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a b s t r a c t

Recent advances in cognitive neurosciences suggest that intrinsic brain networks dynamics

are associated with cognitive functioning. Despite this emerging perspective, limited

research exists to validate this hypothesis. This Registered Report aimed to specifically test

the relationship between intrinsic brain spatio-temporal dynamics and executive functions.

Resting-state EEG microstates were used to assess brain spatio-temporal dynamics, while a

comprehensive battery of nine cognitive function tasks was employed to evaluate executive

functions in 140 participants. We hypothesized that microstates (class C and D) metrics

would correlate with an executive functions composite score. Contrary to expectations, our

hypotheses were not supported by the data. We however observed a small, non-significant

trend with a negative correlation between microstate D occurrences and executive func-

tions scores (r ¼ �.18, 95% CI [�.33, �.01]) which however did not meet the adjusted

threshold for significance. In light of the inconclusive or minor effect sizes observed, the

assertion that intrinsic brain networks dynamics � as measured by resting-state EEG

microstate metrics � are a reliable signature of executive functioning remains unsupported.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Executive functions are a hallmark of human cognition and

have been defined as “high-level cognitive processes that

enable individuals to regulate their thoughts and actions

during goal-directed behaviors” (Friedman & Miyake, 2017).

They are thought to be typically recruited when dealing with

novel and complex tasks or situations (Miyake et al., 2000),

and to rely on a set of large-scale functional brain networks

that include frontal and parietal areas (Uddin, 2021). In this

Registered Report, we propose to study the links between

resting-state (RS) EEG microstates and executive functions.

Executive functions have been difficult to study due to the

fact that they encompass a large number of cognitive func-

tions which are inter-related, meaning that they cannot be

purely studied with specific cognitive tasks. To overcome this

task impurity issue, it has been proposed to use latent variable

analyses, which capture only common variance across mul-

tiple measures (Friedman et al., 2008; Miyake et al., 2000). A

highly influential study in the domain (Miyake et al., 2000)

showed that executive functions can be decomposed into

three latent variables: mental set-shifting (“shifting”), infor-

mation updating and monitoring in working memory

(“updating”) and inhibition of prepotent responses (“inhibi-

tion”). In this model, nine cognitive tasks (three per latent

variable) have been chosen and have been found to weakly

correlate with one another (r between �.05 and .34), while the

three latent variables show moderate correlation with one

another (r between .42 and .63). These results illustrate the

fact that executive functions show both unity and diversity

(Friedman & Miyake, 2017). Interestingly, this three-factors

model shows some robustness since it has been replicated

multiple times in healthy adult samples (Karr et al., 2018).

The neural substrates of executive functions have been

largely studied with fMRI. Searching the Neurosynth database

(https://neurosynth.org/) with the separate terms “executive

functions”, “inhibition”, “shifting”, “working memory”,

returns overlapping sets of overlapping brain areas that

include frontal areas (dorsolateral prefrontal cortex, anterior

cingulate cortex, inferior frontal gyrus) and parietal areas

(inferior parietal lobule, angular gyrus) (Uddin, 2021), which

are part of the fronto-parietal network (FPN), the executive

control network (ECN) and the salience network (SN) (Xu et al.,

2020). Studies using dynamic functional connectivity (dFC)

showed that these networks are dynamically modulated

during executive functions tasks such as the Stroop or the n-

back (Braun et al., 2015; Douw et al., 2016). These results are

consistent with a recent hypothesis that postulates that

neural flexibility (i.e., the ability of the brain to change from

one state to another) is related to cognitive performance

(Hartwigsen, 2018; Uddin, 2021). This hypothesis has been

further investigated by correlating fMRI dFC during RS with

performance in various cognitive function tasks (Zelazo, 2006;

Douw et al., 2016; Jia et al., 2014; Nomi et al., 2017). Taken

together, these fMRI dFC studies show that brain networks

dynamics may be an intrinsic signature of cognitive perfor-

mance (Nomi et al., 2017; Uddin, 2021).

Besides fMRI, EEG provides an interesting means of

capturing the temporal dynamics of the brain activity at a
higher temporal resolution (Michel & Koenig, 2018; Zappasodi

et al., 2019). In particular, EEG microstates analyses have

recently gained increasing interest to characterize spatio-

temporal electrical brain dynamics (for a review, see Michel

& Koenig, 2018). Some authors have even suggested that EEG

microstates could be the “atoms of thoughts” (Lehmann et al.,

1987; Lehmann & K€onig, 1997) in that they could represent the

unitary elements of cognitive processes. Microstates have

been defined as semi-stable electric potential configurations

on the scalp that last approximately 60e120 msec. Several

metrics (e.g., coverage, duration, occurrence) can be computed

to describe the dynamics of these microstates that transition

between one another (Michel & Koenig, 2018). While several

microstates have been described, the literature shows some

consistency by repetitively identifying four main microstates,

each being a prototypical configuration of the scalp potential

field (Michel & Koenig, 2018).

By combining EEG and fMRI analyses, studies have found

that these fourmainmicrostates (namedA, B, C andD)may be

associated with specific fMRI RS networks: the auditory (A),

the visual (B), the executive control (C) and the attentional (D)

networks (Britz et al., 2010; Van de Ville et al., 2010; Custo et al.,

2017; Xu et al., 2020). Recent evidences in favor of this hy-

pothesis have also been reported with a study that showed

that EEGmicrostates are closely related to dFC states observed

in fMRI andmay be relevantmarkers to study large-scale brain

networks dynamics (Abreu et al., 2020). As a result, EEG mi-

crostates analyses approach appears to be adapted to study

the temporal dynamics of these networks and their relation-

ship with higher cognitive processes (Michel & Koenig, 2018).

Especially, microstates C and D (associated with executive

control and attentional networks) metrics seem to be related

to higher cognitive functions. The number of occurrences or

the mean duration of microstate C during a RS correlates

negatively with fluid intelligence (Liu et al., 2020; Santarnecchi

et al., 2017). It has also been shown that reasoning and arith-

metic tasks significantly modify microstates C and D metrics

(e.g., occurrences,mean duration and coverage) compared to a

RS, revealing that these cognitive microstates are arguably

associated with specific cognitive abilities (Seitzman et al.,

2017; Zappasodi et al., 2019; Kim et al., 2021).

Taken together, the results of these studies are in favor of

an association between brain networks dynamics (investi-

gated through dFC or microstates analyses) and executive

functions, albeit with some limitations. First, the executive

functions in these studies are usually assessed through only

one cognitive task (for example a n-back task or Raven's
matrices task). This is a limitation considering the task im-

purity problem (Friedman & Miyake, 2017), especially on

complex tasks where multiple cognitive functions are

recruited. As an executive functions model is available and

has been validated by several studies (Friedman & Miyake,

2017; Karr et al., 2018; Miyake et al., 2000), one could argue

that such a model could best fit the multidimensionality of

executive functions. Finally, microstates analyses are well

established and provide an interesting method to capture the

brain networks dynamics (Michel & Koenig, 2018); however,

their links with executive functions are yet to be more thor-

oughly investigated.

https://neurosynth.org/
https://doi.org/10.1016/j.cortex.2024.05.019
https://doi.org/10.1016/j.cortex.2024.05.019
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The present project aims to explore for the first time the

links between spatiotemporal brain dynamics (RS EEG mi-

crostates) and executive functions. This study is based on the

results of fMRI and EEG studies that support the hypothesis

that neural flexibility is associated with cognitive flexibility

and executive functions (Zelazo, 2006; Braun et al., 2015; Douw

et al., 2016; Jia et al., 2014; Nomi et al., 2017; Seitzman et al.,

2017; Uddin, 2021; Zappasodi et al., 2019). To do so, we

measured participants' performance on executive functions

tasks and their neural flexibility. Note that in this article,

“neural flexibility”will be used to describe the spatio-temporal

brain dynamics. In practice, this term will refer to microstate

metrics, which have been found to be related to brain network

dynamics (Britz et al., 2010; Van de Ville et al., 2010). In order to

measure the participants' executive functions, they had to

perform nine cognitive tasks. A confirmatory factor analysis

(CFA) was then applied to extract the three executive func-

tions factors repeatedly replicated in the literature (Friedman

&Miyake, 2017; Karr et al., 2018; Miyake et al., 2000). In order to

measure the participants' neural flexibility, microstate met-

rics were extracted from an EEG recording during a RS. We

followed a two-step level clustering procedure, similar to

D'Croz-Baron et al. (2019, 2020). Finally, we computed corre-

lation analyses between microstates C and D metrics and an

executive functions composite score. The choice of these

specific microstates was done according to previous studies

that showed associations (1) between microstates (C & D) and

functional brain networks such as the executive control or the

attentional networks (Britz et al., 2010; Van de Ville et al., 2010;

Custo et al., 2017; Xu et al., 2020); (2) betweenmicrostates (C &

D) and cognitive functions that are related to executive func-

tions such as fluid intelligence or reasoning (Zelazo, 2006;

Seitzman et al., 2017; Zappasodi et al., 2019).

Hypotheses. The present study aims to test the hypothesis

that intrinsic spatio-temporal brain dynamics is a signature of

executive functions. Specifically, our hypotheses postulate

that:

Hypothesis 1.a. The number of occurrences of microstate C

during RS correlates (non-directional) with the executive

functions composite score.

Hypothesis 1.b. The mean duration of microstate C during RS

correlates (non-directional) with the executive functions

composite score.

Hypothesis 2.a. The number of occurrences of microstate D

during RS correlates (non-directional) with the executive

functions composite score.

Hypothesis 2.b. The mean duration of microstate D during RS

correlates (non-directional) with the executive functions

composite score.
2. Methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/
exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study.

2.1. Sample

2.1.1. Sample size calculation
Using the power r package (pwr, Champely et al., 2018), a

power analysis was conducted to calculate the sample size for

our main hypotheses. To determine the power analysis pa-

rameters, we choose to rely partially on the study conducted

by Santarnecchi et al. (2017) that best fit the present statistical

plan. In the former article, the authors found correlations of

r¼ .35 and r¼ .5 betweenmicrostatemetrics and performance

in a fluid intelligence test. While fluid intelligence is not ex-

ecutive functions per se, they share up to 25% common vari-

ance (Friedman & Miyake, 2017). Hence, we choose a r ¼ .30

(undirected) based on this article, corresponding tomedium to

large effect size (Cohen, 1992). Coupledwith a power at .90 and

a significance level of .02, the results gave a sample of n ¼ 140.

Note that a CFA on nine executive functions tasks was

performed to reproduce the results from the literature

(Friedman et al., 2008; Miyake et al., 2000). Themodel consisted

of three-factors (inhibition, shifting, updating) based on the

CFA literature (Friedman & Miyake, 2017; Karr et al., 2018;

Miyake et al., 2000). To determine the sample size of the CFA

(Kline, 2015; Kyriazos, 2018), we used a classical rule of thumb

of N: p > 10 ratio (N ¼ number of participants, p ¼ number of

measures) and N: q > 20 ratio (q ¼ number of factors).

Furthermore, as recommended by Kyriazos (2018), we per-

formed a CFA power analysis. Using the simsem r package

(Pornprasertmanit et al., 2020), a Monte-Carlo simulation (1000

repetitions) was computed with N ¼ 140 participants based on

the results and models from Friedman et al. (2008). Using a

significance level of p ¼ .02, the results of the simulation gave

the following parameters RMSEA ¼ .071, CFI ¼ .919, TLI ¼ .879,

SRMR ¼ .063. These parameters can be considered as sufficient

considering the simplicity of the model (three-factors), the

chosen sample size (Sharma et al., 2005), and the fact that this

model has been replicated several times in healthy adult

samples (Karr et al., 2018).

Therefore, 140 healthy adults (age ¼ 18e35 years) were

planned to be recruited from the Toulouse University Campus,

by email, flyers and newspaper publications. The local ethic

committee of Toulouse University approved the study

(IRB00011835-2020-09-22-297).

2.1.2. Inclusion criteria and exclusion criteria
Inclusion criteria were: age (18e35 years); affiliation to social

insurance; having read the information document about the

experiment and signed the informed consent form; native

French language. Exclusion criteria were: addiction (alcohol,

drugs); major hearing loss; major visual deficit; including

hemianopsia and color blindness; neurological or psychiatric

pathology; known brain injury, drugs intake targeting the

central nervous system.

2.1.3. Pilot sample
Ten participants were recruited in order prior to the stage I of

the Registered Report. The goal of this pilot samplewas to pre-

test code robustness for RS EEG data analyses (pre-processing

https://doi.org/10.1016/j.cortex.2024.05.019
https://doi.org/10.1016/j.cortex.2024.05.019


Fig. 1 e Illustration of themicrostate pipeline based on pilot data. The GFP of pre-processed EEG signal for each participant is

calculated (please note that only ten channels are displayed here). Topographies at GFP peaks are concatenated into one

dataset. A first-level clustering is applied to this dataset, participant by participant. Then a second-level clustering is applied

on the concatenated results of the first-level clusterings. A back-fitting from this second-level clustering is then performed

on participant's samples. Each EEG sample is labeled with the microstate prototype with which it is most similar

topographically by using the Global Map Dissimilarity measure. The final result of the pipeline is a temporal sequence of

microstates from which metrics can be extracted (i.e., number of occurrences, mean duration). GFP: Global Field Power, MS:

microstate.
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and microstates analyses). The mean age of the sample was

23.5 (SD ¼ 4.7) years old (8 men), all right-handed. The mean

level of education was 16 (SD ¼ 2.5) years. Note that one

participant was excluded due to poor EEG signal rated as bad

by Automagic (see Methods). The obtained microstates pro-

totypes from the pilot data can be found in Fig. 1. These ten

participants are not part of the final sample.

2.1.4. Final sample
In total, 165 participants were recruited between February 2022

and October 2023. Twenty-five were removed due to exclusion

criteria such as not being native French speakers (12), major

hearing loss (2), color blindness (2), dyslexia (3), under medi-

cation (2). Fourmore participants were not included because of

missing data (2), difficulties to understand the tasks (1) and not

being able to attend the second session (1). Therefore, the final

sample is constituted of 140 participants (66 women), including
13 left-handed.Mean agewas 24.72 (SD¼ 4.37) years, andmean

education level was 15.9 (SD ¼ 1.88) years.

2.2. Experimental protocol

2.2.1. Overview
The experimental protocol included two laboratory sessions.

Both lasted approximately 1 h and thirty minutes, making a

total of 3 h to complete the experiment. Participants received a

financial compensation of 30 euros once they completed both

sessions.

2.2.2. First laboratory session
Before the laboratory session, participants received a mail

containing information about the experiment. They were

asked to avoid drinking coffee or smoking for 2 h before the

laboratory session. They were received at the ISAE-SUPAERO

https://doi.org/10.1016/j.cortex.2024.05.019
https://doi.org/10.1016/j.cortex.2024.05.019


c o r t e x 1 7 8 ( 2 0 2 4 ) 1e1 7 5
Neuroergonomics laboratory and were asked to read and sign

an informed consent and other basic information about the

experiment (average time to complete and description of the

protocol and the tasks). The experiment took place in an

experimental room with no window and with a stable tem-

perature. The participants faced a 2400-inch screen with a

keyboard and a mouse on the table.

During the preparation of the EEG acquisition, participants

answered a demographic questionnaire and were briefed

about the first session which included a 5-min RS (see below

for a more detailed description), thirty minutes of video game

playing, and a second 5-min RS. Note that this Registered

Report is a part of a larger study, which will investigate the

links between executive functions, a video game (Space

Fortress, Man�e& Donchin, 1989) andmicrostates. For the sake

of efficiency, we only describe the methods used in this

Registered Report. The full project and methods can be found

in OSF (https://osf.io/fm58p/).

2.2.3. Second laboratory session
The participants came back to the laboratory (same experi-

mental room) fora secondsession in theweekfollowing thefirst

session. During this second session, participants performed the

cognitive tasks, which consisted of approximately three 30-min

runsmade of three cognitive tasks each. Based on the works of

Friedmanetal. (2008), theorder of task administrationwasfixed

as follow: antisaccade, letter-memory, coloreshape, 5-min break,

numbereletter, Stroop, keep track, 5-min break, dual 2-back, cate-

gory switch, stop-signal. Stimuli within the tasks were random-

ized.The Inquisit software (https://www.millisecond.com/)was

used to run the tasks and to gather the data.

2.3. Tasks and behavioral measures

2.3.1. Resting-state
Spontaneous brain activity was recorded during a RS. Partic-

ipants were asked to “relax, refrain from moving, and let your

mind wander while staying awake”. The task alternated be-

tween 30 sec of eyes open and 30 sec of eyes closed, five times

each. An auditory cue was used to announce the switching

between eyes open and eyes closed. The alternating order of

eyes closed and eyes open blocks is intended to avoid fatigue

and maintain vigilance (Langer et al., 2012).

2.3.2. Demographic questionnaire
A questionnaire was given to the participants to gather de-

mographics (i.e., age, gender, education level, handedness,

native language).

2.3.3. Executive functions tasks
Participants performed nine cognitive tasks measuring the

three main executive functions, namely the inhibition,

updating and shifting. The nine tasks have been chosen based

on the article of Friedman et al. (2008) in order to perform a

similar analysis (three-factors CFA). Note that all the tasks

codes come from the millisecond test library (https://www.

millisecond.com/download/library/) and were run through

the Inquisit software. The tasks have been translated in

French for the purposes of this experiment and the modified

code files are available on https://osf.io/v2xpy.
2.3.3.1. ANTISACCADE (INHIBITION TASK). During this task, the

participant must focus on a fixation cross in the center of the

screen. A yellow square flashes (i.e., a visual cue) on either the

right or the left side of the cross. After the flash, an arrow

appears on the opposite side of the flash, pointing either left,

right or up. The participant must respond to which direction

the arrow is pointing through the arrow keys on the keyboard.

Note that we did not measure saccades with an eye-tracker.

The dependent variable on this task is the proportion of cor-

rect responses.

2.3.3.2. STOP SIGNAL (INHIBITION TASK). In this task, the partici-

pant must focus on a fixation cross in the center of the

screen. Then, an arrow appears pointing either left or right.

The participant has to press the corresponding arrow key.

However, in some of the trials, the participant hears an

auditory signal which indicates that she/he has to inhibit

her/his response. This task is extracted from Verbruggen et

al. (2019) and default parameters were used. The dependent

variable on this task was the stop signal RT (response time).

2.3.3.3. STROOP (INHIBITION TASK). In this task, the participant

saw colored stimuli (figures and words). Their goal is to indi-

cate the color of the stimuli. This test is adapted for com-

puters, and keyboard keys are associated with colors

(Scarpina& Tagini, 2017). There were congruent (e.g., the word

RED written in red) and incongruent (e.g., the word RED writ-

ten in blue) trials. The dependent variable on this task was the

RT difference between congruent and incongruent trials.

2.3.3.4. KEEP TRACK (UPDATING TASK). During this task, the

participantmustmemorize and updatewords that are specific

to certain categories (amongst six in total). The words are

presented one by one in the center of the screen. The trials on

this task include to keep-track of three to four words simul-

taneously and are randomized. The dependent variable was

the proportion of correctly recalled words.

2.3.3.5. LETTER MEMORY (UPDATING TASK). In this task, the partic-

ipant views a series of letters that appear one at a time at the

center of the screen. Their goal is to memorize the four last

letters. This task is modified from Friedman et al. (2008) in

which participants have only to memorize the three last let-

ters. This modification choice was done according to a pilot

study that revealed a ceiling effect with only three letters to

memorize. The dependent variable was the proportion of

correctly recalled letters.

2.3.3.6. DUAL N-BACK (UPDATING TASK). In this task, the partici-

pant needs to follow a sequence of stimuli in twomodalities at

the same time (visual and auditory). The n-value was set to

two (i.e., 2-back task). The participant must determine

whether the position of the square in a 3� 3 gridwas the same

as the one observed two trials before (visual); and simulta-

neously determinewhether the heard letter is the same as the

one presented two trials before (auditory). Note that this is the

only task that differs from Friedman et al. (2008) study in

which they choose a spatial n-back. The reason is that the

spatial n-back is not available on millisecond test library, and

https://osf.io/fm58p/
https://www.millisecond.com/
https://www.millisecond.com/download/library/
https://www.millisecond.com/download/library/
https://osf.io/v2xpy
https://doi.org/10.1016/j.cortex.2024.05.019
https://doi.org/10.1016/j.cortex.2024.05.019
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the dual n-back is the closest that we found in this library. The

dual n-back task from the present study comes from Jaeggi

et al. (2010) and we used identical parameters with only the

2-back. The dependent variable was the proportion of correct

responses (yes and no).

2.3.3.7. NUMBER LETTER (SWITCHING TASK). During this task, the

participant sees a 2 � 2 matrix on the computer screen. A pair

of characters (ex: ‘7C’) is presented and the participants have

to respond either on the letter (consonant vs vowel) or the digit

(odd vs even) depending on the position of the characters in

the matrixw that will randomly change. The dependent vari-

able was the difference of RT between switching trials and

non-switching trials.

2.3.3.8. COLOR SHAPE (SWITCHING TASK). In this task, red or green

circles or triangles are presented to the participant. The goal

is to respond to the type of stimuli depending on the cue (S

for Shape vs C for Color). The trials were randomized and

the dependent variable on this task was the difference of RT

between switching trials and non-switching trials.

2.3.3.9. CATEGORY SWITCH (SWITCHING TASK). During this task, the

participants are asked to categorize a word in terms of (a)

living criterion (living vs non-living) or (b) size criterion

(smaller vs larger than a basketball). A cue determined which

categorization needs to be performed, with a heart associated

to the living criterion, and a cross associated to the size cri-

terion. The trials were randomized and the dependent vari-

able on this task was the difference of RT between switching

trials and non-switching trials.

2.4. Neurophysiological measures

EEG raw data were recorded during the laboratory session

with a Biosemi Active-two amplifier. Sixty-four pre-amplified

gel electrodes were positioned on a head cap according to the

10e20 system.We selected an appropriate cap size depending

on the head circumference of each participant. The sampling

rate was 512 Hz and the total duration of the RS acquisition

lasted 5 min. All data were recorded using the lab streaming

layer (https://github.com/sccn/labstreaminglayer) with the

dedicated Biosemi LSL application, and were saved in XDF

format following the Brain Imaging Data structure (BIDS,

Pernet et al., 2019) with LabRecorder (LSL library version: 113).

2.5. Analyses

2.5.1. Executive functions
2.5.1.1. TRANSFORMATIONS AND OUTLIER ANALYSES. The distribution

of the dependent variables (RTs and proportion of correct

responses) for the nine executive functions tasks were

transformed to achieve normality following a procedure

based on Friedman et al. (2008). Concerning the RT scores,

only values > 200 msec on correct trials were included (the

mean percentage of excluded trials is available in supple-

mentary material). To obtain the best measure of central

tendency for RT scores, we applied a within-subject trim-

ming procedure that is robust to non-normality (Wilcox &

Keselman, 2003): for each participant, observations that
deviated from the median by more than 3.32 times the

median absolute deviation were excluded. All accuracy data

were arcsine transformed to improve normality. To reduce

the influence of extreme scores and improve normality,

observations larger than 3 standard deviations (SD) from the

group mean were replaced with a fixed value of 3 SD.

Skewness and kurtosis for each variable 1.

2.5.1.2. CONFIRMATORY FACTORIAL ANALYSIS. The CFA was per-

formed using the lavaan r package (Rosseel et al., 2017) and

was computed on the z-scored values following the three-

factors model from Friedman et al. (2008). To measure model

adjustment, the RMSEA, CFI, TLI and SRMR are reported

(Kyriazos, 2018).

2.5.1.3. EXECUTIVE FUNCTIONS COMPOSITE SCORE. Finally, an execu-

tive functions composite score was calculated for each

participant by averaging their z-scores on the nine executive

functions tasks.

2.5.2. EEG data pre-processing
All raw and processed data as well as the code to analyze are

freely available in a standardized structure (BIDS, Pernet et al.,

2019) on https://osf.io/v2xpy. Using our own script developed

in Matlab (ver. R2020b) from EEGlab functions (Delorme &

Makeig, 2004), raw XDF data were imported in Matlab. EEG

Data from the entire first RS was selected and pre-processed

with the Automagic toolbox (ver. 2.4.3) for MATLAB (Pedroni

et al., 2019). This toolbox allowed for automated and stan-

dardized pre-processing and quality assessment without any

subjective decisions.

2.5.2.1. EEG REFERENCING. A Cz offline referencing was per-

formed before pre-processing in order to improve signal-to-

noise ratio, as recommended by Biosemi (https://www.

biosemi.com/faq/cms&drl.htm).

2.5.2.2. EEG BAD CHANNEL REMOVAL. EEG data were copied and

submitted to algorithms whose purpose is to detect bad

channels (Pedroni et al., 2019). In these copied EEG data, bad

electrodes were identified using EEGLab plugin clean_rawdata

(http://sccn.ucsd.edu/wiki/Plugin_list_process). This plugin

uses three algorithms to detect and removes flatline, low-

frequency, and noisy channels. A channel was defined as a

bad electrode when recorded data from that electrode corre-

lated at less than .85 to an estimate based on other channels

(channel criterion). Furthermore, a channel was defined as a

bad channel if it has more line noise relative to its signal

compared to all other channels (4 standard deviations). A

high-pass filter (.25e.75) was performed to remove channel

drift.

2.5.2.3. EEG FILTERING. Datawere high-pass filtered (1 Hz) using

the pop_eegfiltnew EEGLab function. A notch-filter (50 Hz) was

also be applied to remove European AC line noise.

2.5.2.4. ARTIFACT REMOVAL. Artifact removal was done using

EEGLab's runICA function. Independent component labels

(Pion-Tonachini et al., 2019) was used to classify the compo-

nents. Components that are classified as muscle, eye, heart,

https://github.com/sccn/labstreaminglayer
https://osf.io/v2xpy
https://www.biosemi.com/faq/cms%26drl.htm
https://www.biosemi.com/faq/cms%26drl.htm
https://www.biosemi.com/faq/cms%26drl.htm
http://sccn.ucsd.edu/wiki/Plugin_list_process
https://doi.org/10.1016/j.cortex.2024.05.019
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c o r t e x 1 7 8 ( 2 0 2 4 ) 1e1 7 7
line noise and channel noise with at least 80 percent confi-

dence were excluded.

2.5.2.5. BAD CHANNEL INTERPOLATION. All channels detected as

bad ones were interpolated using the eeg_interp EEGLAB

function with the spherical interpolation method.

2.5.3. EEG microstates data analysis
Because the eyes closed condition is generally considered

most reliable for microstate and functional connectivity an-

alyses (Lehmann et al., 2005; D'Croz-Baron et al., 2019),

microstate analyses (Fig. 1) was performed on the pre-

processed eyes closed RS data that was concatenated

(5 � 30 sec). Analyses were performed using functions from

the Microstates (MST) toolbox (Poulsen et al., 2018) adapted

using our own Matlab script. The present study performed a

two-level clustering approach, similar to D'Croz-Baron et al.

(2019).

2.5.3.1. MICROSTATES PRE-PROCESSING. Additional pre-processing
steps were performed on the data before EEG microstates

analysis to be in line with previous works (Michel & Koenig,

2018). A band-pass filter (2e20 Hz) was applied and data

were re-referenced using the averaged signal from the 64

electrodes. Data were segmented in epochs of 2 sec. Data

segments exceeding a certain amplitude threshold (> 90 mV)

were discarded. If one participant had less than 20 sec left of

pre-processed eyes closed EEG data, the whole participant's
data was excluded. After this pre-processing, the mean

duration of the EEG pre-processed signal was 148 (SD ¼ 4.2)

seconds (see distribution in the Figure in Supplementary

material).

2.5.3.2. GLOBAL FIELD POWER. First, the Global Field Power (GFP)

was calculated at each timepoint of each participant's EEG

recording. GFP can be defined as the standard deviation of

each sample of the EEG signal (across all electrodes) and is

thought to reflect the timepoints of stable network activity

(Michel & Koenig, 2018). Individual GFP peaks datasets were

created, containing all concatenated GFPs peaks within one

standard deviation of all GFP samples, with a minimal dis-

tance of 10 msec between GFP peaks. These additional selec-

tion criteria were used to remove potential GFP peaks induced

by remaining artifacts.

2.5.3.3. FIRST LEVEL CLUSTERING. The first level clustering was

performed on each individual GFP peaks dataset. A Modified

k-means clustering algorithm (polarity invariant) was

applied to extract the microstate prototypes of each partici-

pant. The algorithm parameters were k ¼ 4, 100 repetitions

with a maximum of 1000 iterations. Note that the number of

four prototypes was chosen according to the literature that

repetitively found that four microstates explain a large pro-

portion of variance in the data (Michel & Koenig, 2018). The

results of this first level clustering are participant-level pro-

totypes maps that have no particular order, may vary in

polarity, be different across participants and would therefore

be difficult to compare.
2.5.3.4. SECOND LEVEL CLUSTERING. To account for this limit, a

second level clustering was performed at the group level. A

modified k-means clustering algorithm (polarity invariant)

was applied on a dataset that contains the results of the first

level clustering (all four prototypes of each individual

participant). The algorithm parameters were k ¼ 4, 1000

repetitions with a maximum of 1000 iterations.

2.5.3.5. BACK-FITTING. Finally, a back-fitting of the four group-

level microstate prototypes was performed on the individual

continuous eyes closed RS EEG data. During this step, each

EEG sample was labeled according to the microstate that is

the least topographically dissimilar. This was done using the

polarity invariant Global Map Dissimilarity (GMD) measure

(Poulsen et al., 2018). After the initial labeling, some very

short microstate segments might exist due to unstable to-

pographies. Therefore, a temporal smoothing with a

minimum-duration criterion of 30 msec was applied. The

smoothing algorithm repeatedly scan through the microstate

segments and changed the label of time frames in these

small segments to the next most likely microstate class, as

measured by GMD. This was done until no microstate

segment was shorter than the 30 msec threshold Poulsen

et al. (2018).

2.5.3.6. MICROSTATE METRICS. The result of the microstate

pipeline consisted of a sequence of microstates during the

eyes closed RS EEG signal for each participant. From this

sequence, four metrics were computed (for details, see

Poulsen et al., 2018): microstate mean duration, microstate

occurrence, microstate coverage, global explained variance

(GEV). The microstate mean duration represents the average

duration of a given microstate class, calculated in millisec-

onds. The microstate occurrence represents the average

number of times per second a microstate is dominant. The

microstate coverage represents the fraction of time a given

microstate is active in the whole signal. The GEV represents

to what extent a given microstate can explain the data. The

complete pipeline code is available on https://osf.io/v2xpy.

2.5.4. Statistical analysis plan
2.5.4.1. HYPOTHESIS. Our main hypothesis postulated that

cognitive microstate metrics are associated with executive

functions. Therefore, this hypothesis was tested by doing the

following statistical analyses:

Hypothesis 1.a. A BravaisePearson correlation between the

number of occurrences of microstate C during RS and execu-

tive functions composite score.

Hypothesis 1.b. A BravaisePearson correlation between the

mean duration during of microstate C RS and executive

functions composite score.

Hypothesis 2.a. A BravaisePearson correlation between the

number of occurrences of microstate D during RS and execu-

tive functions composite score.

https://osf.io/v2xpy
https://doi.org/10.1016/j.cortex.2024.05.019
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Table 1 e Distribution of scores in executive functions
tasks.

Task Meana SDa Skewnessb Kurtosisb

Antisaccade 460 msec 64 msec ¡1.05 .88

Stop signal 203 msec 38 msec �.43 .85

Stroop 100 msec 86 msec �.55 .02

Dual N-back 88.0% 7.2% �.17 .87

Letter-memory 72.3% 20.0% .13 �.14

Keep-track 80.6% 11.1% .58 .34

Category-switch 190 msec 113 msec �.47 .14

Color-shape 127 msec 111 msec ¡1.20 1.13

Number-letter 401 msec 242 msec ¡1.33 1.85

a Mean and SD have been calculated on individual preprocessed

data.
b Skewness and Kurtosis have been calculated on z-scores. SD:

standard deviation; Bold: deviation from normal distribution.
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Hypothesis 2.b. A BravaisePearson correlation between the

mean duration of microstate D during RS and executive

functions composite score.
2.5.4.2. MULTIPLE COMPARISONS CORRECTION. To account for mul-

tiple comparisons, a HolmeBonferroni correction was applied

on p-values of the different statistical analyses (four p-value in

total).

2.5.5. Data removal and missing data
Participants that met any of the following conditions were

removed from the final analyses: participant in the

exclusion criteria; experiment not completed; missing data

(behavioral or neurophysiological); insufficient EEG data

quality assessed by Automagic and qualified as “bad”

(Pedroni et al., 2019).
3. Results

3.1. Behavioral analyses

3.1.1. Score distribution on executive functions tasks and
executive functions composite score
The executive functions tasks score distribution can be found

in Table 1 and in Supplementary Fig. 1. Considering a typical

thresholdof 1 forSkewness, only theAntisaccade,Color-Shape

andNumber-Letter tasksexhibiteda right skeweddistribution.

Considering a Kurtosis threshold of 2, all score distributions

were considered to represent a normal distribution.

The distribution of the executive functions composite

score (mean of the nine z-scored executive functions task

scores) was normal (p ¼ .75, KolmogoroveSmirnov Test), with

excellent Skewness (�.27) and Kurtosis (.09).

3.1.2. Confirmatory factorial analysis on executive functions
tasks
The confirmatory factor analysis (CFA) was performed on 140

participants. Using the three factors model of Friedman and

Miyake (2017), we were unable to compute the CFA due to

latent variables not being positive definite, suggesting that the

theoretical structure of the model is not supported by our
data. From the correlation matrix, we can assume that the

inhibition factor cannot be correctly extracted due to the low

correlation between the inhibition tasks. This assumption is

further validated because of incoherent correlations between

the inhibition factor and other factors (see Supplementary

Material). As a complementary explanation, we decided to

compute a nested-factors and a one-factor models, which are

presented in the Exploratory Analyses section.

3.2. Microstate analyses

3.2.1. Microstate metrics distribution
Four metrics were calculated for each of the four prototypical

microstates: Global Explained Variance (GEV), occurrences,

mean duration, and coverage. In the sample, the GEV ranged

from 8 to 23%, with a total mean GEV of 74%,meaning that the

four microstate prototypes explained 74% of the signal vari-

ance during the eyes-closed RS. The mean number of occur-

rences per second across the four microstates was relatively

consistent, withmeans between 2.45 and 3.46 per second (Hz).

Mean duration of active microstates varied from 77 to

99 msec. Finally, mean coverage of individual microstates

ranged from 18 to 34% of the overall data. Details of descrip-

tive results can be found in Table 2.

3.2.2. Microstate metrics and executive functions (main
hypotheses)

Hypothesis 1.a. The correlation analysis between the number

of occurrences of microstate C during RS and the executive

functions composite score revealed a non-significant corre-

lation (r ¼ �.096, 95% CI [�.257, .072], R2 ¼ .009, pcorr ¼ .84).

Hypothesis 1.b. The mean duration of microstate C during RS

was found to have a non-significant correlation with the ex-

ecutive functions composite score (r ¼ .081, 95% CI [�.086,

.244], R2 ¼ .007, pcorr ¼ .84).

Hypothesis 2.a. The correlation between the number of oc-

currences of microstate D during RS and the executive func-

tions composite score was found to be negative, but not

significant (r ¼ �.177, 95% CI [�.332, �.010], R2 ¼ .031,

pcorr ¼ .15).

Hypothesis 2.b. Themean duration of microstate D during RS

showed a non-significant correlation with the executive

functions composite score (r ¼ .055, 95% CI [�.126, .205],

R2 ¼ .003, pcorr ¼ .84).

The corresponding graphical representation of these cor-

relations can be found in Fig. 2.
3.3. Exploratory analyses

3.3.1. One-factor and nested-factors executive functions
models
We computed a CFAmodel with the nine tasks contributing to

one factor (executive functions latent score), with the lavaan

package (Rosseel et al., 2017). Results from this CFA indicated

https://doi.org/10.1016/j.cortex.2024.05.019
https://doi.org/10.1016/j.cortex.2024.05.019


Table 2 e Microstate metrics (mean ± SD [range]).

Metric Microstate A Microstate B Microstate C Microstate D

Topography

GEV (%) 8 ± 4 9 ± 4 19 ± 8 23 ± 9

[1e24] [2e27] [1e51] [7e49]

Occurrences (Hz) 2.47 ± .64 2.45 ± .60 3.27 ± .64 3.46 ± .52

[.74e3.82] [.92e3.70] [.92e4.48] [2.29e4.67]

Mean duration (msec) 73.65 ± 12.21 74.58 ± 12.13 89.42 ± 18.77 99.07 ± 29.01

[54.98e127.27] [54.61e137.17] [61.88e168.42] [66.31e210.43]

Coverage (%) 18 ± 6 18 ± 6 29 ± 9 34 ± 9

[4e37] [6e42] [6e57] [15e63]
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an acceptable fit for themodel to the data. The chi-square test

of the model fit was not significant, c2(27) ¼ 33.904, p ¼ .169,

suggesting that the model did not deviate significantly from

the observed data. The Comparative Fit Index (CFI) and the

TuckereLewis Index (TLI)were .916and .888, respectively, both

approaching the commonly recommended threshold of .9 for

good fit. The Root Mean Square Error of Approximation

(RMSEA) and Standardized Root Mean Square Residual (SRMR)

were .043 and .065 respectively, both being inferior to the
Fig. 2 e Correlations of microstates C and D with the executive f

is applied on p-values. The lines represent the linear fit, and th
recommendedmaximumthresholdof .08, indicatinga goodfit.

Factor Loadings on this model can be found in Fig. 3. The

nested-factorsmodel can be found in supplementarymaterial.

3.3.2. Correlation between executive functions composite
score and executive functions latent score
Because the executive functions composite score (mean z-

score of all the nine cognitive tasks) may be a limiting way to

measure executive functions, we decided to compare it with
unctions composite score. The HolmeBonferroni correction

e gray shades the standard error. EF: Executive Functions

https://doi.org/10.1016/j.cortex.2024.05.019
https://doi.org/10.1016/j.cortex.2024.05.019


Fig. 3 e Factor Loadings for the one-factor model. Numbers on arrows are standardized factor loadings (middle) and residual

variances (below). Inhibition, updating and shifting tasks are represented in pink, blue and yellow respectively. The

executive functions factor is in black.

Table 3 e Demographic predictors of the executive
functions composite score. Bold: p < .02

Predictor Beta CI (95%) t Partial R2 p

b1 age �.04 [�.06, �.03] �4.89 .151 <.001
b2 education .06 [.02, .10] 2.96 .061 .003

b3 handedness .08 [�.17, .33] .63 .003 .53

b4 gender �.14 [�.29, .003] �1.92 .027 .054

Table 4 e Predictors of the executive functions composite
score. MS: microstate; Bold: p < .02

Predictor Beta CI (95%) t Partial R2 p

b1 age �.05 [�.06, �.03] �5.36 .177 <.001
b2 education .06 [.01, .10] 2.66 .051 .008

b3 MS C duration �.001 [�.007, .005] �.40 .001 .688

b4 MS C occurrences �.004 [�.23, .23] �.003 .000 .997

b5 MS D duration �.001 [�.005, .003] �.35 .001 .727

b6 MS D occurrences �.21 [�.46, .04] �1.65 .020 .098
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the latent score obtained from the CFA (one-factor model).

The executive functions latent score was calculated for each

participant using lavPredict function Rosseel et al. (2017). It

showed a strong and significant positive correlation with the

executive functions composite score (r ¼ .957, p < .001).

3.3.3. Demographics variables contributing to executive
functions composite score
To measure the impact of demographics variables, a General

Linear Model (GLM, estimated using Maximum Likelihood)

was conducted to predict executive functions composite score

as follows:

EF ¼ b0 þ b1ðAgeÞ þ b2ðEducationÞ þ b3ðHandednessÞ þ b4

ðGenderÞ þ e

The model's explanatory power was moderate (R2 ¼ .20). Age

and education appear to be the only significant predictors of

the executive functions composite score, showing a negative

association with age (partial R2 ¼ .151), and a positive associ-

ation with education (partial R2 ¼ .061). Complete results of

this model can be found in Table 3.

3.3.4. Microstates analysis: GLM with covariates
Based on our previous analyses, we identified age and edu-

cation as important factors influencing the executive func-

tions composite score. Furthermore, our initial analyses to

test our hypotheses were based on BravaisePearson correla-

tions and did not consider potential interactions among the

microstatemetrics. To address this limitation and gain amore

comprehensive understanding of these relationships, we

conducted a follow-up analysis using a General Linear Model

(GLM). This GLM included both the microstate metrics from

our hypotheses, the age and education level as covariates to
predict the executive functions composite score. The GLM

equation is presented below:

EF ¼ b0 þ b1ðAgeÞ þ b2ðEducationÞ þ b3ðMSCdÞ þ b4ðMSCoÞ þ b5

ðMSDdÞ þ b6ðMSDoÞ þ e

The model's explanatory power was moderate (R2 ¼ .21).

Age and education appear to be the only significant predictors

of the executive functions composite score, showing a nega-

tive association with age (partial R2 ¼ .18), and a positive as-

sociation with Education (partial R2 ¼ .05). Complete results of

this model can be found in Table 4.

3.3.5. Correlations between executive functions composite
score and other microstate metrics
Exploratory correlation analyses were conducted between the

executive functions composite score and mean duration, oc-

currences or coverage of all four microstates. All correlations

were non significant and are reported in supplementary

material.
4. Discussion

4.1. Summary of findings

In this Registered Report, we sought to investigate the rela-

tionship between intrinsic brain activity and cognitive func-

tions. Precisely, we used the EEG microstates method to test

the hypothesis of a relationship between brain spatio-

temporal dynamics at rest and executive functions.

Based on previous studies, we choose the executive func-

tions tasks from the Miyake & Friedman's model (Friedman &

Miyake, 2017). We were not able to reproduce their three-

https://doi.org/10.1016/j.cortex.2024.05.019
https://doi.org/10.1016/j.cortex.2024.05.019


c o r t e x 1 7 8 ( 2 0 2 4 ) 1e1 7 11
factors executive functions model (inhibition, switching and

updating), although we showed in an exploratory section that

a composite score in these tasks highly correlates with load-

ings on a one factor executive functions model. Initially, we

postulated that this composite score would correlate with RS

EEG microstates C and D metrics (mean duration and occur-

rences). Our results do not support these hypotheses.

Considering the relatively large sample size, we can conclude

that the microstates C and D metrics are not a reliable

signature of executive functions, at least in the way these

functions have been evaluated in this study. It is however

pertinent to highlight that, albeit not reaching statistical sig-

nificance, there was a negative correlation between the

microstate D occurrences and the executive functions com-

posite score (r ¼ �.18, p ¼ .15, 3% of explained variance). To

gain deeper insight into the relationship between microstate

metrics and executive functions, we conducted exploratory

analyses taking the form of a GLM. This analysis focused on

predicting this composite score with several RS microstate

metrics (microstate C and D occurrences and mean duration)

measured prior to the tasks, as well as demographics (age and

education). Again, this analysis revealed that none of the RS

microstate metrics are significant predictors of the executive

functions composite score.

In this discussion, we will first focus on the results of the

confirmatory factorial analyses for the executive functions

models. Then we will discuss and compare the studies that

have investigated the relationships between microstate met-

rics and executive functions, and put them into perspective

with our results. Finally, we will conclude on the strength and

limitations of this Registered Report, and on future directions.

4.2. Three-factors versus nested-factors versus one-
factor executive functions model

Our attempt to reproduce the three-factors executive func-

tions model, namely inhibition, shifting and updating, was

unsuccessful. This contrasts with the framework proposed by

Friedman and Miyake (2017), and may be attributed to (1)

methodological differences, (2) small correlations among in-

hibition tasks that could have prevented the extraction of the

inhibition-specific factor and (3) sample characteristics.

First, this study cannot be considered as a replication of the

(Friedman&Miyake, 2017) model per se. Indeed, there are some

differences in the number of trials and blocks per task, as well

as a French translation. Furthermore, for the inhibition tasks,

our adaptation of the Stroop task involved a keyboard response

format instead of providing vocal responses (Fennell & Ratcliff,

2019). Additionally, our version of the Stop-Signal (Verbruggen

et al., 2019) included arrows and auditory tones instead of an-

imals or non-animals and auditory tones as used in Friedman

et al. (2008). In this task, some participants also reported an

inclination to await auditory tones during trials of the Stop-

Signal task, despite explicit instructions advising against such

behavior. Indeed, thiswaiting behavior is likely to involve other

cognitive processes among these participants. Taken together,

the aforementionedmethodological and behavioral differences

with Miyake & Friedman work might have led to different

scoring for the inhibition tasks performance.
Consequently, these differences may have contributed to

small correlations between inhibition tasks, which could

explain the difficulties to obtain a latent inhibition factor. It is

however worth noting that Friedman and Miyake (2017) have

also encountered difficulty in extracting this inhibition-

specific factor in some of their samples, which led them to

propose a nested-factormodel to capture both unity (common

executive functions factor that predicts all nine tasks) and

diversity with shifting and updating-specific factors

(Friedman & Miyake, 2017). To shed light on the unique posi-

tion of inhibition in the Executive Functions framework, two

competing interpretations have been proposed: either inhi-

bition is central for all Executive Functions (Valian, 2015), or

there is nothing special about inhibition (Banich & Depue,

2015; Munakata et al., 2011, see Friedman & Miyake, 2017 for

a discussion on this topic). In exploratory analyses, we also

tested this bifactormodel, but underwent the same difficulties

as in the three-factors model and were unable to reproduce it

(see supplementary material).

Finally, a recent systematic review on executive functions

models has shown that executive functions models (e.g., one-

factor, nested-factors, three-factors, etc.) do not consistently

converge and meet fit criteria across diverse samples, espe-

cially when considering different ages (Karr et al., 2018). In

their review, the authors draw the conclusion that unidi-

mensionalitymodels of executive functionsmay be a better fit

among child/adolescents' samples while multidimensionality

may be more appropriate in adult samples. Our study was

composed of 140 young adults (mean age of 24.7 years) with

relatively high education level (mean of 15.9 years), which

could also constitute an explanation as towhywewere unable

to fit the three-factors or the nested-factors models.

However, our data successfully supported a unidimen-

sionalmodel (one-factor). In thismodel, the tasks that seem to

contribute most to this one factor are first updating tasks

(mean factor loading ¼ .49), then shifting tasks (mean factor

loading ¼ .42), and finally inhibition tasks (mean factor

loading ¼ .19). Furthermore, we showed that the individual

loadings on this one-factor highly correlated with the com-

posite score (mean of all nine tasks), hence validating the use

of this metric in our initial hypotheses.

4.3. Microstate metrics and executive functions

4.3.1. Microstate C (hypothesis 1)
To date, few studies have examined the relationship between

microstate C metrics at rest and executive functions as

measured by performance in cognitive tasks (Table 5). Most

pertinent among these is the study of Santarnecchi et al.

(2017), which served as a reference for calculating our sam-

ple size. In this study, they found a notable negative correla-

tion between microstate C occurrences and Gf-1 (fluid

intelligence component). Similarly, Liu et al. (2020) found a

significant negative correlation between microstate C mean

duration and the raw scores on the same fluid intelligence

task. Because fluid intelligence and executive functions seem

to be closely related (Friedman & Miyake, 2017; Roca et al.,

2010; Santarnecchi et al., 2021), we hypothesized that micro-

state C metrics might correlate with executive functions.

https://doi.org/10.1016/j.cortex.2024.05.019
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Table 5e Summary of study results, including our own, investigating the correlations between RSmicrostates C or Dmetrics
and cognitive tasks or questionnaires.

Microstate Metric Behavioral metric N r p R2 (%) Reference

MD Fluid intelligence C1a 68 �.089 .349 .7 Santarnecchi et

al. (2017)

Fluid intelligence C2a 68 .036 .705 .1 Santarnecchi et

al. (2017)

RAPM score 54 ¡.32 .018 10.2 Liu et al. (2020)

VSMT performance 36 .326 .052 10.6 Penalver-Andres

et al. (2022)

Executive functions

score

140 .081 .79 .7 Present study

Occ Fluid intelligence C1a 68 ¡.503 .002 25.3 Santarnecchi et

al. (2017)

Fluid intelligence C2a 68 �.132 .136 1.7 Santarnecchi et

al. (2017)

VSMT performance 36 .372 .026 13.8 Penalver-Andres

et al. (2022)

Executive functions

score

140 �.095 .79 .9 Present study

MD Fluid intelligence C1a 68 .189 .046 3.5 Santarnecchi et

al. (2017)

Fluid intelligence C2a 68 .033 .726 .1 Santarnecchi et

al. (2017)

VSMT performance 36 �.277 .102 7.7 Penalver-Andres

et al. (2022)

Executive functions

score

140 .040 .79 .2 Present study

Occ Fluid intelligence C1a 68 .126 .186 1.5 Santarnecchi et

al. (2017)

Fluid intelligence C2a 68 �.114 .232 1.3 Santarnecchi et

al. (2017)

VSMT performance 36 �.146 .396 2.1 Penalver-Andres

et al. (2022)

Cognitive flexibility

score

203 ¡.361 .001 13.0 Du et al. (2022)

Executive functions

score

140 �.177 .151 3.1 Present study

a Components 1 and 2 were calculated with a Principal Component Analysis on the results of the Raven's Advanced Progressive Matrices

(RAPM), Sandia Matrices and Bomat. VSMT: Visual Surfing Motor task. MD: Mean Duration. Occ: Occurrences. Bold: p < .02.
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Contrary to our expectations, our results did not support

this hypothesis as we observed no significant correlation,

either for mean duration or occurrences metrics. The

observed discrepancy in our findings compared to these

studies is likely to arise from differences between fluid intel-

ligence tasks (Raven's matrices, Sandia matrices, Bomat;

Matzen et al., 2010; Hossiep et al., 1999) and executive func-

tions tasks. In the Santarnecchi et al. (2017) study, they used

Principal Component Analysis to extract two fluid intelligence

components respectively indexing, according to them, exec-

utive functions (Gf-1) and activity in the visual system (Gf-2).

One interpretation could be that the fluid intelligence

component (Gf-1) extracted in their study is fundamentally

independent of how the executive functions were measured

in our study.

However, some of their results are in linewith our own. It is

important here to distinguish between the twometrics, which

are mean duration and occurrences. Santarnecchi et al. (2017)

observed a significant negative correlation for microstate C

occurrences and Gf-1, yet no such correlationwas reported for
microstate Cmean duration. In contrast, Liu et al. (2020) found

a significant negative correlation for microstate C mean

duration and did not provide correlation data for microstate C

occurrences. Consequently, although both studies appear

methodologically similar, they reveal contradictory results,

suggesting that the association between RS EEG microstate C

metrics and fluid intelligence remains ambiguous.

Another study worth mentioning (Penalver-Andres et al.,

2022) found significant or near significant � albeit

positive � correlations between both metrics and the perfor-

mance in a complex motor task, in contrast to previous

studies. However, the task used in this case (Visual Surfing

Motor Task) may be vastly different from fluid intelligence or

executive functions tasks.

Collectively, findings across these studies, including our

own, underscore the inconsistencies in the relationship be-

tween microstate C metrics at rest and cognitive task perfor-

mance (see Table 5). As a complementary explanation, one

should acknowledge that these contradictory results may also

be attributable to small sample sizes in these studies. It has

https://doi.org/10.1016/j.cortex.2024.05.019
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indeed been shown that such sample size may induce false

positives (Button et al., 2013) and simulations have shown that

correlations tends to stabilize around 160 subjects (see

Sch€onbrodt & Perugini, 2013). In conclusion, given the early

stage of research and the current ambiguity of evidence, it

seems premature to speculate on the underlying physiological

mechanisms that may connect RS EEG microstate C metrics

with executive functions.

4.3.2. Microstate D (hypothesis 2)
Based on previous reviews (Michel & Koenig, 2018) that

suggested that microstate D is related to the fronto-parietal

network activity, and that flexibility within this network is

associated with cognitive flexibility (Zelazo, 2006; Braun et

al., 2015; Douw et al., 2016; Jia et al., 2014; Nomi et al., 2017;

Seitzman et al., 2017; Uddin, 2021; Zappasodi et al., 2019), we

hypothesized that RS EEG microstate D metrics would

correlate with executive functions. Here again, our data do

not support our hypotheses. Our empirical findings revealed

no statistically significant correlations between the mean

duration or occurrences of this microstate at rest and the

executive functioning composite score. Although not signif-

icant, a minor negative correlation for the occurrences is

worth mentioning since it is in line with a recent study by Du

et al. (2022). In this study, theymeasured executive functions

with the Cognitive Flexibility Inventory (Dennis & Vander

Wal, 2010) in a large cohort (N ¼ 200) and showed a signifi-

cant negative correlation between the results in this ques-

tionnaire and the microstate D occurrences at rest. While

their correlation is interesting because of their large sample

size, one should note that the behavioral score is not a per-

formance in an executive function task, but a subjective

evaluation of cognitive flexibility with a questionnaire.

Santarnecchi et al. (2017) and Penalver-Andres et al. (2022)

works, mentioned earlier, also revealed a negative but non-

significant correlation between occurrences of this micro-

state at rest and task performance, within the range of what

we report here.

The small effect sizes (1e3% of explained variance) re-

ported in these studies, including ours, would be consistent

with existing neuroimaging literature investigating the re-

lationships between RS brain activity and cognitive func-

tions. Indeed, a recent study conducted by Marek et al.

(2022) underlined that Brain Wide Associations Studies

(BWAS) using fMRI, typically necessitate large samples

(over 1000 participants) because these relationships have

small effect sizes, ranging from 1 to 5% of explained

variance.

On another note, a recent systematic review on the func-

tional significance of EEG microstates concluded that the

microstate D is likely to be associated with executive func-

tions, including workingmemory and attention (Tarailis et al.,

2023). However, the studies cited in this review differ meth-

odologically from ours because they used a different type of

protocol. Indeed, it is important to distinguish between (1)

protocols that assess cognitive recruitment bymeans of direct

comparisons such as those in this review that use contrasts

(RS brain activity vs task-related brain activity) and (2) pro-

tocols that establish correlations between RS brain activity

and subsequent performance in a cognitive task (such as our
study). This distinction is essential, as it influences the

interpretive framework for understanding the functional sig-

nificance ofmicrostates. The studiesmentioned in this review

highlight that microstate D activity is different whether the

participants are performing an executive task compared to a

RS (Br�echet et al., 2019; Kim et al., 2021; D'Croz-Baron et al.,

2021; Wang et al., 2021; Zappasodi et al., 2019). Conse-

quently, these findings underscore the necessity for a more

nuanced interpretation of the interplay between microstates

D activity and executive functions.

To integrate our results into the larger body of research, we

suggest that RS EEG microstate D occurrences may be a

correlate of executive functions. However, the extent of this

relationship appears to be limited, reflecting the small effect

sizes reported in the different aforementioned studies.

Therefore, although our data do not robustly support the hy-

pothesized correlation, they do not rule out the possibility of a

significant relationship existing in a more subtle way than

previously anticipated.

4.3.3. Considerations on measurement reliability
In this section, we delve into factors that might have influ-

enced the measures (e.g., microstate metrics or composite

executive functions score) and consequently, correlations

results.

A first element to mention is the EEG preprocessing

pipeline to extract microstates. These include, but are not

limited to, filtering, use of ICA to remove components, GFP

peak extraction algorithm, temporal-smoothing with a

minimum duration of 30 sec, etc. For example, the a priori

choice to extract four microstates was challenged in recent

studies (Koenig et al., 2024; Tarailis et al., 2023; Zanesco,

2023). Unfortunately, the field of research associated with

microstates currently lacks a publication showing the

impact of EEG preprocessing on microstate metrics. Given

the growth and advancements in this field (Tarailis et al.,

2023), it is anticipated that future studies will tackle this

issue. In this regard, a multiverse analysis (see Steegen

et al., 2016) could be an interesting way of approaching

this question.

Second, microstate metrics could have been influenced by

thoughts during the RS. Indeed, some studies have used a

questionnaire to measure spontaneous thoughts (the

Amsterdam Resting State Questionnaire, Diaz et al., 2014).

These studies showed correlations between the modality or

content of thought (e.g., verbal vs visual; past vs future, etc.)

and microstates C and D metrics, even though these correla-

tions were small, between �.19 and .37 (Pipinis et al., 2017;

Zanesco et al., 2021).

Third, the chosen metrics (for correlation analyses) in this

study might vary over time. With regards to EEG microstate

metrics, our study measured EEG RS and the executive func-

tions battery in two separate sessions (with a maximum of

one week interval). Consequently, one could argue that the

microstate metrics could have changed considerably between

the two sessions. The reliability, or testeretest of microstates

has been the subject of previous investigations (Antonova

et al., 2022; Khanna et al., 2014; Popov et al., 2023). The most

recent study to date and the most statistically powerful

(n¼ 542, Kleinert et al., 2024) revealed an intraclass correlation

https://doi.org/10.1016/j.cortex.2024.05.019
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coefficient between .67 and .92 for short-term (two days) and

long-term intervals (approximately two months), with mean

duration and occurrences having the highest correlations.

With regards to the executive functions composite score,

studies have also investigated the testeretest of specific ex-

ecutive functions tasks such as the antisaccade, the n-back or

the letter-memory (Ettenhofer et al., 2006; Paap & Sawi, 2016;

Soveri et al., 2018). While the intraclass correlation co-

efficients reported for specific task were between .69 and .88

(for around three to eight weeks between the two sessions),

they showed a higher correlation when computing a latent

executive functions construct, which could be similar to our

composite executive functions score.

In conclusion, although the reliability of both the micro-

state measures and the executive function scores appears

relatively high, potential influences such as EEG pre-

processing, content of thought during RS, and day-to-day

intra-individual variability cannot be ruled out. These fac-

tors may have influenced the correlation coefficients in

either direction.

4.4. Relevance of the registered report, limitations and
future directions

We would like to argue that the Registered Report format

was appropriate for this study, which follows a

hypothetico-deductive approach. It is indeed important to

mention that we have tested our hypotheses with a small

sample pilot study (N ¼ 10, Chenot, 2021). The results

indicated strong correlations between the executive func-

tions composite score and several microstate metrics,

including microstate C and D mean duration (r ¼ .68 and

r ¼ .62, respectively) and microstate D occurrences

(r ¼ �.52). Compared with our final results with a larger

sample, these results are manifestly inflated and raise once

again the question of the impact of statistical power and

sample size (Button et al., 2013). Considering the repro-

ducibility crisis in neurosciences and psychology

(Collaboration, 2015; Poldrack et al., 2017), we argue that the

Registered Report format is an essential tool. Indeed, this

enabled this study, first, to rigorously test these hypotheses

with a substantial sample. Second, we are able to publish

the results regardless of their significance, thus mitigating

the risk of publication bias. The open-access database

constituted during this study presents itself as a rich re-

pository for further exploration and is available here:

https://osf.io/v2xpy.

Despite the strengths of pre-registration, the present study

is not without limitations. First, even with a substantial

sample size, this study is not able to clearly elucidate the

relationship between RS microstate D activity and executive

functions. Our results, together with the existing literature,

indicate that a large-scale study with more statistical power

may be required to clarify this relationship more thoroughly.

A power analysis based on our observed correlation coefficient

(r ¼ �.18, p ¼ .02, power ¼ .9) revealed that a future study

would need a sample size of 395 participants to achieve

adequate power.

A second limitation lies in the way that executive func-

tions have been measured. While our study aimed to assess
an executive functions composite score, previous research

has been more narrowly focused on specific cognitive func-

tions such as working memory or reasoning (Tarailis et al.,

2023). This divergence in approach may lead us to question

whether a composite or a latent score on an executive

functions battery is the most appropriate method to inves-

tigate the functional significance of microstates. It may be

argued that microstate metrics could correlate more strongly

with specific cognitive functions rather than with a global

executive functions construct, especially considering that

the unidimensionality and multidimensionality of executive

functions is still under debate (Karr et al., 2018). Future

research may provide a more comprehensive understanding

of this aspect.

Finally, the lack of EEG data collection during the nine ex-

ecutive functions tasks is a limitation. Indeed, with such re-

cordings, we would have had the opportunity to evaluate the

same hypothesis, but for task-related brain activity instead of

intrinsic brain activity. It is however worth noting that EEG

recordings were captured during a more complex task (Space

Fortress, Man�e & Donchin, 1989). Testing the hypothesis of a

relationship between microstates activity during this multi-

tasking game and its associated performance is however

beyond the scope of the present paper and will be the subject

of a later publication.
5. Conclusion

This study marks a significant step toward understanding the

relationships between intrinsic spatio-temporal brain dy-

namics and executive functioning. In a relatively large sam-

ple, our results do not support a significant relationship

between microstate C metrics measured at rest and perfor-

mance in executive functions tasks. This finding underscores

that the functional significance of this microstate probably

lies elsewhere. While the relationship between microstate D

metrics at rest and executive functions warrants further

investigation in a larger cohort, our results suggest that the

association, if present, is likely to be minimal. In light of the

inconclusive or minor effect sizes observed, it remains diffi-

cult to postulate, as originally hypothesized, that the intrinsic

spatio-temporal brain dynamics - measured by microstates C

and D activity at rest - are a reliable signature of executive

functioning.
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