)M [g](s)

αγM [g](s + γ)
. (3.7)

To justify rigorously (3.7), we need to prove that M [g](s + γ) never vanishes on a vertical
strip; we then also need to define its inverse Mellin transform. To do so, we carried out a
detailed analytical study in the complex plane. We also proved a uniqueness result which
states that for a wide class of kernels κ, for a given g, there exists at most one triplet
(α, γ, κ) such that g is solution to (3.3) (Theorem 1 and 2 in [11]). These results however
revealed of little practical use, for two main reasons.

• Though (α, γ) are uniquely determined, they are obtained by using the asymptotic
behaviour of g(z) for z → ∞. Since we have only access to size samples, we have
information on g only on a compact set of (0, +∞).

• The formula involves Mellin and inverse Mellin transform, so that the inverse
problem, as for the second-order asymptotic inverse problem seen above (Theo-
rem 3), is severely ill-posed. When numerical implemented, the results failed to be
satisfactory.
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3.2. Using the long-term dynamics

We thus turned to the time-evolution dynamics given by (3.4). From a sample (x1(ti), · · · , xni
(ti))

at time ti, we estimate the average polymer size M1(ti) =

∫
∞

0
xu(t,x)dx∫

∞

0
u(t,x)dx

by the empirical

first moment, i.e.

M̂1(ti) =
ni∑

k=1

xk(ti) (3.8)

and we can relate it to u(t, x) to estimate (α, γ). The limit given by (3.4) implies

M1(t) ≈t≫1

∫
t

2
γ yg(t

1
γ y)dy

∫
t

2
γ g(t

1
γ )dy

= Ct
− 1

γ ,

Similarly, for the estimation of α, we notice that integrating (3.3) and using the mass
conservation property

∫
κ(dz) = 1 provides the equality

1 = αγ

∫
zγg(z)dz. (3.9)

We thus use the γ−th moment Mγ(t) =

∫
∞

0
xγu(t,x)dx∫

∞

0
u(t,x)dx

, approximated by an empirical

M̂γ̂(ti) defined by

M̂γ̂(ti) =
ni∑

k=1

(xk(ti))
γ̂ (3.10)

and the equality

Mγ(t) ≈t≫1

∫
t

2
γ yγg(t

1
γ y)dy

∫
t

2
γ g(t

1
γ )dy

=

∫
zγg(z)dz

t
=⇒ α ≈t≫1

1

γt

1

Mγ(t)
(3.11)

so that in [5] we designed the following estimation protocol for (α, γ):

(1) On observed data (log(ti), log(M̂1(ti))1≤i≤n defined by (3.8), fit the three param-
eters (C, tasymp, γ̂) of a curve

(
log(t), C − 1

γ̂
log(

t

tasymp
)1lt≥tasymp

)
,

and choose γ̂ as an estimator for γ. Notice here that we only use a small part of
the available data, namely the average size and not the whole size distribution. For
each of the four protein fibrils analysed (α−Synuclein, associated with Parkinson,
bovine β−lactoglobulin, chicken egg lysozyme and β2-microglobulin - this last
amyloids being involved in systemic dialysis-related amyloidosis), we had from 7
to 14 time points ti. The fits appeared very satisfactory (see [5], Fig. 5).

(2) From γ̂ and tasymp computed in Step 1, use M̂γ̂(ti) defined by (3.10) for ti ≥ tasymp

and define an estimator of α from (3.11) by

α̂ :=
1

γ̂ti

1

M̂γ̂(ti)
.

To validate a posteriori the estimation obtained, we then use the full dataset as follows.

(1) At initial time t1 = 0, use the size sample (x1(0), · · · , xn0(0)) to obtain an esti-

mate f̂(0, x) of the initial size distribution f(0, x) = u(0,x)∫
u(0,x)dx

by a kernel density

estimation method [25],

9
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(2) Simulate (3.1) with u(0, x) = f̂(0, x), parameters α̂, γ̂ and a given kernel κ,

(3) at times ti of experimental observations, compare the simulated f(ti, x) = u(ti,x)∫
u(ti,x)dx

with the density f̂(ti, x) estimated from the size sample (x1(ti), · · · , xni
(ti)) by a

kernel density estimation method.

We obtained the following quantitative results.

• We observed a remarkable agreement between the data observed and simulated
(see Fig.7 of [5]). This is all the more satisfactory that only two parameters α and
γ are necessary to fit the whole time dynamics.

• The choice of κ appears to have only little influence on the goodness of fit, even
if we were able to draw some conclusion on whether the breakage occurs more at
the edges or at the centre of the fibrils (Fig.8 of [5]).

3.3. Using the short-time dynamics

Intrigued by the influence of κ on the time dynamics, we carried out a thorough numerical
investigation in [24]. Specifically, we developed a statistical test to quantify how different
fragmentation kernels influence the size distribution of particles over time (Fig.4 of [24]),
when all dynamics depart from the same initial distribution. We noticed first that the
sharper the initial condition, the greater the influence of κ; and second, that this influ-
ence occurs mainly during an early time-window - even if not too early either, since the
initial condition is taken identical in all simulations. Following this study, we turned to a
short-time asymptotic development, carried out from a Dirac delta function as an initial
distribution. A formal computation shows:

u(t + ∆t, x) ≈ u(t, x) − α∆txγu(t, x) + α∆t

∫ ∞

x
κ

(
x

y

)
yγ−1u(t, y)dy + o(∆t). (3.12)

Departing at time t = 0 from a Dirac delta function δ(x − 1) at x = 1, we have

u(∆t, x) ≈ δ(x − 1)(1 − α∆t) + ακ(x)∆t + o(∆t),

and thus we obtain an estimation formula for the kernel κ: if we have û(∆t, ·) an estimate,
obtained from observations on the size distribution u(∆t, ·), we could define an estimate
for κ as

κ̂(x) :=
1

α∆t
(u(∆t, x) − (1 − α∆t)δ(x − 1)) + o(1), ∆t ≪ 1. (3.13)

How to evaluate the error made between κ and κ̂? We first recall the definitions of the
Total Variation norm and the Bounded Lipshitz norm, the latter being more appropriate
to evaluate the discrepancy between two measures.

Definition 4. Let M(R+) be the set of Radon measures whose support belongs to R+ .
The Total Variation (TV) norm of the signed measure µ ∈ M(R+) is defined as

‖µ‖T V := sup{
∫

R+
ϕ(x)dµ(x), ϕ ∈ C(R+) ∩ L1(d|µ|), ‖ϕ‖∞ ≤ 1}, (3.14)

whereas its Bounded Lipshitz (BL) norm is defined by

‖µ‖BL := sup{
∫

R+
ϕ(x)dµ(x), ϕ ∈ C(R+) ∩ L1(d|µ|), ‖ϕ‖∞ ≤ 1, ‖ϕ′‖∞ ≤ 1}. (3.15)

A second preliminary step is to define measure-valued solutions to (3.12), since we want
to depart from a measure-valued initial condition. This is given by the following definition.

10
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Definition 5 (Weak solution for (3.1) - Definition 2.1. of [12]). A family (µt)t≥0 ⊂
M(R+), where M(R+) denotes the space of Radon measures on R+ , is called a measure-
valued solution to (3.1), with initial data µ0 ∈ M(R+) satisfying supp (µ0) ⊂ [0, L], if the
mapping t → µt is narrowly continuous and for all ϕ ∈ C(R+) such that x 7→ ϕ(x)/(1+x)
is bounded on [0, ∞), and all t ≥ 0,
∫

R

+
ϕ(x)dµt(x) =

∫

R

+
ϕ(x)dµ0(x) +

∫ t

0
ds

∫

R

+
dµs(x)αxγ

(
−ϕ(x) +

∫ 1

0
dκ(z)ϕ(xz)

)
.

(3.16)

The class of functions used to define the weak solutions ensures the finiteness of
∫

(1 +
x)dµt(x). Despite the numerous studies carried out on fragmentation equations, the ques-
tion of existence and uniqueness of measure-valued solutions to (3.1) for a large class of
kernels κ appeared yet unsolved. We thus formulated the following result, which moreover
provides an explicit decomposition of such solutions.

Theorem 6 (From Theorems 2.2, 2.4 and 2.6 of [12]). Let κ satisfy (3.2), α > 0, γ ≥ 0
and µ0 ∈ M+((0, L)) for some L > 0. There exists a unique solution µ ∈ C(R+ , M+(R+))
to (1.2) in the sense of Definition 4. Moreover, this unique solution

• preserves the mass:

∫
xµt(dx) =

∫
xµ0(dx) for any t ≥ 0,

• is nonnegative,

• satisfies supp (u(t, ·)) ⊂ (0, L) for any t ≥ 0,

• is explicitely defined as the following series, which is absolutely convergent in the
TV norm for any t ≥ 0:

µt = e−αxγ tµ0 +
∞∑

n=0

(αt)n
∫ ∞

0
ℓnγan

(
x

ℓ

)
µ0(ℓ)

dℓ

ℓ
, (3.17)

where the sequence an is defined by induction, for x ∈ [0, 1], by

a0(x) = 0, an+1(x) =
1

n + 1

(
−xγan(x) + 2

∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy + κ(x)

(−1)n

n!

)
.

(3.18)

Proof. Let us sketch the main steps of the proof.

Step 1: uniqueness and, if the solution is proved to be nonnegative, supp (u(t, ·)) ⊂
(0, L) (Theorem 2.2 in [12]). By choosing appropriate weight functions, we prove that
a nonnegative solution satisfies supp (u(t, ·)) ⊂ (0, L) for any t ≥ 0, and then, with a
Gronwall lemma, we prove the estimate

‖µt‖T V ≤ ‖µ0‖T V eα(2L)γ 3t,

which implies uniqueness.

Step 2: the representation formula (3.17) (Theorem 2.4 in [12]). We first obtain the
representation formula for the fundamental solution µF

t , defined as a solution departing
from µ0(x) = δ(x − 1), namely:

µF
t (x) = e−αtδ(x − 1) +

∞∑

n=1

(αt)nan(x). (3.19)

By a scaling property, we deduce the solution for µ0(x) = δ(x − ℓ), and we conclude by
the superposition principle.

11
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Step 3: nonnegativity of the representation formula (3.17) (Theorem 2.6 in [12]). This
last step is more delicate than it can seem at first sight, and we have not found non-
negativity results for cases where both the solution and the fragmentation kernel are
measure-valued functions in the literature. We prove this result by an approximation
strategy on the fundamental solution µF

t . Regularising both κ and the initial condition
δ(x − 1), we can apply a nonnegativity result [19]; we then conclude by weak convergence
of the approximate sequence. �

Equipped with this well-defined notion of measure-valued solutions, we then turn to
our inverse problem, and prove successive error estimates:

(1) error estimate, in TV norm, for perfectly observed data (no noise), with perfectly
monodisperse initial condition (µ0 = δ(x − 1)),

(2) error estimate, in BL norm, for noisy data and nearly monodisperse initial condi-
tion (‖µ0 − δ(x − 1)‖BL small),

(3) error estimate, via the Mellin transform, for perfectly observed data (no noise)
and disperse initial condition (arbitrary µ0).

Error estimate (1): monodisperse initial condition, no noise

From (3.19), we are led to precise the formal approximation (3.13), and define

κest(t) :=
µF

t − e−αtδ(x − 1)

αt
. (3.20)

From (3.17) we immediately obtain (Theorem 3.1 in [12]):

∥∥∥κest − κ
∥∥∥

T V
≤ t

(
α

∞∑

n=0

(αT )n‖an+2‖T V

)
, ∀t ∈ (0, T ]. (3.21)

Error estimate (2): nearly monodisperse initial condition, noisy data

From (3.21) it seems that the smaller the observation time t, the more precise the estimate
κest. This fails in practice, where the noise comes from at least two sources:

• the initial condition cannot be as precise as a Dirac delta function. Even if we
could imagine an experimental setup selecting polymers of the same size, there
will always remain some heterogeneity.

• Typical experimental measurements being polymer size samples, µt as well as µ0

can only be observed up to a noise.

For these two sources of noise, the distance in BL-norm is well-adapted. We thus formulate
the following error estimate result.

Theorem 7 (Theorem 3.5 in [12]). Let κ satisfy (3.2) and supp (µε0
0 ) ⊂ [0, L] such that

‖µε0
0 − δ(x − 1)‖BL ≤ ε0.

12
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Let µε0
t the unique solution to the fragmentation equation (1.2) with initial condition µε0

0 .
Let µε0,ε1

0 and µε0,ε2
t be noisy observations of the respective measures µε0

0 and µε0
t such that

‖µε0,ε1
0 − µε0

0 ‖BL ≤ ε1, ‖µε0,ε2
t − µε0

t ‖BL ≤ ε2.

Assume moreover either γ ≥ 1 or supp (µ0) ⊂ [m, L] with m > 0. Then, for all 0 ≤ t ≤ T ,
there exist constants C1(T, α) and C2(L, T, α, γ, mγ−1) such that

∥∥∥µε0,ε2
t − e−αtµε0,ε1

0

αt
− κ

∥∥∥
BL

≤ C1t +
C2ε0 + ε1 + ε2

αt
. (3.22)

The proof is immediate once a stability result for the solution to the fragmentation
equation in BL-norm is obtained (Theorem 2.11 in [12]): this stability is obtained only for
γ ≥ 1 or supp (µ0) ⊂ [m, L] with m > 0, hence these extra assumptions. The form of the
inequality (3.22) is very interesting, since it has the exact form of the usual bias-variance
decomposition for regularisation of inverse problems as well as nonparametric density
estimation: a balance between two terms, one vanishing with the regularisation parameter,
the other exploding with it but multiplied by the noise level, so that the observation
time t identifies with a regularisation parameter, and is optimal if t = O(

√
ε0 + ε1 + ε2).

Intuitively, this corresponds to a time large enough so that "enough" (compared to the
noise level) polymers have divided once, but small enough so that not too many have
divided twice (term C1t, which shows that the distance increases with time).

Error estimate (3): arbitrary initial condition, no noise

In many practical cases, it seems very difficult, if not impossible, to have monodisperse or
almost monodisperse initial condition, so that µ0 is far away from a Dirac delta function.
The same strategy can however be followed.

For simplicity, let κ = κ(x)dx and µ0 = u0(x)dx admit densities with respect to the
Lebesgue measure, denote µt(dx) = u(t, x)dx and define

F est(u0, κ; t, x) =
u(t, x) − e−αtxγ

u0(x)

αt
. (3.23)

Thanks to the superposition principle, we have the following inequality (Corollary 3
in [12]), for a given constant C,

∥∥∥F est(u0, κ; t) − w0 ∗ κ(x)
∥∥∥

T V
≤ CL2γ‖u0‖T V t, ∀t ∈ (0, T ], (3.24)

where ∗ denotes the multiplicative convolution defined by (3.6) and w0(x) = xγu0(x).
To have an estimate for κ, we thus need to invert the multiplicative convolution. Recalling
the formula for the Mellin transforms (3.5), a candidate to estimate M [κ] is thus

M [κ]est(s; t) :=
M [u(t, ·)](s) − M

[
x 7→ e−αtxγ

u0(x)
]
(s)

αtM [u0](s + γ)
. (3.25)

The common point between (3.7) and (3.25) is the presence in the denominator of the
Mellin transform, taken in s+γ, of a size distribution observed. For large γ, this may reveal
very noisy, since this gives a lot of weight to the largest particles. However, contrarily to
the case of formula (3.7), we managed to prove an error estimate between M [κ]est(s; t)
and M [κ](s), thanks to the Mellin transform of the series representation (3.17) and under
regularity assumptions on κ and u0. We refer the reader to Theorems 4.4 and 4.6 in [12] for
a detailed presentation of the results, which contain an estimate of the distance between
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κ and κest := M−1[M [κ]est(·; t)], in a certain weighted norm, in the order of Cst∆t. This
order of magnitude is coherent with the estimate (3.21); however the constant Cst is not
explicit, and the observation noise is not yet taken into account. This question of stability
with respect to noise, together with a numerical investigation, are perspectives for future
work.
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