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Abstract

A detailed analysis of joint-contribution of elements in classically
valid sequents is presented in terms of hypergraphs. In (Saint-Germier
et al., 2024), this idea of joint-contribution is introduced and moti-
vated as a method for characterizing four kinds of relevant validity,
in the sense of selecting the relevantly valid sequents among the clas-
sically valid sequents. The account in (Saint-Germier et al., 2024) is
built on a calculus, called GLK, which proves grounding claims for
(enthymematically) valid sequents. In the present paper an adequate
representation of GLK is given in terms of hypergraphs. The hyper-
graphs are a kind of diagrammatic proofs for Classical Propositional
Logic, entirely based on the grounds of premises and conclusions.
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2 Connecting the sequent dots

The hypergraphs and their visualization provide insights into the rela-
tions between premises and conclusions and into the way validity is
produced by the binding of premises and conclusions via their par-
tial grounds. They visualize the network of elements of the sequent
that contribute to its logical validity. Non-contributing (i.e. irrele-
vant) premises and conclusions are then specified to be those that are
disconnected from the network, however one constructs the graphs.

Keywords: contribution, relevance, grounding, hypergraphs

1 Introduction

In this paper we deal with formally representing how exactly certain elements

of classically valid arguments contribute to the validity of the sequent and

others do not. We will conceive of arguments as multiple-conclusion sequents.

As is fairly common, let SET-SET sequents be pairs of sets of formulas sepa-

rated by the �-symbol. In the sequent Γ � ∆, the members of Γ represent the

premises of the argument and the members of ∆ its conclusions. A multiple-

conclusion argument is valid if, whenever all the premises hold, some of the

conclusions hold, whence Γ �∆ is defined to be valid if, in all interpretations,

either at least one member of Γ is false or at least one member of ∆ is true1.

Validity in this sense by definition admits Weakening for premises and

conclusions, i.e. if Γ�∆ is valid then so is Γ′�∆′, whenever Γ ⊆ Γ′ and ∆ ⊆ ∆′.

This means that, when one already has a valid sequent, one can arbitrarily

add random formulas as premises or as conclusions. Those formulas obviously

do no work for establishing the validity of the sequent; they are so to say mere

harmless bystanders.

Consider for example the valid sequents {p,¬p} � {q} and {p, q} � {p ∨ r}.

In both cases q is present in a non-contributing way; the other premises and

1The terms interpretation, false, and true can be formalized as in one’s preferred formulation
of standard classical logic model-theory.
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conclusions are intuitively doing all the work for the validity and q could

have been any other formula. We assume these to be non-controversial and

straightforward cases of non-contributing premises or conclusions. But other

cases are more interesting. In the equally valid {p∧r, r∧p}�{p, q}, conclusion

q is non-contributing in exactly the same sense as before, but it seems that

also one of the premises p ∧ r and r ∧ p plays no role at all. We only need one

of the two for the validity, the other could again have been any other formula.

However, there is no good reason to mark one of them as non-contributing and

not the other. In this case we need the notion of ‘joint contribution’. While all

of the premises and the first conclusion contribute, p ∧ r and p form a jointly

contributing set of premises and conclusions, and so do r ∧ p and p. The set

containing all three of them does not form a jointly contributing set. A similar

phenomenon occurs in {p, q}�{p, q} and in {p∧¬p}�{q∨¬q}: merely a subset

of the premises and conclusions are jointly contributing (in the first case either

the two p-formulas or the two q formulas and in the second case either the

premise on its own or the conclusion on its own), but there is no good reason

to choose one of them. As a last example, consider {p ∧ ¬p} � {p}: while the

conclusion p could have been any other formula without affecting the validity,

one can nevertheless consider both the premise and the conclusion as jointly

contributing to the validity, in the sense that the sequent is an instance of the

valid schema {A ∧ B} � {A}, in which all elements jointly contribute to the

validity. One of the reasons why the sequent is valid, i.e. that it is an instance

of that valid schema, involves this specific conclusion p.

So there is an intuitive sense in which some subsets of premises and con-

clusions of a valid sequent jointly contribute to the validity and others may

not. But the natural question to ask is: how exactly do they contribute and

what is it that they contribute? A partial possible answer to this question is
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proposed and defended in (Saint-Germier et al., 2024). The basic idea there is

that premises and conclusions contribute part of their meaning to the validity.

In {p, q}� {p∨ r} the first premise contributes by offering itself entirely to the

conclusion and the conclusion contributes by receiving the p-part of its mean-

ing. The second premise does not contribute anything. One could say that the

two contributing elements of the sequent are bound by a part of their meaning,

namely p, and that this binding makes the sequent valid.

(Saint-Germier et al., 2024) uses the notion of grounding (in the spirit of

Correia (2013) and Fine (2012), but then conceived in a bilateral fashion) as

the more precise way to capture what we here intuitively introduce as parthood

of meaning of a premise or a conclusion. More specifically, it introduces a

notion of bilateral logical grounding, i.e. the idea that the truth or falsity

of complex sentences can be explained by the truth or falsity of other, less

complex sentences. This way of explaining is found in the common practice of

giving recursive clauses when defining truth and falsity of formulas in a model.

We say that the truth or falsity of a complex sentence is grounded in the truth

or falsity of simpler sentences if, whenever the simpler sentences have those

truth values, the truth value of the complex formula can be explained by those

truth values (in virtue of the usual semantic clauses). For example, we say

that the truth of p grounds the truth of p ∨ q, the falsity of ¬p and, together

with the falsity of q, it also grounds the falsity of ¬p ∨ q. Reading this species

of grounding as articulating one aspect of parthood of meaning, one could say

that p is a positive part of the positive meaning of p∧q, of the negative meaning

of ¬p, and of the negative meaning of ¬p∨ q. q is a negative part of the latter.

Jointly-contributing sets of premises and conclusions contribute to the validity

of sequents by those premises and conclusions being bound together by these

kinds of grounds.
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Remember that we defined validity of sequents as a property involving the

falsity of some premises or the truth of some conclusions. It is then natural to

expect that premises contribute partial grounds for their falsity to the validity

of the sequent, while conclusions contribute partial grounds for their truth. In

{p, q}�{p∨r}, the first premise contributes the falsity of p and the conclusion

contributes the truth of p. Because p is always either true or false, because the

falsity of p trivially grounds the falsity of the first premise, and because the

truth of p grounds the truth of the conclusion, in all possible interpretations at

least the falsity of premise p or the truth of conclusion p∨r is grounded, which

is enough to establish validity. In the sequent {p, q} � {p ∧ q}, the falsity of p

grounds the first premise, that of q the second and the truth of p, together with

the truth of q, ground the conclusion. Because every interpretation supports

either the truth or falsity of p and either the truth or falsity of q, at least one

of the premises is grounded in those models in which either p or q are false,

while in the models where they are both true, the conclusion is grounded.

Consequently, the validity is established by binding the first premise via its

only partial ground to the conclusion accounting for one of its two partial

grounds in combination with binding the second premise via its only partial

ground to the conclusion, accounting for its other partial ground. In general,

this process shows that validity can be obtained by premises and conclusions

being bound by their opposite partial grounds.

In (Saint-Germier et al., 2024) a sequent calculus called GLK is given

that specifies how one can derive the validity of sequents from mere claims

about grounding of the falsity of premises and the truth of conclusions,

by repeatedly binding jointly contributing elements of a sequent via their

opposite partial grounds. The binding metaphor is intuitively clear and sim-

ple for basic cases like the aforementioned sequents: anybody who knows
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basic propositional logic, sees which premises and conclusion can be bound

in this way. However, establishing this for more complex sequents, like e.g.

{p∨q, r∨s}�{p∧r, p∧s, q∧r, q∧s}, turns out to be much more complicated and

structurally more interesting (the first premise is bound to the first and third

conclusion by p, these conclusions are both bound to the second premise by r,

which is bound to another copy of the second conclusion and to the fourth con-

clusion by s, which are themselves bound to another copy of the first premise

by p and q respectively... we seem to be turning in circles, never really being

able to eliminate unmatched grounds). Understanding how the (joint) contri-

bution really works through ground-binding requires a much more profound

and mathematically interesting analysis than a mere one-to-one matching of

individual premises and conclusions via their opposite partial grounds.

In the present paper we provide a solution for this challenge by mapping

and visualizing this complicated relation of establishing sequent validity by

binding premises and conclusions via their grounds. We completely stick to

the formalism presented in (Saint-Germier et al., 2024) for the basic notion of

joint-contribution and grounding, but, by means of hypergraphs consisting of

vertices labeled by formulas–premises, conclusions and their partial grounds–

and their sign (positive/true or negative/false), we are able to represent the

detailed network of binding interactions between all the different premises and

conclusions of sequents. The crucial factor for joint-contribution will be the

connectedness of parts of the networks. Only if there is some connected sub-

network (i.e. one in which all elements are indirectly connected to each other)

involving a set of premises and conclusions in some correct network represen-

tation of the sequent, the network will prove validity, and only the premises

and conclusions in such a subnetwork will be seen as jointly contributing to the

validity. In this way one obtains clear and visual insight into the precise way



Springer Nature 2021 LATEX template

Connecting the sequent dots 7

in which several elements of sequents interact by matching opposite partial

grounds.

Like in (Saint-Germier et al., 2024), the aim behind all of this is to explicate

relevance intuitions in a natural and insightful way, without going beyond or

against classical logic. In (Saint-Germier et al., 2024), the ground-theoretical

joint-contribution idea is used for the definition of four types of relevant valid-

ity, three of which have before been discussed in the literature (cf. Brauer

(2020); Smiley (1996); Tennant (2017); Verdée et al. (2019)), ultimately based

on a negative account of contribution as a form of indispensability. The main

contribution of (Saint-Germier et al., 2024) is to provide a positive account of

the four kinds of relevance by means of joint-contribution cashed out in terms

of grounding. It is that account that is further analysed here. Unlike in (Saint-

Germier et al., 2024), the current paper will not discuss relevant validity or

relevant entailment at all. It is straightforward for the reader of both papers

to see how the hypergraphs can also be seen as providing a proof theory and

visualization for each of the four kinds of relevant validity.

This paper does not aim or claim to offer deep mathematical results about

the concepts that are introduced or used. The whole text is written in such a

way that the metatheoratical propositions we formulate are easily seen to hold,

once the definitions are well understood. The definition of the hypergraphs and

the associated joint-contribution idea is supposed to be a new way of thinking

visually and structurally about relevant and irrelevant arguments. It is an

invitation to use this new language for pedagogical purposes and for proving

substantial mathematical results about proofs conceptualized as networks or

hypergraphs.
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2 The calculus GLK for bilateral grounding

We start by rehearsing the GLK-calculus from (Saint-Germier et al., 2024).

Fix the language of propositional logic with connectives2 ¬, ∨, ∧, and

sentential letters p, q, r, . . ., possibly with superscripts and/or subscripts.

A,B,A1, . . . will be used as metavariables for formulas. A signed formula A+

or A− is a formula A with a sign ‘+’ or ‘−’ added to it. They represent formulas

with their truth value (A+ means ‘A is true’, while A− means ‘A is false’).

We will represent sequents by means of multisets of signed formulas

with their truth value, namely the falsity of the premises together with the

truth of the conclusions. A multiset is a set, combined with the informa-

tion how often each member occurs in the multiset. We represent them by

enumerating each copy of each member between double braces {{ and }}

(we omit the braces if there is no confusion). Sequents will be represented

as expressions of the form [[Φ]], where Φ is a multiset of signed formulas,

such that [[{{A+
1 , . . . , A

+
n , B

−
1 , . . . B−

m}}]] denotes the sequent {B−
1 , . . . B−

m} �

{A1, . . . , An}. We use multisets instead of sets because premises and conclu-

sions can play multiple different roles for establishing validity. Take for example

{p,¬p ∨ q,¬p ∨ r} � {q ∧ r}, in which the first premise is used once together

with the second premise to give q and once with the third premise to give r.

We need both the truth of q and that of r to ground the conclusion, so one

could say that, in the multiset {{p−, p−,¬p ∨ q−,¬p ∨ r−, q ∧ r+}} used for

representing the sequent, all elements jointly contribute to the validity. This

would not hold if we had added a (useless) third copy of p− to the multiset.

We call the members of Φ the s-elements (abbreviation of ‘sequent elements’)

of the sequent [[Φ]].

2In (Saint-Germier et al., 2024) also the material conditional ⊃ is in the language. It can safely
be added here too, either as a defined connective or based on the grounding rules formulated in
(Saint-Germier et al., 2024), but it does not play an interesting role here.
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Sequents can be valid absolutely/simpliciter as stipulated before, but they

can also be enthymematically valid given a set of fixed truths and falsities

(certain formulas with determined truth values) if either the premises are false

or the conclusions are true in all interpretations respecting the given set of

fixed truths and falsities. For example: [[¬p ∨ q−, q+]] is valid given the truth

of p, because either ¬p∨ q is false or q is true in all interpretations in which p

is true.

Capital letters X,Y, Z,X1, . . . are used as metavariables for signed formu-

las, and greek capital letters Φ,Φ,Σ,Σ1, . . . as metavariables for multisets of

signed formulas. [[Φ]], [[Φ1]], [[Σ]], [[Σ1]], . . . are then metavariables for sequents.

We use X,Y,Z,X1, . . . as metavariables for signed formulas or sequents3.

In the grounding calculus, grounding statements are constructs of the form

Φ < X, i.e. of the form Φ < X or Φ < [[Ψ]].

Let us discuss one of the ways to read and understand such claims.

A+
1 , . . . , A

+
n , B

−
1 , . . . B−

m < C−

and

A+
1 , . . . , A

+
n , B

−
1 , . . . B−

m < D+

mean that, if all Ai were true and all Bi were false, the falsity of C, resp. the

truth of D, would be grounded in the the truth of the Ai and the falsity of the

Bi.

A+
1 , . . . , A

+
n , B

−
1 , . . . B−

m < [[C+
1 , . . . , C+

o , D−
1 , . . . D

−
p ]]

means that, assuming that we fix all Ai as true and all the Bi as false, the fact

that either one of the Ci is true or one of the Di is false in all thus selected

interpretations can be grounded by the truth of the Ai in combination with the

3In (Saint-Germier et al., 2024), the term enthymeme-term is used for constructs of the form
[[Σ]]. Here we conflate sequents and their formulation as enthymeme-terms.
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falsity of the Bi. The sequents that can be GLK-derived with an empty ground

slot to the left of < (we say that they are zero-grounded) are all and only the

ones that are classically valid. For philosophical interpretation and justification

of this grounding relation and its calculus, we refer to (Saint-Germier et al.,

2024).

Definition 1 Ψ < X holds if it can be derived from the rules in Table 1.

(¬−)
A+ < ¬A− (¬+)

A− < ¬A+

(∨−)
A−, B− < A ∨B− (∨+)

A+
i < A1 ∨A+

2

(∧−)
A−

i < A1 ∧A−
2

(∧+)
A+, B+ < A ∧B+

(Ent)
X < [[X]]

Φ1 < X Φ2, X < Y
(Trans<)

Φ1,Φ2 < Y

Φ1, A
− < [[Ψ1]] Φ2, A

+ < [[Ψ2]]
(Bind)

Φ1,Φ2 < [[Ψ1,Ψ2]]

X,X,Φ < Y
(GCon)

X,Φ < Y

Φ < [[Ψ, X,X]]
(SCon)

Φ < [[Ψ, X]]

Φ1 < [[Ψ1]] Φ2 < [[Ψ2]]
(Amalg)

Φ1,Φ2 < [[Ψ1,Ψ2]]

Φ < [[Ψ]]
(<W)

Φ < [[Ψ, X]]

Table 1: The grounding calculus GLK

For this paper it will suffice to restrict ourselves to, so called, analytic

derivations. They are, informally put, the ones in which the structural rules

are applied separately by type, not intermingled, and in a specific order; in

a first phase axioms, then only (Trans<), in the third phase only (Bind), in

the fourth only (Amalg), and in the final phase only (<W), with the nuance
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that (SCon) and (GCon) are possible everywhere4. Formally we can represent

this with the rules in Table 2, in which a grounding claim of the form Φ <i X

means that Φ < X can be derived in phase i of a derivation.

Operational rules:

(¬−)
A+ <1 ¬A− (¬+)

A− <1 ¬A+

(∨−)
A−, B− <1 A ∨B− (∨+)

A+
i <1 A1 ∨A+

2

(∧−)
A−

i <1 A1 ∧A−
2

(∧+)
A+, B+ <1 A ∧B+

Structural rules:

if i < j
Φ <i X (Ph)
Φ <j X

(Ent)
X <1 [[X]]

Φ1 <2 X X,Φ2 <2 Y
(Trans<)

Φ1,Φ2 <2 Y

Φ1, A
− <3 [[Ψ1]] Φ2, A

+ <3 [[Ψ2]]
(Bind)

Φ1,Φ2 <3 [[Ψ1,Ψ2]]

X,X,Φ <i Y
(GCon)

X,Φ <i Y

Φ <i [[Ψ, X,X]]
(SCon)

Φ <i [[Ψ, X]]

Φ1 <4 [[Ψ1]] Φ2 <4 [[Ψ2]]
(Amalg)

Φ1,Φ2 <4 [[Ψ1,Ψ2]]

Φ <5 [[Ψ]]
(<W)

Φ <5 [[Ψ, X]]

Table 2: Canonical GLK-derivations in 5 phases

Here is an example of an analytic derivation in the grounding calculus GLK

divided into the aforementioned phases. We omit applications of the (Ph)-rule.

We start with derivations D1 for p+, q− <2 [[¬p ∨ q−]] , D2 for r− <2 [[¬r+]],

and D3 for q+, r+ <1 [[q ∧ r+]].

4In (Saint-Germier et al., 2024) there are only four phases, because the first phase is not dis-
tinguished from the second. This slight modification is useful for explanatory purposes and has
no impact on any of the formal definitions or results.
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(¬−)
p+ <1 ¬p− (∨−)

¬p−, q− <1 ¬p ∨ q−
(Trans<)

p+, q− <2 ¬p ∨ q−
(Ent)

¬p ∨ q− <1 [[¬p ∨ q−]]
(Trans<)

p+, q− <2 [[¬p ∨ q−]]

(¬+)
r− <1 ¬r+

(Ent)
¬r+ <1 [[¬r+]]

(Trans<)
r− <2 [[¬r+]]

(∧+)
q+, r+ <1 q ∧ r+

(Ent)
q ∧ r+ <1 [[q ∧ r+]]

(Trans<)
q+, r+ <2 [[q ∧ r+]]

In derivation D4 and D5 we resp. show that p+ <3 [[¬p ∨ q−,¬r+, q ∧ r+]]

and that <3 [[p−,¬p ∨ q−,¬r+, q ∧ r+]], now also utilizing the (Bind)-rule:

D2
r− <2 [[¬r+]]

D3
q+, r+ <1 [[q ∧ r+]]

(Bind)
q+ <3 [[¬r+, q ∧ r+]]

D1
p+, q− <2 [[¬p ∨ q−]]

(Bind)
p+ <3 [[¬p ∨ q−,¬r+, q ∧ r+]]

D4
p+ <3 [[¬p ∨ q−,¬r+, q ∧ r+]]

(Ent)
p− <1 [[p−]]

(Bind)
<3 [[p−,¬p ∨ q−,¬r+, q ∧ r+]]

In the last derivation we finally add the missing premise by means of (<W):

D5
<3 [[p−,¬p ∨ q−,¬r+, q ∧ r+]]

(<W)
<5 [[p ∨ s−, p−,¬p ∨ q−,¬r+, q ∧ r+]]

3 From GLK-derivations to logical hypergraphs

In this section, we introduce a graph-theoretic representation of the grounding

calculus GLK by means of a special kind of graphs. The logical hypergraphs, as

we shall call them, will have exactly the same proving power as that calculus,

but by associating graphs to every sequent, we are able to show whether and

how the partial grounds of the contributing premises and conclusions relate

to each other. In this way, we obtain a clear and visual insight into and a

precise mathematical characterization of joint-contribution and the relevance

and irrelevance of parts of valid sequents.

Technically, the graph-theoretical objects we shall employ are hypergraphs,

a generalization of ordinary graphs allowing edges to connect multiple vertices
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(instead of just two in ordinary graphs). This is, admittedly, a rather unfamiliar

notion, but it can be seen as simply a totality of nodes that can be connected

by edges that can relate a multitude of nodes at once (instead of always two

in ordinary graph theory).

Definition 2 (Hypergraph) A hypergraph is a pair ⟨X,E⟩ such that X is some set

(called the vertices) and E is a set of non-empty subsets of X (called the edges).

Accordingly, several usual notions of graph theory (e.g., path, cycle, etc.)

need to be generalized to apply to hypergraphs. While, in the literature, these

notions are sometimes given alternative names (such as e.g. Berge path), we

use the ordinary graph-theoretical names. This is possible without causing

confusion because we do not need to and will not speak about ordinary graphs

at all in this paper. Even the word graph will always denote a hypergraph

in the remainder of the paper. The reader does not need to be acquainted

with hypergraphs to understand our very basic usage of them. The following

definitions suffice to comprehend what follows.

Definition 3 We use the following fairly standard notions from hypergraph theory:

• A vertex v and an edge e are adjacent iff v ∈ e.

• A path consists of a sequence of k distinct vertices v1, v2, . . . , vk and k − 1

distinct edges e1, e2, . . . , ek−1 such that vi, vi+1 ∈ ei for all i ∈ {1, 2, . . . , k−

1}.

• A cycle is formed if there is a path that includes both v1 and vk.

• A set V of vertices in a hypergraph are connected iff there is a path between

every two distinct vertices u, v ∈ V .

• A hypergraph G1 is a subgraph of another hypergraph G2 if the vertices of

G1 are vertices of G2 and the edges of G1 are edges of G2.
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• A connected set is moreover non-trivially connected iff it is has at least two

members.

• A hypergraph is connected if the totality of its vertices is.

• A component of a hypergraph G is a connected subgraph of G that is not

a proper subgraph of another connected subgraph of G. A component is

non-trivial if it contains at least two vertices.

• The disjoint union of two hypergraphs is the hypergraph created by tak-

ing the union of the vertices of the two hypergraphs as the set of vertices

and the union of the edges of two hypergraphs as the set of edges, under

the assumption that the two hypergraphs share no vertices (otherwise the

operation is undefined).

The kind of hypergraphs we are interested in have vertices that are labeled

by signed formulas X or by single element sequents, i.e. expressions of the

form [[X]]. There are two kinds of vertices: groundee vertices (denoted by an

arrowhead) and ground vertices (denoted by an arrowtail). The visualization

is specified in Table 3.

X

Ground vertex labeled X

X

Groundee vertex labeled X

Table 3: graph-theoretic calculus: notation for open vertices

There are three kinds of edges, closing edges, disjunctive grounding edges

and conjunctive grounding edges5 (if we speak of grounding edges simpliciter,

5To avoid confusion, it may be useful to clarify that the conjunctive/disjunctive grounding edges
have nothing to do with ways of grounding the conjunction/disjunction connective in the object
language. Conjunctive here refers to the fact that partial grounds form a full ground by conjoining
them, while disjunctive refers to the fact that, in cases where such edges are applied, we ground
an open ground vertex by means of multiple open groundee vertices of a same connected graph.
We will see that multiple groundee vertices in one connected graph will together represent (parts
of) sequents, which are understood here in a disjunctive way. So the kind of grounding involved in
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we just mean either kind of grounding edge). Closing edges contain exactly two

vertices, a ground vertex and a groundee vertex with the same signed formulas

as their labels. We represent them by drawing the groundee vertex’s arrowhead

inside the ground vertex’s Y-shape, and by mentioning the common label only

once (see Table 4). Vertices adjacent to a closing edge are called closed and

the others open.

X

A groundee vertex and a ground vertex both
labeled X and adjacent to the same closing
edge

Table 4: graph-theoretic calculus: notation for closed vertices

Grounding edges will be represented by stars of straight lines, as illustrated

in Table 5, the lines are dashed in the case of disjunctive grounding edges and

full in the conjunctive case. A star is a bold point from which a line leaves to

each member of the edge; if the edge has just two vertices as members, the star

will look like an ordinary straight line between the two vertices, often utilized

to visualize an edge in ordinary (non-hyper) graph theory. Singleton edges

will not occur in our graphs. Grounding edges express a grounding relation

between the labels of the ground vertices adjacent to them on the one hand

and the labels of the adjacent groundee vertices on the other. In case there are

multiple groundee vertices with a label of the form [X], it is the sequent made

up out of the combination of all those labels which is the groundee.

Definition 4 (S-element, justified vertex, justified hypergraph) An s-element vertex

is an open groundee vertex of the form [[X]]. An s-element is justified if it is adjacent

to a grounding edge and fully justified if there is moreover no path to an open ground

this special case is not conjunctive but disjunctive. If the disjunctive notion does not become more
transparent throughout the paper, this is not a problem, because this kind of edges will here only
be introduced by the contraction rules (GCon) and (SCon), in which case they are rather easily
understood. One might even plainly call them contraction edges for the purpose of this paper.
However, if one also wants to design graphs for non-classical logics with intensional connectives,
like intuitionistic or linear logic, a more operational notion of disjunctive grounding, represented
by disjunctive grounding edges, becomes very useful.
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YX

v1 v2
A binary conjunctive grounding edge adjacent
to vertices v1 and v2 labeled X and Y resp.

X2

...
...

...
...

X1

v1

v2

vn

vn+1

vn+2

vn+m

Xn

Xn+1

Xn+2

Xn+m

An n + m-ary conjunctive ground-
ing edge adjacent to vertices
v1, v2, . . . vn, vn+1, vn+2, . . . vn+m labeled
X1,X2, . . .Xn,Xn+1,Xn+2, . . .Xn+m (with
n+m ≥ 2)

YX

v1 v2
A binary disjunctive grounding edge adjacent
to vertices v1 and v2 labeled X and Y resp.

X2

...
...

...
...

X1

v1

v2

vn

vn+1

vn+2

vn+m

Xn

Xn+1

Xn+2

Xn+m

An n + m-ary disjunctive ground-
ing edge adjacent to vertices
v1, v2, . . . vn, vn+1, vn+2, . . . vn+m labeled
X1,X2, . . .Xn,Xn+1,Xn+2, . . .Xn+m (with
n+m ≥ 2)

Table 5: graph-theoretic calculus: notation for grounding edges

vertex. A hypergraph is fully justified if all its s-element vertices are fully justified.

A hypergraph with at least one s-element vertex is called a sequent hypergraph and

one that has one open groundee vertex labeled by a signed formula is called flat.

Definition 5 (Flat and sequent hypergraphs) A hypergraph with at least one s-

element vertex is called a sequent hypergraph and one that has one open groundee

vertex labeled by a signed formula is called flat.
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Closed vertices can be seen as vertices that are no longer of interest when

one wants to extract the basic grounding and validity information from the

labeled hypergraph. They have fulfilled their duty as intermediates, and are

only represented in the graph to be able to trace back how we found the

connections. The open groundee vertices are grounded in all the other open

vertices that are (directly or indirectly) connected to them.

We introduce the notion of a logical hypergraph, a hypergraph that has the

right structure to represent grounding and entailment relations. This will give

us the means to define a graph-theoretic version of the (relevant) grounding

calculus. First consider some useful visualization machinery in Table 6.

G

X
A graph G with a grounding edge adjacent to
a ground vertex labeled X

G

X
A graph G with a grounding edge adjacent to
an open groundee vertex labeled X

G

Y

v2

X

v1 A graph G with a grounding edge adjacent to
an open vertex v1 labeled X and a grounding
edge adjacent to an open vertex v2 labeled Y

G2G1

X

The graph resulting from (1) merging two dis-
joint graphs G1, having a groundee vertex v1,
labeled X, adjacent to a grounding edge, and
G2, having a ground vertex v2, labeled X, also
adjacent to a grounding edge and (2) adding
a closing edge containing v1 and v2.

Table 6: graph-theoretic calculus: notation for graph abbreviation

Definition 6 (Logical hypergraph) A logical hypergraph is a hypergraph in the above

sense, constructed according to the operational axioms in Table 7 and the structural

rules in Table 8.
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Definition 7 (analytic logical hypergraph) A logical hypergraph is recursively

defined to be in stage 1 if its construction only involves (GCon) and axioms, in stage

2 if it is in stage 1 or it is the result of applying (Trans<) or (GCon) to stage 2-graphs,

in stage 3 if it is in stage 2 or the result of applying (Bind), (GCon), or (SCon) to

stage 2-graphs, in stage 4 if it is in stage 3 or the result of applying (Amalg) to stage

3-graphs and, finally in stage 5 if it is in stage 4 or the result of applying (<W) to

stage 4-graphs. An analytic logical hypergraph is a logical hypergraph which is in one

of the five stages mentioned above (or, equivalently, in stage five).

In what follows we will only consider analytic logical hypergraphs. When-

ever we speak of logical hypergraphs, we only refer to the ones that are analytic.

It is quite plausible that the specificity of the analytic kind only concerns

the construction process and that the two categories are therefore extension-

ally equivalent. We have not proven this conjecture. In any case, the analytic

graphs have the same proving power as the more general kind of graphs in

view of the parallels with the (analytic) GLK-derivations, so this restriction (if

it really is one at all) is logically innocent.

Proposition 1 Each logical hypergraph is either a sequent hypergraph or a flat

hypergraph, and never both.

Proof By induction. The base case. all hypergraphs introduced by the operational

axioms are flat and those introduced by (Ent) are always sequent hypergraphs.

Induction step. Assume that the premise graphs of each rule are flat or sequent

but not both. We prove that the same holds for the conclusion graphs of each rule.

(Trans<). by the induction hypothesis the second premise graph is flat and so it

has only one groundee vertex. In the conclusion graph this groundee vertex is closed,

so the groundee vertices of the conclusion graph are identical to those of the first

premise graph, which is flat or sequent but not both by the induction hypothesis.
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¬A−A+

(¬−)

¬A+A−

(¬+)

A ∨B−

A−

B−

(∨−)

A1 ∨A+
2A+

i

(∨+)

A1 ∧A−
2A−

i

(∧−)

A ∧B+

A+

B+

(∧+)

Table 7: graph-theoretic calculus: operational axioms

(Bind). The premise graphs need to be sequent graphs, so all the groundee vertices

are sequent-labeled. The groundee vertices of the conclusion graph are a subset of

the groundee vertices of the two premise graphs combined and, consequently, also

the conclusion graph is a sequent graph and not flat. (GCon). This rule does not

change the groundee vertices so the induction hypothesis justifies that the conclu-

sion graph is also either sequent or flat but not both. (SCon). Both premise and

conclusion graph are sequent and the conclusion is not flat because the premise is

not by the induction hypothesis and no new open groundee vertex emerges in the

rule-application. (<W) and (Amalg). Both rules transform sequent graphs into

other sequent graphs. The premise graphs cannot be flat in view of the induction

hypothesis, and so the conclusion graphs are not flat either because no new signed-

formula-labeled groundee vertices can be introduced by these rules. □
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[[X]]X

(Ent)
G1 G2

G1 G2

X X

X
(Trans<)

if G1 and G2 are sequent hypergraphs:

G1 G2

A+ A−

G1 G2

A+ A−
(Bind)

(GCon)

X

X

G

G

X

X

X
(SCon)

[[X]]

[[X]]

G

G

[[X]]

[[X]]

[[X]]

if G1 and G2 are sequent hypergraphs:

(W)

G1

G1

[[X]]

(Amalg)

G1 G2

G1 G2

Table 8: graph-theoretic calculus: structural rules

Verifying whether a given hypergraph is indeed a logical hypergraph can

go as follows. One breaks down the graph step by step, by applying he struc-

tural rules in reverse, phase by phase in reverse, until no further structural

rules can be applied in reverse to any of the hypergraphs that result from this

decomposition procedure. The original hypergraph was then a logical hyper-

graph iff all the obtained hypergraphs after decomposition are of the form of

one of the hypergraphs that can be obtained by applying the axioms.

Just like the GLK-calculus, the logical hypergraphs constitute a calculus

for proving grounding sequents.
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Definition 8 (Proving grounding claims) A flat logical hypergraph is said to prove

Φ < X if the members of Φ are the labels of the open ground vertices and X is the

label of its open groundee vertex. A sequent logical hypergraph proves Φ < [[Ψ]] if

the members of Ψ are the labels of the s-element vertices of the hypergraph. We also

say that it is a logical hypergraph for Φ < X resp. Φ < [[Ψ]].

Proposition 2 (Adequacy) There is a GLK-derivation for Φ < X iff there is a logical

hypergraph that proves Φ < X.

Proof Definition 8 allows finding the grounding claim proven by a hypergraph solely

based on the labels of open vertices in logical hypergraphs. If one merely focuses

on the open vertices, the rules for forming logical hypergraphs out of other hyper-

graphs are identical to those for deriving correct grounding claims out of other correct

grounding claims in analytic GLK-derivations.

We will only discuss this process for the (Bind)-rule in the two calculi. The

reader can easily verify that the other rules also match perfectly with their GLK-

counterparts. In GLK, (Bind) allows for removing A− as a partial ground from one

grounding claim and A+ as a partial ground from another before merging those two

claims into one. This is also done by the graph rule (Bind): the resulting hypergraph

contains the very same open vertices as G1 and G2 taken together, except that an

open A+-labeled ground vertex from G1 and an open A−-labeled ground vertex from

G2 are closed in the resulting graph. □

It is important to realize that, despite the fact that the rules for con-

structing logical hypergraphs resemble the rules to go from correct grounding

sequents to other correct grounding sequents, logical hypergraphs contain

much more information; they constitute entire proofs for the grounding sequent

they prove. There are no logical hypergraphs for incorrect grounding sequents,

and so, if we can construct a logical hypergraph, the grounding sequent for

which it is a logical hypergraph is correct.
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Logical hypergraphs do not only serve to prove grounding claims. They

are also ways to represent (possibly unfinished or failed) attempts of proving

sequents.

Definition 9 (Logical hypergraph for sequents) A logical hypergraph G is a logical

hypergraph for a sequent if the s-elements of the sequent are the labels of the s-element

vertices of G. Any number of open ground vertices is allowed here.

It is perfectly possible that a logical hypergraph for a sequent does not

prove the sequent in question (consider that a logical hypergraph for p− <

[[p+]] is also a logical hypergraph for the sequent [[p+]], which is obviously not

valid). Only valid hypergraphs prove the sequent for which they are logical

hypergraphs. What validity means for a logical hypergraph is developed in

Section 5.

4 Some examples of logical hypergraphs

As a first example, we construct a logical hypergraph that corresponds to the

GLK-derivation given in Section 2, which showed how < [[p∨s−, p−,¬p∨q−, q∧

r+,¬r+]] can be obtained from basic grounding principles.

To represent this proof as a logical hypergraph, we first create, by means

of the axioms of the system, the stage 1-logical hypergraphs consisting of one

grounding edge that corresponds to an axiom in the GLK-derivation. The result

is represented in Figure 1.

Next we connect the stage 1-logical hypergraphs step by step by first apply-

ing the (Trans<)-rule resulting in stage 2-logical hypergraphs. Here we need

to do this four times by connecting two disjoint hypergraphs by means of a

closing edge. We obtain 4 stage 2-hypergraphs. These steps correspond to the

applications of (Trans<) in the GLK-derivation. In the third stage we apply the
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[[p−]]

¬p ∨ q−

p−

¬p−

q−

p+

q ∧ r+

q+

r+

¬r+r−

¬p−

¬p ∨ q−[[¬p ∨ q−]]

q ∧ r+ [[q ∧ r+]]

¬r+ [[¬r+]]

Fig. 1: Example 1: eight logical hypergraphs in stage 1

(Bind)-rule three times, reducing the number of stage 3-logical hypergraphs

from 4 to 3, from 3 to 2, from 2 to 1, in the end creating one connected stage

3-logical hypergraph. Afterwards the (<W)-rule allows us to add the isolated

[[p∨ s−]]-labeled groundee vertex to the graph. This corresponds to the appli-

cation of Weakening in the last step of the GLK-derivation. The result is a

logical hypergraph in which the labels of the s-element vertices correspond

exactly to the s-elements of the sequent whose zero-groundedness is proved by

the GLK-proof. It is visualized in Figure 2.

A second and somewhat more complex example is visualized in Figure 3.

The complexity lies here in the fact that we here have at three points in the

graph construction two grounds or groundees with the same label that need

to be contracted into one new ground/groundee vertex connected to both.

Concretely, premise [[r∨s−]] occurs as the label of two s-element vertices before

the last (SCon)-application, but it is then reduced to only one by (SCon).

In an earlier stage of the construction, we also twice need a case of ground

contraction, dealt with by (GCon). First the two copies of the partial ground
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[[p−]]

¬p ∨ q−

p−

¬p−

q−

p+

q ∧ r+

q+

r+

¬r+r−

[[p ∨ s−]]

[[¬p ∨ q−]]

[[q ∧ r+]]

[[¬r+]]

Fig. 2: Example 2: logical hypergraph proof for < [[p ∨ s−, p−,¬p ∨ q−, q ∧
r+,¬r+]]

p+ are contracted into only one and then the same is done for the two copies

of q+. In the visualization, the dashed lines (indicating disjunctive grounding

edges) show where these contractions are situated.

5 Graphs and validity

Logical hypergraphs are, just like GLK-derivations, interesting tools to prove

and represent grounding relations, but here we are mostly interested in

their capacity to represent ground-connections between s-elements in a valid

sequent. We aim to capture what it is that makes sequents valid, i.e. what

makes the difference between a graph that does not establish the validity of

its sequent and a graph that does.

A logical hypergraph for a sequent only becomes a proof for that sequent

if it has a non-trivial component without open ground vertices. Such a

component makes the hypergraph valid.
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p+

p ∧ r+

r+

p+

[[r ∨ s−]]

s−

r−

p ∧ s+

s+

p+

q+

p ∨ q−

p−

q−

q ∧ r+

r+

q+

r ∨ s−

s−

r−

q ∧ s+

s+

q+

[[r ∨ s−]]

[[q ∧ s+]]

[[p ∧ r+]]

[[q ∧ r+]]

[[q ∧ s+]]

[[p ∨ q−]]

[[r ∨ s−]]

r ∨ s−

Fig. 3: Example 3: logical hypergraph proof for < [[p ∨ q−, r ∨ s−, p ∧ r+, p ∧
s+, q ∧ r+, q ∧ s+]]

Definition 10 A logical hypergraph G1 is a validity-maker of a logical hypergraph

G2 if G1 is a fully justified component of G2. A set V of s-element vertices in G is

a basis for G if there is a validity-maker G′ of G such that V exactly contains the

s-element vertices in G′.

Definition 11 (Validity of a graph) A logical hypergraph is valid if it has a validity-

maker.

Proposition 3 There is a valid logical hypergraph for all and only the classically

valid sequents.
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Proof Valid sequent ⇒ valid graph. Proposition 2 and the fact the classically

valid sequents are exactly those that are zero-grounded according to GLK entail that

there is a graph without open ground vertices for each classically valid sequent.

Given that the construction of that graph must have started with an axiom, and

because edges are never removed, it has at least one non-trivial component. Because

this component has not open ground vertices it is fully justified and therefore a

validity-maker.

Valid graph ⇒ valid sequent. A valid graph has a validity maker. This validity

maker has no open ground vertices and is therefore on its own a hypergraph for the

zero-groundedness of a subsequent of the sequent for which the graph is a logical

hypergraph. Because the zero-grounded sequents are the classically valid ones, that

subsequent will be classically valid. Hence the entire sequent for which the graph is

a logical hypergraph is a Weakening thereof and so it is equally valid. □

Given the notion of a validity-maker and a basis, we can directly see which

s-element vertices actually contribute to the validity.

Definition 12 (Contribution in a hypergraph) An s-element vertex contributes to

the validity of a logical hypergraph G iff it is a member of a basis for G. A set V of

s-element vertices jointly contributes to the validity if it is a subset of a basis for G

and sufficiently contributes to the validity if V is the union of some set of bases for G.

Figure 4 illustrates these notions. It represents a single logical hypergraph

divided into its components in frames 1–6. To know for which sequent it is a log-

ical hypergraph, we just need to gather the labels of all the s-element vertices,

i.e. [[p−]], [[q−]], [[p−]], [[q−]], [[p∨q−]], [[p∧q+]], [[p+]], [[q+]], [[q∧r+]], [[r∨¬r+]],

and [[r+]], which gives the sequent [[p−, q−, p−, q−, p ∨ q−, p ∧ q+, p+, q+, q ∧

r+, r∨¬r+, r+]]. Components 1, 2, 3, and 5 are validity-makers. In each of them

the set of their s-element vertices jointly and sufficiently contributes to the

validity. Each of their proper subsets contributes jointly but not sufficiently.
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2

3

6

4

p+p−[[p−]] [[p+]]

q+q−[[q−]] [[q+]]

[[r+]]

q+

r+

p ∨ q−

p+

q−

[[p ∨ q−]] r ∧ q+ [[r ∧ q+]]

5

p+

q+

p−

q−

[[p−]]

[[q−]]

p ∧ q+ [[p ∧ q+]]

1

[[r ∨ ¬r+]]

[[r ∨ ¬r+]]

[[r ∨ ¬r+]]

r+

¬r+r−

r ∨ ¬r+

r ∨ ¬r+

Fig. 4: This figure represents a logical hypergraph for p+, r+ <
[[p−, q−, p−, q−, p ∨ q−, p ∧ q+, p+, q+, q ∧ r+, r ∨ ¬r+, r+]] divided into its
components 1–6.

All the s-element vertices in any of these validity-makers contribute. Compo-

nents 4 and 6 are not validity makers because 4 contains open ground vertices

and 6 lacks a grounding edge. Their s-element vertices do not contribute at all.

Because there is at least one validity-maker, the graph is valid, which means

that it can count as a proof for the main sequent, but also for the sequents

corresponding to subgraphs that also contain a validity-maker, such as the

valid combination of components 2 and 6 (hypergraph for < [[p−, p+, r+]])

and the valid hypergraph consisting only of component 1 (hypergraph for

< [[r∨¬+]]). The hypergraph consisting of hypergraphs 4 and 6 has no validity-

maker whence it is not valid and therefore it does not count as a proof for the

(invalid6) sequent [[p∨ q−, q ∧ r+, r+]]. The combination of components 1 and

5, which is a logical hypergraph for [[p−, q−, p ∧ q+, r ∨ ¬r+]] only contains

validity-makers. All its s-element vertices therefore sufficiently contribute to

6Here the invalid hypergraph is a logical hypergraph for an invalid sequent, but of course we
can also have invalid hypergraphs for valid sequents. In such cases, however, there will be another
hypergraph for that sequent that is valid. To be sure that the sequent is invalid, we need to have
tried out every possible hypergraph for that sequent. This may seem intractable, but given the
analytic nature of the hypergraphs, it is doable in a finite time.



Springer Nature 2021 LATEX template

28 Connecting the sequent dots

the validity, but they do not contribute jointly as a whole. Component 1 is

nothing but a validity-maker for its sequent [[r ∨ ¬r+]].

6 Joint-contribution visualized

Now that we have represented GLK in graph-theoretic terms, we have every-

thing at our disposal to finally explicate and visualize how exactly premises

and conclusions contribute to the validity. The basic idea is that an s-element

contributes to the validity of a sequent by establishing a certain kind of con-

nection between its labels’ partial grounds and the partial grounds of the label

of other s-elements within a validity-maker; we will say that such s-elements

are bound by their partial grounds.

For what follows, to obtain the most interesting structure for the remainder

of the analysis, it is best to undo the applications of the (SCon)-rule at the end

of the logical hypergraph construction, which means that distinct s-element

vertices with the same label that play a distinct role are always individually

analyzed.

The relevant sort of binding connection essentially involves what we call

bridges7.

Definition 13 A bridge is a subgraph of a logical hypergraph consisting of nothing

but two groundee vertices with labels A+ and A−, for some formula A, and a con-

junctive grounding edge containing exactly those two vertices. A path that includes

a bridge will be said to cross that bridge. A path from v1 to v2 is said to cross an X-

Y -bridge if it crosses a bridge with vertices labeled X and Y , in order of occurrence

in the path.

7The term ‘bridge’ is sometimes used in graph theory to denote an edge between two subgraphs,
that would be separate components if the edge were removed. While the notion here is somewhat
related (at the moment right after the application of the (Bind)-rule, removing it creates two new
components in the graph), it should not be confused with our usage.
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Note that bridges are always introduced in logical hypergraphs by the

(Bind)-rule.

Definition 14 (Partial ground-reception) An s-element vertex v1 receives partial

ground X from another s-element vertex v2, denoted as RecX(v1, v2), if there is a

path from v1 to v2 that crosses exactly one bridge, an X-Y bridge8.

Definition 15 (Binding) We say that two s-element vertices v1 and v2 are bound,

i.e. Bound(v1, v2), if there is some X such that RecX(v1, v2). Two sets of s-element

vertices V1 and V2 are bound if a member of V1 is bound with a member of V2. We

also say that two s-element vertices or two sets of s-element vertices are bound by

partial ground (Ax/A−x) if they are bound and the X that is received is either Ax

or A−x.

The following proposition explains why we speak of partial grounds when

we say what it is that binds s-element vertices.

Proposition 4 If an s-element vertex labeled [[X1]] receives partial ground Ax from

an s-element vertex labeled [[X2]] then Ax is a partial ground of [[X1]] (i.e. there is

a Φ such that Φ, Ax < [[X1]]) and A−x is a partial ground of [[X2]] (i.e. there is a

Φ such that Φ, A−x < [[X2]]).

Proof If an s-element vertex v1 labeled [[X1]] receives partial ground Ax from an

s-element vertex v2 labeled [[X2]], then there is a single bridge between the two

vertices. This bridge must have been introduced by an application of the (Bind)-rule

in the construction of the graph. Because there is only one bridge in between v1

and v2, we can reconstruct the graph construction in such a way that the (Bind)-

rule application was such that the premise graph G′ containing v1 itself contains

no bridges, whence it is in Phase 2. Because Phase 2-graphs never have more than

8Note that, by the definition of a bridge, Y = A−x when X = Ax.
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one groundee, the G′ premise graph of that (Bind)-rule application must have had

[[X1]] as the label of its only open groundee vertex and Ax as the label of one of its

ground vertices. This premise graph therefore proves some grounding claim of the

form Ax,Ψ < [[X1]]. By Proposition 2 this grounding claim is correct and so Ax is

a partial ground of [[X1]]. □

With the conceptual machinery now at our disposal, we can characterize

an interesting notion of strong joint-contribution of a set of fully justified s-

element vertices as the property of being binding-interwoven, i.e. the property

that each two exclusive and exhaustive subsets of a strongly jointly contribut-

ing set are bound. The difference between joint-contribution simpliciter and

strong joint-contribution is that a set of s-element vertices V that are together

in a validity maker, but in which a pair of subsets of V are only indirectly

bound via other s-element vertices that are not in V count as jointly contribut-

ing to the validity but not strongly so. The intuition here is that, while they are

part of the team that is responsible for the validity, some subsets are divided

without direct bridge; so they cannot do work together to obtain validity. One

could say that they do not form a contributing fraction of the validity-maker.

Definition 16 (Interwoven by a binary relation) Let R be a binary relation over a

set a. We say that a is R-interwoven iff, for each two non-empty mutually exclusive

and together exhaustive subsets a1 and a2 of a, R(x, y) holds for some x ∈ a1 and

y ∈ a2.

As an example: the set of natural numbers is Succ-interwoven where

Succ(x, y) iff x = y + 1 or y = x+ 1. Note that this does not mean that each

subset of the natural numbers would be Succ-interwoven: as a counterexam-

ple take the set {1, 2, 4, 5} of which the two mutually exclusive and together
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exhaustive subsets {1, 2} and {4, 5} fail to have members (one from each set)

that stand in the Succ-relation.

Definition 17 (Strong joint-contribution) A set of fully justified s-element vertices

strongly jointly contributes to the validity of a logical hypergraph iff it is Bound-

interwoven9.

Proposition 5 A set V of s-element vertices is a basis of the hypergraph iff it

contributes sufficiently and (strongly) jointly to the validity of G.

Proof Direct in view of the definitions of basis, sufficient and joint contribution.

For strongly joint contribution just consider that the difference between strong and

normal joint contribution evaporates when the set of s-element vertices is sufficiently

contributing, because, in that case, there cannot be a divide in the subsets of a set

of s-element vertices. □

To visualize all this, we will simplify the logical hypergraphs and their

visualization a bit. First we will introduce the admissible rules given in Table 9,

which allow for the omission of the closing edges and streamlining combinations

of many applications of (SCon) and (GCon). The aspects that are skipped over

with such shortcut rules are important for reconstructing the proof that it is

a correct logical hypergraph and therefore this simplification takes away the

quality of simplified logical hypergraphs as full-blown proofs from the axioms,

but it visualizes more economically the binding connections of interest. All this

information is also present in the original hypergraphs we just presented, but

9Incidentally, this idea of the interwovenness of a set of s-vertices via binding can be used
as inspiration to propose an improved criterion of variable-sharing for MSET-MSET sequents.
Variable-sharing is broadly accepted as a good necessary condition for something to count as
relevant: a premise relevantly entails a conclusion if they at least share some variable. It is not
trivial how to generalize this to MSET-MSET format, but one of the ways to do this is saying that
each subset of premises and conclusions should share a variable with the rest of the sequent. This
is defined as the property that it has only one s-element or it is Share-interwoven, where Share is
the property of sharing a variable. S-interwovenness basically means that each subsequent shares
a variable with the rest of the sequent. One of the advantages is that cases of mere sufficient
contribution of all s-elements, like in [[p−, q−, p+, q+]] are excluded as candidates for relevance.
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at this point it may be useful to focus only on how premises and conclusions

are interconnected by their ultimate grounds.

Where G is a graph in phase 2:

X2

...
...

...
...

X1

v1

v2

vn

vn+1

vn+2

vn+m

Xn

Xn+1

Xn+2

Xn+m

X2

...
...

...
...

X1

v1

v2

vn

vn+1

vn+2

vn+m

Xn

Xn+1

Xn+2

Xn+m

G

Where G is a connected graph:

(GCon+)

X

X

G

G

X

X

X

X

...

X

...

...

(SCon+)

[[X]]

[[X]]

G

G

[[X]]

[[X]]

[[X]]

[[X]]

...

[[X]]

...

...

Table 9: Graph-theoretic calculus: admissible rules

In the simplification we maximally apply these admissible rules to obtain

simpler graphs. Once this is done we also visualize bridges and the adjacent
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vertices, cutting edges and disjunctive grounding edges more efficiently by

abbreviating a recurring pattern by a triangle notation as specified in Table 10.

Replace

A−

A−

G1
A−

A−

...

... A+

A+

G2
A+

A+

...

...

by

...

...

...

...
AG1 G2

Table 10: Abbreviating binding patterns to visualize simplified graphs

Figure 5 illustrates how the graph from Figure 2 can be simplified. We

can read a lot of useful information off of this graph. We directly see the

grounding relations: [[p−]] is fully grounded by p−, [[¬p∨q−]] is fully grounded

by p+ and q−, [[q ∧ r+]] is fully grounded by q+ and r+ and finally [[¬r+]] is

fully grounded by r−. But, more importantly, we see what each s-element in

the sequent contributes to the validity: p ∨ s− contributes nothing, premise p

contributes p+ to allow the third premise to contribute q+ to the conclusion

q∧r. This conclusion is moreover only possible thanks to the contribution of r+

by the other conclusion. We also observe that the different s-element vertices

are bound by the truth/falsity of the formulas that figure in the triangles to

which they are connected.
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p

q

r

q ∧ r+

¬r+

[[q ∧ r+]]

[[¬r+]]

[[p−]]

¬p ∨ q−

[[p ∨ s−]]

[[¬p ∨ q−]]

Fig. 5: Efficiently drawing the arrow paths in Figure 2 by means of triangles

In Figure 6 the simplified version of the hypergraph in Figure 3 is

represented.

s

r

p

s

r

q

[[r ∨ s−]]

p ∨ q−

[[r ∨ s−]]

[[p ∨ q−]]

[[r ∨ s−]]

p ∧ r+

p ∧ s+

q ∧ r+

q ∧ s+

[[q ∧ s+]]

[[p ∧ r+]]

[[q ∧ r+]]

[[q ∧ s+]]

Fig. 6: Efficiently drawing the arrow paths in Figure 3 by means of triangles
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7 From graphs back to sequents

We have now said a lot about graphs having validity-makers and about how

their s-element vertices contribute to the validity of the graph. But we were

first and foremost interested in the contribution of premises and conclusions

to valid sequents. Although the translation is rather straightforward, we here

list the most important ways in which the talk of graphs and their s-element

vertices can be translated into talk of sequents and their s-elements.

Definition 18 The following properties of (multisets of) s-elements of sequents are

direct counterparts of the corresponding properties of (sets of) s-element vertices in

logical hypergraphs.

• A multiset Σ of s-elements of a sequent is a validity-maker of the sequent if

there is a logical hypergraph for the sequent and Σ is the multiset of labels

of a basis of the graph.

• A multiset Σ of s-elements of a sequent (strongly) jointly contributes to the

validity of the sequent if they are the labels of s-element vertices (strongly)

jointly contributing to the validity of a logical hypergraph for the sequent.

• A multiset of s-elements sufficiently contributes to the validity of a sequent

if it is the union of some set of validity-makers of the sequent.

• An s-element [[X1]] of some sequent receives its partial ground Y from

s-element [[X2]] in the same sequent if there is a logical hypergraph for

the sequent in which an [[X1]]-labeled s-element vertex receives Y from an

[[X2]]-labeled s-element vertex. We say that X1 and X2 are bound and write

Bind(X1, X2).

• An s-element [[X]] contributes Y to a valid sequent if it is the label of an

s-element vertex v in the basis of a logical hypergraph for that sequent and

v receives Y from another s-element vertex.
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Let us go back to our sequent p ∨ s, p,¬p ∨ q � q ∧ r,¬r. Its s-elements are

[[p ∨ s−]], [[p−]], [[¬p ∨ q−]], [[q ∧ r+]], and [[¬r+]]. Its only validity-maker is

{{[[p−]], [[¬p ∨ q−]], [[q ∧ r+]], [[¬r+]]}}. This set and some of its non-singleton

subsets strongly jointly contribute to the validity: s1 = {[[p−]], [[¬p ∨ q−]]},

s2 = {{[[¬p∨q−]], [[q∧r+]]}}, s3 = {{[[q∧r+]], [[¬r+]]}}, s4 = s1∪s2, s5 = s2∪s3,

s6 = s3 ∪ s4, s7 = s4 ∪ s5, s8 = s6 ∪ s7. Only the entire validity-maker

(strongly) jointly and sufficiently contributes to the sequent’s validity. [[p−]]

and [[¬p ∨ q−]] are bound by their partial ground (p−/p+). The sets of s-

elements {{[[p−]], [[¬p∨q−]]}} and {{[[q∧r+]], [[¬r+]]}} are bound by their partial

ground (q−/q+). {{[[¬p ∨ q−]]}} and {{[[p−]], [[q ∧ r+]], [[¬r+]]}} are bound by

their partial grounds (p+/p− and q−/q+). [[¬p∨q−]] receives its partial grounds

p+ and q− from [[p−]] and [[q ∧ r+]]. Together these partial grounds form a

full ground for that premise. [[p ∨ s−]] contributes nothing to the validity of

the sequent. [[p−]] contributes p−, [[¬p∨ q−]] contributes p+ and q−, [[q ∧ r+]]

contributes q+ and r+, and [[¬r+]] contributes r−.

8 Conclusion

In this paper we have presented a graph-theoretic representation of joint-

contribution based on partial-ground binding, as presented in (Saint-Germier

et al., 2024). The logical hypergraphs and their visualization nicely clarify how

exactly premises and conclusions together contribute (or not) to making the

sequent they occur in valid. We showed how they do this by being bound by

their partial grounds. We explained that certain graphs are fully connected

(in the sense that there is a path from each vertex to each other), while oth-

ers have (connected) components, validity-makers, but also contain vertices

that are not connected to such a component. Some of these components are

validity makers, in the sense that they on their own suffice for validity. We
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concluded that the s-element vertices in such a validity makers are the jointly

and sufficiently contributing vertices. Their labels together form a subset of

the sequent that is responsible for its validity. Parts of the sequent that are

not contained in such a validity maker do not contribute to the validity and

are mere bystanders.

We believe that the graphical/diagrammatic system we presented could be

of pedagogical and explanatory value for logic teaching10. In virtue of their

visual elegance, the graphs may provide an easy and insightful method for

proving classical logic validity, comprehensible even for young children. The

only thing that needs to be done for establishing the validity of a given argu-

ment is matching the right kind of atomic hypergraphs as much as needed in

such a way that the only s-elements that can be found are the premises and

the conclusion of the argument. Besides a proof method for classical logic, it

also provides a visual explanation of why certain arguments appear counterin-

tuitive (such as explosion and other cases where parts of the argument do no

work) although they are valid.

Finally, it is worth mentioning that the graphs provide visual guidance for

the theorem-proving process, in the sense that the open ground vertices of

an unfinished logical hypergraph suggest ways in which the user can continue

with the proof. Open ground vertices could be seen as open questions whose

resolution may lead to finding a good proof.

10There is no reason why such a process would not be feasible (and even fun?) for children. The
atomic hypergraphs (conjunctive grounding edges and their adjacent vertices, i.e. bridges and the
results of axioms) could be seen as similar to the pieces in a jigsaw puzzle. In that analogy, each
unique label of the adjacent vertices (i.e. each unique signed formula) corresponds to a unique kind
of rounded tab (and its respective kind of identically rounded indentation) of the puzzle pieces.
Ground vertices adjacent to the conjunctive grounding edges correspond to the corresponding
pieces’ indentations, while adjacent groundee vertices correspond to the tabs of the pieces. The
only thing one has to do to prove arguments is fitting pieces in the right ways, until one obtains
a combination of pieces that has no more unfitted indentations. The sequent then corresponds to
the unfitted tabs of the puzzle. If no puzzle can be made without unfitted indentations and in
which all unfitted tabs correspond to premises or conclusions of the argument, then the argument
is not provable.
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