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General Experimental Section

1. Synthesis of amidine 1:

(0] O Cl Ad
) )J\ NEt;, /U\ PCls, )\ DippNH2, /)\
ArNH, + A" ™l — . A NH Ad-XN ———oiieE N7 NH
toluene, r.t., A+ toluene, Ar* NEt, ’ Dipp Art
16 h ) . reflux, o.n. reflux, 2 days 1
A: Isolated yield B: Moisture sensitive ’ y , 0
under N2 (95%)) used in-situ Isolated yleld (81 /o)

2,6-Dibenzhydryl-4-tolylamine (Ar*NH>) (40 g, 90.9 mmol) and 1-adamantane-carbonyl chloride
(18 g, 90.6 mmol) were added to 250 ml of dichloromethane. Then, the distilled triethylamine,
NEts, (18 ml, 129.8 mmol) was added dropwise to the solution mixture at room temperature. The
reaction mixture was stirred at room temperature overnight, resulting in a white solid precipitate.
The crude mixture was then quenched with 1 M of NaHCOs and washed with distilled water (2 x
50ml). The organic fraction was separated and dried over anhydrous MgSQOs. Volatiles were
removed from the filtrate in vacuo to yield product A as a white powder (yield: 52 g, 95%). The
characteristic signals of A in 'H and '*C {!H} are consistent with the reported data.

Compound A (20 g, 33.22 mmol) and phosphorus pentachloride, PCls, (9.68 g, 46.48) were
combined in a 250 ml Schlenk flask. Then anhydrous toluene (150 ml) was added, and the reaction
solution was heated at reflux overnight under nitrogen. The crude mixture was cooled to ambient
temperature, and the solvent was removed in vacuo using a secondary trap to give white solid
residues. After the removal of the solvent, the solid residues were heated to 150 °C for 2 h to
remove unreacted PCls and by-product OPCls. This procedure gave the moisture-sensitive white-
brownish compound B that was not isolated. The full conversion of A to B was confirmed by 'H
NMR spectroscopy. Compound B was used directly without further purification.

In situ characterization of B:

'"H NMR (400 MHz, 298 K, C¢Ds): & 1.51 (m, 6H, Ad-H°), 1.81 (m, 6H, Ad-H?), 1.83 (m, 3H,
Ad-HD), 1.88 (s, 3H, CHs°), 5.69 (s, 2H, CH'-Phy), 6.91 (s, 2H, Ar-HY), 7.06-7.09 (m, 8H, Ar—H),
7.13 (m, 8H, Ar-H), 7.28 (d, 4H, Ar-H).
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BC{'H} NMR (101 MHz, 298 K, C¢Ds): & 21.2 (CHz%), 28.6 (Ad—CP), 36.7 (Ad—C®), 40.3
(Ad—C?), 45.9 (Ad—C"v®), 52.5 (CH-Phy), 126.5, 126.7, 128.5, 128.6 (Ar-C), 129.7 (Ar-Cf),
130.4 (Ar-C), 133.0 (Ar—C™), 133.3 (Ar-C™), 143.2 (Ar-C'V™M), 143.9 (Ar-C"v), 155.1
(CI-C=N).

Compound B was combined with 2,6-diisopropylaniline (5.86 g, 33.32 mmol) in a Schlenk flask
and dissolved in anhydrous toluene (100 ml). Triethylamine (6.20 ml, 44.32 mmol) was added
subsequently to the solution in an inert atmosphere. The reaction was heated at reflux for 2 days,
cooled to r.t., and quenched with 1 M aqueous NaHCOs3 (100 ml). The crude product was extracted
with deionized water (2 x 50 ml) and separated in a separating funnel. The organic layer was dried
over anhydrous MgSQs, and all volatiles were removed in vacuo, yielding a sticky brownish
product. The residues were then washed with MeOH (3 x 20 ml), yielding the compound as a white
powder (20.3 g, 81%). A colorless crystal suitable for XRD analysis of 1 was obtained from hot
ethanol.

Physical data of 1: "TH NMR (400 MHz, 298 K, CDCl3): § 1.01 (d, *Juu = 6.7 Hz, 6H, Dip—CHs3'),
1.18-1.29 (m, 9H, Ad-H), 1.31 (d, overlapped with Ad—H? peaks, *Jun = 6.7 Hz, 6H, Dip—CH3"),
1.42 (m, 3H, Ad-HP), 1.61 (m, 3H, Ad-H®), 2.06 (s, 3H, CH3°), 3.28 (sept, *Jun = 6.7 Hz, 2H,
Dip—CHY), 4.62 (s, 1H, NH), 5.95 (s, 2H, CH%-Ph,), 6.45 (s, 2H, Ar*Ar-Hf), 6.84 (m, 1H,
Dip—Ar-H°), 6.94 (m, 6H, Ar*Ar-H), 7.04 (m, 4H, Ar*Ar-H®), 7.15 (m, 2H, Dip—Ar-H"),
7.20-7.23 (m, 10H, Ar*Ar—H).

BC{'H} NMR (100 MHz, 298 K, CDCl3): § 21.7 (CHs°), 22.5 (CHs'), 25.2 (CH3)), 28.5
(Dip—CHF), 28.8 (Ad—C®), 36.4 (Ad—CP), 39.8 (Ad—C?), 43.5 (Ad—C""®), 52.7 (CH'-Phy), 120.9
(Dip—Ar-C), 122.2 (Ar*Ar-C), 126.3 (Dip—Ar—C), 128.2 (Ar*Ar-C), 128.4 (Ar*Ar-CH), 129.4
(Ar*Ar-C), 129.6 (Ar—CY), 130.6 (Ar*Ar—C), 135.6 (Ar*Ar-C™v9), 135.8 (Ar*Ar-C™), 137.1
(Dip—Ar-C'V'™), 143.1 (Dip—Ar—C™?), 144.3 (Ar*Ar—C"), 144.4 (Ar*Ar—C"), 145.8 (Ar*Ar—C),
155.6 (NCN).

M.p. 268-270 °C.

Anal. cale. for Cs¢HgoN2: C 88.37, H 7.95, N 3.68; found: C 88.32, H 7.91, N 3.63.

HRMS (ESI") m/z: calc. 760.48, found: 761.48 (1+H").

IR (solid, v/em '): 3448 (w, v(N-H)), 3058 (w), 3023 (w), 2957 (w), 2906 (w), 2880 (w), 1613 (m),
1600 (m), 1583 (m), 1492 (m), 1475 (m), 1448 (m), 1430 (m), 1380 (w), 1359 (w), 1323 (w), 1292
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(w), 1258 (w), 1227 (w), 1181 (w), 1157 (w), 1104 (w), 1076 (w), 1063 (w), 1043 (w), 1031 (w),
982 (), 944 (w), 931 (w), 920 (), 879 (W), 806 (W), 762 (m), 747 (m), 700 (s), 646 (w), 634 (m),
622 (W), 605 (W), 556 (W), 546 (W), 524 (), 482 (w), 470 (w), 457 (w), 420 (W).
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Figure S1: 'H NMR spectrum of intermediate B (400 MHz, 298 K, C¢Dg).
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Figure S3: 'H NMR spectrum of ligand 1 (400 MHz, 298 K, CDCI;).
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Figure S4: 3C {'"H} NMR spectrum of ligand 1 (101 MHz, 298 K, CDCIl;).
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Figure S5: 'H-'*C HSQC NMR spectra of 1 (400 MHz, 298 K, CDCl;).
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Figure S6: 'H-'3C HMBC NMR spectra of 1 (400 MHz, 298 K, CDCl;).
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2. Synthesis of amidinato Mg hydride (3)

Ad Dipp Dipp *ArN
_ i) Toluene, -70 °C PhSiH; N H
o /N)\Nlj ) Ad—ﬁ/\l\Mg-nBu ————— A Mg_ Mg yAd
L rresane TN
)A\r* 60 oC, 5h \Ar* D|pd
60 °C, 2 days 2: Isolated yield (92%) 3: Isolated yield (80%)
Numbering scheme for assignment of NMR signals:
I I
CH
HC | >
CHs3
P K C||‘|3
g /\Mg’
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Figure S7: 'H NMR spectrum of intermediate 2 [LMg("Bu)] (400 MHz, 298 K, C¢Ds).
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Figure S8: 1*C {'H} NMR spectrum of intermediate 2 [LMg("Bu)] (101 MHz, 298 K, CsDg).
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Figure S10: *C {'H} NMR spectrum of Mg compound 3 (101 MHz, 298 K, CsDs).




L

whuK0118.3.ser
AmArDIpp Mg-H check
2D_C13_HSQC_new Tol /x/av400hd/data/eq_n/nmr w.huadsai 1

{6.21,52. 84\“'
'

M“‘ﬁit G

{1.29,21.54 1

@ 8 M
" )}(0.97,25 65}

w

w0

{3.45,28. 971\(.

L3

40

60

70

80

90

7100

110

120

130

7140

T T T T T T T T
6.5 6.0 5.5 4.5

T
4.0 3.0 25 2.0

2 (opm)

Figure S11: 'H-'3C HSQC NMR spectra of [LAMg(u-H)]2 (3) (400 MHz, 298 K, toluene-ds).
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Figure S13: 'H NMR stacked spectra of complex 3 at different temperatures (from top to bottom: 353 K to 233 K)
(400 MHz, 298 K, toluene-ds). The stacked spectra do not show any appreciable temperature dependency of the
hydride chemical shift.
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3. Reaction of amidinato Mg hydride 3 with CO;

. H
Dipp "Ar 1360, 1 3 Dipp o “Ar
N H or12CO N\ O/ \\O\ thf N
72 VI N ? Ad— Mg~ Mg~ M—Ad
Ad Mg Mg Ad > AN , /4
ST R thf 050
H THF-dg, r.t.,16 h \ sc-~
\A\r* Dlpd Ar |l| Dlpp/
3 4-2thf

Isolated yield (78%)

Numbering scheme for the assignment of the NMR signals:

|
H;C

4-2thf
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Figure S19: Stacked '"H NMR spectra, exhibiting the decomposition of compound 4-2thf under vacuum (400 MHz,
298 K, THF-ds). From bottom to top: i) characteristic signals corresponding to amidinate ligand; ii) the generation of
compound 4-2thf after 10 min at r.t., showing the resonances of formate moiety; iii) compound 4-2thf after applying
high vacuum for 1 h at room temperature, leading to the decomposition and formation of free ligand 1. The signals
corresponding to free ligand are marked with asterisks (*) and complex 4-2thf with #, respectively.
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Table S1: Measured diffusion constants, calculated hydrodynamic radii in solution and solid state, and
average molecular sizes in the solution for complexes.

Complex Experimental Calculated Estimated
structure in
Diffusion Hydrodynamic Hydrodynamic
solution
Coefficient radius (ru) A radius (ry) A in
(x 101" m2sh)lal in solution™ solid statel®
3 3.8 9.7 g.2M1 dimer
3l 5.8 7.5 - monomer-dimer?
4-thf 4.4 9.9 9.3 dimer

[l The diffusion coefficients were determined by regression analysis by fitting the peak areas to the Stejskal-Tanner
equation from T1/T2 analysis module in Topspin 4.1.4 software. ®! ry = hydrodynamic radius. The Diffusion
coefficient and hydrodynamic radii are correlated theoretically by the Stokes-Einstein relation (D= (AT)/(6mnrH)) ]
Calculated from X-ray structure data under the assumption of spherical shape. [4 The D values were obtained from 3
measured in toluene-ds. [! The D values were obtained from 3 measured in THF-ds. [ The data was extrapolated from
X-ray diffraction data of crystal 3-thf. The rox.ay) of ligand LAYH were calculated at 6.4 A as monomer in solid-state.
The calculations of hydrodynamic radii in THF-ds and toluene-ds were done by using the viscosity values of 7 = 5.01
x 10 and 6.04 x 10 kg m™'s! at 293 K, respectively.
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4. Crystallographic data

Table S2: Crystal data and refinement details for the X-ray structure determinations.

Compound 1 3-thf 4-2thf
formula CseHeoN2 CieH124MgN4O Ci22H134MgaN4Og| *]
fw (g'mol™) 761.06 1638.80 1800.95[*]
T/°C -140(2) -173(2) -173(2)
crystal system monoclinic triclinic triclinic
space group P2i/c P1 P1

al A 17.5669(5) 12.1321(3) 13.953(6)
bl A 11.3120(3) 12.9892(2) 15.403(6)
o A 22.0746(5) 30.5910(5) 17.391(7)
al® 90 95.1640(10) 83.436(14)
pI° 92.767(2) 92.478(2) 67.097(13)
/° 90 102.621(2) 75.517(15)
VIA3 4381.5(2) 4675.32(16) 3333(2)

Z 4 2 1

p (g-em™) 1.154 1.164 0.897[*]

u (cm™) 0.66 6.3 0.63[*]
measured data 21779 58517 72840
data with I > 25(]) 6000 11601 8845
unique data (Rix) 8294/0.0645 15815/0.0520 12923/0.0726
wR> (all data, on F?)? 0.1881 0.1757 0.1685

Ry (I>20(1)) @ 0.0842 0.0593 0.0585
s 1.111 1.040 0.991
Res. dens./e-A3 1.259/-0.276 0.897/-0.574 0.706/-0.241
absorpt method multi-scan multi-scan multi-scan
absorpt cort Tmin/max 0.6721/0.7456 0.76684/1.00000 0.6950/0.7457
CCDC No. 2334211 2334212 2334213

[*] derived parameters do not contain the contribution of the disordered solvent.

9 Definition of the R indices: Ry = (X | | Fd - F.| | )/E| Fol:
WR = {S[W(Fo2-F2)2/S[W(F2]} 2 with w = 62(Fo2) + (aP)*+bP; P = [2F + Max(F,2)/3;

D5 = {ZwFo-F Y (No-Np)} 2.
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Figure S21: ORTEP representation of the molecular structure of pro-ligand amidine 1 with selective atom labeling.
Displacement ellipsoids are set at 50% probability; hydrogen atoms are omitted for clarity. Selected bond lengths (A):
NI1-C(1), 1.291(4); N2—C(1), 1.364(4); N1-H(1)—N2, 0.84(3). Selected bond angles (°): N—C(1)—N2, 117.4(3).
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Figure S22: ORTEP representation of the molecular structure of 3-thf with selected atom labeling. Displacement
ellipsoids are set at 50% probability; hydrogen atoms except for the hydride protons H(1) and H(2) are omitted for
clarity. The 2,6-iProC¢Hs and 2,6-bis(diphenylmethyl)-4-methylphenyl moieties, adamantly and THF coordinated
parts, have been set as wireframes for clarity reasons. Selected bond lengths (A): Mgl—Mg2, 2.8533(12); Mgl —-N(1),
2.046(2); Mgl1—N(2), 2.087(2); Mgl—H(1), 1.8454(9); Mgl—H(2), 1.8842(8); Mg2—N(3), 2.049(2); Mg2—N(4),
2.142(2); Mg2-0(1), 2.0801(19); Mg2—H(1), 2.1816(8); Mg2—H(2), 1.9119(9). Selected bond angles (°):
H(1)-Mgl—-H(2), 91.38(4); H(1)-Mg2—H(2), 81.09(3); N(1)-Mg1—N(2), 64.55(8); N(3)—Mg2—N(4), 63.34(8).
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Figure S23: ORTEP representation of the molecular structure of 4-2thf with selected atom labeling. Displacement
ellipsoids are set at 50% probability; hydrogen atoms except for the formate protons are omitted for clarity. The 2,6-
iProCsH3 and 2,6-bis(diphenylmethyl)-4-methylphenyl moieties, adamantyl and THF-coordinated parts, have been set
as wireframes for clarity. Selected bond lengths (A): Mgl1—N(1), 2.096(2); Mg1—-N(2), 2.162(2); Mg1—0(1), 1.961(2);
Mgl—0(2), 1.9404(19); Mgl1—0(3), 2.1349(18); O1—C(8), 1.245(3); 02—C(8), 1.242(3). Selected bond angles (°):
N(1)-Mg—N(2), 61.88(7); O(1)-Mg—0(2), 112.44(8); O(2)-Mg—N(2), 101.59(8); O(1)-Mg—N(2), 103.79(8);
N(1)-Mg—0(3), 95.27(8); O(1)-Mg—0(3), 88.59(8); O(1)-Mg—N(1), 113.24(8). Symmetry operations: (i) —x+2,
—y+1, —z+1.
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5. Catalysis

5.1. Catalytic hydroboration of CO:

In a glove box, Mg hydride complex 3 (1 mol%, 0.013 mmol), 9-BBN (0.13 mmol), and
hexamethylbenzene as internal standard were dissolved in THF-ds (0.65 ml) in a vial. The solution
was transferred to a pressurized NMR tube, which was sealed and removed from the glovebox.
The NMR tube was first degassed and placed under 1 atm of CO; for 3 min. 'H and *C{'H} NMR
analysis was performed every 10 minutes at 298 K. Product yields and the consumption of
hydroborane were calculated by '"H NMR integral against the internal standard.

Dipp
Mg] 'll H
g] cat. H [ N
co, T2 9BBN (1 mol%) NBB\O/CiO/BBN © NBB__CH; | Ad{/N,MQJ
r.t., THF-dg | 2
Ar*
3
Table S3: Hydroboration of CO2 to BBAEBN are catalyzed by amidine Mg 1.
Catalyst Time Yield of TON Yield of Yield of Conversion of
(1)
BBA  1opyy1  RBOCHO  R:BOCH;  HBR: (%)
(%) (%) (%)
1 16 h 76 76 (8) - 22 97

[l Reaction conditions: 1 atm CO,, 0.13 mmol HBR,, 1 mol% catalyst, 650 ul THF-ds, 25 °C. ! Yields
were calculated in situ using hexamethylbenzene as an internal standard. [) The TON numbers were
calculated from the BBA yields.
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Figure S24: Plot of the evolution of reactant and products versus time in the hydroboration of CO, with 9-BBN with
1 mol-% of amidinato Mg hydride 3 (blue: bis(boryl)acetal, green methoxyborane, red: 9-BBN)
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5.2. Hydrosilylation of CO: by hydrosilane catalyzed by Mg and Ca-based
hydride complexes.

General procedure for NMR tube scale

In a glovebox, hydrosilane (HSiR3) (0.13 mmol) and mesitylene (10 mol%, 0.013 mmol) as
internal standard were added to a mixture of complex 3 (2 mol-%, 0.0028 mmol) and B(CsFs)3
(0.013 mmol) in toluene-ds (0.55 ml) in a vial. The mixture was transferred to a pressurized NMR
tube, which was sealed and removed from the glovebox. The sample was first degassed by freeze-
pump-thaw and was then treated with CO, (1 atm). The conversion was monitored by 'H and
BC{'H} NMR analyses at different time intervals. Products were identified by comparison with
literature values. Yields of products and TON were determined by integration with respect to the
mesitylene internal standard (Table S3).

Characteristic signals of products
Methane. "H/"*C NMR (300/100 MHz, 298 K, Toluene-ds): 6 0.21 and -4.8 ppm.

Bis(silyl)acetal, (Ph3SiO)2CH:. '"H NMR (300 MHz, 298 K, Toluene-ds): 8 7.67—7.64 (m, 12H,
Ar—H), 7.24-7.12 (m, 18H, Ar—H), 5.46 (d, 'Jcu = 164.39 Hz, 2H, CH,). 3C{'H} NMR (101 MHz,
298 K, Toluene-ds): 6 85.37 (s, CH>).

Spectral data for (HPh2Si)20. '"H NMR (300 MHz, 298 K, Toluene-ds): & 5.90 (s, 2H, Si—H),
7.05~7.14 (m, 12H, Ar—H), 7.57~7.60 (m, 8H, Ar—H).

Table S4: CO; hydrosilylation by [Mg]-based catalyst 3 with different hydrosilanes.

Si products TON¢
Hydrosilanes time (h) ) 1
(NMR% yield)* (TOF)/h)
PhSiH; 2 h 40 min CH, (26) (PhSiO15)  (25%) 144(53.9)
Ph,SiH, 5 h 40 min CH, (12) (HPh,S1),0 (44%) 105(18.6)
Ph,SiH 220 h H,C(OSiR,), (97%) 50(0.3)

“Reaction condition: toluene-ds (0.1 ml, 298 K), [Si—H]o = 0.14 mmol, [cat]o= 0.0028 mmol (2 mol% per Si—H bond),
[B(C6Fs)3] = 0.014 mmol (10 mol% per Si—H), [M]/[B] = 1/5 ratio, n(CO2)o = 1.3 x 10 mol (1 atm, 298 K), internal
standard (mesitylene): 0.14 mmol. “The conversion of hydrosilane is determined by the integration of the '"H NMR
resonances vs. those of the standard, mesitylene. “Yield of the Si product is determined by the integration of the
corresponding 'H NMR peak vs. those of the standard, mesitylene. “TON number is calculated on the basis of Si—H
bonds consumed per mmol of catalyst. TOF is calculated as TON h'!. CH, yield is calculated as [mmol of reacted
silane/4/(mmol of silane)] x 100. Si by product calculated in relation to the CHa.
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Figure S25: Plot of normalized reactant and product concentrations, [Y]/[PhSiH3]=o vs time [min] for reduction of
CO; with PhSiH; under the following conditions: toluene-ds (0.1 mL), [PhSiH3]o = 0.14 mmol, 2 mol% (0.0028 mmol)
[Mg (3)]0, 10 mol% (0.0035 mmol) [B(CsFs)3]0, n(CO2) = 1.3 x 10~* mol, internal standard (mesitylene) = 0.14 mmol;
25 °C.
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Figure S26: Plot of normalized reactant and product concentrations, [Y]¢/[ Ph,SiH:]=o vs time [min] for reduction of
CO; with Ph,SiH, under the following conditions: toluene-ds (0.1 mL), [PhoSiH2]o = 0.14 mmol, 2 mol% (0.0028
mmol) [Mg (3)]o, 10 mol% (0.0035 mmol) [B(CsFs)3]o, n(CO,) = 1.3 x 10~ mol, internal standard (mesitylene) = 0.14
mmol; 25 °C.
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