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EMG-based Variable Impedance Control with
Passivity Guarantees for Collaborative Robotics

Maciej Bednarczyk1, Hassan Omran1 and Bernard Bayle1

Abstract—In this paper, a new methodology is developed for
safely changing the interaction dynamics of a collaborative robot.
A strategy based on electromyography is proposed to distinguish
operator forces from those resulting from interactions with
the environment. This allows to obtain information about the
operator intentions and include it into the robot control strategy
for an enhanced physical human–robot interaction. The safety
of the resulting variable impedance control is guaranteed by
imposing the passivity of the interaction. Experimental validation
shows a good performance of the proposed method and illustrates
the advantages of such a strategy in cases where human, robot
and environment interact with each other.

Index Terms—Human-Robot Collaboration, Physical Human-
Robot Interaction, Compliance and Impedance Control

I. INTRODUCTION

THE evolution of robotics and recent advances in the field
of physical Human-Robot Interaction (pHRI) tend toward

human oriented design of robotic mechanisms and control
strategies. In this framework, characterizing the behavior of the
human operator comes into the center of attention, especially
in the case of human-robot collaborative systems. Even if a
fully automated robotic system shows greater performance
in precision, repeatability and load capacity than a human
operator when operating in a well defined environment, many
tasks require the human ability of fast judgment and adaptation
in case of unpredicted events. In this context, collaborative
systems are designed to combine both the robot force and
precision, and the operator judgment and flexibility.

With the development of collaborative robots (called
cobots), human-robot collaboration has become a research
topic of paramount importance in multiple fields of appli-
cation such as manufacturing [1], or robot-assisted medical
interventions such as rehabilitation robotics [2], [3], to mention
just a few. In collaborative scenarios, the question of handling
physical contact with an unmodeled environment in the best
possible way is a crucial issue. This can be obtained typically
by controlling the compliance of the interaction between the
robot and its environment, resulting in the classical impedance
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control (IC) scheme [4], [5]. In the case of complex interac-
tions, the desired response of the robotic system needs to be
regulated by properly modifying the impedance parameters.
This can be achieved by means of a variable impedance
controller (VIC) [6]. One of the main challenges in interaction
management using VIC lies in the proper selection of the
impedance parameters, not only according to the task but also
to ensure stability for all possible parameters variations [7].
This issue has been addressed by several approaches such as
the energy tanks [8].

Once the integrity of the human operator can be guaran-
teed, the challenge for effective collaboration between the
human and the robot can be addressed. This challenge lies
in the ability to establish efficient communication between
both sides and especially in the prediction of the operator
intentions [9]. This is of particular interest in robot-assistive
tasks in which the robot needs to acquire a perception of
the operator activities during task execution and adapt the
level of assistance when needed. Human activity can typically
be estimated by measuring the force applied by the operator
on the robotic system using mechanical force-torque sensors.
Due to its simplicity, this strategy is commonly used in many
collaborative applications such as object manipulation [10],
[11], [12]. The major drawback of such a method consists
in the fact that sensor measurements include some undesired
components. Indeed, besides measuring the human-robot in-
teraction, it will also measure gravity, friction forces and other
interaction forces resulting from the contact with an uncertain
environment [9]. Alternatively, measurable bio-signals such
as surface electromyography (EMG) could also be used to
measure the forces applied by the human operator [13]. EMG
signals are the result of muscle bio-electrical activity and are
often used in the control strategies of assistive robotic systems.
They reflect the operator’s muscle voluntary contractions,
providing an insight on his intentions. In many applications
involving EMG-controlled robots, EMG signal magnitude is
used as a trigger to enable some level of assistance of the
robotic system [14]. An alternative to that is to integrate bio-
signals directly into the robot control strategy using a model
of the operator activity for better assistance.

Recent implementations of collaborative control strategies
based on VIC also include information about muscle activity
using EMG. In [15] the operator muscle activity is used to
switch the robot damping between predefined values. The
work presented in [16] uses the concept of tele-impedance
where the robot is controlled using both motion commands
and impedance profiles which are generated by the operator
interacting with some environment. In [17], the concept of
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tele-impedance was used in an approach where the robot is
taught by the user how to perform the desired task. This
method however turned out to require a complex setup and an
experienced operator. As a response to these issues, the work
of [18] introduces a framework based on EMG and manipu-
lability assessment of the human arm to provide information
about the human behavior and task requirements. However, the
previously mentioned works share the common shortcoming of
not guaranteeing the passivity of the interaction while adapting
the impedance.

In this work, we propose a control strategy for the adaptation
of the impedance of collaborative robots, based on operator’s
intentions and movements. These intentions are estimated us-
ing a real-time EMG to force model. Moreover, we show how
to implement passivity filters in order to make the physical
human–robot interaction safe. The passivity filters have been
presented in details in our previous work [19] where we have
addressed the issue of ensuring stability for VIC. The proposed
method is based on the design of a filter that allows the
tracking of impedance profiles while guaranteeing the passivity
of the interaction dynamics. In this paper, we focus more on
the utility of these filters for an adaptive interaction between
the human and the robot. For more generality, the experimental
validation of the proposed method will be done using a 7-DoF
collaborative robotic manipulator.

The rest of the paper is organized as follows. In Section II,
some basic concepts of robot dynamics, variable impedance
control and passivity filters are presented. Section III intro-
duces our control strategy combining EMG-based human arm
modeling with VIC, with some experimental results presented
in Section IV. The paper is concluded in Section V

II. VARIABLE IMPEDANCE CONTROL AND PASSIVITY
FILTERS

A. Rigid body dynamics and robot model

Let’s consider the model of an n-joint serial robotic manip-
ulator operating in an m-dimensional task space

H(q)q̈ + c(q̇, q) + g(q) = τc − J(q)T fext (1)

with q̈, q̇, q ∈ Rn the joint acceleration, velocity and
position respectively. τc ∈ Rn is the commanded joint torque,
fext ∈ Rm the total external wrench exerted at the robot end-
effector, J(q) ∈ Rm×n denotes the robot Jacobian matrix and
H(q) ∈ Rn×n, c(q̇, q) ∈ Rn and g(q) ∈ Rn are the inertia
matrix, Coriolis and gravity terms, respectively. The robot
dynamics (1) can be simplified by means of a computed torque
control law and some usual model manipulations [20].

B. Variable Impedance Control

In order to dynamically link the system positions, velocities
and accelerations with the external forces, the input of the
system is computed in order to obtain

Mëp +D(t)ėp +K(t)ep = fext (2)

with ep = pr−p ∈ Rm, where p is the robot end effector pose
and pr a reference motion. The interaction is then character-
ized by the impedance resulting from the apparent virtual mass

M ∈ Rm×m, the desired damping D(t) ∈ Rm×m and the
desired stiffness K(t) ∈ Rm×m. Note that M , D(t) and K(t)
are symmetric positive definite user-defined matrices. In the
proposed controller we consider, D(t) and K(t) time-varying,
while M is assumed to be constant. In this work, we assume
that the impedance model matrices are all diagonal and that
it can be decoupled according to its DoFs i ∈ [1, ...,m]. The
change in the system impedance varies between some stiffness
(respectively damping) values K0 and K1 (respectively D0

and D1) such that

K(t) = K0 + Γ(t)δK (3)
D(t) = D0 + Γ(t)δD (4)

with δK = K1 −K0, δD = D1 −D0 and Γ a diagonal ma-
trix where all diagonal terms γi are differentiable gains
such that 0 ≤ γi ≤ 1. In order to simplify the notation, time
dependence of Γ, K and D will be omitted in the further
development.

C. Passivity Filter

As arbitrary variations of impedance parameters can lead to
instability, a passivity filter can be used to guaranty system
stability, as explained and shown with more details in our
previous work [19]. In fact, we showed that if the varying
impedance parameters satisfy the following passivity condi-
tions:

0 ≤ K − Ḋ (5)

0 ≤ 2DM−1(K − Ḋ)− K̇ + D̈ (6)

then system passivity can be guaranteed. We also showed that
as M , K, D are chosen to be diagonal, the impedance behavior
can be decoupled, leading to a set of scalar passivity conditions
on the switching variable γi. We define the diagonal terms of
M , K, D, δK and δD as respectively mi, ki, di, δki and δdi.

In fact, in the case where δdi ̸= 0, equation (5) gives a
passivity condition for γ̇i such that

γ̇i ≤
δki
δdi

γi +
k0i
δdi

≜ h1i(γi) (7)

We also showed that passivity condition (6) is satisfied as long
as γi satisfies

γ̇i ≤
a3iγi + a4iγ

2
i + a5i

a1i + a2iγi
≜ h2i(γi) (8)

with

a1i = δki +
2

mi
d0iδdi a3i =

2

mi
(d0iδki + k0iδdi)

a2i =
2

mi
δd2i a4i =

2

mi
δkiδdi a5i =

2

mi
k0id0i

Combining the two passivity conditions, given by equations (7)
and (8), with a low-pass filter, in order to ensure smoothness
of γi, a passivity filter can be designed in such a way that it
takes as input the desired switching profile γ̄i and generates
an output profile γi that guarantees the system passivity. The
filter can then be defined by

γ̇i = min(h1i(γi), h2i(γi), β(γ̄i − γi)) (9)



BEDNARCZYK et al.: EMG-BASED VARIABLE IMPEDANCE CONTROL WITH PASSIVITY GUARANTEES FOR COLLABORATIVE ROBOTICS 3

where β is the gain of a low-pass filter that allows to ensure
the smoothness of γi. Integrating (9) yields γi that tracks γ̄i
in such a way that passivity conditions are respected.

III. EMG-BASED VARIABLE IMPEDANCE CONTROL

In many robotic applications with human-robot interactions,
the human and the robot interact not only with each other,
but also with the external unmodeled environment. In this
case, distinguishing between the forces that are applied by the
operator from those applied by the environment and adapting
the robot behavior accordingly becomes essential.

A. Varying Interaction Dynamics based on Human Intentions

In this context, the following scenario is considered: when
no human input is detected by the system, the robot follows
some reference position pr under impedance control and thus
can react to environmental contact wrench fe as shown in
Figure 1a. However, when the operator participates to the
interaction by generating some wrench fh on the system,
the impedance model used by the controller is modified
as shown in Figure 1b. The desired behavior of system in

(a) Environmental force only. (b) Human and environmental
forces.

Fig. 1. System under VIC.

contact with the environment and without any human input,
is given by the impedance model characterized by its stiffness
Ke and damping De. On the other hand, when only the
human operator is exerting wrench on the end-effector, the
impedance model is given by the stiffness Kh and damping
Dh. When human and environment interact simultaneously
with the robot, the impedance parameters change accordingly
to the ratio of both wrenches. In this way, it is possible to have
different interaction dynamics with the human from those with
the environment. For instance, the robot could be having a stiff
behavior while interacting with the environment, while being
very compliant when it interacts with the human operator.

The change in the system impedance is considered to be
affine and vary between the stiffness (respectively damping)
values Ke and Kh (respectively De and Dh) such that

K(t) = Ke + Γ(t)δK (10)
D(t) = De + Γ(t)δD (11)

with δK = Kh −Ke, δD = Dh −De and Γ is the diagonal
switching variable matrix such that for each eigenvalue of Γ,
0 ≤ γi ≤ 1 and Γ = g(fh, fe), where g is some function of the
forces generated by the environment fe and forces generated

by the user fh. In the case when the environment wrench fe
is zero, the switching variable matrix Γ is set to be the null
matrix.

In practice, the robotic system is not able to differentiate
the wrench applied by the environment and from the one
applied by the operator and can only measure the total external
wrench applied on the end-effector being the sum of all applied
wrenches such that fext = fh + fe. For this reason, in order
to distinguish the wrench fh, the operator is equipped with
EMG sensors that can measure his muscular activity. During
interaction only between the robot and the operator, the human
arm dynamics produce EMG signals µ and a wrench applied
on the robot end-effector fext = fh. These signals can be used
to derive an EMG to force model of the human arm.

B. Human arm dynamics model estimation

When modeling the EMG-force relationship, it is of particu-
lar interest to take into account the subject and time variability
of the EMG-based human arm dynamics. In order to cope
with this time dependency, a Linear Parameter-Varying model
has been considered in [21] where the scheduling parameter
is considered to be the elbow angle. However, this requires
measuring all the necessary variables related to the body kine-
matics. Moreover, this method comes with the burden of more
complicated calculations that are not feasible in real-time.
In this work we consider a linear time-varying parameters
model, which is more adapted for real-time applications. The
EMG-force relationship, expressed as a linear, discrete time,
input/output model is supposed here to have the form

fh k = −
na∑
i=1

Ai,kfh k−i +

nb∑
i=1

Bi,kµk−i−nk+1 (12)

where fh k and µk are the human force and EMG signal at time
step k, respectively and Ai,k and Bi,k the time varying model
parameter matrices. The number of past inputs and outputs
used in the model are given by na and nb, nk is an input to
output delay. The parameters are estimated using a classical
Recursive Least Squares (RLS). See [22] (pages 52 and 57) for
a full description of the used method. The idea is to minimize
the difference between the measured outputs and the prediction
of the outputs based on past and current inputs as well as past
outputs.

During the phases where only the human is interacting with
the robot, the force sensor measures the force applied by the
human. In this case, we activate the identification process
described previously. Then, we stop the identification process
at time j, and we consider the most recent set of parameters
to find an estimation of the human force f̂k based on the
measured EMG signals using the estimator:

f̂h k = −
na∑
i=1

Ai,j f̂h k−i +

nb∑
i=1

Bi,jµk−i−nk+1 (13)

C. Control Architecture

The human EMG to force relationship given by the recursive
model (13) produces estimates of the human wrench f̂h.
When contact with the environment is detected, by the means
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of a dedicated sensor, the estimation is interrupted and the
previously estimated model parameters are used to compute
the human wrench f̂h from the EMG signal µ. The overall
control architecture is shown in Figure 2a. Inside the controller

(a) Overall system.

(b) Controller.

Fig. 2. Block-diagram illustrating the overall system architecture during
human-robot interaction. Θ is the vector of the estimated parameters.

block, as shown on Figure 2b, the estimated human wrench f̂h
is used to compute the impedance model switching variables
such that

Γ̄ = g(f̂h, fext) (14)

In this case, we measure the wrench applied by the environ-
ment fe = fext − f̂h. This wrench also contains modeling
errors of the estimation of fh. As applying Γ̄ directly to VIC
parameters K(t), D(t) could lead to the loss of passivity and
thus to instability issues, the switching variable is first filtered
by the means of the passivity filter (9), resulting in Γ that
guarantees passivity. This new switching variable is then used
in VIC to compute K(t) and D(t) from equations (10) and
(11). Finally, the controller produces the input u that is fed to
the robotic system.

IV. ENHANCED HUMAN-ROBOT INTERACTION

A. Experimental Setup

In order to validate the proposed strategy, an experiment
is designed as shown in Figure 3. A handle is mounted on
the end effector of a KUKA iiwa 14 collaborative robot and
has been equipped with an ATI Mini40 force-torque sensor.
A stretch band of about 180N/m stiffness can be attached to
the handle. Its goal is to emulate an unmodled external forces
applied to the system. The operator is equipped with 8 EMG

Fig. 3. Experimental setup.

sensors. The placement is done accordingly to the SENIAM
recommendations [23] and depicted in Figure 4. The EMG

Fig. 4. EMG sensors placement.

signals, which represent the input of the estimator, are acquired
using the Delsys Trigno Wireless System (Delsys Inc) with
a sampling rate of 1kHz. The muscular activation signal is
derived from the raw EMG data accordingly to the following
processing steps. The acquisition system applies a first band-
pass filter between 20 and 450 Hz, in order to filter out
offsets and baseline drifts as well as to avoid aliasing. Then,
during the processing, the bandwidth of the signal is further
reduced using a Butterworth filter that selects the frequencies
between 20 and 350 Hz, implemented by means of the series
of a fifth order high-pass and a second order low-pass filter.
Full-Wave Rectification is applied to the resulting signal by
taking its absolute value. The envelope extraction, is performed
using a second order Butterworth low-pass filter with a cut-
off frequency of 1.775 Hz. The robot is controlled using the
KUKA FRI communication interface. For simplicity, only one
Cartesian DoF is considered and chosen horizontal and normal
to the human and robot, that is in the direction of the stretch
band. The impedance profile reference switching variable is
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(a) Comparison of the measured external force with the estimated human
force.

(b) Stiffness and damping profiles before and after the passivity filter.

(c) Handle Cartesian position in the robot y-axis.

Fig. 5. Experimental data of EMG-based VIC.

chosen such that

Γ̄ = 1− α|f̂h|
α|f̂h|+ |fext − f̂h|

(15)

and Γ̄ = 1 if fext = f̂h = 0, with α = 2 a gain that
increases the influence of the operator input and also reduces
the sensitivity to the estimation error. In fact, as α is chosen
high, the weight of |fext − f̂h| becomes negligible. Equation
(15) gives Γ̄ = 0 if only the operator force is applied, resulting
in an impedance profile K = Kh and D = Dh from equations
(10) and (11). Meanwhile, if only the environment exerts a
force on the system, Γ̄ = 1 and K = Ke and D = De.
Finally, when forces come from both sources, the resulting
switching variable is a ratio of the force amplitudes that can
be modulated by means of the gain α, as needed for the
application.

B. Results

The four phases of the experimentation are illustrated in
Figure 5 with the colored areas. First, the user applies some
forces on the handle so that the model estimation can be
performed (first white area on figures). In the second phase,
the user continues to push-pull the handle, this time however,
the force is predicted by the model (red area on figures).

Meanwhile, the stretch band is not attached to the handle,
so that the only forces measured by the force sensor are the
ones applied by the operator. During these two phases the
VIC is given a constant low stiffness of Kh = 100N/m and
a damping Dh = 63.25Ns/m resulting in a damping ratio
of 1. In the third phase (second white area on figures), the
user force prediction is disconnected and the stiffness is set to
Ke = 500N/m and the damping to De = 141.42Ns/m. In this
phase the stretch band is attached to the system. Finally, in the
fourth phase (green area of figures), the proposed multi force
source interaction strategy is activated. The different forces
applied to the system are illustrated in Figure 6 and come
from the stretch band (Interaction 1), the operator right arm
with EMG sensors (Interaction 2) and his left arm without
sensors (Interaction 3).

Fig. 6. Visualization of interactions during the experimentation phases. The
numbers on top of the figures correspond to the ones of Figure 5a.

The first remark that can be made is about the second (red)
phase, where the estimated model is used to predict the force
(Figure 5a). As shown in the previous section, the predicted
output fits the force intention of the user with FIT = 67.8
and V AF = 96.6, even though the estimated amplitude is
not always exact. One can also notice that in the third phase,
the attached band creates a constant force of −20N on the
handle that simulates an external interaction force with an
unmodeled environment, which can be observed in Figure 6
as Interaction 1. In order for the environmental force not to
be only static, in phase four (green), the user also applies
some additional pulls on the stretch band with his left arm
that has no EMG sensors placed on it. This can be observed
in Figure 6 as Interaction 3. Finally, when the operator uses his
right arm with attached EMG sensors, as shown in Figure 6 as
Interaction 2, the controller estimates the intentions of moving
the handle what results in a decrease of stiffness and damping
(Figure 5c). The decrease of the impedance profiles can be
observed in Figure 5b. When the user applies some force with
the EMG equipped arm, the impedance profiles decrease to Kh

and Dh, whereas in the other cases the profiles remain close to
Ke and De. The fact that the profiles are not strictly equal to
Ke and De results from the fact that even at rest, the estimation
produces some force output due to the gravity compensation
activity of the human arm. This difference remains, however,
rather low and can further be decreased by using the gain α
if more precise tuning of the profiles is required for a certain
application. In fact, if α is chosen smaller, it decreases the
sensitivity of the controller to small forces made by the user.
Finally, one can notice that the effective stiffness and damping
profiles that are applied by the robot, in Figure 5b, are modified
by the passivity filter in order to guarantee a stable interaction.
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V. CONCLUSION

With the possibility of safely changing the interaction
dynamics, the understanding of the operator intentions and
including this information into the robot control strategy for
enhanced pHRI comes to the fore. A strategy based on EMG is
proposed to distinguish operator forces from interactions with
the environment and modify the robot interaction dynamics
accordingly. Because of their fair trade-off between accu-
racy and complexity, as well as their capacity of adaptation
to changing conditions, linear time-varying models that are
recursively identified are explored to map the relationship
between EMG and the force produced by the human arm. This
information is used in the robot control strategy to perform
a modification of the interaction dynamics by means of a
VIC. In order to face the requirements of different potential
applications, the switching variable Γ̄ is adapted as needed.
The use of the passivity filter, which should not be compared
with a classical filter, guarantees stable and thus safe execution
of the impedance changes. Experimental validation shows a
good performance of the proposed EMG-force models and
illustrates the advantages of such a strategy when human,
robot and environment interact with each other. Also, the
implemented impedance profile changes are only influenced
by the forces applied by the EMG equipped arm even in case
of variations of the environmental forces.

It should be noted that while the proposed filters provide
passivity guarantees, they could be conservative. The conser-
vatism means that the filter would limit the desired variations
of the impedance in favor of the passivity property. This could
lead to a degradation in the performance. One solution would
be to investigate less conservative passivity conditions, and
consider them for the filter design. Another limitation is related
to the choice of variation model of the impedance parameters
in equations (10) and (11). The proposed method could
possibly be adapted for a more general form of variations.
Finally, there is also a limitation related to the EMG-force
model, which is considered to be linear time-varying in this
study. While this model is sufficient for simple movements, an
enhanced modeling of the human arm dynamics and the EMG-
force relationship should be necessary for more complicated
movements. The previous limitations open the way to future
research in the field.
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