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Abstract
We study the notion of k-stabilizer universal quantum state, that is, an n-qubit quantum state, such
that it is possible to induce any stabilizer state on any k qubits, by using only local operations
and classical communications. These states generalize the notion of k-pairable states introduced
by Bravyi et al., and can be studied from a combinatorial perspective using graph states and
k-vertex-minor universal graphs. First, we demonstrate the existence of k-stabilizer universal graph
states that are optimal in size with n = Θ(k2) qubits. We also provide parameters for which a
random graph state on Θ(k2) qubits is k-stabilizer universal with high probability. Our second
contribution consists of two explicit constructions of k-stabilizer universal graph states on n = O(k4)
qubits. Both rely upon the incidence graph of the projective plane over a finite field Fq. This provides
a major improvement over the previously known explicit construction of k-pairable graph states with
n = O(23k), bringing forth a new and potentially powerful family of multipartite quantum resources.
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1 Introduction

Quantum communication networks often rely on classical communication along with pre-
shared entanglement. In this context, a highly pertinent problem is to explore which resource
states enable a group of n parties, equipped with the capability of employing Local Operations
and Classical Communication (LOCC), to create entangled EPR pairs among any k pairs
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of qubits. It is only recently that Bravyi et al. addressed this fundamental question and
provided both upper and lower bounds for what they called the k-pairability of quantum
states, in terms of the number of parties and the number of qubits per party needed for a
quantum state to be k-pairable [2]. Formally, an n-party state |ψ⟩ is said to be k-pairable if,
for every k disjoint pairs of parties {a1, b1}, . . . , {ak, bk}, there exists a LOCC protocol that
starts with |ψ⟩ and ends up with a state where each of those k pairs of parties shares an
EPR pair. Bravyi et al. studied n-party states in the case where each party holds m qubits,
with m ranging from 1 to log(n). In the case where each party holds at least m = 10 qubits,
they showed the existence of k-pairable states where k is of the order of n/polylog(n), which
is nearly optimal when m is constant. They also showed that if one allows a logarithmic
number of qubits per party, then there exist k-pairable states with k = n/2. Moreover, before
their work, numerous variations of this problem had surfaced in the literature, some in the
context of entanglement routing [16, 26, 27], and some about problems that can be described
as variants of k-pairability [5, 7–9,12,13,18,24,25].

The notion of k-pairability that we focus on in the present paper relates to the scenario
that is both the most natural and challenging [2], when each party possesses precisely
one qubit, i.e., m = 1. Protocols with multi-qubit parties, require the use of quantum
operations acting on two (or more) qubits, which are significantly harder to implement in
all the known technologies. For instance in quantum optics, whose ’flying’ qubits are well
suited for pairability protocols, one-qubit operations are easy to perform using off-the-shelf
standard devices, whereas two-qubit operations, like those required by the protocols using
multi-qubit parties, can only be performed probabilistically with a non-negligible probability
of failure [1,14,21,22]. Bravyi et al. provided some results in the setup where each party holds
one single qubit, although arguably weaker than those obtained in the case where each party
holds at least 10 qubits. Using Reed-Muller codes, they were able to construct a k-pairable
state of size exponential in k, namely n = 23k, leaving the existence of a k-pairable states
of size n = poly(k) as an open problem. They also found a 2-pairable graph state of size
10 and proved that there exists no stabilizer state on less than 10 qubits that is 2-pairable
using LOCC protocol based on Pauli measurements.

A natural generalization is to consider quantum states satisfying a stronger property: for
some integer k, it is possible to induce any stabilizer state on any subset of k qubits, by means
of LOCC protocols. We call these states k-stabilizer universal. Stabilizer states constitute a
powerful resource for multipartite quantum protocols [17,19,23,28], and can be described,
up to local 1 unitaries, by the formalism of graph states: a subset of quantum states which
are in one-to-one correspondence with (undirected, simple) graphs. 2k-stabilizer universality
is a stronger notion than k-pairability: any 2k-stabilizer universal state is k-pairable, as EPR
pairs are stabilizer states.

Our contributions rely on the graph state formalism and the ability to characterize
properties of quantum states using tools from graph theory. In particular, we reformulate
k-pairability as a property of a graph (rather than a property of a quantum state), such that
the graph state corresponding to a k-pairable graph, is k-pairable. Furthermore, we relate
pairability to the standard notion of vertex-minor (a complete and up-to-date survey on
vertex-minors can be found in [20]). A graph H is a vertex-minor of G if one can transform
G into H by means of local complementations2 and vertex deletions. If H is a vertex-minor
of G then the graph state |H⟩ can be obtained from |G⟩ using only local Clifford operations,

1 As we consider one qubit per party, “local” is to be understood as “on each single qubit independently”.
2 Local complementation on a vertex u consists in complementing the subgraph induced by its neighbors.
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local Pauli measurements and classical communications. Dahlberg, Helsen, and Wehner
proved that the converse is also true when H has no isolated vertices [10]. In [9], they proved
that it is NP-complete3 to decide whether a graph state can be transformed into a set of EPR
pairs on specific qubits using using only local Clifford operations, local Pauli measurements
and classical communications. In [8], they showed that it is also NP-complete to decide
whether a graph state can be transformed into another one using using only local Clifford
operations, local Pauli measurements and classical communications.

The graphical counterpart of k-stabilizer universal graph states are called k-vertex-minor
universal graphs, introduced by some of the authors in [6]: a graph is k-vertex minor universal
if it has any graph defined on any k of its vertices as a vertex minor. If a graph is k-vertex-
minor universal then the corresponding graph state is k-stabilizer universal. Stabilizer
universal states (and thus k-vertex-minor universal graphs) are useful in themselves beyond
the fact that they imply pairability, as they can serve as a primitive for quantum protocols
using multipartite entanglement. For instance, in [6], it is shown that stabilizer universal
states constitute a resource to perform a robust pairability protocol, in the sense that it
allows some known parties to be malicious, while ensuring the correctness of the protocol.
Furthermore, the notion of stabilizer universality is stronger than the notion of pairability.
Nevertheless, while previous work [6] establishes the existence of k-stabilizer universal graph
states of size n = O(k4 ln(k)) and of k-pairable graph states of size n = O(k3 ln3(k)), there
are no known graph states that are k-pairable but not 2k-stabilizer universal.

In this work, we provide both probabilistic and explicit constructions of k-stabilizer
universal graph states resulting from k-vertex-minor universal graphs. While the results are
interesting in themselves from a combinatorial perspective, they allow one to explicitly define
quantum communication protocols: if a k-stabilizer universal graph state is prepared, and
each qubit is sent to a different party, then, with the assumption that each party can perform
local quantum operations and that they can share classical information, any stabilizer state
on any k qubits can be generated. Note that this includes any set of disjoint EPR pairs on
less than k qubits. The local operations to perform in order to induce a given subgraph state
derive directly from the proofs of our results.

The main contributions of the paper are as follows. In the first part of the paper, we
prove the existence of k-vertex-minor universal graphs of order n = Θ(k2), which is optimal
as shown in [6]. We adopt a probabilistic approach, exhibiting a family of random bipartite
graphs of quadratic order in k, which are k-vertex-minor universal with probability going
to 1 exponentially fast in k. On the practical side, in the proof we introduce an efficient
algorithm that tries to generate any induced graph of order k as a vertex-minor on any k
vertices of a random bipartite graph, and the proof yields a bound on the probability of
failure of the algorithm. The second part of the paper focuses on explicit constructions of
k-vertex-minor universal graphs. We derive our constructions from the incidence graph of the
projective plane over the finite field Fq, where q is a prime power. It is a bipartite graph of
order n = 2(q2 + q+ 1), with the same number (n/2) of left and right vertices, corresponding
respectively to points and lines of the projective plane (equivalently, 1-dimensional and
2-dimensional linear subspaces of F3

q). We show it satisfies the k-vertex-minor universality
property, with k = Θ(n1/4). Furthermore, we show that the graph on the points of the
projective plane, with edges connecting points corresponding to orthogonal 1-dimensional
linear subspaces of F3

q, is k-vertex-minor universal, again with k = Θ(n1/4). To the best of
our knowledge, these are the first explicit constructions of k-vertex-minor universal graphs
of order polynomial in k, significantly improving on the previous explicit construction of
k-pairable states based on Reed-Muller codes from [2], with exponential overhead.

3 Where the size of the input is the number of bits needed to describe the given graph state.
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2 Vertex-minor and stabilizer universality

The goal of this section is to cover different notions related to k-pairability and k-vertex-minor
universality properties. We first define the above properties for graphs, then we discuss their
implications on the corresponding graph states.

We denote a graph as G = (V,E), where V is the vertex set and E is the edge set. All
graphs are assumed to be undirected and simple (without loops or multiple edges). A vertex
subset S ⊆ V is said to be stable if no two vertices in S are adjacent. Bipartite graphs are
denoted as G = (L,R,E), where V = L ⊔R, with L and R disjoint stable sets referred to as
left and right vertex sets, respectively. To avoid possible confusion, we may sometimes
write V (G), E(G), L(G), or R(G). A pairing is a graph G such that any vertex is incident
to exactly one edge. Given a vertex v ∈ V , we denote by NG(v) the neighborhood of v in
G, consisting of vertices v ∈ V adjacent to v.

A local complementation on a vertex v of a graph G consists in complementing
the subgraph induced by the neighborhood of v, more precisely, it leads to a graph G ⋆ v

such that V (G ⋆ v) = V (G) and E(G ⋆ v) = E(G) ⊕ E(KNG(v)) where KS denotes the
complete graph on the vertices in S, and ⊕ denotes the symmetric difference of two sets.
We say that G′ is a vertex-minor of G, if G′ can be obtained from G by means of local
complementations and vertex deletions. Here we consider V (G′) ⊆ V (G) and require G′

to be obtained exactly (not up to an isomorphism of graphs), meaning that there exists a
sequence of graph transformations consisting of local complementations and the deletions of
the vertices of V (G) \ V (G′).

▶ Definition 1. Given a graph G, a vertex subset V ′ ⊆ V (G), and an integer k > 0, we say
that:

G is k-vertex-minor universal on V ′, if k ⩽ |V ′| and any graph on any k vertices in
V ′ is a vertex-minor of G.
G is k-pairable on V ′, if k ⩽ |V ′|/2 and any pairing on any 2k vertices in V ′ is a
vertex-minor of G.

If any of the above properties is satisfied with V ′ = V (G), we say that G is k-vertex-minor
universal or that G is k-pairable, respectively.

▶ Definition 2. We say that a bipartite graph G = (L,R,E) is left (resp. right) k-vertex-
minor universal or k-pairable if the corresponding condition from Definition 1 is satisfied
for V ′ = L (resp. V ′ = R). We say that G is two-side k-vertex-minor universal / k-pairable
if it is both left and right k-vertex-minor universal / k-pairable.

Graph states form a standard family of quantum states that can be represented using
simple undirected graphs (Ref. [17] is an excellent introduction to graph states). Given a
graph G = (V,E), the corresponding graph state |G⟩ is the |V |-qubit state:

|G⟩ = 1
√

2|V |

∑
x∈2V

(−1)|G[x]||x⟩

where |G[x]| is the size (number of edges) of the subgraph induced by x, and |x⟩ is the
corresponding base vector in the Hilbert space4.

4 With a slight abuse of notation we identify a subset (say x = {u2, u4}) of the set of qubits V =
{u1, . . . , u5} with its characteristic binary word (x = 01010).
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We shall alternatively refer to the vertex set V as qubit set. A graph state |G⟩ can
be prepared as follows: initialize every qubit in |+⟩ = |0⟩+|1⟩√

2 then apply for each edge of
the graph a CZ gate on the corresponding pair of qubits, where CZ : |ab⟩ 7→ (−1)ab|ab⟩.
The graph state |G⟩ is the unique quantum state (up to a global phase) that, for every
vertex u ∈ V , is a fixed point of the Pauli operator XuZNG(u). 5 Hence, graph states form a
subfamily of stabilizer states. Formally, an n-qubit stabilizer state [15] is a quantum state
that is the simultaneous eigenvector with eigenvalue 1 of n commuting and independent Pauli
operators. A useful property is that any stabilizer state is related to some graph state by the
application of local Clifford unitaries, and these unitaries can be computed efficiently [11].
For instance, an EPR pair is equal to |K2⟩ up to local Clifford unitaries, where K2 is the
graph with two vertices and one edge. Thus, under LOCC protocols, generating any graph
state on a given set of qubits is equivalent to generating any stabilizer state. We introduce
below the notion of k-stabilizer universal states.

▶ Definition 3. A quantum state |ψ⟩ is k-stabilizer universal (resp., k-pairable) if any
stabilizer state on any k qubits in V (resp., any k EPR pairs on any 2k qubits in V ) can be
induced by means of LOCC protocols.

If H is a vertex-minor of a G then the graph state |H⟩ can be obtained from |G⟩ using
only local Clifford operations, local Pauli measurements and classical communications, and
the converse is true when H has no isolated vertices [10]. As a pairing on 2k vertices has no
isolated vertices, we have the following:

▶ Proposition 4. A graph G is k-pairable if and only if the corresponding graph state |G⟩
is k-pairable using only local Clifford operations, local Pauli measurements, and classical
communication.

In the case of vertex-minor universality and stabilizer universality, the characterization
from [10] does not apply directly, because of possible isolated vertices. For instance, K2 is
not 2-vertex-minor universal since no local complementation can turn it into an empty graph.
However, |K2⟩ is 2-stabilizer universal: with e.g. an X-measurement on each qubit, one
can map the corresponding graph state (a maximally entangled pair of qubits) to the graph
state composed of a tensor product of two qubits. To be able to state a characterization, a
solution is to introduce destructive measurements (i.e., the measured qubit is removed from
the system and can no longer be used).

▶ Proposition 5. Given two graphs G and H such that V (H) ⊆ V (G), H is a vertex-minor
of G if and only if |H⟩ can be obtained from |G⟩ (on the qubits corresponding to V (H))
using only local Clifford operations, local destructive Pauli measurements, and classical
communications.

Proof. Notice that a similar statement – involving non-destructive measurements and only
valid when H does not contain isolated vertices – has been proved in [10] (Theorem 2.2). We
provide here a direct proof of Proposition 5 which is actually slightly simpler thanks to the use
of destructive measurements. In the following proof all measurements are destructive. (⇒)
Local complementations can be implemented by means of local Clifford unitaries, and vertex
deletions by means of Z-measurements together with classical communications and Pauli
corrections [11]. (⇐) We prove the property by induction on the number of measurements. If

5 It consists in applying X : |a⟩ 7→ |1−a⟩ on u and Z : |a⟩ 7→ (−1)a|a⟩ on each of its neighbors in G.

ICALP 2024
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there are no measurements the property is true [11]. Otherwise, let u be the first qubit to be
measured. Assume u is measured according to P and Cu is the Clifford operator applied on
u before the measurement. C†

uPCu is proportional to some Pauli operator P0 ∈ {X,Y, Z}:
(i) if P0 = Z, then the measurement of u can be interpreted as a vertex deletion and leads

to |G \ u⟩ up to Pauli corrections. By the induction hypothesis, H is a vertex minor of
G \ u, thus of G.

(ii) if P0 = Y , then the measurement of u can be interpreted as a Z-measurement on
|G ⋆ u⟩ (up to a Clifford operator on some other qubits), thus according to (i), H is a
vertex minor of G ⋆ u, so is of G.

(iii) if P0 = X and NG(u) ̸= ∅, then the measurement u can be interpreted as a Y -
measurement on |G ⋆ v⟩ with v ∈ NG(u) (up to local Clifford operations on qubits
different from u), thus according to (ii) H is a vertex minor of G ⋆ v, so is of G.

(iv) if P0 = X and NG(u) = ∅, then |G⟩ = |G \ u⟩ ⊗ |+⟩u so after the measurement of u
the state is |G \ u⟩, thus, by the induction hypothesis, H is a vertex minor of G \ u, so
is of G. ◀

▶ Corollary 6. A graph G is k-vertex-minor universal if and only if the corresponding graph
state |G⟩ is k-stabilizer universal using only local Clifford operations, local destructive Pauli
measurements, and classical communication.

Relations between pairability, vertex-minor universality and stabilizer universality of
graph and graph states, are shown in Figure 1. To the best of our knowledge, all known
examples of k-stabilizer universal (resp. k-pairable) graph states come from k-vertex-minor
universal (resp. k-pairable) graphs. Furthermore, to date, it is not known whether there
exist k-pairable states which are not 2k-stabilizer universal. Throughout this paper, we will
essentially focus on the existence and the explicit construction of k-vertex-minor universal
graphs.

G is 2k-vertex-minor universal =⇒ |G⟩ is 2k-stabilizer universal
⇓ ⇓

G is k-pairable =⇒ |G⟩ is k-pairable

Figure 1 Implications between pairability, vertex-minor universality and stabilizer universality of
graphs and graph states.

3 Existence of k-vertex-minor universal graphs of order quadratic in k

Given any k, a k-vertex-minor universal graph has at least a quadratic order in k:

▶ Proposition 7 ([6]). If a graph G of order n is k-vertex-minor universal then

k <
√

2n log2(3) + 2.

In this section we prove that this bound is tight asymptotically, i.e. there exists k-
vertex-minor universal graphs whose order grows quadratically with k. This greatly improves
over the probabilistic construction obtained by some of us in [6], where the existence of
k-vertex-minor universal graphs of order O(k4 ln(k)) was proven.



M. Cautrès, N. Claudet, M. Mhalla, S. Perdrix, V. Savin, and S. Thomassé 36:7

▶ Theorem 8. For any constant α > 2, there exists k0 s.t. for any k > k0, there exists a
k-vertex-minor universal graph G of order at most αk2.

The remaining of this section is a proof of Theorem 8. First we bound the probability that
some graph of order k is not a vertex-minor of a random bipartite graph G, in Lemma 10.
Then we bound the probability that such a random bipartite graph is k-vertex-minor universal,
in Lemma 11, by defining some algorithm that tries to generate any graph as a vertex-minor of
G. Finally, we prove that there exists a k-vertex-minor universal bipartite graph of quadratic
order in k. More precisely, the probability of a random bipartite graph of quadratic order
being k-vertex-minor universal goes to 1 exponentially fast in k:

▶ Proposition 9. Fix constants ϵ > 0, c > 2, and c′ > 1+ϵ
ln(2) . There exists k0 s.t. for

any k > k0, the random bipartite graph G (the probability of an edge existing between two
vertices, one in L(G) and one in R(G), is 1/2, independently of the other edges) with
|L(G)| = ⌊c′k ln(k)⌋ and |R(G)| = ⌊ck2⌋, is k-vertex-minor universal with probability at least
1 − e−ϵk ln(k).

Proposition 9 will be proved alongside Theorem 8 in this section. Notation-wise, given a
set A and an integer k,

(
A
k

)
refers to {B ⊆ A | |B| = k}.

▶ Lemma 10. Consider a random bipartite graph G with |L(G)| ⩾ k, |R(G)| ⩾ 4
(

k
2
)

+ 5:
the probability of an edge existing between two vertices (one in L(G) and one in R(G)) is
1/2, independently of the other edges. Take k ∈ N and consider a set of vertices K ∈

(
L(G)

k

)
.

The probability that there exists a graph defined on K which is not a vertex-minor of G is

upper bounded by e
−

(
|R(G)|

4 −(k
2)+1

)2(
7|R(G)|

4 −(k
2)+1

)
.

Proof. For some j ∈ N \ {0} and X ∈
(

R(G)
j

)
, consider the incidence matrix MX of size

j ×
(

k
2
)
, whose column i represents the pairs of vertices of K that are in the neighborhood

of the ith vertex of X, in the sense that its entries are 1 if the pair of vertices u,v is in its
neighborhood, 0 else. Note that if there exists some X ∈

(R(G)
(k

2)
)

whose incidence matrix MX

is of full column-rank, then any 2(k
2) graph defined on K is a vertex-minor of G. Indeed,

column number i represents the edges (resp. non-edges) of K to be toggled by a local
complementation on the ith vertex of X. So now we will bound the probability of such a set
X existing within R(G).

For this purpose we will greedily try to construct the set X ∈
(R(G)

(k
2)

)
, one vertex after

the other, by considering each vertex in R(G) one by one, and we will lower bound the
probability of the event “there exists some X ∈

(R(G)
(k

2)
)

whose incidence matrix MX is of full
column-rank” by the probability of success of the algorithm. The algorithm works as follows.
Arbitrarily order the vertices of R(G). At each step (say that we have j vertices in X at
some step), suppose the corresponding matrix of incidence (of size j ×

(
k
2
)
) full column-rank.

We consider the next vertex u ∈ R(G) in the list: if adding its corresponding vector to MX

increases its column-rank, then we add u to X, else we remove u from the vertices to consider.
The algorithm stops (and succeeds) if MX has

(
k
2
)

columns and is full column-rank. Let us
show that the probability of a vertex u increasing the column-rank of MX (if j <

(
k
2
)
) is

lower-bounded by 1/4.
If MX is of rank j <

(
k
2
)
, there exists a non-zero vector W (i.e. a set of pairs of vertices

of K) which is orthogonal to all j first vectors. W can be seen as the characteristic function
of the edges of some graph H on the vertices of L(G). Adding a vertex u to X increases the

ICALP 2024
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rank of MX if the vector U of incidence of u in K is such that U ·W = 1 mod 2 (because
then U is not in the span of MX). Note that, if H has exactly one edge, then there is exactly
probability 1

4 that U ·W = 1 mod 2 (in this case the two ends of the unique edge of H are
connected to u, which happens with probability 1

2 × 1
2 ). As H has at least one edge, it has

at least one vertex of non-zero degree z. Let us draw randomly the neighborhood of u: first
we draw among the vertices of H \ {z}, then we add z with probability 1

2 . The probability
that an odd number of neighbors of z are neighbors of u is 1/2, so drawing z changes the
parity of the number of edges in H whose ends are both neighbors of u, with probability 1/2.
At the end of the day there is a probability of at least 1

4 that U ·W = 1 mod 2, so that u
increases the column-rank of MX .

Finally, the algorithm fails if we encounter more than |R(G)| −
(

k
2
)

+ 1 vertices that did
not increase the column-rank of MX . Let us introduce a random variable T that follows the
distribution B(|R(G)|, 3/4). The probability that the algorithm fails is upper bounded by
Pr(T ⩾ |R(G)| −

(
k
2
)

+ 1). We will use the Chernoff bound: With µ = E[T ] = 3|R(G)|
4 , for

any δ > 0, Pr(T ⩾ (1 + δ)µ) ⩽ e− δ2
2+δ µ. As we need (1 + δ)µ = |R(G)| −

(
k
2
)

+ 1, we take

δ = |R(G)|−(k
2)+1−µ

µ . From |R(G)| ⩾ 4
(

k
2
)

+ 5 it follows that δ > 0. The Chernoff bound then
gives

Pr
(

T ⩾ |R(G)|−
(

k

2

)
+1

)
⩽ e

−

(
|R(G)|−(k

2)+1−µ

µ

)2

(
|R(G)|−(k

2)+1+µ

µ

) µ

= e
−

(|R(G)|−(k
2)+1−µ)2

(|R(G)|−(k
2)+1+µ) = e

−

(
|R(G)|

4 −(k
2)+1

)2(
7|R(G)|

4 −(k
2)+1

)
So the probability of the existence of X ⊆

(
R(G)

k

)
whose incidence matrix MX if of full

column-rank is lower bounded by 1 − e
−

(
|R(G)|

4 −(k
2)+1

)2(
7|R(G)|

4 −(k
2)+1

)
. ◀

▶ Lemma 11. Consider a random bipartite graph G with |L(G)| ⩾ k, |R(G)| ⩾ 4
(

k
2
)

+ 5:
the probability of an edge existing between two vertices (one in L(G) and one in R(G)) is
1/2, independently of the other edges. The probability that G is k-vertex-minor universal is
lower bounded by

1 −

 k

2|L(G)|−k+1 + e
−

(
|R(G)|

4 −(k
2)+1

)2(
7(|R(G)|−k)

4 −(k
2)+1

)  ×
(

|L(G)| + |R(G)|
k

)

The proof makes use of the union bound along with Lemma 10, and can be found in
the extended version of this paper [3]. Roughly speaking, the proof introduces an algorithm
that makes use of pivoting to get all k vertices of some set K ⊆ V (G) on the left side of the
bipartite graph, in order to use Lemma 10 properly.
▶ Remark 12. Lemma 11 has concrete applications on its own right: in particular for any
integer k, it yields an integer n such that there exists a (bipartite) k-vertex-minor universal
graph of order n. In general, one can infer a lower bound on the probability of generating a
k-vertex-minor universal graph, for any choice of k and n, using the algorithm presented in
the proof of Lemma 11. A table presenting orders for which some bipartite k-vertex-minor
universal graph exists, as well as orders for with a randomly generated bipartite graph is
k-vertex-minor universal with at least 99% probability, for particular values of k ranging
from 3 to 100, can be found in Appendix A. Surprisingly enough, we observe that a small
constant additive overheard in the order of the graph is sufficient to attain a high probability
of generating a k-vertex-minor universal graph.
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Now we are ready to conclude. Fix some constants c > 2 and c′ > 1
ln(2) . Let G be a

random bipartite graph G with |L(G)| = ⌊c′k ln(k)⌋ and |R(G)| = ⌊ck2⌋: the probability of
an edge existing between two vertices (one in L(G) and one in R(G)) is 1/2, independently
of the other edges.

Note n = |V | = |L(G)| + |R(G)| = ⌊c′k ln(k)⌋ + ⌊ck2⌋. Using Lemma 11, the probability
that G is k-vertex-minor universal is lower bounded by

1 −

 k

2|L(G)|−k+1 + e
−

(
|R(G)|

4 −(k
2)+1

)2(
7(|R(G)|−k)

4 −(k
2)+1

)  ×
(
n

k

)

Let us prove that this probability is positive with our choice of parameters, for some big
enough k. It is sufficient to have:

(1) k

2|L(G)|−k+1

(
n

k

)
<

1
2 and (2) e

−

(
|R(G)|

4 −(k
2)+1

)2(
7(|R(G)|−k)

4 −(k
2)+1

) (
n

k

)
<

1
2

Let us show that these equations are satisfied for any large enough k. Recall that(
n
k

)
⩽ 2nH(k/n) where H(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy.
(1): It is sufficient that log2(k) + nH(k/n) − |L(G)| + k − 1 < −1.
log2(k)+nH(k/n)−|L(G)|+k−1 ∼k→∞ n k

n log2( k
n )−c′k ln(k) = k(log2(k)− log2(n))−

c′k ln(k) ∼k→∞
1

ln(2)k ln(k) − c′k ln(k). The choice of c′ guarantees that for any large enough
k, (1) is satisfied.

(2): It is sufficient that nH(k/n) ln(2)−
(

|R(G)|
4 −(k

2)+1
)2(

7(|R(G)|−k)
4 −(k

2)+1
) < − ln(2).

(
|R(G)|

4 −(k
2)+1

)2(
7(|R(G)|−k)

4 −(k
2)+1

)
∼k→∞

(
ck2

4 − k2
2

)2(
7ck2

4 − k2
2

) = k2 (c− 2)2

4(7c− 2) . We saw above that nH(k/n) ln(2) ∼k→∞ k ln(k). The

choice of c guarantees that for any large enough k, (1) is satisfied.

This proves that, for any large enough k, G of order ⌊c′k ln(k)⌋ + ⌊ck2⌋, is k-vertex-minor
universal with non-zero probability. Taking α > c, for any large enough k, ⌊c′k ln(k)⌋+⌊ck2⌋ ⩽
αk2, proving Theorem 8.

Furthermore, we just saw that side (1) of the equation dominates (2) asymptotically.
Thus, the probability of G being k-vertex-minor universal is roughly lower bounded by
1 − 2

1
ln(2) k ln(k)−c′k ln(k) = 1 − e−(ln(2)c′−1)k ln(k) as k grows. Then, for any ϵ > 0 such that

ϵ < ln(2)c′ − 1, for any large enough k, G of order ⌊c′k ln(k)⌋ + ⌊ck2⌋, is k-vertex-minor
universal with probability at least 1 − e−ϵk ln(k), proving Proposition 9.

4 Vertex-minor universal graphs from projective planes

In this section, we provide explicit constructions of families of k-vertex-minor universal
graphs, of order n proportional to k4. Thus, the order of the constructed graphs scales as the
square of the asymptotically optimal graph order from Section 3. We start in Section 4.1 with
some preparatory lemmas. In Section 4.2, we introduce a family of bipartite incidence graphs
of projective planes, and study their k-pairability and k-vertex-minor universality properties.
In Section 4.3 we introduce a new family of so-called reduced graphs from projective planes,
and investigate their k-vertex-minor universality properties.
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4.1 Sufficient conditions for k-pairability and k-vertex-minor universality
Below and throughout Section 4, given a graph G, a vertex v ∈ V (G), and a vertex subset
U ⊆ V (G), we shall use the shorthand notation NU (v) := NG(v) ∩ U , that is, the set of
neighbors of v that belong to U (in such a case, we shall always ensure that the context
makes the choice of G unambiguous).

The following two lemmas give sufficient conditions for a bipartite graph G to be one-side
(i.e., left or right) k-pairable or k-vertex-minor universal. For simplicity, we state these
conditions for the set of left vertices.

▶ Lemma 13. Let G be a bipartite graph satisfying the following property:
(P) For any set of 2k vertices K = {u1, v1, u2, v2, . . . , uk, vk} ⊆ L(G), there exist:

(i) a set of k vertices C = {c1, c2, . . . , ck} ⊆ L(G), with C ∩K = ∅, and
(ii) a set of 2k vertices S = {α1, β1, α2, β2, . . . , αk, βk} ⊆ R(G), such that NK∪C(αi) =

{ui, ci} and NK∪C(βi) = {vi, ci}, for all i = 1, . . . , k.
Then G is left k-pairable.

Proof. We use first local complementation on vertices αi and βi to create edges (ui, ci) and
(vi, ci), followed by local complementation on vertices ci to create edges (ui, vi), as desired.
It is easily seen that no edges are created between ui and K \ {vi}, or between vi and
K \ {ui}. ◀

▶ Lemma 14. Let G be a bipartite graph satisfying the following property:
(VMU) For any set of k vertices K = {u1, u2, . . . , uk} ⊆ L(G), there exist:

(i) a set of k(k − 1)/2 vertices C = {cij | 1 ⩽ i < j ⩽ k} ⊆ L(G), with C ∩K = ∅, and
(ii) a set of k(k−1) vertices S = {αij , βij | 1 ⩽ i < j ⩽ k} ⊆ R(G), such that NK∪C(αij) =

{ui, cij} and NK∪C(βij) = {uj , cij}, for all 1 ⩽ i < j ⩽ k.
Then G is left k-vertex-minor universal.

Proof. (See also Figure 2a.) The proof is similar to that of Lemma 13. To create an edge
between ui and uj , we use first local complementation on vertices αij and βij , followed by
local complementation on vertex cij . This procedure does not create any other edge between
the vertices of K. ◀

Providing sufficient conditions for a bipartite graph G to be k-vertex-minor universal
(on the entire vertex set) is more involved. To induce an arbitrary graph with vertex set
K = K1 ⊔K2, where K1 ⊆ L(G) and K2 ⊆ R(G), we may need to create edges with both
endpoints in either K1 or K2, which can be dealt with by using conditions similar to those
in Lemma 14, but also “toggle” (i.e., either create or remove, as needed) edges between K1
and K2, which represents an additional difficulty. We give sufficient conditions for doing so,
in the lemma below (see also Figure 2b).

▶ Lemma 15. Let G be a bipartite graph satisfying the following property:
(VMU⋆) For any set of k vertices K = K1 ⊔ K2, with K1 = {u1, . . . , uk1} ⊆ L(G), and

K2 = {λ1, . . . , λk2} ⊆ R(G), there exist:
(i) a subset C1 = {cij | 1 ⩽ i < j ⩽ k1} ⊆ L(G), such that C1 ∩K1 = ∅ and NK2(C1) = ∅,
(ii) a subset S1 = {αij , βij | 1 ⩽ i < j ⩽ k1} ⊆ R(G), such that S1 ∩K2 = ∅ and

for all 1 ⩽ i < j ⩽ k1, NK1⊔C1(αij) = {ui, cij} and NK1⊔C1(βij) = {uj , cij},
(iii) a subset Ω = {ωij | 1 ⩽ i ⩽ k1, 1 ⩽ j ⩽ k2} ⊆ R(G) such that Ω ∩ (K2 ⊔ S1) = ∅ and

for all 1 ⩽ i ⩽ k1, 1 ⩽ j ⩽ k2, NK1⊔C1(ωij) = {ui},
(iv) a subset C2 = {γij | 1 ⩽ j ⩽ k2, j < i ⩽ k1+k2} ⊆ R(G) such that C2∩(K2⊔S1⊔Ω) = ∅

and NK1⊔C1(C2) = ∅,
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K

S

C

L(G) R(G)

uj

ui

cij

αij
βij

(a) (VMU) conditions.

K1 uj
ui

K2λj

S1αij
βij

C1 cij

Ωωij

C2γi′jS2 ai′j

bi′j

L(G) R(G)

(b) (VMU⋆) conditions where i′ := i + k2.

Figure 2 Illustration of the (VMU) and (VMU⋆) conditions from Lemma 14 and Lemma 15.

(v) a subset S2 = {aij , bij | 1 ⩽ j ⩽ k2, j < i ⩽ k1+k2} ⊆ L(G) such that S2∩(K1⊔C1) = ∅
and for all 1 ⩽ j ⩽ k2, j < i ⩽ k1 + k2,
NK2⊔S1⊔Ω⊔C2(aij) = {λi, γij} and NK2⊔S1⊔Ω⊔C2(bij) = {λj , γij}, if i ⩽ k2
NK2⊔S1⊔Ω⊔C2(aij) = {ω(i−k2)j , γij} and NK2⊔S1⊔Ω⊔C2(bij) = {λj , γij}, otherwise.

Then G is k-vertex-minor universal.

Proof. We start by removing all vertices that are not in any set defined in (VMU⋆). Then
we proceed in the following three steps.
1) In case we need to create an edge (ui, uj) for 1 ⩽ i < j ⩽ k1 between two vertices in

K1. We first use local complementations on αij and βij to create edges (ui, cij) and
(uj , cij) (no other edges are created) and then remove αij and βij . Then, we use local
complementation on cij to create the edge (ui, uj) (no other edges are created). Finally,
we remove vertex cij , thus only the edge (ui, uj) has been constructed.

2) In case we need to create an edge (λi, λj) for 1 ⩽ j < i ⩽ k2 between two vertices in
K2. We first use local complementations on aij and bij to create edges (λi, γij) and
(λj , γij) (no other edges are created) and then remove aij and bij . Then, we use local
complementation on γij to create the edge (λi, λj) (no other edges are created). Finally,
we remove vertex γij , thus only the edge (λi, λj) has been constructed.

3) In case we need to toggle an edge (ui, λj) for 1 ⩽ i ⩽ k1 and 1 ⩽ j ⩽ k2 between two
vertices in K1 and K2. We first use local complementations on a(i+k2)j and b(i+k2)j to
create edges (ωij , γ(i+k2)j) and (λj , γ(i+k2)j) (no other edges are created) and then remove
a(i+k2)j and b(i+k2)j . Then, we use local complementation on γ(i+k2)j to create the edge
(ωij , λj) (no other edges are created). After that, we remove vertex γij , thus only the
edge (ωij , λj) has been constructed. Finally, we use local complementation on ωij to
create the edge (ui, λj) (no other edges are created). Then, we remove vertex ωij , thus
only the edge (ui, λj) has been toggled. ◀

The following lemma is a generalization of Lemma 14 to the case of general (not necessarily
bipartite) graphs.

▶ Lemma 16. Let G be a graph satisfying the following property:
(VMU◦) For any set of k vertices K = {u1, u2, . . . , uk} ⊆ V (G), there exist:

(i) a set of k(k − 1)/2 vertices C = {cij | 1 ⩽ i < j ⩽ k} ⊆ V (G), such that C is stable,
C ∩K = ∅, and NK(cij) = ∅, for all 1 ⩽ i < j ⩽ k, and

(ii) a set of k(k − 1) vertices S = {aij , bij | 1 ⩽ i < j ⩽ k} ⊆ V (G), such that S is stable,
S ∩ (K ∪ C) = ∅, NK∪C(aij) = {ui, cij} and NK∪C(bij) = {uj , cij}, ∀1 ⩽ i < j ⩽ k.

Then G is k-vertex-minor universal.
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Proof. Whenever we need to create or to remove an edge between vertices ui, uj ∈ K, we
use first local complementation on vertices aij and bij to create edges between ui and cij ,
and between uj and cij , and then we use local complementation on cij . ◀

4.2 Bipartite graphs from projective planes
Let q > 0 be a prime power, Fq be the finite field with q elements, and PG(2, q) :=

(
F3

q

)∗
/F∗

q

be the projective plane over Fq. Points and lines of PG(2, q) are identified respectively to
1-dimensional and 2-dimensional linear subspaces of F3

q. A line λ passes through a point a
(we write a ∈ λ) if the 2-dimensional linear subspace of F3

q corresponding to λ contains the
1-dimensional linear subspace corresponding to a. We will use the following properties of the
projective plane:

PG(2, q) has q2 + q + 1 points and q2 + q + 1 lines.
Any line contains exactly q + 1 points, and any point is contained in exactly q + 1 lines.
Any two distinct lines intersect in one point, and for any two distinct points there is one
unique line containing them.

We denote by Gq the bipartite incidence graph of the projective plane PG(2, q). Precisely,
the set of left vertices L(Gq) is the set of points of PG(2, q), the set of right vertices R(Gq)
is the set of lines of PG(2, q), and the set of edges E(Gq) corresponds to incidences between
points and lines, that is E(Gq) = {(a, λ) ∈ L(Gq) ×R(Gq) | a ∈ λ}.

▶ Theorem 17. Let k be such that k ⩽ (q + 4)/5. Then Gq is two-side k-pairable.

Proof. Due to the symmetry of Gq, it is enough to prove it is left k-pairable. For this, we
will use Lemma 13. Let K = {u1, v1, u2, v2, . . . , uk, vk} ⊆ L(Gq) be a set of 2k points. To
construct the sets C = {c1, c2, . . . , ck} ⊆ L(Gq) and S = {α1, β1, α2, β2, . . . , αk, βk} ⊆ R(Gq)
from the property (P) in Lemma 13, we will proceed by recursion.

First, since there are q + 1 lines passing through u1 and |K \ {u1}| = 2k − 1 ⩽ q, we may
choose a line α1 passing through u1 and not passing through any other point in K \ {u1}.
Similarly, let β1 be a line passing through v1 and not passing through any other point in
K \ {v1}. We take c1 to be the intersection point between α1 and β1.

For 1 ⩽ j < k, assume that we have constructed a set of j points Cj = {c1, . . . , cj} ⊆ L(Gq)
and a set of 2j lines Sj = {α1, β1, . . . , αj , βj} ⊆ R(Gq), satisfying the following conditions:

(i) Cj ∩K = ∅,
(ii) NK∪Cj

(αi) = {ui, ci} and NK∪Cj
(βi) = {vi, ci}, for all i = 1, . . . , j.

To construct αj+1, βj+1, and cj+1, we proceed in the following steps (see also Figure 3).
We take αj+1 to be any line passing through uj+1 and not passing through
any other point in (K \ {uj+1}) ∪ Cj.
This is possible since |(K \ {uj+1}) ∪ Cj | = 2k − 1 + j ⩽ 3k − 2 ⩽ q. Moreover,
αj+1 ̸∈ Sj , since by construction no line in Sj passes through uj+1. We further denote
by Ij+1 ⊆ L(Gq) the set consisting of the intersection points between αj+1 and the 2j
lines in Sj . Thus, |Ij+1| ⩽ 2j.
We take βj+1 to be any line passing through vj+1 and not passing through
any other point in (K \ {vj+1}) ∪ Cj ∪ Ij+1.
This is possible since |(K \ {vj+1}) ∪ Cj ∪ Ij+1| ⩽ 2k − 1 + 3j ⩽ 5k − 4 ⩽ q. Clearly,
βj+1 ̸∈ Sj ∪ {αj+1}, since no line in Sj ∪ {αj+1} passes through vj+1.
We take cj+1 to be the intersection point between αj+1 and βj+1.
Clearly, cj+1 ̸∈ Cj , since neither one of αj+1 nor βj+1 passes through the points in Cj .
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Figure 3 Recursive construction of sets C and S in the proof of of Theorem 17, for k = 2. (1)
We chose α1 any line passing through u1, and not passing through v1, u2, v2. Similarly, we choose β1

passing through v1, and not passing through u1, u2, v2. We take c1 the intersection point between
α1 and β1. (2) We chose α2 any line passing through u2, and not passing through u1, v1, c1, v2. We
determine the intersection points a and b of α2 with α1 and β1. (3) We chose β2 any line passing
through v2, and not passing through u1, v1, c1, u2, as well as a, b (to avoid α2 and β2 intersecting on
these points). We take c2 the intersection point between α2 and β2.

To complete our recursion, we need to prove:
(i) Cj+1 ∩K = ∅. We only have to prove that cj+1 ̸∈ K. This follows from the fact that

each of αj+1 and βj+1 passes through only one point in K, namely uj+1 and vj+1,
respectively, and they are distinct.

(ii) NK∪Cj+1(αi) = {ui, ci} and NK∪Cj+1(βi) = {vi, ci}, for all i = 1, . . . , j + 1.
For i = j + 1, the above equalities follow by construction. Indeed, αj+1 passes through
uj+1 and cj+1, but it does not pass through any other point in (K \ {uj+1}) ∪ Cj , and
similarly, βj+1 passes through vj+1 and cj+1, but it does not pass through any other
point in (K \ {vj+1}) ∪ Cj .
For 1 ⩽ i ⩽ j, we only need to prove that neither αi nor βi passes through cj+1.
This follows from the fact that βj+1 does not pass through any point of Ij+1. Indeed,
assuming that cj+1 belongs to either αi or βi, implies it belongs to Ij+1, the set of
intersection points between αj+1 and the lines in Sj . This contradicts the fact that
βj+1 does not pass through any point of Ij+1.

By recursion, we can construct sets C := Ck and S := Sk satisfying the property (P) from
Lemma 13, and thus we conclude that Gq is left k-pairable. ◀

▶ Theorem 18. Let k be such that 3k2 − k − 8 ⩽ 2q. Then Gq is two-side k-vertex-minor
universal.

Proof. Due to the symmetry of Gq, it is enough to prove it is left k-vertex-minor universal. We
prove Gq satisfies the property (VMU) from Lemma 14. Let K = {u1, u2, . . . , uk} ⊆ L(Gq)
be a set of k points. To construct the sets C = {cij | 1 ⩽ i < j ⩽ k} ⊆ L(Gq) and
S = {αij , βij | 1 ⩽ i < j ⩽ k} ⊆ R(Gq) from Lemma 14 we will proceed again by recursion,
by running through pairs (ui, uj) in some particular order, say in lexicographical order with
respect to indexes (i, j).

The recursion is similar to the one in the proof of Lemma 13. We construct recursively
lines αij and βij , passing through ui and uj , respectively, and take cij = αij ∩ βij . In the
recursion, we take αij to be any line passing through ui and not passing through any other
point in (K \ {ui}) ∪ Cij , where Cij := {ci′j′ | (i′, j′) < (i, j)}. Since | (K \ {ui}) ∪ Cij | ⩽
(k− 1) + (k(k− 1)/2 − 1) = 1

2 (k2 + k− 4), such a choice of αij is possible if k2 + k− 4 ⩽ 2q.
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A stronger constraint on the value of k comes from the choice of βij . Indeed, for βij we take
any line passing through uj and not passing through any other point in (K \ {uj}) ∪Cij ∪ Iij ,
where Iij is the set of intersection points between αij and the previously constructed lines
αi′j′ and βi′j′ , with (i′, j′) < (i, j). Since |(K \{uj})∪Cij ∪Iij | ⩽ (k−1)+3(k(k−1)/2−1) =
1
2 (3k2 −k− 8), we conclude that such a choice of βij is possible as long as 1

2 (3k2 −k− 8) ⩽ q,
as stated in the lemma. ◀

▶ Theorem 19. Let k be such that 7k2 − 16 ⩽ 4q. Then Gq is k-vertex-minor universal.

The proof is done by showing that Gq satisfies the property (VMU⋆) from Lemma 15,
and can be found in the extended version of this paper [3].

4.3 Reduced graphs from projective planes
▶ Definition 20. Let G be a bipartite graph and φ : L(G) → R(G). The φ-reduction of G
is the graph Gφ such that:

The vertex set of Gφ is the left vertex set of G, that is V (Gφ) = L(G),
There is an edge between a, b ∈ V (Gφ), if a ̸= b and either (a and φ(b)) or (b and φ(a))
are neighbors in G, that is,

E(Gφ) = {(a, b) | a ̸= b and [ (a, φ(b)) ∈ E(G) or (b, φ(a)) ∈ E(G) ] }

The reduction is said to be bijective if φ is bijective. It is said to be symmetric if φ is such
that (a, φ(b)) ∈ E(G) ⇔ (b, φ(a)) ∈ E(G),∀a, b ∈ L(G).

We enforce the condition a ̸= b in the definition of E(Gφ), in order to avoid loops in case
(a, φ(a)) ∈ E(G) for some a ∈ L(G).

Let Gφ be a bijective, symmetric reduction of G. For any vertex a ∈ V (Gφ) = L(G), let
NGφ(a) ⊆ L(G) be the set of neighbors of a in Gφ, and NG(a) ⊆ R(G) be the set of neighbors
of a in G. By definition, if b ∈ NGφ

(a) then φ(b) ∈ NG(a). The converse is also true, except if
φ(a) ∈ NG(a), or equivalently, (a, φ(a)) ∈ E(G). Hence, NGφ(a) = {b | φ(b) ∈ NG(a)} \ {a},
and therefore:

If (a, φ(a)) ̸∈ E(G), the map φ induces a bijection between NGφ
(a) and NG(a). In

particular, |NGφ
(a)| = |NG(a)|.

If (a, φ(a)) ∈ E(G), the map φ induces a bijection between NGφ
(a) and NG \ {φ(a)}. In

particular, |NGφ(a)| = |NG(a)| − 1.

In what follows, we take Gq to be the bipartite incidence graph of the projective plane
PG(2, q) from the previous section. Let φ : L(Gq) → R(Gq) be defined as follows. Recall that
a vertex a ∈ L(Gq) (that is, a point of the projective plane) corresponds to a 1-dimensional
linear subspace of F3

q, while a vertex λ ∈ R(Gq) (that is, a line of the projective plane)
corresponds to a 2-dimensional linear subspace of F3

q. Hence, for a ∈ L(Gq), we define
φ(a) ∈ R(Gq) as the projective line corresponding to the 2-dimensional linear subspace
orthogonal to a. Clearly, φ is bijective. It is also symmetric, since a ∈ φ(b) ⇔ (a and b are
orthogonal 1-dimensional linear subspaces) ⇔ b ∈ φ(a). Note also that (a, φ(a)) ∈ E(Gq) if
and only if a is self-orthogonal.

Let Gq|ϕ be the bijective, symmetric reduction of Gq induced by φ. We will not use the
explicit definition of φ, but only the fact it is bijective and symmetric. Note that Gq|ϕ is a
graph with q2 + q + 1 vertices, and vertex degree equal to either q (vertices corresponding to
self-orthogonal linear subspaces) or q + 1 (other vertices). The diameter of Gq|ϕ is equal to
2, and for any two non-adjacent vertices a, b ∈ V (Gq|ϕ), there is a unique path of length 2
connecting them.
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▶ Theorem 21. Let k be such that 5k2 −k− 10 ⩽ 2q. Then Gq|ϕ is k-vertex-minor universal.

The proof is done by showing that Gq|ϕ satisfies the property (VMU◦) from Lemma 16,
and can be found in the extended version of this paper [3]. Here, we briefly discuss the
implications of the two constructions from Theorem 19 and Theorem 21. We denote by ⌈x⌉p
the smallest prime power greater than or equal to a real number x > 1. For a given k > 1,
let q2 :=

⌈ 7
4k

2 − 4
⌉

p and q1 :=
⌈ 5

2k
2 − 1

2k − 5
⌉

p given by the inequalities in Theorem 19
(bipartite graph) and Theorem 21 (reduced graph), respectively. It follows that Gq2 is a
k-vertex-minor universal of order n2 = 2(q2

2 + q2 + 1) ∼ 49
8 k

4, while Gq1|ϕ is a k-vertex-minor
universal of order n1 = q2

1 + q1 + 1 ∼ 25
4 k

4 (where ∼ indicates asymptotic equivalence, as k
goes to infinity). Thus, asymptotically, the bipartite graph construction yields k-vertex-minor
universal graphs of slightly lower order than the reduced graph construction. Another
interesting property of the bipartite graph is that the corresponding graph state |Gq2⟩
is equivalent, up to local Clifford unitaries, to a Calderbank-Shor-Steane (CSS) state [4,
Section IV]. However, to construct a desired graph on k-vertices of the bipartite-graph Gq2 ,
we need to follow Lemma 15, thus to construct the sets C1, C2, S1, S2,Ω therein, which is
done by following the steps highlighted in bold in the proof of Theorem 19. Note that this
directly translates into a LOCC protocol to induce a desired graph state on k qubits of the
state |Gq2⟩, using Proposition 5. For the reduced graph the corresponding protocol is simpler,
as we only have to construct the sets C, S from Lemma 16, which is again done by following
the steps highlighted in bold in the proof of Theorem 21.

5 Conclusion

We showed the existence of k-vertex-minor universal graphs of order quadratic in k, which
attain the optimum. This implies the existence of k-vertex-minor universal and thus k-
pairable graph states with a quadratic number of qubits. Then, our study of the incidence
graph of a finite projective plane exhibited two families of k-vertex-minor universal graphs of
linear order in k4. These two families being, to our knowledge, the first k-stabilizer universal
quantum states, and so k-pairable quantum states, that can be constructed on a polynomial
number of qubits in k.
This leaves open some questions for future work.

The logical next step is the explicit, deterministic construction of an infinite family of k-
vertex-minor universal graphs whose order is cubic, or even quadratic in k, asymptotically
matching the order of the k-vertex-minor universal graphs which can be constructed in a
probabilistic, non-deterministic way (although with arbitrarily high probability).
Our probabilistic construction for k-vertex-minor universal graphs is asymptotically
optimal. The graph states corresponding to 2k-vertex-minor universal graphs are also
k-pairable: however the only known lower bound on the size of k-pairable states (where
one party holds only one qubit) is quasi-linear [2]. Does there exist k-pairable states with
a quasi-linear number of qubits?
Even though 2k-stabilizer universality is a stronger requirement than k-pairability, it is
not clear whether there exist k-pairable states which are not 2k-stabilizer universal. A
similar question can be asked for graphs: it is not clear whether there exist k-pairable
graphs on more than 2 vertices which are not 2k-vertex-minor universal.
Bravyi et al. presented a construction of k-pairable states with an asymptotically optimal
number of parties, in the case where each party holds at least 10 qubits [2]. How does
k-stabilizer universality evolve when considering quantum communication networks where
each party holds more than one qubit? Note that the construction of Bravyi et al. where
each party holds at least 10 qubits does not translate well for k-stabilizer universality.
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A Some data on the size of the existence constraints

By Lemma 11, given some k ∈ N \ {0}, there exists a k-vertex-minor universal bipartite
graph G with |L(G)| ⩾ k, |R(G)| ⩾ 4

(
k
2
)

+ 5 if k

2|L(G)|−k+1 + e
−

(
|R(G)|

4 −(k
2)+1

)2(
7(|R(G)|−k)

4 −(k
2)+1

)  ×
(

|L(G)| + |R(G)|
k

)
< 1

In Table 1 we provide values for which there exists a k-vertex-minor universal bipartite
graph of this order, for some particular values of k. In Table 2 we provide values for which a
randomly generated bipartite graph is k-vertex-minor universal with at least 99% probability.
Experimentally, adding a small, constant number of vertices to the randomly generated
bipartite graph, greatly increases the probability of it to be k-vertex-minor universal.

Table 1 Parameters for which some k-vertex-minor universal bipartite graph exists.

k 3 4 5 6 7 8 9 10 11 12 13 14 15
|V(G)| 36 57 83 113 147 184 226 272 322 377 434 497 563
|L(G)| 18 24 32 40 48 55 63 72 80 90 97 107 115
|R(G)| 18 33 51 73 99 129 163 200 242 287 337 390 448

k 20 25 30 35 40 50 60 70 80 90 100
|V(G)| 955 1448 2041 2736 3531 5424 7718 10414 13512 17012 20912
|L(G)| 161 208 256 306 357 461 568 677 788 902 1016
|R(G)| 794 1240 1785 2430 3174 4963 7150 9737 12724 16110 19896

ICALP 2024

https://dimag.ibs.re.kr/home/sangil/wp-content/uploads/sites/2/2023/10/2023vertexminors-survey-revised.pdf
https://dimag.ibs.re.kr/home/sangil/wp-content/uploads/sites/2/2023/10/2023vertexminors-survey-revised.pdf
https://doi.org/10.22331/q-2023-12-20-1212
https://doi.org/10.1103/PhysRevA.78.042309
https://doi.org/10.1103/PhysRevA.100.052333
https://doi.org/10.1103/PhysRevA.100.052333
https://doi.org/10.22331/q-2023-02-09-919
https://doi.org/10.1038/s41534-019-0139-x
https://arxiv.org/abs/1610.05238
https://arxiv.org/abs/1603.03964
https://arxiv.org/abs/1603.03964


36:18 Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems

Table 2 Parameters for which a randomly generated bipartite graph is k-vertex-minor universal
with at least 99% probability.

k 3 4 5 6 7 8 9 10 11 12 13 14 15
|V(G)| 47 68 93 123 156 194 235 281 331 385 443 505 571
|L(G)| 25 32 39 47 55 63 71 79 88 96 105 113 122
|R(G)| 22 36 54 76 101 131 164 202 243 289 338 392 449

k 20 25 30 35 40 50 60 70 80 90 100
|V(G)| 962 1456 2049 2743 3539 5431 7726 10422 13519 17019 20920
|L(G)| 167 215 263 313 364 468 575 684 795 908 1023
|R(G)| 795 1241 1786 2430 3175 4963 7151 9738 12724 16111 19897
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