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MEASURE AND CONTINUOUS VECTOR FIELD AT A
BOUNDARY I: PROPAGATION EQUATIONS AND WAVE

OBSERVABILITY

NICOLAS BURQ, BELHASSEN DEHMAN, AND JÉRÔME LE ROUSSEAU

Abstract. The celebrated geometric control condition of Bardos, Lebeau,
and Rauch is necessary and sufficient for wave observability [1, 7] and exact
controllability. It requires that any point in phase-space be transported by
the generalized geodesic flow to the region of observation in some finite time.
The initial smoothness (C∞) required on the coefficients of the metric to prove
that exact control and geometric control are essentially equivalent was subse-
quently relaxed to C 2-metrics/coefficients and C 3-domains [2], which is close
to the optimal smoothness required to preserve a generalized geodesic flow. In
this article, we investigate a natural generalization of the geometric control
condition that makes sense for C 1-metrics and we prove that wave observabil-
ity holds under this condition. Moreover, we establish that the observability
property is stable under rougher (Lipschitz) perturbation of the metric. We
also provide a geometric necessary condition for wave observability to hold.
Transport equations that describe the propagation of semi-classical measures
are at the heart of the arguments. They are natural extensions to geometries
with boundaries of usual transport equations. This article is mainly dedicated
to the proof of such propagation equations in this very rough context.
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1. Introduction

An observability inequality for the wave equation is an estimate of the
energy of a solution by a “recording” of this solution in a restricted domain
for some time T > 0. This restricted domain can be in the interior of the
region Ω where waves propagate or in a part of its boundary. One interest in
such an inequality lies in its consequences in terms of exact controllability and
stabilization. The observability property has been intensively studied during
the last decades. Until the end of the 80’s, most of the results were proven
under a (global) geometrical assumption called Γ-condition and introduced by
J.-L. Lions [26], essentially based on a multiplier method. Later, following Rauch
and Taylor [28], Bardos, Lebeau, and Rauch proved observability inequalities
from part of the boundary in their seminal article [1], and as a consequence,
boundary stabilization, under a microlocal condition, that is, a property in the
cotangent bundle T ∗(R× Ω), the so-called geometric control condition (GCC in
short), exhibiting a connection between the set on which observation is performed
and the generalized geodesics of the wave operator. In addition, taking into
account the work of [7], it is now classical that observability (with stability with
respect to the observation set) is equivalent to the GCC. In terms of geodesics,
the GCC reads as follows:

for any point x and any tangent vector v, the generalized geodesic initiated at
(x, v) enters the observation region in some time T > 0.

Generalized geodesics follow the laws of geometrical optics at boundary points:
reflection if the boundary is hit transversally and possible gliding if hit tangen-
tially.

The proofs of the results in [1, 7] are based on microlocal tools, namely,
the propagation of wavefront sets or that of microlocal defect measures. Let
us notice here that despite their high efficiency and robustness, these methods
present the great disadvantage of requiring a lot of regularity for the domain
and for the metric/coefficients. Starting from the original result developed in
the framework of the Melrose-Sjöstrand C ∞-singularity propagation results, thus
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requiring C ∞-smoothness, the theory has been subsequently developed in the
framework of microlocal defect measures allowing one to relax the assumptions
down to a C 2-metric [2], which barely misses the natural smoothness (W 2,∞)
required to define a geodesic flow (away from any boundary). An important
remark is that below this smoothness threshold, for instance for C 1-metrics that
we will consider, generalized geodesics may still exist as integral curves of the C 0-
Hamiltonian vector field in the interior of the domain but uniqueness is lost in
general. A natural question lies in the understanding of the relationship between
those nonunique integral curves and the observability property for such a rough
metric.

Many attempts were made in the last years (see, for instance, the works
[14] in dimension 1, and [12]). In the present article, we reach the lowest possible
regularity level for the mere existence of geodesics (with a gain of a full derivative
with respect to all previous geometric results) and lowest possible regularity level
for observability to hold as exhibited by the counter-example in [9, 10].

We prove the following result: for a C 1-metric, observability holds, and
consequently exact controllability, if a generalized geometric control condition is
satisfied, that is,

all generalized geodesics enter the observation region in some time T > 0.

In particular, if considering a point x and some tangent vector v, all generalized
geodesics initiated at this point with v as initial direction fulfill this property.
When uniqueness of generalized geodesics holds the above condition coincides
with the usual GCC. We thus keep the “GCC” denomination.

Moreover, our proof allows us to go beyond the C 1-threshold in a pertur-
bative regime and consider cases where the notion of geodesics is lost. We prove
that if a reference C 1-metric g satisfies the GCC for some time T > 0, for any
other metric g̃ close enough to g in the Lipschitz topology the observability prop-
erty holds also, moreover in the same time T . We insist once more on the fact
that Lipschitz metrics are too rough to even define geodesics since the associated
Hamiltonian vector field is only L∞ and hence integral curves do not make sense
in general.

The GCC stated above stands as a sufficient condition for observability to
hold. We also provide a necessary condition that is natural in the sense that it
coincides with the usual necessary condition if uniquess of the flow holds [7].

Our proof of the observability property relies on two key results on semi-
classical measures that appear naturally if the energy of waves concentrates
asymptotically:
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• The derivation of a transport equation that describes the propagation of
such semi-classical measures; this is one of the main contribution of the
present article; see Theorem 6.1. Its proof relies on commutator analysis
and finely tuned properties of semi-classical opertors to address the low
regularity level of metric/coefficients and the boundary/manifold.

• The description of the support of measures that are solutions to the above
propagation equation in terms of generalized bicharacteristics (whose pro-
jection on the base manifold are geodesics) even if uniqueness of such
curves fails to hold; this is the main contribution of the companion arti-
cle [5] stated in Theorem 2.14 here.

In section 1.5 below, we describe how these two results are used in the structure
of the proof of observability inequalities.

An important difficulty in the present article is the presence of a boundary.
In the case of a compact manifold without boundary, we refer to our much less
technically demanding article [4] where both parts of this program are achieved
in that simpler setting.

Our proof of a necessary condition for wave observability to hold is quite
similar and based on:

• the derivation of a transport equation for semi-classical measures across
an isochrone {t = Cst}; see Theorem 10.7;

• the use of this measure equation to ensure that a maximal generalized
bicharacteristic lies entirely in the support of the measure.

1.1. Metrics, elliptic operators and wave equations. Consider a compact
connected Riemannian manifold M of dimension d with boundary, endowed with
a metric g = (gij). At firstM and its boundary are assumedW 2,∞ and the metric
is assumed Lipschitz. Denote by µg the canonical positive Riemannian density on
M, that is, the density measure associated with the density function (det g)1/2.
We also consider a positive Lipschitz function κ and we define the density κµg.

The L2-inner product and norm are considered with respect to this density
κµg, that is,

(u, v)L2(M) =

∫
M
uv̄ κµg, ∥u∥2L2(M) =

∫
M

|u|2 κµg.(1.1)

We denote by L2V (M) the space of L2-vector fields on M, equipped with the
norm

∥v∥2L2V (M) =

∫
M
g(v, v̄)κµg, v ∈ L2V (M).



6 NICOLAS BURQ, BELHASSEN DEHMAN, AND JÉRÔME LE ROUSSEAU

We write

(., .)L2(M,κµg), ∥.∥L2(M,κµg)
, and ∥.∥2L2V (M,κµg)

,

if needed for clarity in particular if different metrics and functions κ are considered
simultaneously.

Recall that the Riemannian gradient and divergence are given by

g(∇gf, v) = v(f) and

∫
M
f divg vµg = −

∫
M
v(f)µg,

for f a function and v a vector field with supports away from the boundary,
yielding in local coordinates

(∇gf)
i =

∑
1≤j≤d

gij∂xj
f, divg v = (det g)−1/2

∑
1≤i≤d

∂xi

(
(det g)1/2vi

)
,

with (gijx ) = (gx,ij)
−1. With the Poincaré inequality a norm on H1

0 (M) is

∥u∥H1
0 (M) = ∥∇gu∥L2V (M).

We introduce the elliptic operator A = Aκ,g = κ−1 divg(κ∇g), that is, in
local coordinates

Af = κ−1(det g)−1/2
∑

1≤i,j≤d

∂xi

(
κ(det g)1/2gij(x)∂xj

f
)
.(1.2)

The operator A is unbounded on L2(M). With the domain D(A) = H2(M) ∩
H1

0 (M) one finds that A is selfadjoint, with respect to the L2-inner product given
in (1.1), and negative.

With the elliptic operator A = Aκ,g one also defines the wave operator

P = Pκ,g = ∂2t − Aκ,g.

Consider the wave equation
Pκ,g u = f in R×M,

u = 0 in R× ∂M,

u|t=0 = u0, ∂tu|t=0 = u1 in M.

(1.3)

Solutions are given by the following result.
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Proposition 1.1. Consider κ and g both Lipschitz. Let (u0, u1) ∈ H1
0 (M) ×

L2(M) and f ∈ L1
loc(R, L2(M)). There exists a unique

u ∈ C 0
(
R;H1

0 (M)
)
∩ C 1

(
R;L2(M)

)
,

that is, a weak solution of (1.3), meaning u|t=0 = u0 and ∂tu|t=0 = u1 and

Pκ,gu = f holds in D ′(R×M
)
. The map

H1
0 (M)⊕ L2(M)⊕ L1

loc(R, L
2(M)) → C 0

(
R;H1

0 (M)
)
∩ C 1

(
R;L2(M)

)
(1.4)

(u0, u1, f) 7→ u,

is continuous.

One denotes by

Eκ,g(u)(t) =
1

2

(
∥∇gu(t)∥2L2V (M) + ∥∂tu(t)∥2L2(M)

)
the energy of u at time t. For any T > 0 there exists CT > 0 such that

sup
|t|≤T

Eκ,g(u)(t)1/2 ≤ CT

(
Eκ,g(u)(0)1/2 + ∥f∥L1(−T,T ;L2(M))

)
.

If f = 0, then equation (1.3) is homogeneous. This is the case we will most often
consider for the issue of observability. Then, for the weak solution u, the energy
is independent of time t that is,

Eκ,g(u)(t) = Eκ,g(u)(0) =
1

2

(
∥∇gu

0∥2L2V (M) + ∥u1∥2L2(M)

)
.

In such case, we simply write Eκ,g(u).

1.2. Regularity levels for manifolds, metrics and coefficients. Two classes
of regularity levels will be of importance in what follows. A first one for which
microlocal methods apply (the spaces X 1 and X 2 below) and a second one for
which basic results (uniqueness, traces, etc) remain true (the space Y1 below).
More precisely denote by Xk (resp. Y k) the sets of manifolds M as above of class
C k (resp. W k,∞). This regularity of the manifold includes that of its boundary.
Set

X k = {(M, κ, g); M ∈ X1+k, κ ∈ C k(M) and g is a C k-metric on M},
Yk = {(M, κ, g); M ∈ Y 1+k, κ ∈ W k,∞(M) and g is a W k,∞-metric on M},
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k ∈ N. The levels of regularity we use in what follows are X 1 and X 2 on the one
hand, and Y1 on the other hand.

Observe that having the manifold M with one order of regularity higher
than that for g is consistent with the transformation rules of a 2-covariant tensor
on M. Next, the regularity of the function κ is set equal to that of g because of
the definition of the elliptic operator Aκ,g in (1.2).

With M of class C 1+k (resp. W 1+k,∞) the same holds for ∂M. Once an
atlas is given on M as in Section 2.1, this is quite clear.

Remark 1.2. Note that Y1 exhibits a ‘tiny’ loss of regularity if compared to
X 1. Yet, this loss is more like an abyss as far as the geometry underlying wave
propagation is concerned. In fact, if considering aW 1,∞-metric g the Hamiltonian
vector field that defines the bicharacteristics at higher levels of regularity is only
L∞ here. Hence, the existence of bicharacteristics is not guaranted. As a result
a W 1,∞-metric is too rough to state the usual GCC and consequently also to
implement standard microlocal tools.

Based on the previous remark we will exploit the geometry of wave prop-
agation available for some (M, κ, g) ∈ X 1 yet consider some (M̃, κ̃, g̃) ∈ Y1

sufficiently close to (M, κ, g). Such closedness will be understood as follows.

Definition 1.3. Consider on the one hand (M, κ, g) ∈ X 1 and ω an open subset
of M (resp. Γ an open subset of ∂M) and, on the other hand, (M̃, κ̃, g̃) ∈ Y1

and ω̃ an open subset of M̃ (resp. Γ̃ an open subset of ∂M̃). Let ε > 0. One says
that (M̃, κ̃, g̃, ω̃) (resp. (M̃, κ̃, g̃, Γ̃)) is ε-close to (M, κ, g, ω) (resp. (M, κ, g,Γ))
in the Y1-topology if the following holds

(1) There exists a W 2,∞-diffeomorphism ψ : M → M̃ such that ψ(ω) = ω̃
(resp. ψ(Γ) = Γ̃)).

(2) One has ∥ψ∗κ̃− κ∥W 1,∞(M)+∥ψ∗g̃ − g∥W 1,∞T 0
2 (M) ≤ ε, where ∥.∥W 1,∞T 0

2 (M)

denotes the W 1,∞-norm for 2-covariant tensors on M.

1.3. Interior and boundary observability. Consider the following homoge-
neous version of the wave equation:

Pκ,g u = 0 in R×M,

u = 0 in R× ∂M,

u|t=0 = u0, ∂tu|t=0 = u1 in M.

(1.5)

Let ω be a nonempty open subset of M and T > 0. Observability of the wave
equation from ω in time T is the following notion.
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Definition 1.4 (interior observability). Let ω be a nonempty open subset of M.
One says that the homogeneous wave equation is observable from ω in time T > 0
if there exists Cobs > 0 such that for any (u0, u1) ∈ H1

0 (M)× L2(M) one has

(1.6) Eκ,g(u) ≤ Cobs∥1]0,T [×ω ∂tu∥2L2(R×M)
,

for the weak solution u to (1.5).

Let Γ be a nonempty open subset of ∂M. Observability of the wave equa-
tion from Γ in time T is the following notion.

Definition 1.5 (boundary observability). Let Γ be a nonempty open subset of
∂M. One says that the homogeneous wave equation is observable from Γ in time
T > 0 if there exists Cobs > 0 such that for any (u0, u1) ∈ H1

0 (M)× L2(M) one
has

(1.7) Eκ,g(u) ≤ Cobs∥1]0,T [×Γ ∂nu|R×∂M∥2
L2(R×∂M)

,

for the weak solution u to (1.5).

1.4. Main results and open questions. The following observability results
were proven in [2].

Theorem 1.6 (Burq, 97). Let (M, κ, g) ∈ X 2.
Interior observability. Let ω be an open subset of M that satisfies the

interior geometric control condition (see Definition 2.10 below for a precise de-
scription) associated with the infimum time TGCC(ω). Let T > TGCC(ω). Then,
the wave equation is observable from ω in time T .

Boundary observability. Let Γ be an open subset of ∂M such that Γ
satisfies the boundary geometric control condition (see Definition 2.13 below for a
precise description) associated with the infimum time TGCC(Γ). Let T > TGCC(Γ).
Then, the wave equation is observable from Γ in time T .

The proof of these results essentially relies on pseudo-differential calculus
and microlocal tools, namely the microlocal defect measures and their localization
and propagation properties.

One of our main contributions in the present article is to improve upon the
regularity assumptions on the metric g, the function κ and the manifold M.

Theorem 1.7. Let (M, κ, g) ∈ X 1. The two conclusions of Theorem 1.6 hold.

In fact, we prove a stronger result, namely that these observability results
are stable by small perturbations in Y1, that is, perturbations that are slightly
less smooth.
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Theorem 1.8. Let (M, κ, g) ∈ X 1.
Interior observability. Let ω be an open subset of M that satisfies the

interior geometric control condition associated with the infimum time TGCC(ω).
Let T > TGCC(ω). Then, there exists ε > 0 such that if (M̃, κ̃, g̃, ω̃) is ε-close to
(M, κ, g, ω) in the Y1-topology in the sense of Defintion 1.3 for (M̃, κ̃, g̃) ∈ Y1

and ω̃ an open subset of M̃, then the wave equation associated with Pκ̃,g̃ on M̃
is interior observable from ω̃ in time T .

Boundary observability. Let Γ be an open subset of ∂M such that Γ sat-
isfies the boundary geometric control condition associated with the infimum time
TGCC(Γ). Let T > TGCC(Γ). Then, there exists ε > 0 such that if (M̃, κ̃, g̃, Γ̃)
is ε-close to (M, κ, g,Γ) in the Y1-topology in the sense of Defintion 1.3 for
(M̃, κ̃, g̃) ∈ Y1 and Γ̃ an open subset of ∂M̃, then the wave equation associated
with Pκ̃,g̃ on M̃ is boundary observable from Γ̃ in time T .

Remark 1.9. First, as pointed out in Remark 1.2 above, note that standard
microlocal tools cannot be used at the W 1,∞ level of regularity of κ̃ and the metric
g̃.

Second, Theorem 1.7 shows that the observability property is stable by small
Lipschitz perturbations around rough (C 1) metrics satisfying GCC. We exhibited
in [4, Remark 1.13] an example showing that the observation property is not stable
by small (even smooth) perturbations of the geometry/metric around geometries
satisfying only the obervation property. This counter example is actually con-
nected to an example due to G. Lebeau [25]. In particular, this shows that our
perturbation argument will have to be performed on the proof of the fact that the
geometric control condition implies observability and not on the final property it-
self. Since Theorem 1.7 is a straightforward consequence of Theorem 1.8 we will
hence focus on the proof of Theorem 1.8 in what follows.

In the two kind of observability-inequality results stated above, the GCC
of Definitions 2.10 and 2.13 appear as sufficient conditions. We also formulate
the following weak GCC condition

For all point in the tangent bundle, at least one generalized geodesics intitiated
at this point enters any region larger than the observation region in some time

T > 0.

A more precise definition is given in Section 10.1. Observe that this condition
reduces to the classical necessary condition in the case of uniqueness of generalized
bicharacteristics.

We prove the following result proven in Section 10.
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Theorem 1.10 (Necessary geometric control conditions). Let (M, κ, g) ∈ X 1.
Interior observability. Let ω be an open subset of M and T > 0 such that

interior observability holds from ω in time T . Then the weak geometric control
condition holds.

Boundary observability. Let Γ be an open subset of ∂M and T > 0 such
that boundary observability holds from Γ in time T . Then the weak geometric
control condition holds.

In the framework of the present article, sharpness of GCC as a sufficient
condition for observability is an open question. Sharpness of the weak GCC as a
necessary condition for observability is also open. In the case where generalized
geodesics are not unique, there is quite a gap between the GCC and the weak
GCC. Note that this gap closes as soon as uniqueness holds. Note also that a
lack of uniqueness of generalized geodesics can be connected to a low regularity
of the coefficients, as in the present setting. However, even in the case of smooth
coefficients and a smooth manifold, an infinite contact order of a generalized
geodesics with the boundary can be a source of nonuniqueness. We refer to
the Taylor example [29] (see also [20, Example 24.3.11]). No thorough study of
nonuniqueness issues at boundary has been carried out for C k coefficients, k ≥ 2,
up to our knowledge.

1.5. Method to prove observability and outline. We present here the scheme
of the proof of the observability inequalities even though some material needs to
be introduced. Yet, this will provide the reader with a road map.

The strategy of the proof of observability follows the following steps:

• First, we reduce the observation estimate for general data to a high-
frequency observation estimate for semi-classically localized initial data.
This step is quite classical [6].

• Second, we proceed by contradiction and obtain sequences of L2-normalized
initial data that are spectrally localized and vanishing asymptotically in
the observation region.

• Third, associated with these sequences is a semi-classical measure µ that
characterises in phase space points where mass concentrates asymptoti-
cally. The main result of the present article is a propagation equation
provided in Theorem 6.1 and fulfilled by the measure µ.

• Fourth, we exploit the result of the companion article [5] stated here in
Theorem 2.14 and we deduce that the support of µ is a union of max-
imal generalized bicharacteristics. This leads to a contradiction with µ
vanishing in the observation region.
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The remainder of the article is organized as follows.
In Section 2 we introduce the necessary geometrical notions to precisely

state the geometric control condition (GCC) in our low regularity framework and
to state the main result of the companion article [5]. In Section 3 we perform
some classical a priori estimates for the normal derivatives of solutions to wave
equations and we recall that an observability inequality is equivalent to an exact
controllability result for the wave equation. Section 4 is devoted to a semi-
classical reduction of observability estimates and the definition of semi-classical
measures. In Section 5, we recall and introduce some aspects of semi-classical
pseudo-differential operators with minimal regularity properties of the symbols.
We also recall the notions of semi-classical measures and some of their properties.
In Section 6.2 we write the contradiction argument that leads to the proof of a
semi-classical observability inequality. This generates a semi-classical measure
associated with a sequence of solutions to the wave equation and a semi-classical
measure associated with their normal derivatives on the boundary. The measure-
propagation equation that links these two measures is stated in Theorem 6.1 of
Section 6.1 allowing one to conclude the proof of the semi-classical observability
inequality. Sections 7 to 9 are dedicated to the proof of the measure-propagation
equation of Theorem 6.1. Section 7 exposes the commutator argument that is
the foundation of the measure-propagation equation. In Section 8 we present
a Weierstrass division argument to be applied to the test functions to prove
the measure-propagation equation. This leads to symbols with low regularity
and low decay in the conormal direction. Further analysis for such symbols
and associated operators is provided. Finally, in Section 9 the different symbols
obtained in the Weierstrass division are quantized leading to the proof of the
measure-propagation equation.

In Section 10 we prove that observability implies a weak GCC (Theo-
rem 1.10). The proof is based on the measure equation that is stated in Theo-
rem 10.7 and proven in Section 11.

1.6. Acknowledgements. This research was partially supported by Agence Na-
tionale de la Recherche through project ISDEEC ANR-16-CE40-0013 (NB), by
the European research Council (ERC) under the European Union’s Horizon 2020
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(NB), and by the Tunisian Ministry for Higher Education and Scientific Re-
search within the LR-99-ES20 program (BD). The authors acknowledge GE2MI
(Groupement Euro-Maghrébin de Mathématiques et de leurs Interactions) for its
support.
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2. Geometry

In this section we define the basic notions required to understand the state-
ments of our results. We will work in special quasi-normal geodesic coordinates
near the boundary. We refer to [5, Section 5] for a more thorough and intrinsic
presentation of the geometry.

Here, M is a C 2-compact connected Riemannian manifold of dimension d
with boundary, endowed with a C 1-metric g. An example would be a bounded
open subset Ω of Rd with a C 2-boundary, that is, with the boundary given locally
by φ(x) = 0 with φ ∈ C 2(Rd) and dφ ̸= 0. Then M = Ω∪∂Ω and one can simply
consider the Euclidean metric. In the spirit of this simple example, consider an
open d-dimensional manifold1 M̃ such that M ⊂ M̃ and extend the metric g to
a neighborhood of M is a C 1-manner.

2.1. Local coordinates. Equip a compact neighborhood M̂ of M in M̃ with a
finite C 2-atlas. A local chart is denoted (O, ϕ) with O an open subset of M̂ and
ϕ a one-to-one map from O onto an open subset of Rd. Charts can be chosen so
that

ϕ(O ∩M) = ϕ(O) ∩ {xd ≥ 0} is an open subset of Rd
+,

ϕ(O ∩ ∂M) = ϕ(O) ∩ {xd = 0}, and ϕ(O \M) = ϕ(O) ∩ {xd < 0},

if O ∩ ∂M ̸= ∅. Denote the local coordinates by x = (x′, xd) with x′ ∈ Rd−1.
Note that M being compact it contains its boundary ∂M.

In a local chart, the metric g is given by gx = gij(x)dx
i ⊗ dxj, where gij ∈

C 1(ϕ(O)). We use the classical notation (gij(x))i,j for the inverse of (gij(x))i,j.
The metric gx = (gij(x))i,j provides an inner product on TxM. The metric

g∗x = gij(x)dξi ⊗ dξj provides an inner product on T ∗
xM, denoted g∗x(ξ, ξ̃), for

ξ, ξ̃ ∈ T ∗
xM. Define the associated norm

|ξ|x = g∗x(ξ, ξ)
1/2.

Near a boundary point, local coordinates are chosen according to the following
proposition. They simplify the exposition of some geometrical notions and are
key in arguments developed in what follows.

Proposition 2.1 (quasi-normal geodesic coordinates). Supposem0 ∈ ∂M. There
exists a C 2-local chart (O, ϕ) such that m0 ∈ O, ϕ(m) = (x′, z), with x′ ∈ Rd−1

and z ∈ R, and

1The manifold M̃ can be constructed by embedding M in R2d thanks to the Whitney theorem [32].
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(1) ϕ(O ∩ M) = {z ≥ 0} ∩ ϕ(O), ϕ(O ∩ ∂M) = {z = 0} ∩ ϕ(O), and
ϕ(O \M) = {z < 0} ∩ ϕ(O) ;

(2) at the boundary, the representative of the metric has the form

g(x′, z = 0) =
∑

1≤i,j≤d−1

gij(x
′, z = 0)dxi ⊗ dxj + |dz|2.

In other words the matrix of g = (gij) has the block-diagonal form at the
boundary

(2.1) g(x′, z = 0) =


0...0

10 · · · 0

∗ .

Naturally, the same form holds for g∗x = (gij(x)) at the boundary. One deduces
that

gjd(x
′, z) = zhjd(x

′, z) and gdd(x
′, z) = 1 + zhdd(x

′, z),

for some continuous functions hjd, j = 1, . . . , d.
Proposition 2.1 can be found in [8] with a different regularity level. A proof

of Proposition 2.1 at the regularity level we consider is written in Appendix B of
[5] with a generalization to other levels of regularity.

Remark 2.2. Because of the low regularity of g and M one cannot choose normal
geodesic coordinates, that is, local coordinates for which gjd = gdj = 0 for j ̸= d
and gdd = 1 near a point m0 of the boundary. The coordinates that Proposition 2.1
provides only have this property in a neighborhood of m0 within the boundary ∂M.

One sets L = R ×M and L̂ = R × M̂ . From a local chart (O, ϕ) in the

atlas for M̂ one defines a map ϕL : (t,m) 7→ (t, ϕ(m)) from O = R × O onto

R× ϕ(O), yielding a local chart (O, ϕL) for L̂ and thus a finite atlas.
For x = ϕ(m), m ∈ O ∩ M, denote by v = (v′, vd) and ξ = (ξ′, ξd) the

associated coordinates in TmM and T ∗
mM, with v′, ξ′ ∈ Rd−1 and vd, ξd ∈ R.

We write TxM and T ∗
xM by abuse of notation. In what follows, it will be

convenient to write z in place of xd, in particular for the local coordinates given
by Proposition 2.1. Accordingly we denote the associated cotangent variable ξd
by the letter ζ, that is, ξ = (ξ′, ζ). We however do not change the notation for
the associated tangent variable vd. With local charts at the boundary given by
Proposition 2.1, if x ∈ ∂M and v ∈ Tx∂M then v = (v′, 0) and we use the
bijective map (ξ′, 0) 7→ ξ′ to parameterize T ∗

x∂M.
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Also classically set

TM =
⋃
x∈M

{x} × TxM, T ∗M =
⋃
x∈M

{x} × T ∗
xM(

resp. TM̂ =
⋃
x∈M

{x} × TxM̂, T ∗M̂ =
⋃
x∈M

{x} × T ∗
xM̂

)
.

With M containing its boundary ∂M, one sees that TM (resp. T ∗M) contains
{x}×TxM (resp. {x}×T ∗

xM) for x ∈ ∂M. We denote by ∂(T ∗M) the boundary
of T ∗M that is the set of (x, ξ) with x ∈ ∂M. In the local coordinates, ∂(T ∗M)
is given by {z = 0} and T ∗M by {z ≥ 0}.

In the associated local chart on L, the representative of (t,m) ∈ L is
(t, x) = (t, x′, z). We use the letter ϱ to denote an element of T ∗L, that is,
ϱ = (t, x; τ, ξ) with (t, x) ∈ L, τ ∈ R and ξ ∈ T ∗

xM. Classically, we write T ∗L \ 0
for the set of points ϱ = (t, x; τ, ξ) with (τ, ξ) ̸= 0. The boundary ∂(T ∗L) is the
set of points ϱ = (t, x; τ, ξ) such that x ∈ ∂M. Note that ∂(T ∗L) is locally given
by {z = 0} and T ∗L is locally given by {z ≥ 0}.

2.2. Wave operators and bicharacteristics. On the manifoldM consider the
elliptic operator A = Aκ,g = κ−1 divg(κ∇g), that is, in local coordinates

Af = κ−1(det g)−1/2
∑

1≤i,j≤d

∂xi

(
κ(det g)1/2gij(x)∂xj

f
)
.

Its principal symbol is simply a(x, ξ) = −g∗x(ξ, ξ) = −gijx ξiξj = −|ξ|2x. Note that
for κ = 1, one has A = ∆g, the Laplace-Beltrami operator associated with g on
M. Together with A consider the wave operator Pκ,g = ∂2t − Aκ,g. Its principal
symbol in a local chart is given by

p(ϱ) = −τ 2 + |ξ|2x.

Note that p(ϱ) is smooth in the variables (τ, ξ) and C 1 in x.
For a function f of the variable ϱ, the Hamiltonian vector field Hf is defined

by Hf (h) = {f, h}, where {., .} is the Poisson bracket. In local coordinates one
has

Hp(ϱ) = ∂τp(ϱ)∂t +∇ξp(ϱ) · ∇x −∇xp(ϱ) · ∇ξ

= −2τ∂t + 2gij(x)ξi∂xj
− ∂xk

gij(x)ξiξj∂ξk .

Recall the following definition.
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Definition 2.3. Suppose V is an open subset of T ∗L \ ∂(T ∗L) and J ⊂ R is an
interval. A C 1-map γ : J → V ∩ Char p is called a bicharacteristic in V if

d

ds
γ(s) = Hp

(
γ(s)

)
, s ∈ J.

It is called maximal in V if it cannot be extended by another bicharacteristic also
valued in V .

Note that tHp f(ϱ) = 2τ∂tf(ϱ)−2∂xj

(
gij(x)ξif(ϱ)

)
+∂ξk

(
∂xk

gij(x)ξiξjf(ϱ)
)

and deduce

tHp = −Hp .

Recall also that

Hp f(γ(s)) =
d

ds
f(γ(s)), if γ is a bicharacteristic.(2.2)

2.3. A partition of the cotangent bundle at the boundary. Denote by
∥∂(T ∗L) ⊂ ∂(T ∗L) the bundle of points ϱ = (ϱ′, 0) = (t, x′, z = 0, τ, ξ′, 0) ∈ T ∗L
for ϱ′ = (t, x′, z = 0, τ, ξ′) ∈ T ∗∂L. Identifying ϱ′ and (ϱ′, 0) as presented above

thanks to the chosen local coordinates allows one to indentify ∥∂(T ∗L) and T ∗∂L.
Denote by π∥ the map from ∂(T ∗L) into ∥∂(T ∗L) given by

π∥(t, x
′, z = 0, τ, ξ′, ζ) = (t, x′, z = 0, τ, ξ′, 0).

Definition 2.4 (elliptic, glancing, and hyperbolic regions). One partitions ∥∂(T ∗L)
into three homogeneous regions.

(1) The elliptic region ∥E∂ = ∥∂(T ∗L) ∩ {p > 0}; if ϱ ∈ ∥E∂ it is called an
elliptic point.

(2) The glancing region ∥G∂ = ∥∂(T ∗L) ∩ {p = 0}; if ϱ ∈ ∥G∂ it is called a
glancing point.

(3) The hyperbolic region ∥H∂ = ∥∂(T ∗L) ∩ {p < 0}; if ϱ ∈ ∥H∂ it is called a
hyperbolic point.

Since p(ϱ) = −τ 2 + ζ2 + gx(ξ
′, ξ′)x by (2.1) if ϱ ∈ ∂(T ∗L), one has the

following properties:

(1) If ϱ ∈ ∥E∂ then π−1
∥

(
{ϱ}

)
∩ Char p = ∅.

(2) If ϱ ∈ ∥G∂ then π−1
∥

(
{ϱ}

)
∩ Char p = {ϱ}.
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(3) If ϱ = (t, x′, z = 0, τ, ξ′, 0) ∈ ∥H∂ then π−1
∥

(
{ϱ}

)
∩ Char p = {ϱ−, ϱ+},

where

ϱ± = (t, x′, z = 0, τ, ξ±), where ξ± = (ξ′, ζ±) with ζ± = ±
√
−p(ϱ).(2.3)

Associated with the previous partition of ∥∂(T ∗L) is a partition of Char p ∩
∂(T ∗L). Indeed, if ϱ ∈ Char p ∩ ∂(T ∗L) then π∥(ϱ) ∈ ∥∂(T ∗L) and p

(
π∥(ϱ)

)
≤ 0.

Note that having ϱ ∈ Char p ∩ ∂(T ∗L) and p
(
π∥(ϱ)

)
= 0 is equivalent to having

ϱ ∈ ∥G∂.

Definition 2.5 (partition of Char p at the boundary). One partitions Char p ∩
∂(T ∗L) into two homogeneous regions G∂ and H∂:

(1) G∂ = ∥G∂; ϱ ∈ G∂ ⇔ ϱ ∈ Char p and π∥(ϱ) = ϱ.

(2) ϱ ∈ H∂ if ϱ ∈ Char p and π∥(ϱ) ∈ ∥H∂. It is also called a hyperbolic point.
If ϱ = (t, x′, z = 0, τ, ξ′, ζ) one says that ϱ ∈ H+

∂ if ζ > 0 and ϱ ∈ H−
∂ if

ζ < 0.

Thus, if ϱ ∈ ∥H∂ then π−1
∥

(
{ϱ}

)
∩ Char p = {ϱ−, ϱ+} with ϱ+ ∈ H+

∂ and

ϱ− ∈ H−
∂ , with ϱ

± as given in (2.3).
Introducing the following involution on ∂(T ∗L)

Σ(t, x′, z = 0, τ, ξ′, ζ) = (t, x′, z = 0, τ, ξ′,−ζ),

one finds that Σ(ϱ−) = ϱ+ if ϱ ∈ ∥H∂. Thus, Σ is a one-to-on map from H−
∂ onto

H+
∂ .

2.4. Glancing region, gliding vector field, and generalized bicharacter-
istics. One computes

Hp z(ϱ) = Hp z(x, ξ) = 2gdj(x)ξj (recall xd = z and ξd = ζ).

Observe that Hp z is a C 1-function and that Hp z|z=0 = 2ζ in the present local
coordinates. Hence, locally one has

∥G∂ = G∂ = {z = Hp z = p = 0} and H±
∂ = {z = p = 0, Hp z ≷ 0}.

With (2.2) this means that a bicharacteristic going through a point ϱ ∈ H∂ has
a contact of order exactly one with the boundary: it is transverse to ∂(T ∗L). A
bicharacteristic going through a point ϱ ∈ G∂ has a contact of order greater than
or equal to two: it is tangent to ∂(T ∗L).

One can further compute H2
p z. It is a continuous and gives the following

partition of G∂.
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Definition 2.6 (partition of G∂). Introduce

Gd
∂ = {ϱ ∈ G∂; H

2
p z(ϱ) > 0},

G3
∂ = {ϱ ∈ G∂; H

2
p z(ϱ) = 0},

Gg
∂ = {ϱ ∈ G∂; H

2
p z(ϱ) < 0}.

One calls Gd
∂ the diffractive set, Gg

∂ the gliding set. One calls G3
∂ the glancing set

of order three: if ϱ0 ∈ G3
∂ a bicharacteristic that goes through ϱ0 has a contact

with the boundary of order greater than or equal to three.

On ∥∂(T ∗L) one defines

HG
p (ϱ) =

(
Hp+

H2
p z

H2
z p

Hz

)
(ϱ),

referred to as the gliding vector field. In the present coordinates one has H2
z p = 2.

Define the following vector field on T ∗L

GX(ϱ) =

{
Hp(ϱ) if ϱ ∈ T ∗L \ Gg

∂ ,

HG
p (ϱ) if ϱ ∈ Gg

∂ ,

that is, GX = Hp +1Gg
∂
(HG

p −Hp). More explainations on the vector field HG
p are

given in Section 5 in the companion article [5].

Definition 2.7 (generalized bicharacteristic). Let J ⊂ R be an interval, B a
discrete subset of J , and

Gγ : J \B → Char p ∩ T ∗L.

One says that Gγ is a generalized bicharacteristic if the following properties hold:

(1) For s ∈ J \B, Gγ(s) /∈ H∂ and the map Gγ is differentiable at s with

d

ds
Gγ(s) = GX

(
Gγ(s)

)
.

(2) If S ∈ B, then Gγ(s) ∈ T ∗L \ ∂(T ∗L) for s ∈ J \B sufficiently close to S
and moreover
(a) if [S−ε, S] ⊂ J for some ε > 0, then Gγ(S−) = lims→S− Gγ(s) ∈ H−

∂ ;
(b) if [S, S+ε] ⊂ J for some ε > 0, then Gγ(S+) = lims→S+

Gγ(s) ∈ H+
∂ ;

(c) and if [S − ε, S + ε] ⊂ J for some ε > 0, then Gγ(S+) = Σ
(
Gγ(S−)

)
.
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Recall that T ∗L contains its boundary ∂(T ∗L); as a result a generalized
bicharacteristic Gγ(s) may lie in the boundary for s in some interval. Details on
generalized bicharacteristics can be found in Section 5 of the companion article [5].

When one refers to a (generalized) bicharacteristic one often means the
points visited in T ∗L by s 7→ Gγ(s) as s varies, that is,

{Gγ(s); s ∈ J \B}.

Observe however that this set may not be a closed set if B ̸= ∅ as its intersection
with H∂ is empty. Consequently, we rather use its closure to describe the set of
reached points.

Definition 2.8 (generalized bicharacteristic). By generalized bicharacteristic one
also refers to

Gγ̄ = {Gγ(s); s ∈ J \B} = {Gγ(s); s ∈ J \B} ∪
⋃
s∈B

{Gγ(s−), Gγ(s+)}.

The following theorem states that for every point of T ∗L one can find a
maximal generalized bicharacteristic that goes through this point.

Theorem 2.9. Suppose J \ B ∋ s 7→ Gγ(s) = (t(s), x(s), τ(s), ξ(s)) is a gen-
eralized bicharacteristic. If Gγ is maximal then J = R. Moreover, t(R) = R if
τ(s) = Cst ̸= 0.

If ϱ0 ∈ Char p ∩ T ∗L there exists a maximal generalized bicharacteristic
s 7→ Gγ(s) with s ∈ R \ B such that Gγ(0) = ϱ0 if ϱ0 /∈ H∂ and Gγ(0±) = ϱ0 if
ϱ0 ∈ H±

∂ .

Note that there is no uniqueness of such a maximal generalized bicharac-
teristic because of the limited smoothness of GX. This result is classical in the
case of smooth coefficients; see [27] or [20, Section 24.3]. Here, in the case of the
present limited smoothness it can be proven with the arguments developed in the
companion article; see [5, Appendix A] for a proof.

2.5. Geometric control conditions. In the present low regularity framework
we state the geometric control conditions (GCC) that coincide with the usual
definitions found in the literature. First, we state the interior geometric control
condition.
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Definition 2.10 (interior geometric control). Let ω be an open subset of M.
One says that ω controls geometrically the manifold M if there exists T > 0 such
that any generalized bicharacteristic reaches a point above ]0, T [×ω. One says
that (ω, T ) fulfills GCC. In such case, one sets

TGCC(ω) = inf{T > 0; (ω, T ) fulfills GCC}.

To state the boundary geometric control we introduce the notion of bound-
ary escape point.

Definition 2.11 (boundary escape point). (1) a point ϱ ∈ ∂(T ∗L) is said to
be a boundary escape point in the future if locally in time all bicharacter-
istics initiated at ϱ immediately leave T ∗L in the future. One denotes by
BF
esc the set of all such points

(2) a point ϱ ∈ ∂(T ∗L) is said to be a boundary escape point in the past if
locally in time all bicharacteristics initiated at ϱ immediately leave T ∗L
in the past. One denotes by BP

esc the set of all such points
Moreover Besc = BF

esc ∪ BP
esc is called the boundary escape set and points in

Besc are the boundary escape points.

The reader should note that the definition of escape points relies on bichar-
acteristics, that is, integral curves of Hp in Char p ⊂ T ∗L̂, and not on the notion
of generalized bicharacteristics. The latter curves do remain in T ∗L.
Lemma 2.12. The following properties hold.

(1) H−
∂ ⊂ BF

esc \ BP
esc and H+

∂ ⊂ BP
esc \ BF

esc.
(2) Gg

∂ ⊂ BF
esc ∩ BP

esc.
(3) Gd

∂ ∩ Besc = ∅.
(4) G∂ \ Besc ⊂ Gd

∂ ∪ G3
∂.

Definition 2.13 (boundary geometric control). Let Γ be an open subset of ∂M.
One says that Γ controls geometrically the manifold M if there exists T > 0 such
that any generalized bicharacteristic encounters a boundary escape point above
]0, T [×Γ. One says that (Γ, T ) fulfills GCC. In such case, one sets

TGCC(Γ) = inf{T > 0; (Γ, T ) fulfills GCC}.

2.6. Invariant measure supports. For a manifold M ∈ X 1 we will consider
an extension M̃ as in the begining of Section 2. The following result is proven in
the companion article [5].

Theorem 2.14. Let (M, κ, g) ∈ X 1 and let µ and ν be two nonnegative mea-

sure densities on T ∗L̂ and T ∗∂L ≃ ∥∂(T ∗L) respectively that fulfill the following
properties:
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(1) suppµ ⊂ Char p ∩ T ∗L \ 0.
(2) One has, in the sense of distributions,

Hp µ = −tHp µ =

∫
ϱ∈∥H∂∪∥G∂

δϱ+ − δϱ−

⟨ξ+ − ξ−, nx⟩T ∗
xM,TxM

dν(ϱ),(2.4)

where ϱ± and ξ± are as given in (2.3). Here, nx stands for the unitary
inward pointing normal vector in the sense of the metric.

Then, the support of the measure µ is a union of maximal generalized bicharac-
teristics.

With the notation of Definitions 2.7 and 2.8, the result of Theorem 2.14
means that if ϱ ∈ suppµ, there exists a maximal generalized bicharacteristic
s→ Gγ(s), s ∈ R \B such that ϱ ∈ Gγ̄ ⊂ suppµ.

The identification T ∗∂L ≃ ∥∂(T ∗L) is explained in Section 2.3.

Remark 2.15. If ϱ ∈ ∥G∂ then ϱ− and ϱ+ coincide with ϱ and ξ+ = ξ−. The
value of the integrand in (2.4) thus requires some explanation in this case. In fact,

first consider ϱ0 = (ϱ0′, 0) ∈ ∥H∂ with ϱ0′ = (t0, x0′, z = 0, τ 0, ξ0′). Then ϱ0,± ̸= ϱ0

and (2.3) give ξ0,+ − ξ0,− = 2ζdz, yielding ⟨ξ0,+ − ξ0,−, nx0⟩T ∗
xM,TxM = 2ζ since

nx = ∂z in the coordinates we consider here. Considering a C 1-test function q(ϱ)
one has

⟨δϱ0,+ − δϱ0,− , q⟩ = q
(
ϱ0′, ζ

)
− q

(
ϱ0′,−ζ

)
.

The integrand is thus

q
(
ϱ0′, ζ

)
− q

(
ϱ0′,−ζ

)
2ζ

.

If now a sequence (ϱ(n))n ⊂ ∥H∂ converges to ϱ ∈ ∥G∂ then

⟨δϱ(n),+ − δϱ(n),− , q⟩
⟨ξ(n),+ − ξ(n),−, nx⟩T ∗

xM,TxM
→ ∂ζq(ϱ).

The integrand in (2.4) for ϱ ∈ ∥G∂ is thus to be understood as the derivative
with respect to the variable ζ at ζ = 0. Note that this interpretation is very
coordinate dependent. We give a more geometrical interpretation using more
intrinsic coordinates in the companion article [5, Section 5.7].

This result was proven in [2, Théorème 3] in the case (M, κ, g) ∈ X 2.
The proof of the result of Theorem 2.14 in [5] is more intricate due to the lower
regularity of the metric g and the function κ.
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3. A priori estimates and exact controllability

In this section we consider (M, κ, g) ∈ Y1, that is, M is W 2,∞ and both κ
and the metric g are Lipschitz.

First we recall a classical a priori estimation for the normal derivative
of a solution to the wave equation. Second, we recall the equivalence between
observablity and exact controllability.

3.1. Normal derivative estimation. Denote by n the unitary normal inward
pointing vector field to ∂M in the sense of the metric. It has the regularity of
the metric, that is Lipschitz here. For a function w and x ∈ ∂M then ∂nw(x) =
n(w)(x) = dw(x)(nx). In the quasi-normal geodesic coordinates of Propositon 2.1
that can also be obtained in the Y1-regularity setting [5, Appendix B] one has
n = ∂xd

and thus ∂nw = ∂dw.

Proposition 3.1. Assume that (M, κ, g) ∈ Y1. For any T > 0 there exists
C > 0 depending only on T , M, ∥κ∥W 1,∞(M), ∥g∥W 1,∞T 0

2 (M) such that for any

(u0, u1) ∈ H1
0 (M) × L2(M) and f ∈ L2

loc(L), if u is the solution to the wave
equation (1.3) then

∥∂nu∥2L2(]0,T [×∂M)

≤ C
( ∫ T+1

−1

Eκ,g(u)(t) dt+ ∥∇gu∥L2(−1,T+1;L2V (M))∥f∥L2(]−1,T+1[×M)

)
.

Below we will use the Neumann trace as an observation operator for the
wave equation. In this context, with f = 0, Proposition 3.1 provides a so-called
admissibility result; see for instance [31].

Note that a more usual and natural form of the estimation is simply

∥∂nu∥2L2(]0,T [×∂M) ≲
∫ T+1

−1

Eκ,g(u)(t) dt+ ∥f∥2L2(]−1,T+1[×M).

This form is however not sufficient in one argument we use in what follows; we
refer to the use of Proposition 3.1 made below (7.3).

Note that since u vanishes on ∂M one has ∥∇gu|∂M∥ = |∂nu|. The result
of the previous proposition thus can be transferred to ∥∇gu|R×∂M∥

L2(]0,T [×∂M)
.

The proof of Proposition 3.1 follows from an examination of the standard
proof and a carefull handling of the low regularity metric. We will also need to
approach the weak solution to the wave equation 1.3 by a sequence of strong
solutions.
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Proposition 3.2. Suppose that (u0, u1) ∈
(
H2(M)∩H1

0 (M)
)
×H1

0 (M) and that
f ∈ L1

loc(H
1
0 (R;M)). There exists a unique

u ∈ C 0
(
R;H2(M) ∩H1

0 (M)
)
∩ C 1

(
R;H1

0 (M)
)
∩ C 2

(
R;L2(M)

)
that is a strong solution of (1.3) meaning that (u, ∂tu)|t=0 = (u0, u1) and Pκ,gu =

f holds in L1
loc

(
R;L2(M)

)
.

Note that a strong solution is also a weak solution. Then, if (u0, u1) ∈
H1

0 (M)× L2(M), f ∈ L1
loc(R;L2(M)) and u is the weak solution to (1.3) given

by Propostion 1.1 and if (u0n, u
1
n)n ⊂

(
H2(M) ∩ H1

0 (M)
)
× H1

0 (M), (fn)n ⊂
L1
loc(H

1
0 (R;M)), with (un)n the sequence of associated strong solutions, are such

that (u0n, u
1
n) → (u0, u1) in H1

0 (M)⊕L2(M), and fn → f in L1
loc(R;L2(M)) then

un → u in C 0
(
R;H1

0 (M)
)
∩C 1

(
R;L2(M)

)
from the continuity of the map (1.4).

Proof of Proposition 3.1. First we consider the case of a strong solution

u ∈ C 0
(
R;H2(M) ∩H1

0 (M)
)
∩ C 1

(
R;H1

0 (M)
)
∩ C 2

(
R;L2(M)

)
,

with f ∈ L2
loc(L).

Consider a Lipschitz vector field X that coincides with n on the boundary.
We view X as a first-order differential operator. For χ ∈ C ∞

c (−1, T + 1), non-
negative and equal to 1 on ]0, T [, one finds that [P, χ(t)X]u ∈ C 0

(
R;L2(M)

)
.

Set I = ([P, χ(t)X]u, u)L2(L). With the Green formula, that is, two integrations
by parts, one finds

∥∂nu∥2L2(]0,T [×∂M) ≤ (χ(t)Xu|∂M, ∂nu)L2(∂L)(3.1)

≤ I − (χ(t)Xu, f)L2(L) + (f, χ(t)X∗u)L2(L)

≲ I + ∥∇gu∥L2(−1,T+1;L2V (M))∥f∥L2(]−1,T+1[×M).

Writing [P, χ(t)X] = [∂2t , χ(t)]X − χ(t)[A,X]. One has I = J −K with

J =

∫
R
⟨[∂2t , χ(t)]Xu, ū⟩H−1(M),H1

0 (M)dt,

K =

∫
R
⟨χ(t)[A,X]u, ū⟩H−1(M),H1

0 (M)dt.

Since [∂2t , χ] is a first-order operator and compactly supported (in time) we can
integrate by parts in the time variable and obtain the bound, using the Poincaré
inequality,

|J | ≲
∫ T+1

−1

(
∥∂tu∥L2(M) + ∥u∥L2(M)

)
∥∇gu∥L2V (M) dt ≲

∫ T+1

−1

Eκ,g(u)(t) dt.

(3.2)
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To estimate |K| we use a partition of unity subordinated to an atlas on M and
we consider the commutator [A,X] in local coordinates. Recall that A takes the
form

A = κ̃−1∂xi
◦ κ̃gij∂xj

with κ̃ = κ(det g)1/2 where we use Eistein’s summation convention. One thus
finds

[A,X] = κ̃−1∂xi
◦ κ̃gij[∂xj

, X] + κ̃−1∂xi
◦ [κ̃gij, X] ◦ ∂xj

(3.3)

+ κ̃−1 ◦ [∂xi
, X] ◦ κ̃gij∂xj

+ [κ̃−1, X] ◦ ∂xi
◦ κ̃gij∂xj

.

Write K = K1+ · · ·+K4 in association with the four terms in (3.3). Since X has
Lipschitz coefficients then [∂xk

, X] is a vector field with bounded coefficients and
[κ̃gij, X] is a bounded function in the local coordinates. Thus, with an integration
by parts in space the contribution |K1|, |K2|, and |K3| can by estimated by

|K1|+ |K2|+ |K3| ≲
∫
R
χ(t)∥∇gu∥2L2V (M) dt.(3.4)

For the term K4 since [κ̃−1, X] is only bounded, an integration by parts in space
is not possible. Instead, exploiting that u is a solution to the homogenous wave
equation one writes

[κ̃−1, X] ◦ ∂xi
◦ κ̃gij∂xj

u = [κ̃−1, X]κ̃Au = [κ̃−1, X]κ̃∂2t u.

This now allows one to perform an integration by parts with respect to the time
variable yielding

|K4| ≲
∫ T+1

−1

∥∂tu∥2L2(M)dt+

∫ T+1

−1

∥u∥L2(M)∥∂tu∥L2(M)dt(3.5)

+ ∥u∥L2(]−1,T+1[×M)∥f∥L2(]−1,T+1[×M)

≲
∫ T+1

−1

Eκ,g(u)(t) dt+ ∥∇gu∥L2(−1,T+1;L2V (M))∥f∥L2(]−1,T+1[×M).

Combining (3.1), (3.2), (3.4) and (3.5) gives

∥∂nu∥2L2(]0,T [×∂M) ≲
∫ T+1

−1

Eκ,g(u)(t) dt(3.6)

+ ∥∇gu∥L2(−1,T+1;L2V (M))∥f∥L2(]−1,T+1[×M).

If u is now a weak solution, if one approches u by a sequence of strong solu-
tions as described below Proposition 3.2 one finds that the normal trace ∂nu|∂M
makes sense in L2(]0, T [×∂M) and (3.6) remains true for the weak solution. □
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3.2. Exact controllability notions. We make the classical connexion between
the observability properties of the homogeneous wave equation given in (1.5)
and the exact controllability of the wave equations. We will consider two differ-
ent wave equations here, one with an interior source term and a homogeneous
Dirichlet boundary condition and one with a boundary source term through the
Dirichlet boundary condition. In each case we describe what is meant by exact
controllability.

3.2.1. Exact interior controllability. Suppose ω is an open subset of M. The
notion of exact interior controllability for the wave equation on M from ω in
time T is stated as follows.

Definition 3.3 (exact interior controllability in H1
0 (M) ⊕ L2(M)). One says

that the wave equation is exactly controllable from ω in time T > 0 if for any
(y0, y1) ∈ H1

0 (M) × L2(M), there exists f ∈ L2(]0, T [×M) such that the weak
solution y to

Pκ,gy = 1]0,T [×ω f, y|R×∂M = 0, (y, ∂ty)|t=0 = (y0, y1),

as given by Proposition 1.1 satisfies (y, ∂ty)|t=T = (0, 0). The function f is called
the control function or simply the control.

3.2.2. Exact boundary controllability. Consider the nonhomogeneous wave equa-
tion with source term given by a Dirichlet boundary condition.

Pκ,g y = 0 in R×M,

y = f∂ on R× ∂M,

y|t=0 = y0, ∂ty|t=0 = y1 in M,

(3.7)

Standard results show that it is well-posed.

Proposition 3.4. Consider κ and g both Lipschitz. Let (y0, y1) ∈ L2(M) ×
H−1(M) and f∂ ∈ L2

loc(R× ∂M). There exists a unique

y ∈ C 0
(
R;L2(M)

)
∩ C 1

(
R;H−1(M)

)
.

that is a weak solution of (3.7).

Let Γ be a nonempty open subset of ∂M and T > 0. The notion of exact
boundary controllability for the wave equation from Γ in time T is stated as
follows.
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Definition 3.5 (exact boundary controllability in L2(M)⊕H−1(M)). One says
that the wave equation is exactly controllable from Γ in time T > 0 if for any
(y0, y1) ∈ L2(M)×H−1(M), there exists f∂ ∈ L2(]0, T [×∂M) such that the weak
solution y to

Pκ,gy = 0, y|R×∂M = 1]0,T [×Γf∂, (y, ∂ty)|t=0 = (y0, y1),

as given by Proposition 3.4 satisfies (y, ∂ty)|t=T = (0, 0). The function f∂ is called
the control function or simply the control.

3.3. Exact controllability equivalent to observability and corollaries.
The following proposition is standard and states that in the two cases we consider
exact controllability is equivalent to an obserbability inequality.

Proposition 3.6. (1) Let ω be an open subset of M and T > 0. The wave
equation is exactly controllable from ω in time T if and only if the homo-
geneous wave equation is observable from ω in time T .

(2) Let Γ be a nonempty open subset of ∂M and T > 0. The wave equation
is exactly controllable from Γ in time T if and only if the homogeneous
wave equation is observable from Γ in time T .

With the previous proposition and Theorem 1.8 one deduces the following
corollary.

Corollary 3.7 (Exact controllability result). Let (M, κ, g) ∈ X 1.
Interior exact controllability. Let ω be an open subset of M that sat-

isfies the interior geometric control condition associated with the infimum time
TGCC(ω). Let T > TGCC(ω). Then, there exists ε > 0 such that if (M̃, κ̃, g̃, ω̃)
is ε-close to (M, κ, g, ω) in the Y1-topology in the sense of Defintion 1.3 for
(M̃, κ̃, g̃) ∈ Y1 and ω̃ an open subset of M̃, then the wave equation associated
with Pκ̃,g̃ on M̃ is exactly controllable from ω̃ in time T .

Boundary exact controllability. Let Γ be an open subset of ∂M such
that Γ satisfies the boundary geometric control condition associated with the in-
fimum time TGCC(Γ). Let T > TGCC(Γ). Then, there exists ε > 0 such that if
(M̃, κ̃, g̃, Γ̃) is ε-close to (M, κ, g,Γ) in the Y1-topology in the sense of Defin-
tion 1.3 for (M̃, κ̃, g̃) ∈ Y1 and Γ̃ an open subset of ∂M̃, then the wave equation
associated with Pκ̃,g̃ on M̃ is exactly controllable from Γ̃ in time T .

4. Semi-classical reduction

In [4], on a compact manifold without boundary, we proved an interior ob-
servability estimate for the Klein-Gordon equation by means of microlocal defect
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measures. The more general case we consider here, in the presence of a boundary
is technically more involved and requires a semi-classical approach. We recall
in this section how observability estimates as in Definitions 1.4 and 1.5 can be
obtained from counterpart semi-classical observability estimates.

4.1. Dyadic decomposition. Consider (κ, g) ∈ X 1(M) and the associated op-
erator A = Aκ,g with Dirichlet boundary conditions. Denote by λν the nonde-
creasing sequence of positive eigenvalues of −A that goes to +∞ and consider
(eν)ν a Hilbert basis of L2(M) = L2(M, κµg) of associated real eigenfunctions.

Let 0 < α < 1, ϱ ∈]1, 1/α[ and set hk = ϱ−|k| and

Jk = {ν ∈ N; α ≤ hk
√
λν < α−1} = {ν ∈ N; αϱ|k| ≤

√
λν < ϱ|k|/α},

for k ∈ Z∗. Introduce

Ek = span{eν ; ν ∈ Jk},

equipped with the L2-norm ∥u∥2L2(M) = ∥u∥2L2(M,κµg)
=

∑
ν∈Jk |uν |

2 for u =∑
ν∈Jk uνeν ∈ Ek. Observe that if u ∈ Ek then Anu ∈ Ek. Hence, Ek is a

subspace of all the iterated domains of A.
At this stage it is important to note that J−k = Jk implying E−k = Ek.

However, we will identify u ∈ Ek with the following solution of the wave equation

u =
∑
ν∈Jk

esgn(k)it
√
λνuνeν .

The sign of k here becomes important. Yet, note that u ∈ Ek if and only if
ū ∈ E−k, through this identification since the eigenfunctions eν are chosen real.

Following up, we identify ∂ℓtu with u =
∑

ν∈Jk(i sgn(k))
ℓλℓ/2ν uνeν ∈ Ek, its

value at t = 0. Similarly, one identifies Asu with
∑

ν∈Jk λ
s
νuνeν ∈ Ek.

Lemma 4.1. For u ∈ Ek, the norms

∥hk∇gu∥L2V (M) and ∥hk∂tu∥L2(M)

are both equivalent to ∥u∥L2(M), uniformly with respect to k ∈ Z. More generally,

for ℓ ∈ N and s ∈ R, the norm hℓ+2s
k ∥∂ℓtAsu∥L2(M) is equivalent to ∥u∥L2(M) for

u ∈ Ek, uniformly with respect to k ∈ Z∗.

Proof. For the first result one writes

∥hk∇gu∥2L2V (M) = (h2kAu, u)L2(M) = ∥hk∂tu∥2L2(M).

Then one concludes using hkλ
1/2
ν ≂ 1 for ν ∈ Jk. □



28 NICOLAS BURQ, BELHASSEN DEHMAN, AND JÉRÔME LE ROUSSEAU

As a consequence the L2-norm and the square root of the semi-classical
energy Eh(u)

Eh(u) =
1

2

(
∥hk∇gu∥2L2V (M) + ∥hk∂tu∥2(M)

)
= h2kE(u),(4.1)

are equivalent on Ek. Note that for u ∈ Ek both terms in the semi-classical energy
coincide; this is not the case in general for a solution of the wave equation.

We introduce the following sets of sequences of functions

B =
{
(uk)k∈Z∗ ; uk ∈ Ek and ∥uk∥L2(M) ≤ 1

}
,

B± =
{
(uk)k∈±N∗ ; uk ∈ Ek and ∥uk∥L2(M) ≤ 1

}
.

4.2. Semi-classical observation. The result of Proposition 4.3 below for bound-
ary observation is proven in [2, Section 4] following a strategy of G. Lebeau [24].
The result of Proposition 4.2 for interior observation can be proven similarly. In
[2] domains and metrics are smoother, yet lowering the regularity does not affect
the proof that is only based on semi-classical analysis arguments with respect
to the time variable. In fact, the proofs of both propositions can be carried out
within an abstract framework that can be found in [6].

Proposition 4.2 (interior semi-classical observation implies classical observa-
tion). Let ω be a nonempty open subset of M. Assume that there exists C > 0,
k0 > 0, and δ > 0, such that for any U = (uk)k∈N ∈ B+ and any k ≥ k0 one has

(4.2) ∥uk|t=0∥L2(M)
≤ C∥1I×ωhk∂tu

k∥L2(R×M), with I =]δ, T − δ[.

Then, the homogeneous wave equation is observable from ω in time T > 0 in the
sense of Definition 1.4.

Proposition 4.3 (boundary semi-classical observation implies classical observa-
tion). Let Γ be a nonempty open subset of ∂M. Assume that there exists C > 0,
k0 > 0, and δ > 0 such that for any U = (uk)k∈N ∈ B+ and any k ≥ k0, one has

(4.3) ∥uk|t=0∥
2

L2(M)
≤ C∥1I×Γhk∂nu

k∥L2(R×∂M), with I =]δ, T − δ[.

Then, the homogeneous wave equation is observable from Γ in time T > 0 (in the
sense of Definiton 1.5).

Propositions 4.2 and 4.3 state that if an observability inequality as in Def-
inition 1.4 or Definiton 1.5 holds in Ek uniformly for large |k|, then it also holds
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for any initial data with possibly a small loss (here δ on each side) in the time
interval required for observation.

The proof presented in [6] is based on several properties of the observation
operator L, here L = 1I×ωhk∂t in the first case and L = 1I×Γhk∂n in the second
case:

(1) a unique continuation property, Lu = 0 implying u = 0 for eigenfunctions
of the operator Aκ,g; this condition holds in the both cases we consider;
see for instance [19, Theorem 2.4] and [22, Theorems 5.11 and 5.13].

(2) an optional admissibility condition, here given by Proposition 3.1 in the
case L = 1I×Γhk∂n. In the first case, L = 1I×ωhk∂t the admissibility
condition is trivial.

Remark 4.4. In (4.1), we pointed out that the L2-norm ∥.∥L2(M) is equivalent

to the square root of the semi-classical energy Eh(u), uniformly in k. Here, Eh(u)
is constant w.r.t. time t, since uk is solution of the homogeneous wave equation.
Consequently, one can also replace the l.h.s. in (4.3) and (4.2) by

∥uk∥2L∞(R;L2(M)) or ∥uk∥2L2(J×M),

for any finite interval J ⊂ R.

5. Semi-classical operators and measures

5.1. The Schur lemma. Here, we recall a result that is important in our anal-
ysis of some semi-classical operators on Rd in what follows.

Lemma 5.1 (Schur’s Lemma). Let K(x, y) be a measurable function on Rd ×
Rd such that K(x, .) and K(., y) are L1-functions for almost all x and y in Rd

respectively, with moreover

ess sup
x∈Rd

∥K(x, .)∥L1(Rd) ≤ A and ess sup
y∈Rd

∥K(., y)∥L1(Rd) ≤ B,

for some A ≥ 0 and B ≥ 0. Then, the operator K with Schwartz kernel K(., .)
extends as a continuous operator on L2(Rd) with ∥K ∥L(L2(Rd)) ≤ (AB)1/2.

Assume that the kernel of the operator K is of the form

K(x, y) = h−d k
(
x,
x− y

h

)
,
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for some measurable function k defined on Rd × Rd. Changes of variables give

∥K(x, .)∥L1(Rd) = ∥k(x, .)∥L1(Rd),

∥K(., y)∥L1(Rd) = ∥k(y + h . , .)∥L1(Rd).

The Schur Lemma can be translated accordingly.

Lemma 5.2. Let the operator K have Schwartz kernel K(x, y) = h−d k
(
x, x−y

h

)
with the function k satisfying

ess sup
x∈Rd

∥k(x, .)∥L1(Rd) ≤ A and ess sup
y∈Rd

∥k(y + h . , .)∥L1(Rd) ≤ B,

for some A ≥ 0 and B ≥ 0. Then, the operator K with Schwartz kernel K(., .)
extends as a continuous operator on L2(Rd) with ∥K ∥L(L2(Rd)) ≤ (AB)1/2.

Corollary 5.3. Let the operator K have Schwartz kernel K(x, y) = h−d k
(
x, x−y

h

)
with the function k satisfying

|k(x, v)| ≤ L0⟨v⟩−d−δ, x ∈ Rd, v ∈ Rd,

for some δ > 0 and L0 > 0. Then, K extends as a continuous operator on
L2(Rd) with ∥K ∥L(L2(Rd)) ≤ Cd,δL0 for some Cd,δ > 0.

5.2. Semi-classical operators on Rd. We recall and develop here some aspects
of semi-classical pseudo-differential operators associated with symbols with fairly
low regularity.

Let h0 > 0. In the semi-classical setting we denote by h ∈ (0, h0] a small
parameter.

Definition 5.4 (symbols). Let m,n ∈ N ∪ {+∞}, with n ≥ d+ 1, and N ∈ R+.
Denote by Σm,n(⟨ξ⟩−N ;R2d) the space of all functions a(x, ξ), x ∈ Rd, ξ ∈ Rd,

such that ∂αx∂
β
ξ a ∈ L1

loc(R2d) for α, β ∈ Nd with |α| ≤ m, |β| ≤ n, and

(5.1) M−N
m,n(a) := max

|α|≤m
|β|≤n

ess sup
(x,ξ)

∣∣∂αx∂βξ a(x, ξ)∣∣⟨ξ⟩N <∞.

In addition, one sets Σm,n
0 (⟨ξ⟩−N ;R2d), n ≥ d + 1, as the set of all symbols

a ∈ Σm,n(⟨ξ⟩−N ;R2d) with moreover ∂αx∂
β
ξ a ∈ C0(R2d) for α, β ∈ Nd with |α| ≤ m

and |β| ≤ n− 1− d.

Recall that C0(R2d) is the space of continuous functions on R2d that con-
verge to 0 at infinity. Both spaces Σm,n(⟨ξ⟩−N ;R2d) and Σm,n

0 (⟨ξ⟩−N ;R2d) are
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complete if equipped with the norm M−N
m,n(.). The space C ∞

c (R2d) is dense in

Σm,n
0 (⟨ξ⟩−N ;R2d) for N > 0.

At first, we will be interested in the case N = d+ 1. Since

Σm′,n′
(⟨ξ⟩−N ′

;R2d) ⊂ Σm,n(⟨ξ⟩−N ;R2d)

if m′ ≥ m, n′ ≥ n, and N ′ ≥ N , set

Σ(R2d) = Σ0,d+1(⟨ξ⟩−(d+1);R2d).

Set also

Σ0(R2d) = Σ0,d+1
0 (⟨ξ⟩−(d+1);R2d).

Faster decay with respect to ξ will be considered, starting in Section 7.2.
For symplicity, we will use

Σ∞,∞
0 (⟨ξ⟩−∞;R2d) =

⋂
N≥0

Σ∞,∞
0 (⟨ξ⟩−N ;R2d)(5.2)

in those later sections.

Definition 5.5 (semi-classical operators). For u ∈ S (Rd) and a ∈ Σ(R2d) one
sets

(5.3) Oph(a)u(x) = a(x, hDx)u(x) = (2π)−d

∫
eix·ξa(x, hξ)û(ξ)dξ.

The Schwartz kernel of Oph(a) is given by

Ka(x, y) = (2π)−d

∫
ei(x−y)·ξa(x, hξ)dξ = (2πh)−d

∫
ei

x−y
h

·ξa(x, ξ)dξ

= h−dka
(
x,
x− y

h

)
,

with

(5.4) ka(x, v) = (2π)−d

∫
eiv·ξa(x, ξ)dξ.

Note that (5.4) is well defined in the sense of classical integrals by the decay
property in the variable ξ of the symbol a. Observe that L exp(iv ·ξ) = exp(iv ·ξ)
with L = (1− iv · ∇ξ)/⟨v⟩2 leading to, with integrations by parts,

ka(x, v) = (2π)−d

∫
eiv·ξ(tL)Na(x, ξ)dξ,
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for N ≤ d+ 1, with tL = (1 + iv · ∇ξ)/⟨v⟩2. One then obtains

|ka(x, v)| ≲M
−(d+1)
0,d+1 (a)⟨v⟩−(d+1), v ∈ Rd, x ∈ Rd a.e..(5.5)

With Corollary 5.3 one deduces the boundedness of Oph(a) on L2(Rd) with a as
above.

Lemma 5.6. Let a ∈ Σ(R2d). Then Oph(a) extends as a uniformly bounded
operator on L2(Rd) and

∥Oph(a)∥L(L2(Rd)) ≤ CdM
−(d+1)
0,d+1 (a).

The following remark will be used in what follows.

Remark 5.7. If a ∈ Σ0,d+2(⟨ξ⟩−(d+1);R2d), note that one has

k∂ξja(x, v) = −ivjka(x, v), j = 1, . . . , d.(5.6)

In fact, with an integration by parts one has

k∂ξja(x, v) = (2π)−d

∫
eiv·ξ∂ξja(x, ξ)dξ

= −(2π)−d

∫
∂ξj

(
eiv·ξ

)
a(x, ξ)dξ = −ivjka(x, v).

Lemma 5.8. Let a ∈ Σ0(R2d). Then, ka(x, v) → 0 as |x| → ∞ uniformly with
respect to v ∈ Rd.

Proof. One writes |ka(x, v)| ≤ g(x) = (2π)−d
∫
|a(x, ξ)|dξ. Since |a(x, ξ)| ≲

⟨ξ⟩−d−1, one finds that g(x) → 0 as |x| → ∞ by the dominated-convergence
theorem. □

The following lemma will be of great use in what follows.

Lemma 5.9. Let a ∈ Σ0(R2d). Let ρh(x, v) ∈ C 0(Rd × Rd) be such that

(1) ∥ρh∥L∞ ≤ C0 uniformly in h,
(2) ρh(x, v) → 0 as h→ 0 uniformly for (x, v) in any compact set.

Then, one has

ess sup
x∈Rd

∥ρhka(x, .)∥L1(Rd) → 0 and ess sup
x∈Rd

∥ρhka(x+ h., .)∥L1(Rd) → 0,

as h→ 0, with ka(x, v) as in (5.4).
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Proof. Set mh = ρhka. For R > 0, by (5.5) one writes∫
|v|>R

|mh(x, v)| dv ≲ C0

∫
|v|>R

⟨v⟩−(d+1)dv,

for almost all x ∈ Rd. Let ε > 0. For R > 0 chosen sufficiently large one has∫
Rd

|mh(x, v)|dv ≤ ε+

∫
|v|≤R

|mh(x, v)| dv, x ∈ Rd a.e..(5.7)

Next, one writes ∫
|v|≤R

|mh(x, v)| dv ≤ C0

∫
|v|≤R

|ka(x, v)| dv.

Thus, by Lemma 5.8, for some R′ > 0, one has
∫
|v|≤R |mh(x, v)| dv ≤ ε/C0 for

|x| ≥ R′. One thus has

ess sup
|x|≥R′

∫
Rd

|mh(x, v)| dv ≤ 2ε.

Consider now the case |x| ≤ R′. By hypothesis |ρh(x, v)| → 0 as h→ 0 uniformly
with respect to x and v if |x| ≤ R′ and |v| ≤ R. With (5.5) one finds∫

|v|≤R

|mh(x, v)| dv ≲
∫
|v|≤R

|ρh(x, v)| dv,

for almost all x such that |x| ≤ R′. One thus finds that
∫
|v|≤R |mh(x, v)| dv ≤ ε

for such x and for h > 0 chosen sufficiently small. With (5.7) one thus concludes
that

ess sup
|x|≤R′

∫
Rd

|mh(x, v)| dv ≤ 2ε,

if h > 0 is chosen sufficiently small and thus ess supx∈Rd

∫
Rd |mh(x, v)| dv ≤ 2ε.

One obtains mutatis mutandis that ess supx∈Rd

∫
Rd |mh(x+ hv, v)| dv ≤ 2ε,

for h chosen sufficiently small. □

Proposition 5.10. Let a ∈ Σ0(R2d).

(1) Consider θ ∈ C 0(Rd) ∩ L∞(Rd). one has

(5.8) lim
h→0

∥[a(x, hDx), θ]∥L(L2(Rd)) = 0.
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(2) More generally, if (θk)k∈N ⊂ L∞(Rd), θ ∈ C 0(Rd+1) is such that ∥θk −
θ∥L∞ → 0 as k → +∞, then

(5.9) ∥[a(x, hDx), θk]∥L(L2(Rd)) = o(1)h→0 and k→∞.

(3) Assume in addition that a ∈ Σ0,2+d
0 (⟨ξ⟩−(1+d);R2d) and consider θ ∈

W 1,∞(Rd) then one has∥∥∥[Oph(a), θ]
∥∥∥
L(L2(Rd))

= O(h).

(4) For a ∈ Σ0,2+d
0 (⟨ξ⟩−(1+d);R2d), if moreover θ ∈ C 1(Rd) ∩W 1,∞(Rd) then

one has the following properties

∥∥∥[Oph(a), θ] + ih
d∑

j=1

∂θ

∂xj
Oph

( ∂a
∂ξj

)∥∥∥
L(L2(Rd))

= o(h),(5.10)

and

∥∥∥[Oph(a), θ] + ih
d∑

j=1

Oph
( ∂a
∂ξj

) ∂θ
∂xj

∥∥∥
L(L2(Rd))

= o(h).(5.11)

(5) More generally, if (θk)k∈N ⊂ Lip(Rd) is such that ∥θk − θ∥Lip → 0 as
k → +∞, then

∥∥∥[Oph(a), θk] + ih
d∑

j=1

∂θk
∂xj

Oph
( ∂a
∂ξj

)∥∥∥
L(L2(Rd))

= ho(1)h→0 and k→∞,(5.12)

and

∥∥∥[Oph(a), θk] + ih
d∑

j=1

Oph
( ∂a
∂ξj

)∂θk
∂xj

∥∥∥
L(L2(Rd))

= ho(1)h→0 and k→∞.

(6) Finally, assume that a ∈ Σ0,N+1+d
0 (⟨ξ⟩−(d+1);R2d). Let ϕ ∈ C ∞

c (Rd) be
such that ϕa = 0. One has

(5.13) ∥Oph(a) ◦ ϕ∥L(L2(Rd)) = o(hN).
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Proof. The kernel of the operator [a(x, hDx), θ] is given by

K(x, y) = Ka(x, y)
(
θ(y)− θ(x)

)
= h−dmh

(
x,
x− y

h

)
,(5.14)

with mh(x, v) = ka(x, v)
(
θ(x− hv)− θ(x)

)
. Since θ is continuous it is uniformly

continuous on any compact set. Thus, one finds |θ(x− hv)− θ(x)| → 0 as h→ 0
uniformly with respect to x and v if |x| ≤ R′ and |v| ≤ R. With Lemma 5.9 one
obtains that

ess sup
x∈Rd

∥mh(x, .)∥L1(Rd) → 0 and ess sup
y∈Rd

∥mh(x+ h., .)∥L1(Rd) → 0,

as h→ 0. With Lemma 5.2 one concludes that the limit in (5.8) holds.

To obtain (5.9) one writes

[a(x, hDx), θk] = a(x, hDx)(θk − θ)− (θk − θ)a(x, hDx) + [a(x, hDx), θ].

Assume now that a and θ fullfil the requirements of point (3). The kernel
of the operator Oph(a), θ] is given by (5.14). With the first-order Taylor formula
one writes

θ(x− hv)− θ(x) = −h
∫ 1

0

dxθ(x− shv)(v)ds = −h
∑
j

vjΘj(x, hv),

with Θj(x, hv) =
∫ 1

0 ∂jθ(x−shv)ds. With the additional regularity of a(x, ξ) and
Remark 5.7 one finds

mh(x, v) = −ih
∑
j

k∂ξja(x, v)Θj(x, hv),

yielding

|mh(x, v)| ≲ h
∑
j

M
−(d+1)
0,d+1 (∂ξja)⟨v⟩−(d+1) ≲ hM

−(d+1)
0,d+2 (a)⟨v⟩−(d+1),

as |Θj(x, hv)| ≲ 1 uniformly in x, v and h. With Corollary 5.3 one deduces the
result of point (3).

Assume now that a and θ fullfil the requirements of point (4) of the propo-

sition and denote by K(x, y) the kernel of [Oph(a), θ] + ih
∑d

j=1 ∂xj
θOph

(
∂ξja

)
.

One has K(x, y) = h−drh(x, (x− y)/h) with

rh(x, v) = ka(x, v)
(
θ(x− hv)− θ(x) + hdxθ(x)(v)

)
,
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using Remark 5.7. The first-order Taylor formula gives

θ(x− hv)− θ(x) + hdxθ(x)(v) = h

∫ 1

0

(dxθ(x)− dxθ(x− shv))(v)ds.

Setting Aj
h(x, v) =

∫ 1

0

(
∂jθ(x)− ∂jθ(x− shv)

)
ds, one finds

rh(x, v) = ih
∑
j

Aj
h(x, v)k∂ξja(x, v),

using again Remark 5.7. Since θ ∈ C 1(Rd) ∩W 1,∞(Rd) one finds Aj
h ∈ C 0(R2d)

and ∥Aj
h∥L∞(R2d) ≤ C0 for some C0 > 0 uniformly with respect to h. Moreover,

if L is a compact of R2d, and 0 ≤ h ≤ h0, if x, v ∈ L then x − shv remains
in a compact set of R where ∂jθ is uniformly continuous. One concludes that

Aj
h(x, v) → 0 as h→ 0 uniformly with respect to (x, v) ∈ L. Since ∂ξja ∈ Σ0(R2d),

with Lemma 5.9 one concludes that

ess sup
x∈Rd

∥rh(x, .)∥L1(Rd) → 0 and ess sup
y∈Rd

∥rh(x+ h., .)∥L1(Rd) → 0,

as h→ 0. With Lemma 5.2 one concludes that the limit in (5.10) holds.
Following the same strategy, one finds that the kernel of the operator

[Oph(a), θ]− i
∑
j

Oph
(
∂ξja

)
∂jθ(x)

is given by h−dr̃h(x, (x− y)/h), with

r̃h(x, v) = ka(x, v)
(
θ(x− hv)− θ(x) + hdθ(x− hv)(v)

)
and applying the Taylor formula as above and Lemma 5.9 one obtains the limit
in (5.11) by Lemma 5.2.

To prove (5.12), as above one writes

[a(x, hDx), θk] = [a(x, hDx), θk − θ] + [a(x, hDx), θ].

and by point (2) of the proposition one observe that it suffices to prove

∥[a(x, hDx), θk − θ]∥L(L2) = ho(1),(5.15)
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as k → +∞. Set αk = θk − θ. The kernel of [a(x, hDx), αk] is given by L(x, y) =
h−dqh(x, (x− y)/h) with

qh(x, v) = ka(x, v)
(
αk(x− hv)− αk(x)

)
= −hka(x, v)

∫ 1

0

dxαk(x− shv)(v) ds

= −h
d∑

j=1

Qj
h,kk∂ξja(x, v),

where Qj
h,k(x, v) =

∫ 1

0 ∂jαk(x− thv) dt. Arguing as above one obtains (5.15).

Finally, we consider the last statement of the proposition, with ϕ ∈ C ∞
c (Rd)

such that aϕ = 0. The kernel of Oph(a)ϕ reads h−dsh(x, (x−y)/h) with sh(x, v) =
ka(x, v)ϕ(x− hv). With the Taylor formula one writes

ϕ(x− hv) =
∑

j≤N−1

(−h)j

j!
djϕ(x)(v, . . . , v)

+
(−h)N

(N − 1)!

∫ 1

0

dNϕ(x− shv)(v, . . . , v)(1− s)N−1ds,

which we write

ϕ(x− hv) =
∑
j≤N

(−h)j

j!
djϕ(x)(v, . . . , v) +RN

h (x, v),

with

RN
h (x, v) =

(−h)N

(N − 1)!

∫ 1

0

dNϕ(x− shv)(v, . . . , v)(1− s)N−1ds

− (−h)N

N !
dNϕ(x)(v, . . . , v)

=
(−h)N

(N − 1)!

∫ 1

0

(
dNϕ(x− shv)− dNϕ(x)

)
(v, . . . , v)(1− s)N−1ds.

Since ϕa = 0 the same holds for ∂βxϕa for any β and sh(x, v) = ka(x, v)R
N
h (x, v).

One has

RN
h (x, v) = hN

∑
|β|=N

vβψN
h,β(x, v),
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with ∥ψN
h,β∥L∞(Rd×Rd)

≤ C0 for some C0 > 0 uniformly with respect to h and

ψN
h,β(x, v) → 0 as h → 0 uniformly with respect to (x, v) in a compact set.

Iterating (5.6), one finds

ka(x, v)R
N
h (x, v) = hN

∑
|β|=N

i|β|k∂β
ξ a
(x, v)ψN

h,β(x, v),

and thus Lemma 5.9 and Lemma 5.2. imply that (5.13) holds. □

Let K be a compact set of Rd and a ∈ Σ0(R2d) such that supp a ⊂ K ×Rd.
For these particular symbols, if ϕ ∈ C 0

c (Rd) is equal to 1 on the x-projection of
supp a then

∥Oph(a)(1− ϕ)∥L(L2(Rd)) = o(1), h→ 0,

by Proposition 5.10. In fact, we will be inclined to define semi-classical operators
up to operators in L(L2(Rd)) whose norm is o(1) as h → 0. Then we denote
[Oph](a) the class of operators defined by Oph(a)(ϕu) where ϕ is as above. This
is further explained by our intention to use semi-classical operators on manifolds,
here M or L, that we now present.

5.3. Tangential symbols and operators. In what follows we also use tangen-
tial operator. They are associated with symbols of the form a(y, η′) with y ∈ Rd

and η′ ∈ Rd−1.

Definition 5.11 (tangential symbols). Let m,n ∈ N ∪ {+∞}, with n ≥ d, and
N ∈ R+. Denote by Σm,n

T (⟨η′⟩−N ;Rd × Rd−1) the space of all functions a(y, η),

y ∈ Rd, η′ ∈ Rd−1, such that ∂αy ∂
β
η′a ∈ L1

loc(R2d−1) for α ∈ Nd, β ∈ Nd−1 with
|α| ≤ m, |β| ≤ n, and for some Cα,β > 0,∣∣∂αy ∂βη′a(y, η′)∣∣ ≤ Cα,β⟨η′⟩−N , y ∈ Rd, η′ ∈ Rd−1.

In addition, one sets Σm,n
T,0 (⟨η′⟩−N ;Rd × Rd−1), n ≥ d, as the set of all symbols

a ∈ Σm,n
T (⟨η′⟩−N ;Rd × Rd−1) with moreover ∂αy ∂

β
η′a ∈ C0(R2d−1) for α ∈ Nd, β ∈

Nd−1 with |α| ≤ m and |β| ≤ n− d.

Equipped with the norm

M−N
T,m,n(a) = max

|α|≤m
|β|≤n

ess sup
(y,η′)∈Rd×Rd−1

∣∣∂αy ∂βη′a(y, η′)∣∣⟨η′⟩N ,
both spaces Σm,n

T (⟨η′⟩−N ;Rd × Rd−1) and Σm,n
T,0 (⟨η′⟩−N ;Rd × Rd−1) are complete.
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Note that Σm′,n′

T (⟨η′⟩−N ′
;Rd × Rd−1) ⊂ Σm,n

T (⟨η′⟩−N ;Rd × Rd−1) if m′ ≥ m,
n′ ≥ n, and N ′ ≥ N . The case N = d is of interest similarly to symbols defined
in Section 5.2. Set

ΣT(Rd × Rd−1) = Σ0,d
T (⟨η′⟩−d;Rd × Rd−1),

ΣT,0(Rd × Rd−1) = Σ0,d
T,0(⟨η

′⟩−d;Rd × Rd−1),

and

Nn(a) =M−d
T,0,n(a) = max

|β|≤n
ess sup
(y,η′)

∣∣∂βη′a(y, η′)∣∣⟨η′⟩d.
With y = (y′, z), observe that Nn(a) correponds to M

−d
0,n(a) in (5.1) with z acting

as a parameter.

For a ∈ ΣT(Rd × Rd−1), the associated operator is defined by

Oph(a)u(y) = a(y, hD′
y)u(z, y

′) = (2π)1−d

∫
Rd−1

eiy
′·η′a(z, y′, hη′)û(z, η′)dη′,

where the Fourier transformation acts in the y′ variables. In fact, the action of
Oph(a) is through the Schwartz kernel

K(y, ỹ) = Ka(y
′, ỹ′; z)⊗ δz−z̃,

with the tangential kernel

Ka(y
′, ỹ′; z) = (2π)1−d

∫
Rd−1

ei(y
′−ỹ′)·η′a(y′, z, hη′) dη′.(5.16)

Then, one has

Oph(a)u(y′, z) =

∫
Rd−1

Ka(y
′, ỹ′; z)u(ỹ′, z) dỹ′.(5.17)

If a ∈ ΣT(Rd × Rd−1) one finds Ka(y
′, ỹ′; z) = h1−dka

(
y, y

′−ỹ′;z
h

)
and

|ka(y′, v; z)| ≤ CNd(a)⟨v⟩−d, v ∈ Rd−1, z ∈ R, y′ ∈ Rd−1 a.e.,

as in (5.5). With Corollary 5.3 one has

∥Oph(a)u(., z)∥L2(Rd−1) ≤ CdNd(a)∥u(., z)∥L2(Rd−1), z ∈ R a.e.,
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for some Cd > 0 uniform with respect to z, yielding

∥Oph(a)u∥2L2(Rd) =

∫
R
∥Oph(a)u(., z)∥2L2(Rd−1)dz ≲ Nd(a)

2

∫
R
∥u(., z)∥2L2(Rd−1)dz

≲ Nd(a)
2∥u∥2L2(Rd),

that is, the following continuity result.

Lemma 5.12. Let a(y, η′) ∈ ΣT(Rd×Rd−1). Then Oph(a) extends as a uniformly
bounded operator on L2(Rd) and

∥Oph(a)∥L(L2(Rd)) ≤ CdNd(a).

In what follows, we also use symbols of the form a(y, η) = b(y, η′)f(ζ)
with b(y, η′) ∈ ΣT(Rd × Rd−1) and f(ζ) a Fourier mutliplier; see for instance
Proposition 8.2 In fact, one has

Oph
(
b(y, η′)f(ζ)

)
= Oph(b)f(hDz),(5.18)

and thus one can write∥∥Oph
(
b(y, η′)f(ζ)

)∥∥
L(L2(Rd))

≤ ∥Oph(b)∥L(L2(Rd))∥f(hDz)∥L(L2(Rd)),(5.19)

that we will use several times in what follows. Since

f(hDz) = F−1
ζ→zf(hζ)Fz→ζ

if f is bounded one finds

∥f(hDz)∥L(L2(Rd)) ≤ ∥f∥L∞ ,(5.20)

since the Fourier transformation Fz→ζ is a an isometry on L2
z(R;L2

y′(Rd−1)).

Similarly f(hDz) has kernel on Rd given by

δy′−ỹ′ ⊗Kf (y; z, z̃),

with the part only acting in the z variable given by

Kf (z, z̃) = h−1kf
(
(z − z̃)/h

)
,(5.21)

with

kf (v) = (2π)−1

∫
R
eiv·ζf(ζ) dζ = f̌(v).(5.22)
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5.4. Semi-classical operators on a manifold. Let N be a C 1-manifold of
dimension d equipped with a density measure ρ that allows one to define L2(N ).
We denote by P(N ) the algebra of bounded operators Bh on L2(N ), depending
on h ∈ (0, h0] as a parameter, and by R(N ) the ideal of P(N ) of the operators
Bh such that ∥Bh∥L(L2) = o(1). Set Q(N ) = P(N )/R(N ).

The following lemma is key towards the notion of semi-classical operators
on a manifold.

Lemma 5.13 ([16, Lemme 1.10]). Consider ψ : V → U a C 1-diffeomorphism

between two open subsets of Rd. Let a ∈ C 0
c (U×Rd) be such that ∂βξ a ∈ C 0

c (U×Rd)

for |β| ≤ d + 1. Set b(y, η) = a(ψ(y), tdψ−1
y (η)) ∈ C 0

c (V × Rd). Then, for any
compact set K ⊂ U one has

∥a(x, hDx)u ◦ ψ − b(y, hDy)(u ◦ ψ)∥L2(V ) = o(1)∥u∥L2(U), h→ 0,

uniformly with respect to u ∈ L2(U) with support in K.

Definition 5.14. Let N be a C 1-manifold of dimension d. Denote by Σc(T
∗N )

the space of functions a ∈ C 0
c (T

∗N ) such that for |β| ≤ d + 1, one has ∂βξ a ∈
C 0
c (T

∗N ).

For a ∈ Σc(T
∗N ) and a chart C = (O, ϕ) we denote by aC the local represen-

tative of a in this chart. Consider two local charts C1 = (O1, ϕ1) and C2 = (O2, ϕ2)
with W = O1 ∩ O2 ̸= ∅ and a ∈ Σc(T

∗N ) supported in W . Then, the repre-
sentatives aC1 and aC2 fulfill the assumption of Lemma 5.13 with U = ϕ1(W ),
V = ϕ2(W ) and ψ = ϕ1 ◦ ϕ−1

2 .
Consider a chart C = (O, ϕ) as above, a ∈ Σc(T

∗N ) and θ, χ ∈ Cc(O),
θ ≡ 1 in a neighborhood of suppχ. For u ∈ L2(N ) one may compute

ϕ∗ ◦ (χa)C(x, hDx) ◦
(
ϕ−1

)∗
(θu),

yiedling an L2-function on N .
Consider now a locally finite C 1-partition of unity (χi)i∈I subordinated to

a given atlas A = (Ci)i∈I , Ci = (Oi, ϕi) and a familly of localisation functions
(θi)i∈I with supp θi ⊂ Oi and θi ≡ 1 on suppχi. We form

Au =
∑
i∈I

ϕ∗
i ◦ (χia)

Ci(x, hDx) ◦
(
ϕ−1
i

)∗
(θiu).

From Lemma 5.13, the class of the operator A defined above in Q(N ) is
independent of the choice of the atlas A, the partition of unity (χi)i∈I , and the
localisation functions (θi)i∈I . We denote this class by [Oph](a).
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Let φ ∈ C 0(N ). Let Bh and B̃h be two representatives of a class in Q(N ),
that is, [Bh] = [B̃h]. Observe that [φBh] = [φB̃h], thus defining a multiplication
by the function φ on Q(N ), which one writes [φBh] = φ[Bh]. If a ∈ Σc(T

∗N )
one has

[Oph](φa) = φ[Oph](a).

5.5. Semi-classical measures. This section is borrowed from [16] and [2]; it
recalls the basic properties of semi-classical measures.

In what follows, we call a sequence of scales H = (hk)k a sequence of
positive real numbers that converges to 0. If such a sequence of scales is used we
will write Oph in place of Ophk for concision if no confusion can arise.

Definition 5.15 (semi-classical measure). Let H = (hk)k be a sequence of scales
and (uk)k be a bounded sequence of L2(Rd). Let µ be a nonnegative Radon measure
on R2d. One says that (uk)k admits µ as its semi-classical measure (s.c.m.) at
scale H = (hk)k if one has

(5.23) lim
k→+∞

(Oph(a)uk, uk)L2(Rd) =

∫
R2d

a(x, ξ)dµ(x, ξ) = ⟨µ, a⟩,

for any a ∈ Σ0(R2d).

Definition 5.16 (mass leakage at infinity). One say that no mass leaks at infinity
at scale H if one has

lim
R→+∞

lim sup
k→+∞

(∫
|x|≥R

|uk(x)|2dx+
∫
hk|ξ|≥R

|ûk(ξ)|2dξ
)
= 0.

One says that there is some mass leakage at scale H at infinity otherwise.

Lemma 5.17. Suppose that
(
hsk|Dx|suk

)
k
is L2-bounded for some s > 0. Then

lim
R→+∞

lim sup
k→+∞

∫
hk|ξ|≥R

|ûk(ξ)|2dξ = 0.

Proof. Write
∫
hk|ξ|≥R |ûk(ξ)|2dξ ≤ R−2s

∫
R2 h

2s
k |ξ|2s|ûk(ξ)|2dξ ≲ R−2s. □

The following proposition states that up to a subsequence extraction, every
bounded sequence in L2(Rd) admits a s.c.m. at some given scale. It moreover
provides a criterium for mass conservation in the limiting process.

Proposition 5.18 ([16, Propositions 1.4 and 1.6]). For any sequence of scales
H = (hk)k, and any bounded sequence (uk)k ⊂ L2(Rd), there exist a subsequence
(kn)n∈N and a nonnegative measure µ on R2d such that the following properties
hold:



MEASURE AND CONTINUOUS VECTOR FIELDS 43

(1) µ is the s.c.m. for the sequence (ukn)n at scale (hkn)n
(2) If no mass leaks at infinity at scale H in the sense of Definition 5.16, then

(5.24) lim
n→+∞

∥ukn∥
2
L2(Rd) = µ(R2d).

meaning mass is preserved in the limiting process.

Lemma 5.19. Assume that µ is the s.c.m. for the sequence (uk)k at scale (hk)k.
Let (ak)k ⊂ Σ0(R2d) be converging in Σ0(R2d) to some a, and (bk)k, (b

′
k)k ⊂

L∞(Rd) that converges uniformly to some b, b′ ∈ C 0(Rd) ∩ L∞(Rd) respectively.
Then

lim
k→+∞

(b′k Oph(ak)bk uk, uk)L2(Rd) = ⟨µ, bb′a⟩.

Proof. One writes

b′k Oph(ak)bk = (b′k − b′)Oph(ak)bk + b′ Oph(ak − a)bk + b′Oph(a)(bk − b)

(5.25)

+ b′ Oph(a)b.

Convergence in Σ0(R2d) shows that the operator norms ∥Oph(a)−Oph(ak)∥L(L2)

converge to 0 uniformly with respect to h > 0 by Lemma 5.6 and Oph(ak) is
uniformly bounded in L(L2). With the convergences of (bk)k, (b

′
k)k one sees that

the first three terms in (5.25) contribute with a vanishing limit because of the L2-
boundedness of (uk)k. It thus suffices to study the limit of (b′Oph(a)b uk, uk)L2(Rd).
One writes

(b′Oph(a)b uk, uk)L2(Rd) = (b′[Oph(a), b]uk, uk)L2(Rd) + (b′bOph(a)uk, uk)L2(Rd).

Since b′ba ∈ Σ0(R2d) and b′bOph(a) = Oph(b′ba) the result follows from (5.8),
the L2-boundedness of (uk)k, and (5.23). □

A consequence is the following result.

Corollary 5.20. Assume that µ is the s.c.m. for a sequence (uk)k at scale (hk)k
and let θ ∈ C 0(R2d) ∩ L∞(R2d). Then |θ|2µ is the s.c.m. for the sequence (θuk)k
at scale (hk)k.

The convergence in (5.23) can be extended to more general symbols and
semi-classical operators.



44 NICOLAS BURQ, BELHASSEN DEHMAN, AND JÉRÔME LE ROUSSEAU

Proposition 5.21. Let (uk)k be bounded in L2(Rd). Suppose φ ∈ C ∞(Rd) is such
that (φ(hkD)uk)k is bounded in L2(Rd). Suppose µ is the s.c.m. for the sequence
(uk)k at scale (hk)k and there is no mass leakage at infinity at scale H = (hk)k in
the sense of Definition 5.16 for the sequences (uk)k and (φ(hkD)uk)k. Suppose
a(x, ξ) (or a(x, ξ′), that is, a tangential symbol), continuous in x and (d+1)-times
differentiable in ξ, is such that Oph(a) is bounded on L2(Rd). Then, one has

lim
k→+∞

(Oph(a)φ(hkD)uk, uk)L2(Rd) = ⟨µ, a(x, ξ)φ(ξ)⟩.

A Typical example is a ∈ ΣT(Rd × Rd−1) by Lemma 5.12. Other examples
are a ∈ S0(Rd × Rd) or a ∈ S0(Rd × Rd−1), with S0 denoting the usual class
of symbols of order 0; see [20, Definition 18.1.1]. The result also applies to any
a ∈ S(1, g) for any slowly-varying temperate metric g in the sense of the Weyl-
Hörmander calculus [20, Section 18.4-18.5]; such generality is not needed here.

Remark 5.22. An inspection of the proof shows that a sharper assumption is

lim
R→+∞

lim sup
n→+∞

(∫
|x|≥R

|ukn(x)|2dx+
∫
hkn |ξ|≥R

| ̂φ(hkD)ukn(ξ)|
2dξ

)
= 0.

Note also that Lemma 5.19 also holds in the tangential case, for instance for
a ∈ ΣT(Rd × Rd−1).

Proof. The proof is the same in both cases and is along the line of Proposition
1.6-(iii) in [16], yet simpler. With the no mass-leakage assumption and since
Oph(a) is bounded on L2(Rd) one finds

lim
R→+∞

lim sup
k→+∞

∣∣(Oph(a)φ(hkD)uk, uk)L2(Rd) − (Oph(aR)uk, uk)L2(Rd)

∣∣ = 0,(5.26)

with aR(x, ξ) = χ(x/R)χ(ξ/R)a(x, ξ)φ(ξ). Since aR ∈ Σ0(R2d) with (5.23) one
has

lim
k→+∞

(Oph(aR)uk, uk)L2(Rd) = ⟨µ, aR⟩.

With (5.26) one concludes by means of the dominated-convergence theorem, since
µ has finite mass by (5.24). □

We now extend the notion of semi-classical measures to the case of man-
ifolds. As above N is a C 1-manifold of dimension d equipped with a density
measure ρ that allows one to define L2(N ). For some basic details on density
measures on manifold we refer for instance to [23, Section 16.2].
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Set λ = ℓ∞/c0 as the space of bounded sequences modulo the space of
sequences converging to 0. Let U = (uk)k be a bounded sequence in L2(N ) and
H = (hk)k be a sequence of scales. For a ∈ Σc(T

∗N ), denote by[(
[Oph](a)uk, uk

)
L2(N ,ρ)

]
λ

the class in λ of the sequence
(
[Oph](a)uk, uk

)
L2(N ,ρ)

.

If now U = (uk)k is bounded in L2
loc(N ) it is sensible to compute(

[Ophn ](a)ψukn , ukn
)
L2(N ,ρ)

for a ∈ Σc(T
∗N ) and ψ ∈ C ∞

c (N ) with ψ = 1 on supp a.

Definition 5.23. Let U = (uk)k be a bounded sequence in L2
loc(N ) and H = (hk)k

a sequence of scales. Denote by M+(U) the set of measures µ on T ∗N such that
there exists a subsequence kn such that

lim
n→+∞

[(
[Ophn ](a)ψukn , ukn

)
L2(N ,ρ)

]
λ
= ⟨µ, a⟩,

for any a ∈ Σc(T
∗N ) and ψ ∈ C ∞

c (N ) with ψ = 1 on supp a.

What follows explains that this definition is sensible in the sense that it is
independent of the choice made for the function ψ. In particular, this coincides
with the definition of a s.c.m. in the case of a L2-bounded sequence.

If µ is the s.c.m. associated with U = (uk)k, then in any local chart C =
(O, ϕ), denote by µC the local representative of µ, that is, (ϕ−1)∗µ. Denote also
by uCk the local representative of uk, that is, u

C
k = (ϕ−1)∗uk = uk ◦ ϕ−1. Then, if

K ⊂ ϕ(O) is compact, a ∈ Σ0(R2d) with supp a ⊂ K × Rd, and ψ ∈ C ∞
c

(
ϕ(O)

)
equal to 1 in a neighborhood of the x-projection of supp a one has

lim
k→+∞

(Oph(a)ψuCk , u
C
k)L2(Rd,ρ) = ⟨µC, a⟩.(5.27)

In what follows ρ will be given by κµg, that is, in local coordinates ρC =

κC det
(
gC
)1/2

dx. One then has

µC = κC det
(
gC
)1/2

m,

if m is the s.c.m. associated with (uCk)k yet using the L2-inner product given by
the Lebesgue measure as in Definition 5.15, that is,

lim
k→+∞

(Oph(a)ψuCk , u
C
k)L2(Rd,dx) = ⟨m, a⟩.

Some of the properties of s.c.m. on Rd can then be extended to the case on a
manifold. For instance one has the following result.
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Lemma 5.24. Assume that µ is the s.c.m. of a sequence U = (uk)k at scale
(hk)k on N . Let (ak)k ⊂ Σc(T

∗N ) be converging in Σc(T
∗N ) to some a, and

(bk)k, (b
′
k)k ⊂ L∞(N ) that converges uniformly to some b, b′ ∈ C 0(N ) ∩ L∞(N )

respectively. Then

lim
k→+∞

[
(b′k[Oph](ak)bk uk, uk)L2(N )

]
λ
= ⟨µ, bb′a⟩.

The local chart version is

lim
k→+∞

(b′k Oph(ak)bk ψu
C
k , u

C
k)L2(Rd,ρ) = ⟨µC, bb′a⟩,(5.28)

for a and ψ as given for (5.27) and ak, bk, b
′
k also defined locally accordingly.

The following result that yields the existence of s.c.m..

Proposition 5.25. Suppose H = (hk)k is a sequence of scales and U = (uk)k a
sequence of functions on N .

(1) If U = (uk)k is bounded in L2(N ) the set M+(U) is nonempty.
(2) Suppose N is countable at infinity. If U = (uk)k is bounded in L2

loc(N )
the set M+(U) is nonempty.

Proof. The result of the first part, that is, if U = (uk)k is bounded in L2(N ),
holds by [16, Section 1].

For the second part, as N is countable at infinity, there exists a sequence
of open sets (On)n with On ⋐ On+1 ⋐ N and ∪nOn = N . The sequence (uk)k is
L2-bounded on O1. Suppose a ∈ Σc(T

∗N ) supported in O1 and ψ ∈∈ C ∞
c (N )

with ψ = 1 on O1. One has[(
[Ophn ](a)ψukn , ukn

)
L2(N ,ρ)

]
λ
=

[(
[Ophn ](a)ψukn , ψukn

)
L2(N ,ρ)

]
λ
.

The sequence (ψuk)k is L2-bounded. By the first part, there exists an inscreasing
function φ1 : N → N and a measure µ1 on T ∗(O1) that is the s.c.m. for the
subsequence (ψuφ1(k))k = (uφ1(k))k on O1. With the same reasoning there exists
an inscreasing function ψ2 : N → N and measure µ2 on T ∗(O2) that is the
s.c.m. for the subsequence (uφ2(k))k on O2, with φ2 = ψ2 ◦ φ1. One has µ2 = µ1

on T ∗(O1). One proceeds by induction yielding two sequences of inscreasing
functions φn : N → N and ψn : N → N, with φn+1 = ψn+1 ◦ φn, and a sequence
of measures µn on T ∗(On), with µn the s.c.m. of (uφn(k))k on On. Moreover,for
ℓ ∈ N, one has µn+ℓ = µn on T ∗(On).

There exists a unique measure µ on T ∗(N ) such that µ = µn on T ∗(On). A
diagonal extraction yields the subsequence (uφk(k))k implying that µn is its s.c.m.
on On for any n ∈ N. Hence, µ is its s.c.m. on N . □
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The notion of s.c.m. can be extended to vector valued sequences. If N ∈ N∗,
denote byM(T ∗N ;MN(C)) the space ofN×N -matrix valued Radon measures on
T ∗N , and by M+(T ∗N ;MN(C)) the subspace fromed by nonnegative Hermitian
such measures.

Definition 5.26 (Hermitian measures). Suppose N ∈ N∗ and U = (uk)k is a
bounded sequence in L2

loc(N ;CN) and H = (hk)k a sequence of scales. Denote
by M+(U) the set of measures µ ∈ M+(T ∗N ;MN(C)) such that there exists a
subsequence kn such that

lim
n→+∞

[(
[Ophn ](a)ψukn , ukn

)
L2(N ,ρ)

]
λ
= ⟨tr(aµ), 1⟩ =

∫
T ∗N

tr(a(x, ξ)dµ(x, ξ)),

for any N × N matrix a with entries in Σc(T
∗N ), and [Ophn ](a) the associated

class of matrix valued operators, and ψ ∈ C ∞
c (N ) with ψ = 1 on supp a.

We refer the reader to [15, 3]. Each element of the matrix valued measure
can also be understood as follows:

lim
n→+∞

[(
[Ophn ](a)ψui,kn , uj,kn

)
L2(N ,ρ)

]
λ
= ⟨µij, a⟩, a ∈ Σc(T

∗N ).

Each diagonal term is nonnegative. One finds that

µij ≤ µ
1/2
ii µ

1/2
jj ,

in the sense that |⟨µij, ab⟩|2 ≤ ⟨µii, |a|2⟩⟨µii, |b|2⟩.

The counterpart to Proposition 5.25 is the following result.

Proposition 5.27. Suppose N ∈ N∗ and H = (hk)k is a sequence of scales and
U = (uk)k a sequence of function on N valued in CN .

(1) If U = (uk)k is bounded in L2(N ;CN) the set M+(U) is nonempty.
(2) Suppose N is countable at infinity. If U = (uk)k is bounded in L2

loc(N ;CN)
the set M+(U) is nonempty.

6. The measure propagation equation and proof of observability

We first state a result that is at the heart of the proof of Theorems 1.7 and
1.8. It expresses how a s.c.m. µ associated with solutions to wave equations varies
in the direction of the hamiltonian vector field Hp, in particular at the boundary
∂L = R×∂M where this variation is connected to a s.c.m. ν associated with the
Neumann trace.
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6.1. The measure propagation equation. Suppose (M, κ, g) ∈ X 1, H = (hk)
is a scale, and (κk, gk)k such that (M, κk, gk) converges to (M, κ, g) in the Y1

topology.
Suppose (uk)k are weak-solutions to

∂2t uk − Aκk,gkuk = fk,

with homogeneous Dirichlet boundary condition, as given in Proposition 1.1.
Extend uk and fk by zero to L̂.

Suppose (uk)k is bounded in L2
loc(L̂), (hk∂nkuk |∂L)k is bounded in L2

loc(∂L),
and (hkfk)k is bounded in L2

loc(L̂). With Proposition 5.27, a Hermitian 2 × 2

s.c.m. M on T ∗(L̂) is associated with a subsequence at scale H of (uk, hkfk).
Write

M =

(
M0,0 M0,1

M1,0 M1,1

)
.

Set µ =M0,0. Similarly, with Proposition 5.25, there exists a measure ν on T ∗∂L
such that the s.c.m. measure associated with (a subsequence of) hkψ(t)∂nkuk |∂L
is |ψ(t)|2ν at scale H.

Theorem 6.1. Suppose that

suppµ ⊂ Char p ∩ T ∗L \ 0 and supp ν ⊂ T ∗∂L \ 0.(6.1)

Then, the two measures µ and ν fulfill, in sense of density distributions,

Hp µ = −tHp µ = 2 ImM0,1 +

∫
ϱ∈∥H∂∪∥G∂

δϱ+ − δϱ−

⟨ξ+ − ξ−, nx⟩T ∗
xM,TxM

dν(ϱ).(6.2)

The hyperbolic set ∥H∂ and the glancing set ∥G∂ are introduced in Definition 2.4
and ϱ± and ξ± are as given in (2.3). The vector field nx is the unitary inward
pointing normal vector in the sense of the metric g.

Here, p = pκ,g and thus Hp = Hpκ,g , the sets ∥H∂ and ∥G∂ are constructed
with respect to the metric g as in Section 2.3. Recall that we identify T ∗∂L and
∥T ∗L. Hence, the measure ν defined on T ∗∂L is also a measure on ∥T ∗L. The
integral performed on ∥H∂ ∪ ∥G∂ thus makes sense. Also, the meaning of the right
hand side is explained in Remark 2.15.

Sections 7 to 9 are dedicated to the proof of Theorem 6.1. The result of
Theorem 6.1 is key in the proof the main observability result as presented in the
next section. There, one only considers the case fk = 0 implying M0,1 = 0. The
addition of the source term fk does not provide any complication for the proof
Theorem 6.1, hence this slight generalization that can be of use elsewhere, in
particular for the study of stabilization issues.
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6.2. Proof of the observability results. Here, we provide the proof of Theo-
rem 1.8 based on the measure equation of Theoerm 6.1. Suppose (M, κ, g) ∈ X 1

and ω is an open subset of M (resp. Γ an open subset of ∂M) such that the
interior geometric control condition of Definition 2.10 (resp. the boundary geo-
metric control condition of Definition 2.13) is fulfilled and we consider some
time T > TGCC(ω) (resp. T > TGCC(Γ)). We also consider δ > 0 such that
T − 2δ > TGCC(ω) (resp. T − 2δ > TGCC(Γ)).

According to Propositions 4.2 (resp. Proposition 4.3), to achieve the ob-
servability inequalities of Theorem 1.8 for the time interval ]0, T [ it suffices to
prove the semi-classical observability inequality (4.2) (resp. (4.3)) for the time
interval I =]δ, T − δ[ for any (M̃, κ̃, g̃, ω̃) (resp. (M̃, κ̃, g̃, Γ̃)) that is ε-close to
(M, κ, g, ω) (resp. (M, κ, g,Γ)) in the Y1-topology in the sense of Definition 1.3
and ε > 0 chosen sufficiently small. We preform a contradiction argument based
on propagation properties of semi-classical defect measures.

Below we consider a sequence (Mn, κn, gn) that converges to (M, κ, g) in
the Y1 topology. For k ∈ Z∗, one denotes by En,k, the space of functions defined
in Section 4.1, here built on the elliptic operator Aκn,gn on Mn.

6.2.1. Initiation of the contradiction argument. In the case of an interior ob-
servation, we assume that (4.2) does not hold for some (M̃, κ̃, g̃, ω̃) arbitrary
close to (M, κ, g, ω) in the sense recalled above. Thus, there exists a sequence
(Mn, κn, gn, ωn)n that converges to (M, κ, g, ω) in the Y1 topology, and for each
n ∈ N and each k ∈ N∗ there exists ℓ(n, k) ∈ N, with ℓ(n, k) ≥ k and uℓ(n,k)n ∈
En,ℓ(n,k), such that

1 = ∥uℓ(n,k)n |t=0∥L2(Mn,κnµgn )
≥ k ∥1I×ωnhℓ(n,k)∂tu

ℓ(n,k)
n ∥

L2(R×Mn,κnµgndt)
,(6.3)

with I =]δ, T − δ[. Note that we have normalized the l.h.s. of (6.3) to be equal
to 1. The notation uℓ(n,k)n may seem very cumbersome at this stage; it will be
greatly simplified by a diagonal extraction in what follows shortly.

Similarly, in the case of a boundary observation we assume that there exists
a sequence (Mn, κn, gn,Γn) that converges to (M, κ, g,Γ) in the Y1 topology, and
for each n ∈ N a sequence (uℓ(n,k)n )k∈N, with uℓ(n,k)n ∈ En,ℓ(n,k) and ℓ(n, k) ≥ k,
such that

(6.4) 1 = ∥uℓ(n,k)n |t=0∥L2(Mn,κnµgn )
≥ k ∥1I×Γnhℓ(n,k)∂nnu

ℓ(n,k)
n ∥

L2(R×∂Mn,κnµgn∂
dt)
,

where nn is the normal to the boundary ∂Mn in the sense of the metric gn.

We now proceed with a diagonal extraction along with a zero-extension of

the solutions outside L. Set uk = u
ℓ(k,k)
k 1L, that is, the extension by 0 of the
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function u
ℓ(k,k)
k to L̂ = R × M̂ (see Section 2) and vk = hk∂nkuk |∂L its normal

partial derivative (in the sense of gk). In what follows we will denote hℓ(k,k) and
Jℓ(k,k) by hk and Jk for simpicity. Yet, there will be no possible confusion.

First, with the W 2,∞-diffeomorphism of Definition 1.3 the analysis can be
pulled back from Mk to M for each k ∈ N. By abuse of notation we use the same
letters for the pullbacked functions and metric. Hence, without loss of generality
we may assume that Mk = M.

Second, observe that since ∥uk |t=0∥L2(M,κkµgk
)
= 1 one has

∥uk |t=0∥L2(M)
= 1 + o(1)k→∞.

If no precision is given, the L2-norm on M is given by the density measure κµg

in what follows.
From Lemma 4.1 and Remark 4.4 one obtains that

1 ≂ ∥uk(t, .)∥L2(M,κkµgk
) ≂ ∥hk∂tuk(t, .)∥L2(M) ≂ ∥hk∇gkuk(t, .)∥L2(M)(6.5)

≂ ∥h2kAκk,gkuk(t, .)∥L2(M),

for any t ∈ R and k large. From ellipticity up to the boundary one deduces [18,
Theorem 8.12]2

(6.6) ∥h2kuk(t, .)∥H2(M) ≂ 1,

for any t ∈ R.

6.2.2. Measures for the wave equations. From Proposition 3.1 in the case f = 0,
(6.5), and (6.3) and (6.4) (and the fact that κn converges to κ and gn to g in the
sense given in Definition 1.3) one obtains the following proposition.

Proposition 6.2. The sequences uk ∈ L∞(R;L2(M̂)) and vk ∈ L2
loc(∂L) satisfy

(1) For any bounded interval J ⊂ R there exists C > 0 such that

∥uk∥L2(J×M̂) + ∥vk∥L2(J×∂M) ≤ C.

(2) With I =]δ, T − δ[, one has
• limk→+∞ ∥uk∥L2(I×ω) = 0, if the case (6.3) holds, that is, for interior
observability,

• limk→+∞ ∥vk∥L2(I×Γ) = 0, if the case (6.4) holds, that is, for boundary
observability.

2Notice that in [18] the boundary is assumed C 2. Still, W 1,∞-regularity suffices to reach the conclusion
since it is enough to make the boundary straight in local coordinates and apply the argumentation therein.
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Recall that we consider on ∂M the density measure κµg∂ . From Proposi-
tions 6.2 and 5.25 we deduce the following result.

Proposition 6.3. (1) There exists a semi-classical measure µ on T ∗L̂ asso-
ciated with a subsequence of (uk)k.

(2) There exists a semi-classical measure ν on T ∗∂L associated with a subse-
quence of (vk)k.

By abuse of notation we will use the notation (uk)k and (vk)k for both
subsequences. Then one has

⟨µ, a⟩ = lim
k→+∞

[
([Oph](a)uk, uk)L2(L̂)

]
λ
, a ∈ Σc(T

∗L̂),

⟨ν, b⟩ = lim
k→+∞

[
([Oph](b)vk, vk)L2(∂L)

]
λ
, b ∈ Σc(T

∗∂L),

where both limits are understood in the sense given in Definition 5.23. Recall that
the spaces of symbols Σc(T

∗L̂) and Σc(T
∗∂L) are introduced in Definition 5.14.

Proposition 6.4. The three following properties hold.

(1) If J ⊂ R is a bounded nonempty open interval, one has µ
(
T ∗(J×M̂)

)
> 0.

(2) One has

suppµ ⊂ Char p ∩ T ∗L ∩ {α ≤ τ ≤ α−1},(6.7)

supp ν ⊂ T ∗∂L ∩ {α ≤ τ ≤ α−1}.(6.8)

(3) With I =]δ, T − δ[ as above one has
• the measure µ vanishes on T ∗(I × ω), in the case of an interior
observation,

• the measure ν vanishes on T ∗(I × Γ), in the case of a boundary ob-
servation.

Proof. Consider a finite C 2-partition of unity (χi)i∈I subordinated to a given
atlas of M; see Section 2. Let φ ∈ C ∞

c (R) be nonvanishing. From (6.5) one has

∥φ(t)χiuk∥L2(L̂) ≳ 1, for some i ∈ I.

The semi-classical measure associated with (φ(t)χiuk)k is |φ(t)χi|2µ by Lemma 5.24
for the L2-inner product associated with the density measure κµgdt. In a local

chart C = (O, ϕL) of L̂, where O = R × O and ϕL(t, x) = (t, ϕ(x)) (see Sec-
tion 2.1), with suppχi ⊂ O, from (6.5) and Lemma 5.17 one has∥∥1hk|(τ,ξ)|≥R

̂φ(t)χiuk
∥∥
L2(Rd+1)

≲ R−1,
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There is thus no mass leakage at infinity at scale H in the sense of Definition 5.16.
Denote by µC the local representative of µ. Recall that κ̃ = κ(det g)1/2.

Using that the s.c.m. of the local representative of φ(t)χiuk with a L2-inner
product associated with the Lebesgue measure dx is m = κ̃−1|φ(t)χi|2µC, with
Proposition 5.18 one finds

m(R2d+2) = lim
n→+∞

∥φ(t)χiuk∥2L2(Rd) ≳ lim
n→+∞

∥φ(t)χiuk∥2L2(L̂) ≳ 1,

hence the first result.

We place ourselves in a local chart (O, ϕL) of L̂. Here, ∂L is given by

{z = 0}. Let b ∈ C ∞
c (R2d+2) with supp b ⊂ ϕL(O)×Rd+1 and ψ, ψ̃ ∈ C ∞

c

(
ϕL(O)

)
with ψ equal to 1 in a neighborhood of the (t, x)-projection of supp b and ψ̃ equal
to 1 in a neighborhood of suppψ. Here, Oph(b) = b(t, x, hkDt, hkDx). One has,
for any s ≥ 0,

(6.9) ∥Oph(b)∥L(H−s(Rd+1),L2(Rd+1)) ≤ Csh
−s.

In fact, one uses that Oph(b)Oph(⟨ξ⟩s) = Oph(b⟨ξ⟩s) is bounded on L2 and
hs⟨ξ⟩s ≤ ⟨hξ⟩s yielding

hs∥Oph(b)u∥L2(Rd+1) ≲ hs∥Oph(⟨ξ⟩−s)u∥L2(Rd+1) = hs∥⟨hξ⟩−sû∥L2(Rd+1)

≲ ∥⟨ξ⟩−sû∥L2(Rd+1) = ∥u∥H−s(Rd+1).

One has

h2kPκk,gkuk = −hkvk ⊗ δz=0.(6.10)

Note that vk ⊗ δz=0 is bounded in H−s(Rz;L
2
loc(Rd

y′)) ⊂ H−s
loc(R1+d) if s > 1/2.

Thus, with (6.9) one finds ∥Oph(b)ψhkvk ⊗ δz=0∥L2 ≤ h1−s
k . With 1/2 < s < 1,

with (6.10) and since (uk)k is bounded in L2, one concludes that

lim
k→+∞

h2k
(
Oph(b)ψPκk,gkuk, uk

)
L2(Rd+1,κµgdt)

= − lim
k→+∞

(
Oph(b)ψhkvk ⊗ δz=0, uk

)
L2(Rd+1,κµgdt)

= 0.

Now, one has

Oph(b)ψh2k∂
2
t = −Oph(τ 2b)ψ + h2k Oph(b)[ψ, ∂2t ]

= −Oph(τ 2b)ψ + h2kO(1)L(H1,L2).
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With the form of Aκk,gk in local coordinates one writes, with κ̃k = κk(det gk)
1/2,

Oph(b)ψh2kAκk,gk

= h2k Oph(b)
∑

1≤i,j≤d

(
∂xi
ψgijk (x)∂xj

+ [ψκ̃−1
k , ∂xi

]κ̃kg
ij
k (x)∂xj

)
=

∑
1≤i,j≤d

iOph(bξi)ψg
ij
k (x)hk∂xj

ψ̃ + h2k O(1)L(H1,L2)

=
∑

1≤i,j≤d

(
− ψgijk (x)Oph(bξiξj) + i[Oph(bξi), ψg

ij
k (x)]hk∂xj

)
ψ̃

+ h2k O(1)L(H1,L2)

= −
∑

1≤i,j≤d

ψgijk (x)Oph(bξiξj)ψ̃ + h2k O(1)L(H1,L2),

where in the last line we used Proposition 5.10. From Lemma 5.24 and (5.28)
one finds

0 = lim
k→+∞

h2k
(
Oph(b)ψPκk,gkuk, uk

)
L2(L̂,κµgdt)

= ⟨µC, b pκ,g⟩.

Since b is arbitrary in C ∞
c (R2d+2) this implies that suppµC ⊂ Char

(
pκ,g

)
, which

is the first inclusion in (6.7).

To prove the second property, that is τ ∈ [α, α−1], consider φ ∈ C ∞
c (R)

such that φ ≡ 0 in a neighborhood of [α, α−1], say [(1− ε)α, (1+ ε)α−1] for some
ε > 0 to be kept fixed, and now ψ ∈ C ∞

c (R). We write

φ(hkDt)ψ(t)uk =
∑
ν∈Jk

φ(hkDt)
(
ψ(t)eit

√
λν
)
uνeν(x).

The Fourier transform of φ(hkDt)
(
ψ(t)eit

√
λν
)
is φ(hkτ)ψ̂

(
τ−

√
λν

)
. As hk

√
λν ∈

[α, α−1] if ν ∈ Jk and hkτ /∈ [(1− ε)α, (1 + ε)α−1] if in the support of φ, then

|τ −
√
λν | ≳ |τ |+ h−1

k ,

in the support of the above Fourier transform. With the rapid decay of ψ̂ one
finds, for any N ∈ N,∣∣φ(hkτ)ψ̂(τ −√

λν
)∣∣ ≤ CN(|τ |−1 + hk)

N ,

leading to

∥φ(hkDt)
(
ψ(t)eit

√
λν
)
∥
Hℓ(R) ≤ C ′

Nh
N
k(6.11)
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for any ℓ ≥ 0. With ℓ = 0, one deduces

∥φ(hkDt)ψ(t)uk∥2L2(L,κµgdt)

≂ ∥φ(hkDt)ψ(t)uk∥2L2(L,κkµgk
dt) =

∑
ν∈Jk

|uν |2∥φ(hkDt)
(
ψ(t)eit

√
λν
)
∥
2

L2(R)

≤ CNh
N
k

∑
ν∈Jk

|uν |2 = CNh
N
k ∥uk |t=0∥2L2(M,κkµgk

)
≲ CNh

N
k ,

for any N ∈ N, using (6.3) or (6.4), implying ⟨µ, |φ(τ)ψ(t)|2⟩ = 0, which gives
the last inclusion in (6.7) since µ is nonnegative.

We now prove the inclusion in (6.8). One has

∥φ(hkDt)ψ(t)uk∥L2(R;H2(M,κkµgk
)) ≲ ∥φ(hkDt)ψ(t)uk∥L2(L,κµgdt)

+ ∥Hgφ(hkDt)ψ(t)uk∥L2(L,κµgdt)
,

where Hg denotes the Hessian operator. Using the elliptic regularity and that uk
is solution to the wave equation one obtains

∥Hgφ(hkDt)ψ(t)uk∥L2(L,κµgdt)
≲ ∥φ(hkDt)ψ(t)Aκk,gkuk∥L2(L,κµgdt)

≲ ∥φ(hkDt)ψ(t)∂
2
t uk∥L2(L,κµgdt)

≲ ∥φ(hkDt)ψ(t)∂
2
t uk∥L2(L,κkµgk

dt).

Then, one writes

∥φ(hkDt)ψ(t)∂
2
t uk∥

2

L2(L,κkµgk
dt) =

∑
ν∈Jk

|uν |2λ2ν∥φ(hkDt)
(
ψ(t)eit

√
λν
)
∥
2

L2(R)

≲ CNh
N
k ∥uk |t=0∥2L2(M,κkµgk

)
≲ CNh

N
k ,

for any N ∈ N, using (6.11) and that h2kλν ≲ 1 for ν ∈ Jk. Hence, one has

∥φ(hkDt)ψ(t)uk∥2L2(R;H2(M,κkµgk
)) ≲ CNh

N
k ,

implying, by the trace formula,

∥φ(hkDt)ψ(t)hk∂nkuk |∂L∥
2

L2(∂L,κkµgk∂
dt))

≲ CNh
N
k .

This yields ⟨ν, |φ(τ)ψ(t)|2⟩ = 0, which gives (6.8) since ν is nonnegative. □
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6.2.3. Final step of the proof of observability. With Theorem 6.1 at hand we can
complete the proof of the observability results of Theorem 1.8. The two measures
µ and ν given by Proposition 6.3, with scale hk = ϱ−|k| of Section 4.1, fulfill the
assumptions of Theorem 6.1 by Proposition 6.4. Hence, one has

Hp µ =

∫
ϱ∈∥H∂∪∥G∂

δϱ+ − δϱ−

⟨ξ+ − ξ−, nx⟩T ∗
xM,TxM

dν(ϱ),

since the considered wave equations are homogeneous here. Theorem 2.14 recalled
from the companion article [5] implies that the support of the measure µ is a union
of maximal generalized bicharacteristics.

Recall that I =]δ, T − δ[. Let ϱ0 = (t0, x0, τ 0, ξ0) ∈ suppµ, with t0 ∈ I.
According the first point of Proposition 6.4 such a point exists. Then, there exists
a generalized bicharacteristic Gγ with Gγ(0) = ϱ0 such that Gγ̄ ⊂ suppµ.

Case of an interior observation.
With the interior geometric control condition fulfilled by (ω, T − 2δ) (Def-

inition 2.10) the bicharacteristic Gγ reaches a point above I × ω. Yet, from the
last point of Proposition 6.4, the measure µ vanishes above I × ω, which gives a
contradiction and concludes the proof in this case.

Case of a boundary observation.
With the boundary geometric control condition fulfilled by (Γ, T−2δ) (Def-

inition 2.13), there exists s ∈ R such that t(s) ∈ I and

(1) eiher ϱ1 = lims→s−
Gγ(s) ∈ BF

esc;
(2) or ϱ1 = lims→s+

Gγ(s) ∈ BP
esc.

The sets BF
esc and BP

esc are introduced in Definition 2.11. With the measure ν
vanishing above I × Γ by the last point of Proposition 6.4, the measure propa-
gation equation is locally tHp µ = 0. Thus locally, the support of µ is a union of
bicharacteristics. In both possibilities, all such bicharacteristics exit T ∗L reach-
ing a region where µ vanishes, which gives a contradiction and concludes the
proof in this case.

7. Proof of the propagation equation I

7.1. Preliminary remarks and observations. Recall that uk is the zero-
extension to L̂ of a weak solution to the wave equation in L. With the ho-
mogeneous Dirichlet condition this extension is H1.

Consider χ ∈ C ∞
c (R) with 0 /∈ suppχ. Since the coefficient of the wave

operator are independent of time t then ũk = χ(hDt)uk also solves the wave

equation in L with f̃k = χ(hDt)fk as source term and the Hermitian s.c.m. of
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t(ũk, hkf̃k) is |χ(τ)|2M . Similarly, the s.c.m. of (hk∂nkχ(hDt)uk |∂L)k is |χ(τ)|2ν.
If we prove that (6.2) holds for M and ν replaced by |χ(τ)|2M and |χ(τ)|2ν
then, using (6.1), one finds that (6.2) holds also for M and ν by the dominated-
convergence theorem. Without any loss of generality we may thus replace uk by
ũk and fk by f̃k. Then, there exists 0 < Cµ,0 < 1 < Cµ,1 <∞ such that

suppµ ⊂ Char p ∩ T ∗L ∩ {Cµ,0 ≤ |τ | ≤ Cµ,1},(7.1)

suppM0,1 ⊂ T ∗L ∩ {Cµ,0 ≤ |τ | ≤ Cµ,1},

and

supp ν ⊂ T ∗∂L ∩ {Cµ,0 ≤ |τ | ≤ Cµ,1}.(7.2)

If no precision is given, the L2-norm on M is given by the density measure κµg

in what follows.
Suppose I is a time interval. With the τ -microlocalisation performed above,

one has

∥uk∥L2(I×M) ≂ ∥h2k∂2t uk∥L2(I×M) ≂ ∥h2kAκk,gkuk + h2kfk∥L2(I×M).(7.3)

using the wave equation. Assume that a subsequence of uk converges to 0 in
L2(I × M). This gives µ = 0 on T ∗(I × M). With (7.3), one finds that
∥h2k∂2t uk∥L2(I×M) → 0 and ∥h2kAκk,gkuk∥L2(I×M) → 0 also, using that hkfk is

L2
loc-bounded. Ellipticity up to the boundary gives ∥h2kuk∥H2(I×M) → 0 and in-

terpolation gives

∥hk∂tuk∥L2(I×M) → 0 and ∥hk∇gkuk∥L2(I×M) → 0.

With Proposition 3.1 one conludes that ∥hk∂nuk∥L2(I×∂M) → 0. Hence, all
terms in the measure equation vanish, in this case. One may thus assume that
∥uk∥L2(I×M) ≳ 1, for any interval I.

With the arguments given just above, one has

1 ≂ ∥uk∥L2(I×M) ≂ ∥h2k∂2t uk∥L2(I×M) ≂ ∥h2kAκk,gkuk∥L2(I×M)(7.4)

≂ ∥h2kuk∥H2(I×M) ≂ ∥hk∂tuk∥L2(I×M) ≂ ∥hk∇gkuk∥L2(I×M),

and more generally one has

(7.5) hℓ+2s
k ∥∂ℓtAs

κk,gk
uk∥L2(M)

≂ 1,

using that ∥hℓk∂ℓtfk∥L2(I×M) ≂ ∥fk∥L2(I×M).
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Note that equation (6.2) is local. Consequently, the proof can be carried
out in local charts. It greatly simplifies away from the boundary: there (6.2) is
Hp µ = 2 ImM0,1, which follows from Proposition 7.2 below. We will thus only
consider the case of a local chart C = (O, ϕL) near a boundary point, where the
boundary is given by {z = xd = 0} and M = {z > 0}; see Section 2.1. By abuse
of notation we will use the notation A, κ, g, uk and µ for their representative in
the local chart.

For concision we will write y = (t, x), y′ = (t, x′), η = (τ, ξ), and η′ = (τ, ξ′).

A consequence of (7.4)–(7.5) that we will use is as follows in C, for ψ ∈
C ∞
c (Rd+1),

(7.6)
∑

1≤i,j≤d−1

∥ψh2kDiDju
k∥L2(Rd+1) +

∑
1≤j≤d−1

∥ψh2kDjDdu
k∥L2(Rd+1)

+ ∥ψh2kD2
du

k∥L2(Rd+1
+ ) ≲ 1.

Note that the last term h2kD
2
du

k does not lie in L2(Rd+1) in general as Dduk is
not continuous across z = 0. This explains the computation of its norm only on
Rd+1

+ .

As mentioned in Section 3.1, in the quasi-normal geodesic coordinates of
Propositon 2.1 one has ∂n = ∂d, if n is the unitary normal inward pointing
vector field to ∂M. Here, we will not use a different coordinate system if the
metric gk varies. In the chosen local chart C, quasi-normal geodesic coordinates
adapted to the “reference” metric g will be kept fixed. In such coordinates one has
nk =

∑
j g

dj
k ∂j. For a function like uk that vanishes at z = 0 one has ∂nkuk |∂L =

gddk ∂duk |z=0. Hence

vk = hkg
dd
k ∂zuk |z=0+ ,(7.7)

in local coordinates. Note that gddk |z=0 = 1 + o(1) as k → ∞, since gdd|z=0 = 1 in
the chosen quasi-normal geodesic coordinates; see Section 2.

From the “jump formula” the sequences uk and vk satisfy

(7.8) h2k(∂
2
t − Aκk,gk)uk = h2kfk − hkvk ⊗ δ∂L.

The proof follows the lines of the proof of [16, Theorem 2.3] (or also [2,
Théorème 4]). The main differences are as follows.

• The sequence (uk)k is solution to a family of wave equations associated
with Lipschitz metrics.
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• On the l.h.s. of (7.8), the wave operator is k dependent. In fact, in the
application we make in Section 6.2, the sequence (uk)k is not spectrally
localized with respect to a fixed operator, but rather with respect to the
family of operators Ak = Aκk,gk ,

uk = 1−h2
kAk∈[α2,α−2[uk.

• With respect to [2, Théorème 4] the result here assumes less smoothness
(W 1,∞ as opposed to C 2), while the difference with respect to [16, The-
orem 2.3] is more subtle: in [16], the authors study only rough (W 2,∞)
domains of Rd with the usual flat metric, which ensures the existence
of local coordinate systems that are regular with respect to the variable
tranverse to the boundary, which simplifies greatly the analysis. Note
that neither the result of [16] nor its proof are preserved by change of
coordinates. To the opposite the result and proofs in the present article
are coordinate invariant and thus geometrical.

The lack of regularity and the geometrical framework we consider, if compared
with [2, 16], generate technical difficulties. In Sections 8–9, we will use a particular
decomposition of symbols based on the Weierstrass preparation theorem. This
allows one to express symbols as a first-order polynomial in ζ, the dual variable
of z = xd, with coefficients that are tangential symbols, and a remainder term.
An issue is then the handling of the different terms that lack decay in ζ, even
if the initial symbol is smooth with fast decay. This is a main reason for the
introduction of ad hoc symbol spaces, taking into account both the low regularity
in the x variable (that originates from the regularity of the metric we consider)
and this low decay in the ζ variable. This makes some of the statements quite
technical even though we made an effort to minimize this aspect.

7.2. Commutator analysis. To establish the propagation equation of Theo-
rem 6.1 we carefully compute a commutator. In fact, assume for a second that
p and b are smooth symbols −ihk Hp b = −ihk{p, b} is the principal symbol of
the commutator [Oph(p),Oph(b)]. Hence, to find the value of ⟨µ,Hp b⟩ it is very
natural to analyse the limit of(

hk[Pκk,gk ,Oph(b)]uk, uk
)
L2 .

Technicalities arise because of the limited smoothness of the coefficients of Pκk,gk

that prevent one from using standard semi-classical calculus results. However,
there is no restriction on the smoothness and decay properties of the test symbol
b. In fact, in the course of the proof of the Proposition 7.2, differentiations of the



MEASURE AND CONTINUOUS VECTOR FIELDS 59

symbol b with respect to x are needed as well as some decay in ξ. For simplicity,
symbols in Σ∞,∞

0 (⟨ξ⟩−∞;R2d) are thus considered; see Definition 5.4 and (5.2). A
classical result is the following one.

Lemma 7.1. Let b ∈ Σ∞,∞
0 (⟨ξ⟩−∞;R2d) and s, s′ ∈ R. There exists Cs,s′ > 0

such that

∥Oph(⟨ξ⟩s′)Oph(b)u∥L2(Rd) ≤ Cs,s′∥Oph(⟨ξ⟩s)u∥L2(Rd), u ∈ S (Rd).

This means that Oph(b) sends any semi-classical Sobolev space in the inter-
section of all semi-classical Sobolev spaces. This is due to both the smoothness
in x and ξ and the fast decay in ξ of b.

Here, and in what follows one writes Hδ
zL

2
y′ in place of Hδ(Rz;L

2(Rd
y′)) in

norm indices or duality bracket indices for the sake of concision for δ ∈ [−1, 1].
For a density measure ρ on RN we will denote by

(., .)ρ
H−δ

z L2
y′ ,H

δ
zL

2
y′
,

the complex duality bracket understood with L2(RN , ρ) as a pivot space.

Proposition 7.2. Suppose b ∈ Σ∞,∞
0 (⟨ξ⟩−∞;R2d+2) with supp b ⊂ K × Rd+1,

for K a compact of ϕL(O), and suppose ψ ∈ C ∞
c (ϕL(O)) be equal to 1 in a

neighborhood of the y-projection of supp b. Set

Lk(b, ψ) = i
(
Oph(b)ψuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′
(7.9)

− i
(
vk ⊗ δz=0, ψOph(b)⋆uk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
.

One has limk→+∞ Lk(b, ψ) = −⟨µ,Hpκ,g b⟩ − 2⟨ImM0,1, b⟩.

Recall that vk ⊗ δz=0 lies in H−s
loc(Rz;L

2(Rd
y′)) for any s > 1/2, hence one

finds the duality brackets appearing in the definition of Lk. Here, Oph(b)⋆ stands
for the adjoint in the sense of the L2(Rd+1, κkµgkdt)-inner product.
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Proof. Using L2(Rd+1, κkµgk∂
dt) as a pivot space and the symmetry of Pκk,gk for

the associated inner product and using (7.8) one has(
[Pκk,gk ,Oph(b)ψ]uk, uk

)
L2(Rd+1;κkµgk

dt)

=
(
Oph(b)ψuk, Pκk,gkuk

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′
−

(
Oph(b)ψPκk,gkuk, uk

)
L2(Rd+1;κkµgk

dt)

=
(
Oph(b)ψuk, fk

)
L2(Rd+1;κkµgk

dt)
−

(
Oph(b)ψfk, uk

)
L2(Rd+1;κkµgk

dt)

− h−1
k

(
Oph(b)ψuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

+ h−1
k

(
Oph(b)ψvk ⊗ δz=0, uk

)
L2(Rd+1;κkµgk

dt)

=
(
Oph(b)ψuk, fk

)
L2(Rd+1;κkµgk

dt)
−

(
Oph(b)ψfk, uk

)
L2(Rd+1;κkµgk

dt)

+ ih−1
k Lk(b, ψ).

Since one has

lim
k→+∞

hk
i

((
Oph(b)ψuk, fk

)
L2(Rd+1;κkµgk

dt)
−

(
Oph(b)ψfk, uk

)
L2(Rd+1;κkµgk

dt)

)
=

1

i

(
⟨M0,1, b⟩ − ⟨M1,0, b⟩

)
= 2⟨ImM0,1, b⟩,

the result follows if one proves

lim
k→+∞

Ik = −⟨µ,Hpκ,g b⟩,

with

Ik =
hk
i

(
[Pκk,gk ,Oph(b)ψ]uk, uk

)
L2(Rd+1;κkµgk

dt)

=
1

ihk

(
κ̃−1κ̃k[h

2
kPκk,gk ,Oph(b)ψ]uk, uk

)
L2(Rd+1;κµgdt)

.

Recall that κ̃ = κ det(g)1/2 and κ̃k = κk det(gk)
1/2. First one writes

[h2kPκk,gk ,Oph(b)ψ] = [h2kPκk,gk ,Oph(b)]ψ +Oph(b)[h2kPκk,gk , ψ].

Since [Pκk,gk , ψ] is a differential operator of order one with Lipschitz coefficients
one finds

[h2kPκk,gk ,Oph(b)ψ] = [h2kPκk,gk ,Oph(b)]ψ + h2k Oph(b)O(1)L(H1,L2),
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and one obtains

lim
k→+∞

Ik = lim
k→+∞

1

ihk

(
κ̃−1κ̃k[h

2
kPκk,gk ,Oph(b)]ψuk, uk

)
L2(Rd+1;κµgdt)

.(7.10)

According to symbolic calculus one has

(7.11) [h2k∂
2
t ,Oph(b)] = ihk Oph(2τ∂tb) + o(hk)L(L2).

The contribution of (7.11) to the limit in (7.10) is then
(7.12)

lim
k→+∞

1

ihk

(
κ̃−1κ̃k[h

2
k∂

2
t ,Oph(b)]ψuk, uk

)
L2(Rd+1,κµgdt)

= ⟨µ, 2τ∂tb⟩ = ⟨µ, {τ 2, b}⟩,

by Lemma 5.24 and (5.28).
Next, with repeated indices convention, one writes

Aκk,gk = ρjk∂j + gijk ∂i∂j with ρjk = κ̃−1
k [∂i, κ̃kg

ij
k ],

with (ρjk)k ⊂ L∞ that converges to some ρj ∈ C 0 ∩ L∞. One computes

[h2kAκk,gk ,Oph(b)] = A1 + A2 + A3 + A4,

with

A1 = h2kρ
j
k[∂j,Oph(b)], A2 = h2k[ρ

j
k,Oph(b)]∂j,

A3 = h2kg
ij
k [∂i∂j,Oph(b)], A4 = h2k[g

ij
k ,Oph(b)]∂i∂j.

One writes

A1 = h2kρ
j
k Oph(∂xj

b) = O(h2k)L(L2),

with Lemma 7.1 since ∂xj
b ∈ Σ∞,∞

0 (⟨ξ⟩−∞;R2d+2) (one can also argue that ∂xj
b ∈

Σ(R2d+2) and use Lemma 5.6). With (5.9) in Proposition 5.10 one finds

A2 = h2k
∑
j

o(1)L(L2) ∂j = o(h2k)L(H1,L2).

Thus, with (7.4) one finds that the contributions of A1 and A2 to the limit in
(7.10) are 0.

Next, one writes

A3 = h2kg
ij
k [∂i∂j,Oph(b)] = hkig

ij
k Oph

(
ξi∂xj

b+ ξj∂xi
b
)
+ h2kg

ij
k Oph(∂xi

∂xj
b)

= hkig
ij
k Oph

(
{ξiξj, b}

)
+ h2kO(1)L(L2),
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as ∂xi
∂xj

b ∈ Σ∞,∞
0 (⟨ξ⟩−∞;R2d+2). Since {ξiξj, b} ∈ Σ0(R2d+2), with (7.4) one

finds that the contributions of A3 to the limit in (7.10) is

− lim
k→+∞

1

ihk

(
κ̃−1κ̃kA3ψuk, uk

)
L2(Rd+1,κµgdt)

= −⟨µ, gij{ξiξj, b}⟩,(7.13)

by Lemma 5.24 and (5.28). Finally, with (5.12) in Proposition 5.10 one writes

A4 = ih3k
∑
ℓ

(
∂xℓ
gijk

)
Oph

(
∂ξℓb

)
∂i∂j + o(h3k)L(H2,L2)

= −ihk
∑
ℓ

(
∂xℓ
gijk

)
Oph

(
ξiξj∂ξℓb

)
+ o(h3k)L(H2,L2),

implying with (7.4) that the contributions of A4 to the limit in (7.10) is

− lim
k→+∞

1

ihk

(
κ̃−1κ̃kA4ψuk, uk

)
L2(Rd+1,κµgdt)

=
∑
ℓ

⟨µ, ξiξj∂xℓ
gij∂ξℓb⟩(7.14)

= −
〈
µ, ξiξj{gij, b}

〉
.

Gathering (7.12), (7.13) and (7.14) and writing

{τ 2, b} − gij{ξiξj, b} − ξiξj{gij, b} = {τ 2 − gijξiξj, b} = −{pκ,g, b} = −Hpκ,g b,

one obtains the result of the proposition. □

7.3. Time microlocalization. Above in Proposition 7.2, we defined Lk(b, ψ)
for symbols b in Σ∞,∞

0 (⟨ξ⟩−∞;R2d) and we are interested in the limit of Lk(b, ψ)
as k → +∞. With the support properties of the measure µ given in (7.1) one
obtains the following lemma.

Lemma 7.3. Suppose χ ∈ C ∞
c (C2

µ,0, C
2
µ,1) be equal to 1 on a neighborhood of

[Cµ,0, Cµ,1]. Let b ∈ Σ∞,∞
0 (⟨ξ⟩−∞;R2d) and ψ be as in Proposition 7.2. Then, one

has

lim
k→+∞

Lk

(
(1− χ)(τ) b, ψ

)
= 0.

8. More on semi-classical symbols and operators

8.1. Preparation theorem: Euclidean symbol division. For technical rea-
sons, it is convenient to consider symbols with finer properties here and in what
follows.

Definition 8.1. One says that a ∈ ΣH
0 (R2d+2) if a ∈ Σ∞,∞

0 (⟨ξ⟩−∞;R(2d+2)) and
satisfies moreover the following properties
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• a(y, η) is compactly supported in the y variable;
• a(y, η) has a compactly supported Fourier transform in the η variable and,
consequently, is holomorphic with respect to the η variable.

This choice is possible and relevant observing that ΣH
0 (R2d+2) is dense in

Σ∞,∞
0 (⟨ξ⟩−∞;R2d+2), the symbol classes we consider in Propositon 7.2. Recall

that y = (t, x) and η = (τ, ξ), x = (z, y′) (the boundary is given by {z = 0}. See
the beginning of Section 7.

Below we will need the following quantification of the decay of a symbol
a ∈ ΣH

0 (R2d+2) with the η variable allowed to slightly depart from the real axis:
for any R > 0, α, β ∈ Nd+1, and N ∈ N there exists Cα,β,N,R > 0 such that

|∂αy ∂βη a(y, η)| ≤ Cα,β,N,R⟨η⟩−N , y ∈ Rd+1, η ∈ Cd+1 with | Im η| ≤ R.(8.1)

This is given by the Paley-Wiener theorem; see for instance [21, Theorem 7.3.1].

The following proposition gives a decomposition of a symbol b ∈ ΣH
0 (R2d+2).

For our purpose, that is, using such symbols in the identity given by Proposi-
tion 7.2, with Lemma 7.3 it suffices to work with a time-frequency truncated
symbol. Recall that η = (η′, ζ) with η′ = (τ, ξ′) and ζ is the dual variable to
z = xd.

Proposition 8.2 (Euclidean symbol division). Let χ ∈ C ∞
c (C2

µ,0, C
2
µ,1) be equal

to 1 on a neighborhood of [Cµ,0, Cµ,1] and b(y, η) ∈ ΣH
0 (R2d+2). For k ∈ N, there

exist b0,k(y, η
′), b1,k(y, η

′) and qk(y, η) such that

χ(τ)b(y, η′, ζ) = b0,k(y, η
′) + b1,k(y, η

′)ζ + qk(y, η
′, ζ) pk(y, η

′, ζ),(8.2)

with the following symbol properties

(8.3)
∣∣∂αy ∂βη′bj,k(y, η′)∣∣ ≤ CN,β⟨η′⟩−N ,

for N ∈ N, α ∈ Nd+1, |α| ≤ 1, β ∈ Nd, j = 0, 1, y ∈ Rd+1, η′ ∈ Rd,

and

(8.4)
∣∣∂αy ∂βη′∂δζqk(y, η′, ζ)∣∣ ≤ CN,β,δ⟨η′⟩−N⟨ζ⟩−1−δ,

for N ∈ N, α ∈ Nd+1, |α| ≤ 1, β ∈ Nd, δ ∈ N, y ∈ Rd+1, (η′, ζ) ∈ Rd+1,

uniformly with respect to k ∈ N. Moreover, qk admits a polyhomogeneous devel-
opment in the ζ variable: there exist qjk(y, η

′), j ∈ N∗, such that

(8.5)
∣∣∂αy ∂βη′qjk(y, η′)∣∣ ≤ CN,β⟨η′⟩−N ,

for N ∈ N, α ∈ Nd+1, |α| ≤ 1, β ∈ Nd, y ∈ Rd+1, η′ ∈ Rd,



64 NICOLAS BURQ, BELHASSEN DEHMAN, AND JÉRÔME LE ROUSSEAU

uniformly with respect to k ∈ N, and qk ∼
∑

j≥1 q
j
kζ

−j in the following sense: for
ϕ ∈ C ∞

c (R) equal to 1 near 0 one has

(8.6)∣∣∣∂αy ∂βη′∂δζ(qk(y, η′, ζ)− (1− ϕ(ζ))
M∑
j=1

qjk(y, η
′)ζ−j

)∣∣∣ ≤ CN,M,β,δ⟨η′⟩−N⟨ζ⟩−M−1−δ,

for M,N ∈ N, α ∈ Nd+1, |α| ≤ 1, β ∈ Nd, δ ∈ N, y ∈ Rd+1, (η′, ζ) ∈ Rd+1.

The decomposition of symbols given in Proposition 8.2 makes tangential
symbols appear; they are introduced in Section 5.3. Observe that qk has limited
decay in ζ. Yet, the polyhomogeneous development will be used in what follows.

Proof. Recall that pk(y, η) = −τ 2 +
∑

i,j g
i,j
k (x)ξiξj is the principal symbol of

Pκk,gk . For τ ∈ suppχ, and ϱ′ = (y, η′), with η′ = (τ, ξ′), having pk(ϱ
′, ζ) = 0

reads

gijk ξiξj = τ 2 ∈ (C4
µ,0, C

4
µ,1), ξ = (ξ′, ζ),

meaning that |ξ′|+|ζ| ≲ C2
µ,1 if y = (t, x) remains in a bounded domain. Hence for

supp b ⊂ K ×Rd+1 with K compact of Rd+1 one sees that there exist a bounded
domain L′ of Rd−1 and R > 0

(8.7)

y = (t, x′, z) ∈ K, η′ = (τ, ξ′) ∈ Rd, ζ ∈ C, τ ∈ suppχ and pk(y, η
′, ζ) = 0

⇒ ξ′ ∈ L′ and |ζ| < R.

For r ≥ R we will consider the rectangular curve in the complex plane postively
oriented and made with the following pieces

Lr,R = {z ∈ C; −r ≤ Re z ≤ r and Im z = ±R}
∪ {z ∈ C; Re z = ±r and −R ≤ Im z ≤ R},

that encloses the open ball centred at 0 with radius R. The important aspect of
this contour is that the distance from the real axis is bounded by R from above
allowing one to use the estimation (8.1)

Consider χ̃ ∈ C ∞
c (Rd−1) that is equal to 1 in a neighborhood of L′. We

decompose symbols in ΣH
0 (R2d+2) according to Weierstrass preparation Theo-

rem [21, Section 7.5]. Let b(y, η′, ζ) ∈ ΣH
0 (R2d+2). One may write for |ζ| < r,

with r ≥ R,

χ(τ)χ̃(ξ′)b(y, η′, ζ) =
χ(τ)χ̃(ξ′)

2iπ

∫
Lr,R

b(y, η′, ζ̃)
dζ̃

ζ̃ − ζ
.



MEASURE AND CONTINUOUS VECTOR FIELDS 65

Following the proof of [21, Theorem 7.5.2], using (8.7), one further writes

χ(τ)χ̃(ξ′)b(y, η′, ζ) = b̃k(y, η
′, ζ) + r̃k(y, η) pk(y, η),

with

b̃k(y, η
′, ζ) =

χ(τ)χ̃(ξ′)

2iπ

∫
Lr,R

b(y, η′, ζ̃)

pk(y, η′, ζ̃)

pk(y, η
′, ζ̃)− pk(y, η

′, ζ)

ζ̃ − ζ
dζ̃(8.8)

and

r̃k(y, η
′, ζ) =

χ(τ)χ̃(ξ′)

2iπ

∫
Lr,R

b(y, η′, ζ̃)

pk(y, η′, ζ̃)

dζ̃

ζ̃ − ζ
.

Observing that (pk(y, η
′, ζ̃)− pk(y, η

′, ζ))/(ζ̃ − ζ) is a first-order polynomial in ζ

one finds that b̃k has the form

b̃k(y, η
′, ζ) = b0,k(y, η

′) + b1,k(y, η
′)ζ.(8.9)

It is important to notice that the values of r̃k, b0,k, and b1,k are independent of
the value of r, provided that r > |ζ|. From (8.1) and the explicit formula (8.8)
one deduces that (8.3) holds uniformly with respect to k ∈ N.

Setting

qk(y, η
′, ζ) = r̃k(y, η

′, ζ) + (1− χ̃)(ξ′)χ(τ)
b(y, η′, ζ)

pk(y, η′, ζ)
,(8.10)

where the second term is properly defined by (8.7), one has

χ(τ)b(y, η′, ζ) = b0,k(y, η
′) + b1,k(y, η

′)ζ + qk(y, η
′, ζ) pk(y, η

′, ζ).(8.11)

Using that qk is smooth in the η′, ζ variables and that pk(y, η
′, ζ) is invertible for

|(ξ′, ζ)| large and τ ∈ suppχ, with (8.3) and (8.11) by induction one finds that
(8.4) holds uniformly with respect to k ∈ N.

We now consider the polyhomogeneous development of qk in the ζ variable.
Observe that the second term on the r.h.s. of (8.10) can be estimated by the
remainder in (8.6). Hence, it suffices to consider the term r̃k. In the support
of this term one has |η′| = |(ξ′, τ)| bounded. Observe that it suffices to have
the polyhomogeneous development for |ζ| large. With (8.7), if |ζ| ≥ R one has
pk(y, η) ̸= 0 and one can write

r̃k =
χ(τ)χ̃(ξ′)b(y, η′, ζ)− b0,k(y, η

′)− b1,k(y, η
′)ζ

pk(y, η)
,(8.12)
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and pk(y, η) takes the form

pk(y, η) =
(
ζ − ρ(y, η′)

)(
ζ − ρ′(y, η′)

)
,

with the two roots having the same regularity as the coefficients in the x variable
and homogeneous of degree one in η′, a classical result based on the Rouché
theorem; see for instance [23, Section 6.A]. Observe that the first term on the
r.h.s. of (8.12) can be estimated by the remainder in (8.6). For the other terms
one writes

b0,k(y, η
′) + b1,k(y, η

′)ζ

pk(y, η)
=

b0,k(y, η
′)/ζ2 + b1,k(y, η

′)/ζ(
1− ρ(y, η′)/ζ

)(
1− ρ′(y, η′)/ζ

) .
Since here |η′| is bounded and y remains in a compact domain, for |ζ| sufficiently
large one obtains the sought polyhomogeneous development with a truncated
Neumann series. □

Remark 8.3. Recall that the symbol pk(y, η) is in fact smooth in t since inde-
pendent of t. Hence, estimates (8.2)-(8.6) remain valid with an arbitrary number
of derivatives in t. This is however not needed in what follows.

8.2. Low regularity/low conormal decay symbolic calculus. The limited
smoothness with respect to the x variable of the symbols obtained in Propo-
sition 8.2 and their limited decay in the ζ variable force us to investigate the
symbolic calculus properties of operators with low regularity (W 1,∞) that we will
need in what follows.

In (8.4) and (8.5) we have found symbol estimates with distinct decays in
the variables η′ and ζ. For a symbol a(y, η) we thus set

Ñℓ(a) = max
|α|≤ℓ

ess sup
(y,η)

∣∣∂αη a2(y, η)∣∣⟨ζ⟩2⟨η′⟩d+1.(8.13)

Observe the difference with M
−(d+1)
0,ℓ (a) in (5.1).

Lemma 8.4. Let χ ∈ C ∞
c (R) be equal to 1 in a neighborhood of 0. Consider a

symbol a(y, η) that is compactly supported in the y variable and of the form

a(y, η) = a0(y, η
′) + a1(y, η

′)
(1− χ(ζ))

ζ
+ a2(y, η),

with aj ∈ ΣT(Rd+1 × Rd), j = 0, 1, and Ñd+2(a2) < +∞. Then the operator
a(y, hDy) is bounded on L2(Rd+1) and

∥a(y, hDy)∥L(L2(Rd+1)) ≤ C(Nd+1(a0) +Nd+1(a1) + Ñd+2(a2)).
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Proof. The estimate of the contribution associated with a0 is given by Lemma 5.12.
The contribution associated with a1 is given by (5.19), Lemma 5.12 and 5.20.

The contribution of the symbol a2 is dealt with by using the same method
as in the proof of Lemma 5.6. In fact, the kernel of a2(y, hDy) is given by
K(y, ỹ) = h−d−1k(y, (y − ỹ)/h) with

k(y, v) = (2π)−d−1

∫
Rd+1

eiv·ηa2(y, η)dη = (2π)−d−1

∫
Rd+1

eiv·η(tL)d+2a2(y, η)dη,

with L = (1−iv·∇η)/⟨v⟩2 and tL = (1+iv·∇η)/⟨v⟩2 since L exp(iv·η) = exp(iv·η).
Using (8.13) and that ⟨ζ⟩−2⟨η′⟩−(d+1) is integrable one finds

|k(y, v)| ≲ Ñd+2(a2)⟨v⟩−(d+2)

∫
R
⟨η′⟩−d−1⟨ζ⟩−2dη′dζ ≲ Ñd+2(a2)⟨v⟩−(d+2).

One concludes with Corollary 5.3. □

An inspection of the part of the proof of Lemma 8.4 dedicated to the term
a1(y, η

′) shows that multiplying a0(y, η
′) and a1(y, η

′) by a uniformly bounded
function of ζ leaves the result unchanged.

Lemma 8.4′. Let χ ∈ C ∞
c (R) be equal to 1 in a neighborhood of 0. Let m(ζ, h)

be a bounded function uniformly with respect to h > 0. Consider a symbol a(y, η)
that is compactly supported in the y variable and of the form

a(y, η, h) = a0(y, η
′)m(ζ, h) + a1(y, η

′)
(1− χ(ζ))m(ζ, h)

ζ

with aj ∈ ΣT(Rd+1 × Rd), j = 0, 1. Then, the operator a(y, hDy, hx) is bounded
on L2(Rd+1) and

∥a(y, hDy, h)∥L(L2(Rd+1)) ≤ C(Nd+1(a0) +Nd+1(a1)).

Lemma 8.5. Let χ ∈ C ∞
c (R) be equal to 1 in a neighborhood of 0. Consider a

symbol a(y, η) that is compactly supported in the y variable and of the form

a(y, η) = a0(y, η
′) + a1(y, η

′)
(1− χ(ζ))

ζ
+ a2(y, η).

(1) Assume that Nd+2(aj) <∞, j = 0, 1, that is, aj ∈ Σ0,d+2
T (⟨η′⟩−d−1;Rd+1×

Rd), and Ñd+3(a2) <∞. Then, for θ ∈ W 1,∞(Rd+1
y ), one has

∥∥[a(y, hDy), θ]
∥∥
L(L2(Rd+1))

≤ Ch
(
Nd+2(a0) +Nd+2(a1) + Ñd+3(a2)

)
∥θ∥W 1,∞ .

(8.14)
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(2) Assume that Nd+2(∇y′a0) <∞, Nd+2(∇ya1) <∞, and Ñd+3(∇ya2) <∞.
Then,

(8.15)
∥∥ā(y, hDy)

∗ − a(y, hDy)
∥∥
L(L2(Rd+1))

≤ Ch
(
Nd+2(∇y′a0) +Nd+2(∇ya1) + Ñd+3(∇ya2)

)
.

The adjoint is understood with respect to the inner product L2(Rd+1, dxdt).

Proof. First, we consider the contribution of a2 to the commutator. The kernel
of the commutator is then given by K2(y, ỹ) = h−(d+1)k2(y, (y − ỹ)/h)

k2(y, v) = (2π)−(d+1)

∫
Rd+1

eiv·η
(
θ(y − hv)− θ(y)

)
a2(y, η)dη

= (2π)−(d+1)

∫
Rd+1

eiv·η
(
θ(y − hv)− θ(y)

)
(tL)d+3a2(y, η)dη,

with L = (1−iv·∇η)/⟨v⟩2 and tL = (1+iv·∇η)/⟨v⟩2 since L exp(iv·η) = exp(iv·η).
Using that ℓ(y, hv) =

(
θ(y − hv)− θ(y)

)
/∥hv∥ is bounded one can write

k2(y, v) = h(2π)−(d+1)

∫
Rd+1

eiv·ηℓ(y, hv)∥v∥(tL)d+3a2(y, η)dη.

With the form of tL and (8.13) one obtains

|k2(y, v)| ≲ hÑd+3(a2)∥θ∥W 1,∞⟨v⟩−(d+2)

∫
Rd

⟨η′⟩−d−1dη′
∫
R
⟨ζ⟩−2dζ

≲ hÑd+3(a2)∥θ∥W 1,∞⟨v⟩−(d+2).

One concludes with Corollary 5.3 as for the proof of Lemma 5.12.

Second, we consider the contribution of a0 to the commutator. Since
[Oph(a0), θ] is tangential one can consider its action in the y′ variable only. As
in (5.16)–(5.17) one writes

Oph(a0)u(y
′, z) =

∫
Rd

Ka0(y
′, ỹ′; z)u(ỹ′, z) dỹ′,

with

Ka0(y
′, ỹ′; z) = (2π)−d

∫
Rd

ei(y
′−ỹ′)·η′a0(y

′, z, hη′) dη′,
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with z as a parameter. The associated tangential kernel for the commutator is

K0(y
′, ỹ′; z) = Ka0(y

′, ỹ′; z)
(
θ(ỹ′, z)− θ(y′, z)

)
= h−dk0

(
y′, (y′ − ỹ′)/h; z

)
,

with

k0(y
′, v; z) = (2π)−d

∫
Rd

eiv·η
′(
θ(y′ − hv, z)− θ(y′, z)

)
a0(y, η

′) dη′.

Note that here v ∈ Rd. With the same argument as above one finds

k0(y
′, v; z) = h(2π)−d

∫
Rd

eiv·η
′
ℓ′(y′, hv)∥v∥(tL0)

d+2a0(y, η
′) dη′.

with ℓ′(y′, hv, z) =
(
θ(y′ − hv, z) − θ(y′, z)

)
/∥hv∥ and tL0 = (1 + iv · ∇η′)/⟨v⟩2

yielding

|k0(y′, v; z)| ≲ hNd+2(a0)∥θ∥W 1,∞⟨v⟩−(d+1)

∫
Rd

⟨η′⟩−d−1dη′

≲ hNd+2(a0)∥θ∥W 1,∞⟨v⟩−(d+1).

One concludes with Corollary 5.3.

Third, we consider the contribution of a1 to the commutator. Set f(ζ) =(
1 − χ(ζ)

)
/ζ. As observed in (5.18) one has Oph(a1f(ζ)) = Oph(a1)f(hDz)

allowing one to write

[Oph(a1f(ζ)), θ] = Oph(a1)[f(hDz), θ] + [Oph(a1), θ]f(hDz).

By (5.20) one has ∥f(hDz)∥L(L2(Rd+1)) ≲ 1 and [Oph(a1), θ] ≲ hNd+2(a1)∥θ∥W 1,∞

similarly to the treatment of the term associated with a0, yielding∥∥[Oph(a1), θ]f(hDz)
∥∥
L(L2(Rd+1))

≲ hNd+2(a1)∥θ∥W 1,∞ .

With (5.21)–(5.22) the commutator [f(hDz), θ] has tangential kernel acting only
in the z variable

K(y; z, z̃) = h−1k
(
y; z, (z − z̃)/h

)
with

k(y; z, v) = (2π)−1

∫
R
eivζ

(
θ(y′, z − hv)− θ(y′, z)

)
f(ζ) dζ,
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where v ∈ R here. One writes

k(y; z, v) = h(2π)−1

∫
R
veivζℓd(y

′, z, hv)f(ζ) dζ,

with ℓd(y
′, z, hv) =

(
θ(y′, z − hv) − θ(y′, z)

)
/(hv) with |ℓd(y′, z, hv)| ≤ ∥θ∥W 1,∞ .

Since veivζ = −i∂ζeivζ , with an integration by parts, one finds

k(y; z, v) = ih(2π)−1

∫
R
eivζℓd(y

′, z, hv)∂ζf(ζ) dζ.

Moreover with tLf = (1 + iv∂ζ)/⟨v⟩2 one writes

k(y; z, v) = ih(2π)−1

∫
R
eivζℓd(y

′, z, hv)(tLf )
2∂ζf(ζ) dζ.

Since |(tLf )
2∂ζf(ζ)| ≲ ⟨v⟩−2⟨ζ⟩−2 one finds |k(y; z, v)| ≲ h∥θ∥W 1,∞⟨v⟩−2, implying∥∥[f(hDz), θ]

∥∥
L(L2(Rd+1))

≲ h∥θ∥W 1,∞ .

With Lemma 5.12 one obtains∥∥Oph(a1)[f(hDz), θ]
∥∥
L(L2(Rd+1))

≲ hNd+1(a1)∥θ∥W 1,∞ ≲ hNd+2(a1)∥θ∥W 1,∞ .

This concludes the proof of the estimation of the commutator norm.

We now turn to the proof of the estimate for the adjoint. We will observe
that the proof is in fact along the same lines as that for the commutator. We start
with the contribution of a2(y, η). The kernel of the operator Oph(ā2)

∗ −Oph(a2)
is given by K(y, ỹ) = h−d−1k

(
y, (y − ỹ)/h

)
with

k(y, v) = (2π)−d−1

∫
Rd+1

eiv·η
(
a2(y − hv, η)− a2(y, η)

)
dη,

with v ∈ Rd+1, and one writes

k(y, v) = (2π)−d−1

∫
Rd+1

eiv·η(tL)d+3
(
a2(y − hv, η)− a2(y, η)

)
dη,

with tL = (1 + iv · ∇η)/⟨v⟩2. Since∣∣(tL)d+3
(
a2(y − hv, η)− a2(y, η)

)∣∣ ≤ h∥v∥
∥∥∇y(

tL)d+3a2(y, η)
∥∥
L∞

≲ h⟨v⟩−d−2Ñd+3(∇ya2)⟨η′⟩−d−1⟨ζ⟩−2.
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The sought estimate follows.

For the contribution of the symbol a0(y, η), the tangential kernel of the
operator Oph(ā0)

∗ −Oph(a0) is given by K(y′, ỹ′) = h−dk
(
y′, (y′ − ỹ′)/h

)
with

k(y′, v) = (2π)−d

∫
Rd

eiv·η
′(
a0(y

′ − hv, η′)− a0(y
′, η′)

)
dη′,

with here v ∈ Rd, and one writes

k(y′, v) = (2π)−d

∫
Rd

eiv·η
′
(tL)d+2

(
a0(y

′ − hv, η′)− a0(y
′, η′)

)
dη′,

with tL = (1 + iv · ∇η′)/⟨v⟩2 and one finds similarly∣∣(tL)d+2
(
a0(y − hv, η)− a0(y, η)

)∣∣ ≲ h⟨v⟩−d−1Nd+2(∇y′a0)⟨η′⟩−d−1.

The sought estimate follows.

For the contribution of a1(y, η) one writes

Oph
(
ā1f̄(ζ)

)∗ −Oph
(
a1f(ζ)

)
= f(hDz)ā1(y, hDy)

∗ − a1(y, hDy)f(hDz)

= f(hDz)
(
ā1(y, hDy)

∗ − a1(y, hDy)
)
+ [f(hDz), a1(y, hDy)],

using that f̄(hDz)
∗ = f(hDz). With (5.20) and applying the argument made for

the term associated with a0 one finds∥∥f(hDz)
(
ā1(y, hDy)

∗ − a1(y, hDy)
)∥∥

L(L2(Rd+1))
≲ hNd+2(∇y′a1).

We now consider the commutator [f(hDz), a1(y, hDy)]. The kernel of f(hDz)
is given by

K1(y, ỹ) = δy′−ỹ′ ⊗Kd(z, z̃),

with

Kd(z, z̃) = (2π)−1

∫
R
ei(z−z̃)ζf(hζ)dζ.

The kernel of a1(y, hDy) is given by

K2(y, ỹ) = K ′(y′, ỹ′; z)⊗ δz−z̃,
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with

K ′(y′, ỹ′; z) = (2π)−d

∫
Rd

ei(y
′−ỹ′)·η′a1(y

′, z, hη′)dη′.

This leads to the following kernel for the commutator [f(hDz), a1(y, hDy)]

K(y, ỹ) =

∫
Rd+1

(
K1(y, ŷ)K2(ŷ, ỹ)−K2(y, ŷ)K1(ŷ, ỹ)

)
dŷ,

where the integration is understood in the sense of distribution action. Products
here make sense; see [21, Theorem 8.2.14]. This gives

K(y, ỹ) = (2π)−d−1

∫
R
ei(z−z̃)ζf(hζ)dζ

×
∫
Rd

ei(y
′−ỹ′)·η′(a1(y′, z̃, hη′)− a1(y

′, z, hη′)
)
dη′,

that we write K(y, ỹ) = h−d−1k
(
y, (y − ỹ)/h

)
with

k(y, v) = (2π)−d−1

∫
R
eiwζf(ζ)dζ

∫
Rd

eiv
′·η′(a1(y′, z − hw, η′)− a1(y

′, z, η′)
)
dη′,

for v = (v′, w) with v′ ∈ Rd and w ∈ R. Considering the bounded function

ℓ(y, z, hw, η′) =
(
a1(y

′, z − hw, η′)− a1(y
′, z, η′)

)
/(hw),

one writes

k(y, v) = h(2π)−d−1

∫
R
eiwζwf(ζ)dζ

∫
Rd

eiv
′·η′ℓ(y, z, hw, η′)dη′.

Set Lζ = (1− iw∂ζ)/⟨w⟩2 and Lη′ = (1− iv′ · ∂η′)/⟨v′⟩2. With weiwζ = −i∂ζeiwζ ,
Lζe

iwζ = eiwζ , and Lη′e
iv′·η′ = eiv

′·η′ one writes

k(y, v) = ih(2π)−d−1

∫
R
eiwζ(tLζ)

2∂ζf(ζ)dζ

∫
Rd

eiv
′·η′(tLη′)

d+1ℓ(y, z, hw, η′)dη′,

and one finds

|k(y, v)| ≲ h⟨w⟩−2⟨v′⟩−d−1Nd+1(∂za1)

∫
R
⟨ζ⟩−2dζ

∫
Rd

⟨η′⟩−d−1dη′,

since (tLη′)
d+1ℓ(y, z, hw, η′) ≲ Nd+1(∂za1)⟨η′⟩−d−1. This leads to the conclusion

of the proof. □
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Multiplying a0(y, η
′) and a1(y, η

′) by a sufficiently rapidely decaying func-
tion of ζ leaves the result nearly unchanged.

Lemma 8.5′. Let χ ∈ C ∞
c (R) be equal to 1 in a neighborhood of 0. Let m(ζ, h)

be a bounded function of ζ and h > 0 with moreover

∂jζm(ζ, h) ∈ L1
ζ , 1 ≤ j ≤ 3,

uniformly with respect to h > 0. Consider a symbol a(y, η) that is compactly
supported in the y variable and of the form

a(y, η) = a0(y, η
′)m(ζ, h) + a1(y, η

′)
(1− χ(ζ))m(ζ, h)

ζ

(1) Assume that Nd+2(aj) <∞, j = 0, 1, that is, aj ∈ Σ0,d+2
T (⟨η′⟩−d−1;Rd+1×

Rd). Then, for θ ∈ W 1,∞(Rd+1
y ), one has∥∥[a(y, hDy), θ]

∥∥
L(L2(Rd+1))

≤ Ch
(
Nd+2(a0) +Nd+2(a1)

)
∥θ∥W 1,∞ sup

1≤j≤3
∥∂jζm∥L1 .

(2) Assume that Nd+2(∇ya0), Nd+2(∇ya1) are finite. Then one has∥∥ā(y, hDy)
∗ − a(y, hDy)

∥∥
L(L2(Rd+1))

≤ Ch
(
Nd+2(∇ya0) +Nd+2(∇ya1)

)
sup
1≤j≤3

∥∂jζm∥L1 .

The adjoint is understood with respect to the inner product L2(Rd+1, dxdt).

Note that Nd+2(∇y′a0) is replaced by Nd+2(∇ya0) in the second estimate if
compated with Lemma 8.5.

Proof. Considering the properties of m(ζ, h) in both results, only the contribu-
tion associated with the tangential symbol a0(y, η

′) needs to be analyzed. For
the commutator, as for the treatment of the term a1 in the proof of Lemma 8.5
one estimates the operator norm of [m(hDz, h), θ]. Its tangential kernel is

K(y; z, z̃) = h−1k
(
y; z, (z − z̃)/h

)
with

k(y; z, v) = (2π)−1

∫
R
eivζ

(
θ(y′, z − hv)− θ(y′, z)

)
m(ζ, h) dζ, v ∈ R.
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Following the proof of Lemma 8.5 one obtains

k(y; z, v) = ih(2π)−1

∫
R
eivζℓd(y

′, z, hv)(tLf )
2∂ζm(ζ, h) dζ.

where ℓd(y
′, z, hv) =

(
θ(y′, z − hv) − θ(y′, z)

)
/(hv) and tLf = (1 + iv∂ζ)/⟨v⟩2.

With the properties of the function m(ζ, h) one obtains

|k(y; z, v)| ≲ h∥θ∥W 1,∞⟨v⟩−2 sup
1≤j≤3

∥∂jζm∥L1 ≲ h∥θ∥W 1,∞ sup
1≤j≤3

∥∂jζm∥L1⟨v⟩−2,

implying ∥∥[f(hDz), θ]
∥∥
L(L2(Rd+1))

≲ h∥θ∥W 1,∞ sup
1≤j≤3

∥∂jζm∥L1 .

Considering the argument for the adjoint given in the proof of Lemma 8.5
one needs to estimate the operator norm of [m(hDz, h), a0(y, hDy)]. Its kernel
reads K(y, ỹ) = h−d−1k

(
y, (y − ỹ)/h

)
with

k(y, v) = (2π)−d−1

∫
R
eiwζm(ζ, h)dζ

∫
Rd

eiv
′·η′(a0(y′, z − hw, η′)− a0(y

′, z, η′)
)
dη′,

for v = (v′, w) with v′ ∈ Rd and w ∈ R. One obtains

k(y, v) = ih(2π)−d−1

∫
R
eiwζ(tLζ)

2∂ζm(ζ, h)dζ

∫
Rd

eiv
′·η′(tLη′)

d+1ℓ(y, z, hw, η′)dη′,

with ℓ(y, z, hw, η′) =
(
a0(y

′, z − hw, η′)− a0(y
′, z, η′)

)
/(hw). This leads to

|k(y, v)| ≲ h⟨w⟩−2⟨v′⟩−d−1Nd+1(∂za0) sup
1≤j≤3

∥djζm∥L1

∫
Rd

⟨η′⟩−d−1dη′,

and the conclusion of the proof. □

Remark 8.6. A particular choice of Fourier multiplier m(ζ, h) appearing in Lem-
mata 8.4′ and 8.5′ is m(ζ, h) = φ(hβζ) for φ ∈ S (R;R) and some β > 0. Indeed,
the following properties hold:

(1) One has m(ζ, h) ≲ 1 uniformly with respect to h > 0 as required by
Lemmata 8.4′ and 8.5′.

(2) One has obviously

sup
h

sup
1≤j≤3

∥∂jζm∥L1 < +∞.

In what follows, we will use m(ζ, h) = φ(h3ζ) with φ ∈ C ∞
c (R).
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8.3. A class of error terms.

Definition 8.7. Let R be the class of sequences of operators (Rk)k bounded on
L2(Rd+1) by Chδk, δ ≥ 0, and from L2(Rd+1) to H1(Rz;L

2(Rd
y′)) by Chρk, ρ ≥ 0,

with moreover δ + ρ > 0. Denote by R0 the class obtained in the case (δ, ρ) =
(1, 0).

Lemma 8.8. Let (fk)k be a bounded sequence of L2(Rd+1) and (gk)k be a bounded
sequence of L2

y′(Rd). Then, if (Rk)k ∈ R one has

lim
k→+∞

∣∣(gk ⊗ δz=0, Rkfk
)
H−1

z L2
y′ ,H

1
zL

2
y′

∣∣ = 0.

Proof. As the sequence gk ⊗ δz=0 is bounded in H−σ(Rz;L
2(Rd

y′)), for any σ >
1/2, the result follows from the bound

∥Rk∥L(L2(Rd+1),Hσ
z L

2
y′ )

≤ Ch
δ+ρ
2

+(σ− 1
2
)(ρ−δ)

k ,

obtained by interpolation and choosing σ > 1
2
sufficiently close to 1

2
. □

Corollary 8.9. Let b ∈ Σ∞,∞
0 (⟨ξ⟩−∞;R2d+2) with supp b ⊂ K × Rd+1, for K a

compact of ϕL(O), and let ψ ∈ C ∞
c (ϕL(O)) be equal to 1 in a neighborhood of the

y-projection of supp b. Let Lk(b, ψ) be as defined in (7.9). One has Lk(b, ψ) =
L′
k(b, ψ) + o(1)k→+∞ with

L′
k(b, ψ) = i

(
Oph(b)ψuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′
(8.16)

− i
(
vk ⊗ δz=0,Oph(b̄)ψuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
.

Proof. One has to prove that

Ik =
(
vk ⊗ δz=0, ψ Oph(b)⋆uk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′

=
(
vk ⊗ δz=0,Oph(b̄)ψuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
+ o(1)k→+∞.

Let ψ̃ ∈ C ∞
c (ϕL(O)) be equal to 1 in a neighborhood of suppψ. One has

Ik =
(
ψ̃vk ⊗ δz=0, ψ Oph(b)⋆ψ̃uk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
.

The adjoint operator with the ⋆-notation is here understood in the sense of
the inner product L2(Rd+1, κkµgkdt); see Proposition 7.2. Thus, Oph(b)⋆ =
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κ̃−1
k Oph(b)∗κ̃k where the adjoint with the usual ∗-notation is understood for the

inner product L2(Rd+1, dxdt).

Since (ψ̃uk)k and (ψ̃vk)k are bounded in L2(Rd+1) and in L2
y′(Rd) respec-

tively, it suffices to prove that ψ κ̃−1
k Oph(b)∗κ̃k − Oph(b̄)ψ ∈ R0 by Lemma 8.8.

One has

ψ κ̃−1
k Oph(b)∗κ̃k −Oph(b̄)ψ = ψ κ̃−1

k

(
Oph(κ̃kb)

∗ −Oph(κ̃kb̄)
)
+ [ψ,Oph(b̄)].

From (8.14) and (8.15) one deduces that

∥ψ κ̃−1
k Oph(b)∗κ̃k −Oph(b̄)ψ∥L(L2(Rd+1)) ≲ hk.

To estimate the operator norm from L2(Rd+1) to H1(Rz;L
2(Rd

y′)) we compose

with Dz = h−1
k Oph(ζ) and get

Dz

(
ψ κ̃−1

k Oph(b̄)∗κ̃k −Oph(b)ψ
)

= [Dz, ψ κ̃
−1
k ] Oph(b)∗κ̃k + ψ κ̃−1

k Dz Oph(b)∗κ̃k − [Dz,Oph(b̄)]ψ −Oph(b̄)Dzψ

= Dz

(
ψ κ̃−1

k

)
Oph(b)∗κ̃k + h−1

k ψ κ̃−1
k Oph(bζ)∗κ̃k −Oph(Dz b̄)ψ − h−1

k Oph(ζb̄)ψ.

One has

∥Dz

(
ψ κ̃−1

k

)
Oph(b)∗κ̃k∥L(L2(Rd+1))

+ ∥Oph(Dz b̄)ψ∥L(L2(Rd+1)) ≲ 1.

It thus remains to prove that

∥ψ κ̃−1
k Oph(bζ)∗κ̃k −Oph(ζb̄)ψ∥L(L2(Rd+1)) ≲ hk.

The argument is the same as for estimate (8.9) with b replaced by ζb. We conclude
using Lemma 8.8 with δ = 1, ρ = 0. □

Corollary 8.10. Let b ∈ Σ∞,∞
0 (⟨ξ⟩−∞;R2d+2) with supp b ⊂ K × Rd+1, for K a

compact of ϕL(O), and let ψ ∈ C ∞
c (ϕL(O)) be equal to 1 in a neighborhood of the

y-projection of supp b. Let also φ ∈ C ∞
c (] − 2, 2[;R) and equal to 1 on (−1, 1).

Let Lk(b, ψ) be as defined in (7.9). One has Lk(b, ψ) = L′′
k(b, ψ) + o(1)k→+∞ with

L′′
k(b, ψ) = i

(
Oph(b)φ(h3kDz)ψuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0,Oph(b̄)φ(h3kDz)ψuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
.
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Proof. Arguing as for Corollary 8.9, starting from the form of L′
k(b, ψ) given in

(8.16) it suffices to prove that

Oph(b)
(
1− φ(h3kDz)

)
= Oph(γhk

) ∈ R0, γhk
(y, η) = b(y, η)

(
1− φ(h2kζ)

)
In the support of 1 − φ(h2kζ) one has h2k|ζ| ≳ 1, which combined with the fast
decay of b in η yields

|∂αy ∂βη γhk
(y, η)| ≲ hNk ⟨η⟩−N ,

for any N . The result follows from Lemma 7.1. □

9. Proof of the propagation equation II: symbol quantization

From the support property of the semi-classical measure µ given in (7.1) if
considering the action of µ on a symbol in ΣH

0 (R2d+2) it suffices to work with a
time-frequency truncated version. That is, for χ ∈ C ∞

c (C2
µ,0, C

2
µ,1) equal to 1 on

a neighborhood of [Cµ,0, Cµ,1] and b(y, η) ∈ ΣH
0 (R2d+2) one has ⟨µ, (1− χ)b⟩ = 0,

meaning that

lim
k→+∞

L′′
k

(
(1− χ(τ))b, ψ

)
= lim

k→+∞
Lk

(
(1− χ(τ))b, ψ

)
= 0.

With Proposition 7.2, we will thus only consider the action of µ on a symbol of
the form χ(τ)b(y, η) through the limit of Lk

(
χ(τ)b, ψ

)
and we will now quantize

the Euclidean division of Proposition 8.2. Even though the symbol b on the l.h.s.
of (8.2) exhibits rapid decay in the variable ζ, it is not the case for the symbols
b0,k, b1,k, and qk on the r.h.s. of (8.2). Following [16], adding a cutoff in the
ζ variable in the form of φ(h3kDz), made possible by Corollary 8.10, acts as a
remedy.

Since Lk(., ψ) and L
′′
k(., ψ) have the same limit as k → ∞ by Corollary 8.10,

in what follows, we will study sequentially the limits of L′′
k(a, ψ) as k → +∞ with

a(y, η) = qkpk(y, η), a(y, η
′) = b0,k(y, η

′), and a(y, η) = b1,k(y, η
′)ζ.

9.1. Contribution of qkpk. We prove that the symbol qkpk(y, η) yields a van-
ishing contribution to the limit of L′′

k(χ(τ)b, ψ).

Proposition 9.1. One has L′′
k(qkpk, ψ) = o(1)k→+∞.

Proving this result requires some preliminary results.

Set φk = φ(h3kDz). Naturally, φk is uniformly bounded on L2(R) as a
uniformly bounded Fourier multiplier. One can view φk in various manners: one
has

φk = Ophk(h2kζ) = Oph3
k(ζ).
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With the second formula, by simply replacing h by h3k in the analysis of Section 5,
with point (3) of Proposition 5.10 one has the following result.

Lemma 9.2. Let θ ∈ W 1,∞(R). Then, ∥[θ, φk]∥L(L2(R)) ≤ Ch3k.

Set

Qk = Oph(qk), Q̄k = Oph(q̄k), Pk = h2kPκk,gk ,

Gk = Oph(qkpk), and Ḡk = Oph(q̄kpk).

Note that

Pk = Oph(pk) + h2kP
1
k ,

where P 1
k is a differential operator of order one with bounded coefficients.

Because of the form of pk and Pk, one writes Pk = P d
k + PT

k with

P d
k = κ̃−1

k hkDzκ̃kg
dd
k (x)hkDz,

PT
k = h2k∂

2
t +

∑
1≤i,j≤d

(i,j)̸=(d,d)

κ̃−1
k hkDiκ̃kg

ij
k (x)hkDj,

and Gk = Gd
k +GT

k with

Gd
k = gddk (x)Oph(qk)h

2
kD

2
z

GT
k = Oph(qk)h

2
k∂

2
t +

∑
1≤i,j≤d

(i,j)̸=(d,d)

gijk (x)Oph(qk)h
2
kDiDj,

and Ḡk = Ḡd
k + ḠT

k with

Ḡd
k = gddk (x)Oph(q̄k)h

2
kD

2
z

ḠT
k = Oph(q̄k)h

2
k∂

2
t +

∑
1≤i,j≤d

(i,j)̸=(d,d)

gijk (x)Oph(q̄k)h
2
kDiDj.

With this notation one has

L′′
k(qkpk, ψ) = Ld

k(qkpk, ψ) + LT
k (qkpk, ψ),

with

Ld
k(qkpk, ψ) = i

(
Gd

kφkψuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0, Ḡ

d
kφkψuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
.
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and

LT
k (qkpk, ψ) = i

(
GT

kφkψuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0, Ḡ

T
kφkψuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
.

Lemma 9.3. (1) One has hkQk ∈ R0.
(2) Let (fk)k be a bounded sequence in W 1,∞(Rd+1)). One has [Qk, fk] ∈ R0.
(3) The operator GT

k −QkP
T
k is a finite sum of operators that lie in

(9.1)
∑
|α′|=1

R0 h
2
kD

α′

y′Dz +
∑
|α|=2

R0 h
2
kD

α
y′ +

∑
|β|=1

R0 hkD
β
y ,

with R0 as given in Definition 8.7. The same holds for ḠT
k − Q̄kP

T
k

(4) The operators Qk[P
T
k , φk] and Q̄k[P

T
k , φk] are also finite sums of operators

that lie in the space given by (9.1).

A proof is given below.
Observe that Rφk ⊂ R as φk is uniformly bounded on L2(Rd+1). Then,

with Lemma 8.8, exploiting (7.4)–(7.5) and the local estimate (7.6), with the
third item in Lemma 9.3 one obtains

LT
k (qkpk, ψ) = i

(
QkP

T
k φkψuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0, Q̄kP

T
k φkψuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
+ o(1)k→+∞.

With the fourth item in Lemma 9.3, with the same argumentation one finds

LT
k (qkpk, ψ) = i

(
QkφkP

T
k ψuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0, Q̄kφkP

T
k ψuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
+ o(1)k→+∞.

Lemma 9.4. Let Mk(y,Dy) be a differential operator with coefficients that are
uniformly bounded with respect to k. Let N ∈ N. For some CN > 0 one has

∥Qkφk[M(y,Dy), ψ]uk∥H1
zL

2
y′
≤ ChNk .

The same hold for Q̄k in place of Qk.
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A proof is given below. Applying Lemma 9.4 gives

LT
k (qkpk, ψ) = i

(
QkφkψP

T
k uk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0, Q̄kφkψP

T
k uk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
+ o(1)k→+∞.

Our goal is now to handle the terms associated with the operators Gd
k and

Ḡd
k in Ld

k(qkpk, ψ). With the forms of Gd
k and Ḡd

k and Lemma 9.4, using that gddk
is uniformly Lipschitz as k → +∞, one has

Ld
k(qkpk, ψ) = i

(
gddk Qkφkψh

2
kD

2
zuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0, g

dd
k Q̄kφkψh

2
kD

2
zuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
+ o(1)k→+∞.

With the ”jump formula” one has

h2kD
2
zuk = −h2k∂zukz=0+ ⊗ δz=0 + h2kD

2
zuk

= −hk(gddk )−1vk ⊗ δz=0 + h2kD
2
zuk,

recalling (7.7), where f denotes the zero-extension of f|z>0. One writes

Ld
k(qkpk, ψ) = Lδ

k(qkpk, ψ) + L
{z>0}
k (qkpk, ψ) + o(1)k→+∞,

with

Lδ
k(qkpk, ψ) = −ihk

(
gddk Qkφkψ(g

dd
k )−1vk ⊗ δz=0, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′
(9.2)

+ ihk
(
vk ⊗ δz=0, g

dd
k Q̄kφkψ(g

dd
k )−1vk ⊗ δz=0

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
,

and

L
{z>0}
k (qkpk, ψ) = i

(
gddk Qkφkψh

2
kD

2
zuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0, g

dd
k Q̄kφkψh

2
kD

2
zuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
.

With Lemmata 9.2 and 9.3 one has

gddk Qkφkψ = Qkφkψg
dd
k mod R0 and gddk Q̄kφkψ = Q̄kφkψg

dd
k mod R0.
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With Lemma 8.8, as h2kD
2
zuk is bounded in L2 by (7.6), one obtains

L
{z>0}
k (qkpk, ψ) = i

(
Qkφkψ g

dd
k h

2
kD

2
zuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0, Q̄kφkψ g

dd
k h

2
kD

2
zuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′
.

One writes

gddk h
2
kD

2
z = κ−1

k hkDzg
dd
k κkhkDz + hkκ

−1
k

(
Dz(g

dd
k κk)

)
hkDz.

Since hkQk ∈ R0 by Lemma 9.3 one obtains

L
{z>0}
k (qkpk, ψ) = i

(
Qkφkψ κ

−1
k hkDzg

dd
k κkhkDzuk, vk ⊗ δz=0

)κkµgk
dt

H1
zL

2
y′ ,H

−1
z L2

y′

− i
(
vk ⊗ δz=0, Q̄kφkψ κ

−1
k hkDzg

dd
k κkhkDzuk

)κkµgk
dt

H−1
z L2

y′ ,H
1
zL

2
y′

+ o(1)k→+∞.

One thus obtains

L
{z>0}
k (qkpk, ψ) + LT

k (qkpk, ψ) = o(1)k→+∞.

since Pk = κ−1
k hkDzg

dd
k κkhkDz + PT

k and thus

L′′
k(qkpk, ψ) = Lδ

k(qkpk, ψ) + o(1)k→+∞,

with Lδ
k(qkpk, ψ) given in (9.2). One then writes

Lδ
k(qkpk, ψ) = ihk

〈
Nkvk ⊗ δz=0, vk ⊗ δz=0

〉κkµgk
dt

Hα
z L2

y′ ,H
−α
z L2

y′
,

for any α > 1/2, with

Nk = (gddk )−1ψφ⋆
kQ̄

⋆
kg

dd
k − gddk Qkφkψ(g

dd
k )−1,

where the adjoints with the ⋆-notation are understood in the sense of the inner
product L2(Rd+1, κkµgkdt), that is, φ⋆

kQ̄
⋆
k = κ̃−1

k φkQ̄
∗
kκ̃k where the adjoint with

the ∗-notation is understood for the inner product L2(Rd+1, dxdt). One thus has

Nk = (gddk )−1ψκ̃−1
k φkQ̄

∗
kκ̃kg

dd
k − gddk Qkφkψ(g

dd
k )−1

= gddk

(
ψ
(
κ̃k(g

dd
k )2

)−1
φkQ̄

∗
k κ̃k(g

dd
k )2 −Qkφkψ

)
(gddk )−1,



82 NICOLAS BURQ, BELHASSEN DEHMAN, AND JÉRÔME LE ROUSSEAU

Lemma 9.5. Let (fk)k be a sequence of functions such that

∥fk∥W 1,∞ + ∥1/fk∥W 1,∞ ≤ C,

uniformly with respect to k. Let ε > 0. For α > 1
2
chosen sufficiently close to 1

2
.

Then,

∥Qkφkψ − ψf−1
k φkQ̄

∗
kfk∥L(H−α

z L2
y′ ,H

α
z L2

y′ )
= o(h−ε

k )k→+∞.

A proof is given below.
As κ̃k and gddk and their inverses are Lipschitz uniformly with respect to k,

with Lemma 9.5 one finds that Lδ
k(qkpk, ψ) = o(h1−ε

k )k→+∞ for any 0 < ε < 1,
which concludes the proof of Proposition 9.1. □

Proof of Lemma 9.3. Let fk be as in the statement. Both operators [Qk, fk]
and hkQk are bounded in L

(
L2(Rd+1)

)
by Chk by Lemma 8.5 for the first one and

Lemma 8.4 for the second one, recalling the properties of qk given in (8.4)–(8.5).
To estimate their operator norm from L2(Rd+1) to H1(Rz;L

2(Rd
y′)) we com-

pose with Dz = h−1
k Oph(ζ). On the one hand one gets

Dz[Qk, fk] = Oph(Dzqk)fk −Oph
(
Dz(fkqk)

)
+ h−1

k [Oph(ζqk), fk].

The first two operators are bounded in L
(
L2(Rd+1)

)
uniformly with respect to

k by Lemma 8.4. For the third operator, using that ζqk is of the form given in
Lemma 8.5 by the polyhomogeneous expansion of qk given in (8.5), one also finds
a k-uniform bound in L

(
L2(Rd+1)

)
. On the other hand, one has

DzhkQk = hk Oph(Dzqk) + Oph(ζqk),

that also has a k-uniform bound in L
(
L2(Rd+1)

)
by Lemma 8.4. The first two

points of the lemma are proven.
For the third point, we provide the proof for G′

k and Qk. The proof of Ḡ′
k

and Q̄k is identical. One sees that it suffices to prove that Oph(qka
′
k) − QkA

′
k is

a finite sum of operators that lie in the space given by (9.1), with

a′k =
∑

1≤i,j≤d
(i,j)̸=(d,d)

gijk ξiξj and A′
k =

∑
1≤i,j≤d

(i,j)̸=(d,d)

κ̃−1
k hkDiκ̃kg

ij
k (x)hkDj.

One writes

A′
k =

∑
1≤i,j≤d

(i,j)̸=(d,d)

(
gijk h

2
kDiDj + hkκ̃

−1
k

(
Di(g

ij
k κ̃k)

)
hkDj

)
,



MEASURE AND CONTINUOUS VECTOR FIELDS 83

and

Qkg
ij
k h

2
kDiDj = gijk Qkh

2
kDiDj + [Qk, g

ij
k ]h

2
kDiDj

= Oph(qkg
ij
k ξiξj) + [Qk, g

ij
k ]h

2
kDiDj,

yielding

QkA
′
k = Oph(qka

′
k) +

∑
1≤i,j≤d

(i,j)̸=(d,d)

[Qk, g
ij
k ]h

2
kDiDj + hkQkκ̃

−1
k

(
Di(g

ij
k κ̃k)

)
hkDj.

The result thus amounts to having [Qk, g
ij
k ] ∈ R0 and hkQk ∈ R0, which holds

by the first two points of the lemma proven above. This concludes the proof of
the third point of Lemma 9.3.

We now turn to the proof of the fourth point. Since [∂2t , φk] = 0 it suffices
to consider Qk[A

′
k, φk]. One writes

A′
k =

∑
1≤i,j≤d

(i,j)̸=(d,d)

(
gijk h

2
kDiDj + hkκ̃

−1
k

(
Di(g

ij
k κ̃k)

)
hkDj

)
,

yielding

[A′
k, φk] =

∑
1≤i,j≤d

(i,j)̸=(d,d)

(
[gijk , φk]h

2
kDiDj + hkκ̃

−1
k

(
Di(g

ij
k κ̃k)

)
φkhkDj

− hkφkκ̃
−1
k

(
Di(g

ij
k κ̃k)

)
hkDj

))
.

Since Qk is bounded on L2(Rd+1) and also bounded by Ch−1
k from L2(Rd+1) to

H1(Rz;L
2(Rd

y)) uniformly in hk it suffices to prove that [gijk , φk] is bounded by

Chk on L2(Rd+1). This is a consequence of Lemma 9.2. □

Proof of Lemma 9.4. First, we prove

∥Qkφk[Mk(y,Dy), ψ]uk∥L2(Rd+1)) ≲ hNk .(9.3)

Second, we prove

∥DzQkφk[Mk(y,Dy), ψ]uk∥L2(Rd+1)) ≲ hNk .(9.4)

Together (9.3) and (9.4) give the sought result.
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Proof of (9.3). Note that [Mk(y,Dy), ψ]uk is bounded in L2(Rd+1) by Ch1−m
k ,

where m is the order of Mk(y,Dy), by (7.5).
With the polyhomogeneous development in the ζ variable of qk given in

(8.5)–(8.6) one writes

qk(y, η
′, ζ) =

1− ϕ(ζ)

ζ
q1k(y, η

′) + qak(y, η
′, ζ),

with

(9.5)
∣∣∣∂αy ∂βη′∂δζqak(y, η′, ζ)∣∣∣ ≤ CN,β,δ⟨η′⟩−N⟨ζ⟩−2−δ,

for N ∈ N, α ∈ Nd+1, |α| ≤ 1, β ∈ Nd, δ ∈ N, y ∈ Rd+1, (η′, ζ) ∈ Rd+1.

One writes Qk = Oph(q1k)Oph
(1−ϕ(ζ)

ζ

)
+Oph(qak).

Recall that we work in the local chart (O, ϕL) at the boundary. Since ψ = 1
in a neighborhood of the y-projection of supp b, note that supp([Mk(y,Dy), ψ]uk)

does not meet the y-projection of supp qk since supp qk ⊂ supp b. Let ψ̃, ψ̂ ∈
C ∞
c

(
ϕL(O)

)
with ψ̂ equal to 1 in a neighborhood of supp ψ̃ and with ψ̃ equal

to 1 in a neighborhood of the y-projection of supp b and moreover ψ = 1 in a
neighborhood of supp ψ̂. One has [Mk(y,Dy), ψ] = (1− ψ̂)[Mk(y,Dy), ψ] and

(9.6) ∥ψ̃φk(1− ψ̂)∥L(L2(Rd+1)) + ∥ψ̃Oph
(
ζ−1(1− ϕ(ζ))

)
φk(1− ψ̂)∥L(L2(Rd+1))

≤ CNh
N
k , N ∈ N,

by standard calculus. Since Oph(q1k) and Oph(qak) are bounded on L2(Rd+1),
to obtain (9.3) it thus suffices to study the L2-boundedness of the operators

Oph(q1k)(1− ψ̃) and Oph(qak)(1− ψ̃).

The tangential kernel of Oph(q1k)(1− ψ̃) is given by

K(y′, ỹ′) = (2π)−d

∫
ei(y

′−ỹ′)·η′(1− ψ̃(ỹ′, z))q1k(y
′, z, hkη

′) dη′.

With the joint support properties of q1k and ψ̃ one finds that ∥y′ − ỹ′∥ ≥ C > 0
in the support of the integrand. Since L exp(i(y′ − ỹ′) · η′) = exp(i(y′ − ỹ′) · η′)
with L = −i∥y′ − ỹ′∥−2(y′ − ỹ′) · ∂η′ one can write

K(y′, ỹ′) = (2π)−d

∫
ei(y

′−ỹ′)·η′(1− ψ̃(ỹ′, z))(tL)Nq1k(y
′, z, hkη

′) dη′.
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With the estimation (8.5) for q1k one finds

|K(y′, ỹ′)| ≲ hNk
⟨y′ − ỹ′⟩N

,

which, by the Schur lemma (Lemma 5.1), gives

∥Oph(q1k)(1− ψ̃)∥L(L2(Rd+1)) ≲ hNk .(9.7)

The kernel of Oph(qak)(1− ψ̃) is given by

K(y, ỹ) = (2π)−d−1

∫
ei(y−ỹ)·η(1− ψ̃(ỹ))qak(y, hkη) dη.

Here, ∥y − ỹ∥ ≥ C > 0 in the support of the integrand, yielding

K(y, ỹ) = (2π)−d−1

∫
ei(y−ỹ)·η(1− ψ̃(ỹ))(tL)Nqak(y, hkη) dη,

with L = −i∥y − ỹ∥−2(y − ỹ) · ∂η, implying with (9.5)

|K(y, ỹ)| ≲ hNk
⟨y − ỹ⟩N

,

which, by the Schur lemma, gives

∥Oph(qak)(1− ψ̃)∥L(L2(Rd+1)) ≲ hNk .(9.8)

Together (9.7) and (9.8) give estimate (9.3).

Proof of (9.4). Here, we write

qk(y, η
′, ζ) =

1− ϕ(ζ)

ζ
q1k(y, η

′) +
1− ϕ(ζ)

ζ2
q2k(y, η

′) + qbk(y, η
′, ζ),

with∣∣∣∂αy ∂βη′∂δζqbk(y, η′, ζ)∣∣∣ ≤ CN,β,δ⟨η′⟩−N⟨ζ⟩−3−δ,

for N ∈ N, α ∈ Nd+1, |α| ≤ 1, β ∈ Nd, δ ∈ N, y ∈ Rd+1, (η′, ζ) ∈ Rd+1.

One writes

Qk = Oph(q1k)Oph
(1− ϕ(ζ)

ζ

)
+Oph(q2k)Oph

(1− ϕ(ζ)

ζ2
)
+Oph(qbk).
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One has

DzQk = Oph(Dzq
1
k)Oph

(1− ϕ(ζ)

ζ

)
+Oph(Dzq

2
k)Oph

(1− ϕ(ζ)

ζ2
)
+Oph(Dzq

b
k)

+ h−1
k Oph(q1k)Oph

(
1− ϕ(ζ)

)
+ h−1

k Oph(q2k)Oph
(1− ϕ(ζ)

ζ

)
+ h−1

k Oph(ζqbk).

Similarly to (9.6) one has

∥ψ̃Oph
(
ζ−2(1− ϕ(ζ))

)
φk(1− ψ̂)∥L(L2(Rd+1))

≤ CNh
N
k , N ∈ N.

Observe that ζqbk has the same symbol properties as qak . The symbol properties
of Dzq

1
k, Dzq

2
k, Dzq

b
k also allow one to carry out the same kernel estimations as

above yielding (9.4). □

Proof of Lemma 9.5. We claim that

∥Qkφkψ − ψf−1
k φkQ̄

∗
kfk∥L(H−1/2

z L2
y′ ,H

1/2
z L2

y′ )
= O(1),(9.9)

and

∥Qkφkψ − ψf−1
k φkQ̄

∗
kfk∥L(H−1

z (L2
y′ )),(H

1
z (L

2
y′ ))

= O(h−4
k ).(9.10)

Interpolation of the two estimations then gives the result of the lemma.

We now prove the claimed estimates.

Proof of estimate (9.9). First, one has

Qkφkψ − ψf−1
k φkQ̄

∗
kfk

= Qkφkψf
−1
k fk − ψf−1

k φkQ̄
∗
kfk

= [Qkφk, ψf
−1
k ]fk + f−1

k ψ
(
Oph

(
qkφ(h

2
kζ)

)
−Oph

(
qkφ(h

2
kζ)

)∗)
fk.

With Lemmata 8.5 and 8.5′ one has

∥[Qkφk, ψf
−1
k ]∥L(L2(Rd+1))

+ ∥Oph
(
qkφ(h

2
kζ)

)
−Oph

(
qkφ(h

2
kζ)

)∗∥L(L2(Rd+1))
≲ hk,
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yielding

(9.11) ∥Qkφkψ − ψf−1
k φkQ̄

∗
kfk∥L(L2(Rd+1)) ≲ hk.

Second one writes

Dz

(
Qkφkψ − ψf−1

k φkQ̄
∗
kfk

)
= Oph(Dzqk)φkψ −

(
Dz(ψf

−1
k )

)
φkQ̄

∗
kfk

+ h−1
k

(
Oph(ζqk)φkψ − ψf−1

k φk Oph(ζqk)
∗fk

)
.

With Lemma 8.4 one finds

∥Oph(Dzqk)φkψ∥L(L2(Rd+1)) + ∥
(
Dz(ψf

−1
k )

)
φk Oph(qk)

∗fk∥L(L2(Rd+1))
≲ 1.

Arguing as for (9.11) one finds

∥Oph(ζqk)φkψ − ψf−1
k φk Oph(ζqk)

∗fk∥L(L2(Rd+1)) ≲ hk.

This gives

(9.12) ∥Dz

(
Qkφkψ − ψf−1

k φkQ̄
∗
kfk

)
∥L(L2(Rd+1))

≲ 1

Together, (9.11) and (9.12) give

(9.13) ∥Qkφkψ − ψf−1
k φkQ̄

∗
kfk∥L(L2(Rd+1),H1

zL
2
y′ )

≲ 1.

By duality this implies

(9.14) ∥Qkφkψ − ψf−1
k φkQ̄

∗
kfk∥L(H−1

z L2
y′ ,L

2(Rd+1)) ≲ 1.

An interpolation of (9.13) and (9.14) yields (9.9).

Proof of estimate (9.10). Above we computed DzQk = Oph(Dzqh)+h
−1
k Oph(qhζ)

yielding

∥Qk∥L(L2(Rd+1),H1
zL

2
y′ )

≲ h−1
k ,

and thus

∥Qkφkψ∥L(L2(Rd+1),H1
zL

2
y′ )

≲ h−1
k .(9.15)

One also computes

DzQkφkψDz = DzQkφkDzψ −DzQkφk(Dzψ).
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Since φkDz = h−3
k Oph

(
φ(h2kζ)h

2
kζ
)
one finds that φkDz is bounded on L2(Rd+1)

by Ch−3
k thus yiedling

∥QkφkψDz∥L(L2(Rd+1),H1
zL

2
y′ )

≲ h−4
k .(9.16)

Together (9.15) and (9.16) give

∥Qkφkψ∥L(H−1
z L2

y′ ,H
1
zL

2
y′ )

≲ h−4
k .(9.17)

The same holds for Q̄k in place of Qk and by duality one obtains

∥ψf−1
k φkQ̄

∗
kfk∥L(H−1

z L2
y′ ,H

1
zL

2
y′ )

≲ h−4
k ,(9.18)

and together (9.17) and (9.18) yield (9.10). □

Remark 9.6. Note that the proof we give of (9.10) is far from optimal. However,
this has no consequence on the final result of Lemma 9.5.

9.2. Contributions of b0,k and b1,k. First, we prove that the symbol b0,k(y, η
′)

yields a vanishing contribution to the limit of L′′
k(χ(τ)b, ψ). Second, we prove that

the symbol b1,k(y, η
′) yields a contribution to the limit of L′′

k(χ(τ)b, ψ) as opposed
to the other symbols appearing in the Euclidean division of Proposition 8.2. This
contribution implies the action of the semi-classical measure ν at the boundary.

The tangential nature of Oph(b0,k) and Oph(b1,k) allows one to consider
traces through the action of the Dirac measure δz=0. A key point of the proof
of this section is the understanding of traces after the action of the regularizing
operator φk.

Consider w ∈ L2(Rd+1) such that w+ = w|{z>0} ∈ H1
(
R+

z ;L
2(Rd

y′)
)
and

w− = w|{z<0} ∈ H1
(
R−

z ;L
2(Rd

y′)
)
. One the one hand, w+ ∈ C 0

(
[0,+∞[z;L

2(Rd
y′)

)
and w|z=0+ = w+

|z=0+ = limz→0+ w(z) makes sense in L2(Rd
y′) classically. Similarly

w|z=0− = w−
|z=0− = limz→0− w(z) makes sense. On the other hand, the trace of

(φkw)|z=0 can be approximated by the mean of the two traces of w as in the
following lemma.

Lemma 9.7. Let φ ∈ C ∞
c (R) be real valued and equal to 1 near 0. There exists

C > 0 such that∥∥φ(h3Dz)w|z=0 −
1

2

(
w|z=0− + w|z=0+

)∥∥
L2(Rd)

≤ Ch
3
2

(
∥∂zw∥L2(R−

z ;L2(Rd
y′ ))

+ ∥∂zw∥L2(R+
z ;L2(Rd

y′ ))

)
,

for h > 0 and w ∈ L2(Rd+1) such that w± ∈ H1
(
R±

z ;L
2(Rd

y′)
)
.
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Proof. By linearity and symmetry it suffices to consider w such that w{z<0} = 0
and prove3

(9.19)
∥∥φ(h3Dz)w|z=0 −

1

2
w|z=0+

∥∥
L2(Rd)

≤ Ch
3
2∥∂zw∥L2(R+

z ;L2(Rd
y′ ))
.

Denote by φ̂ the inverse Fourier transform of φ. The Parseval formula gives

2πφ(h3Dz)w|z=0 =

∫
R
φ(h3ζ)ŵ(ζ) dζ(9.20)

=

∫
R
φ̂(z)w(h3z) dz =

∫
R+

φ̂(z)w(h3z) dz.

For z ≥ 0, with the Cauchy-Schwarz inequality one finds

∥w(z)− w|z=0+∥L2(Rd)
=

∥∥∥ ∫ z

0

∂zw(s)ds
∥∥∥
L2(Rd)

≤ z1/2∥∂zw∥L2(R+
z ;L2(Rd

y′ ))
.(9.21)

Using that φ̂ is even since φ is real valued one has
∫
R+ φ̂ = π since

∫
R φ̂ =

2πφ(0) = 2π. With (9.20) and (9.21) one thus obtains

2π
∥∥φ(h3Dz)w|z=0 −

1

2
w|z=0+

∥∥
L2(Rd)

=
∥∥∥ ∫

R+

φ̂(z)
(
w(h3z)− w|z=0+

)
dz

∥∥∥
L2(Rd)

≤ h3/2∥∂zw∥L2(R+
z ;L2(Rd

y′ ))

∫
R+

|φ̂(z)|z1/2 dz ≲ h3/2∥∂zw∥L2(R+
z ;L2(Rd

y′ ))
,

which is the sought result (9.19). □

Proposition 9.8. One has L′′
k(b0,k, ψ) = o(1)k→+∞.

Proof. Using that ∥ψuk∥H1(R+
z ;L2(Rd

y′ ))
= O(h−1

k ) by (7.4) one writes

L′′
k(b0,k, ψ) = i

(
Oph

(
b0,k |z=0

)
(φkψuk)|z=0+ , vk

)κkµgk∂
dt

L2(Rd),L2(Rd)

− i
(
vk,Oph

(
b0,k |z=0

)
(φkψuk)|z=0+

)κkµgk∂
dt

L2(Rd),L2(Rd)

=
i

2

(
Oph

(
b0,k |z=0

)
(ψuk)|z=0+ , vk

)κkµgk∂
dt

L2(Rd),L2(Rd)

− i

2

(
vk,Oph

(
b0,k |z=0

)
(ψuk)|z=0+

)κkµgk∂
dt

L2(Rd),L2(Rd)
+O(h

1/2
k )

= O(h
1/2
k ),

using the homogeneous Dirichlet boundary condition, that is, uk |z=0+ = 0. □

3In what follows, we will actually use Lemma 9.7 in the case of a function vanishing in {z < 0}.
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Proposition 9.9. One has

L′′
k(b1,kζ, ψ) =

(
Oph

(
b1,k |z=0

)(
(gddk )−1ψ

)
|z=0

vk, vk
)κkµgk∂

dt

L2(Rd),L2(Rd)
+ o(1)k→+∞

Proof. With (7.6) one has ∥hkDzψuk∥H1(R+
z ;(L2(Rd

y′ ))
= O(h−1

k ), which gives

L′′
k(b1,kζ, ψ) = i

(
Oph

(
b1,k |z=0

)
(φkhkDzψuk)|z=0+ , vk

)κkµgk∂
dt

L2(Rd),L2(Rd)

− i
(
vk,Oph

(
b̄1,k |z=0

)
(φkhkDzψuk)|z=0+

)κkµgk∂
dt

L2(Rd),L2(Rd)

=
1

2

(
Oph

(
b1,k |z=0

)
(hk∂zψuk)|z=0+ , vk

)κkµgk∂
dt

L2(Rd),L2(Rd)

+
1

2

(
vk,Oph

(
b̄1,k |z=0

)
(hk∂zψuk)|z=0+

)κkµgk∂
dt

L2(Rd),L2(Rd)
+O(h

1/2
k ),

by Lemma 9.7. With (7.7) one has vk = hkg
dd
k ∂zuk |z=0+ yielding

hk∂zψuk |z=0+ = hk(∂zψ)|z=0uk |z=0+ + hkψ|z=0(∂zuk)|z=0+ = (gddk )−1ψ|z=0vk.

One then obtains

L′′
k(b1,kζ, ψ) =

1

2

(
Oph

(
b1,k |z=0

)(
(gddk )−1ψ

)
|z=0

vk, vk
)κkµgk∂

dt

L2(Rd),L2(Rd)

+
1

2

(
vk,Oph

(
b̄1,k |z=0

)(
(gddk )−1ψ

)
|z=0

vk
)κkµgk∂

dt

L2(Rd),L2(Rd)
+O(h

1/2
k ).

One writes (
vk,Oph

(
b̄1,k |z=0

)(
(gddk )−1ψ

)
|z=0

vk
)κkµgk∂

dt

L2(Rd),L2(Rd)

=
((
(gddk )−1ψ

)
|z=0

Oph
(
b̄1,k |z=0

)⋆
vk, vk

)κkµgk∂
dt

L2(Rd),L2(Rd)
,

with the adjoint operator with the ⋆-notation understood in the sense of the inner
product L2(Rd, (κk)|z=0µgk∂

dt), that is,

Oph
(
b̄1,k |z=0

)⋆
= (κ̃−1

k )|z=0Oph
(
b̄1,k |z=0

)∗
(κ̃k)|z=0,

where the adjoint with the ∗-notation is understood in the sense of the inner
product L2(Rd, dx′dt). With the two points of Lemma 8.5 one finds∥∥Oph

(
b1,k |z=0

)(
(gddk )−1ψ

)
|z=0

−
(
ψκ̃−1

k (gddk )−1
)
|z=0

Oph
(
b̄1,k |z=0

)∗
(κ̃k)|z=0

∥∥
L(L2(Rd))

≲ hk,

yielding the result. □
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9.3. Proof conclusion and further support property of the measure ν.
With Proposition 7.2, Corollary 8.10, and Propositions 9.1, 9.8, and 9.9 one now
has

−⟨µ,Hp b⟩ = 2⟨ImM0,1, b⟩(9.22)

+ lim
k→∞

(
Oph

(
b1,k |z=0

)(
(gddk )−1ψ

)
|z=0

vk, vk
)κkµgk∂

dt

L2(Rd),L2(Rd)
.

Let b ∈ ΣH
0 (R2d+2). With Proposition 8.2 one writes

χ(τ)b(y, η′, ζ) = b0,k(y, η
′) + b1,k(y, η

′)ζ + qk(y, η
′, ζ) pk(y, η

′, ζ),

and

χ(τ)b(y, η′, ζ) = b0(y, η
′) + b1(y, η

′)ζ + q(y, η′, ζ) p(y, η′, ζ).(9.23)

With (8.8) and (8.9) one finds that Nd+1(b1 − b1,k) = o(1)k→∞. Since also
∥κ̃k − κ̃∥L∞ = o(1)k→∞ one gets(

Oph
(
b1,k |z=0

)(
(gddk )−1ψ

)
|z=0

vk, vk
)κkµgk∂

dt

L2(Rd),L2(Rd)

=
(
Oph

(
b1|z=0

)(
(gddk )−1ψ

)
|z=0

vk, vk
)κµg∂

dt

L2(Rd),L2(Rd)
+ o(1)k→+∞.

Since the s.c.m. of (vk) is ν, with (9.22), Lemma 5.24 and (5.28), one obtains

−⟨µ,Hp b⟩ = 2⟨ImM0,1, b⟩+ ⟨ν, b1|z=0⟩,(9.24)

as ψ|z=0 = 1 in a neighborhood of supp(b1|z=0) and as ∥(gddk )−1
|z=0 − 1∥

L∞ → 0

as k → +∞ since gdd|z=0 = 1 in the chosen quasi-normal geodesic coordinates
associated with the metric g; see Proposition 2.1.

With the results obtained above, the description of supp ν in (7.2) can be
refined.

Proposition 9.10. One has supp ν ⊂
(∥H∂ ∪ ∥G∂

)
∩ {Cµ,0 ≤ τ ≤ Cµ,1}.

Proof. The inclusion τ ∈ [Cµ,0, Cµ,1] is given in (7.2).
Consider a(y, η′) ∈ C ∞

c (Rd+1×Rd) supported in a neighborhood of {z = 0}
and with a(y′, z = 0, η′) supported in the elliptic region ∥E∂ = (∥H∂ ∪ ∥G∂)

c. One
has

π∥(Char p ∩ {z = 0}) ∩ supp a|z=0 = ∅.
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See Section 2.3. If the support of a is chosen sufficiently small in the z variable,
then this remains true away from {z = 0}, in the sense that

a(y′, z, η′) ̸= 0 ⇒ p(y′, z, η′, ζ) ̸= 0 ∀ζ ∈ R.

Because of the homogeneity of p = pκ,g and pk = pκk,gk , by compactness, the
same property holds for pk in place of p for k chosen sufficiently large. For such
choice one can set

qk(y, η) = −a(y, η
′)ζ

pk(z, ζ)
.

It is Lipschitz in y, smooth and compactly supported in η′ and admits a polyho-
mogeneous development in the ζ variable as in (8.5)–(8.6). In fact, it reads

0 = a(y, η′)ζ + qk(y, η)pk(z, ζ),

precisely of the form given by the Euclidean symbol division of Proposition 8.2,
with b = 0, b0,k = 0, and b1,k = a.

With (9.22) and the definition of the semi-classical measure ν, one finds

⟨ν, a|z=0⟩ = −⟨µ, 0⟩ = 0.

This gives the result considering the support property of a|z=0. □

Let b ∈ ΣH
0 (R2d+2) as above, with b1(y, η

′) defined by (9.23). Let ϱ′ =

(y, z = 0, η′) ∈ supp ν. With Proposition 9.10 one has ϱ′ ∈ ∥H∂ ∪ ∥G∂ and
τ ∈ [Cµ,0, Cµ,1]. Let ζ

± be defined as in (2.3) and ϱ± = (ϱ′, ζ±) ∈ H±
∂ ∪G∂. With

(9.23) one finds

b(ϱ+)− b(ϱ−) = b1(ϱ
′)(ζ+ − ζ−) if ϱ′ ∈ supp ν.

Hence, in supp ν the function
(
b(ϱ+)− b(ϱ−)

)
/(ζ+ − ζ−) is well defined even for

points ϱ′ ∈ ∥G∂. One has

b1(ϱ
′) =

b(ϱ+)− b(ϱ−)

ζ+ − ζ−
=

⟨δϱ+ − δϱ− , b⟩
⟨ξ+ − ξ−, nx⟩T ∗

xM,TxM
, ϱ′ ∈ supp ν,

since nx is here the unitary inward pointing normal vector in the sense of the
metric g. Hence, from (9.24) and Proposition 9.10 one concludes the proof of
Theorem 6.1. □
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10. Measure equation at isochrones and necessary geometric
control condition

In this section and in Section 11, we suppose (M, κ, g) ∈ X 1 chosen fixed,
and write p = pκ,g. Thus, Hp = Hpκ,g

10.1. Necessary geometric control condition. The geometric conditions we
formulate here state that given any point of ϱ0 ∈ T ∗L at least one bicharacteristic
that goes though ϱ0 reaches a point above the observation region.

Definition 10.1 (weak interior geometric control condition). Let ω be an open
subset of M and T > 0. One says that (ω, T ) fulfills the weak interior geometric
control condition if for any ϱ0 ∈ Char p ∩ T ∗L and for any neighborhood V of
[0, T ]× ω, at least one generalized bicharacteristic that goes through ϱ0 reaches a
point above V .

Definition 10.2 (weak boundary geometric control condition). Let Γ be an open
subset of ∂M and T > 0. One says that (Γ, T ) fulfills the weak boundary geo-
metric control condition if for any ϱ0 ∈ Char p∩T ∗L and any neighborhood V∂ of
[0, T ]×Γ, at least one generalized bicharacteristic that goes through ϱ0 encounters
a boundary escape point (see Definition 2.11) above V∂.

The following theorem states the result of Theorem 1.10 in the framework
of the precise Definitions 10.1 and 10.2.

Theorem 10.3. (1) Interior observability (Definition 1.4) implies the weak
interior geometric control condition.

(2) Boundary observability (Definition 1.5) implies the weak boundary geo-
metric control condition.

This theorem is proven in Section 10.5. Its proof uses a measure equa-
tion similar to that of Theorem 6.1, yet across isochrones {t = Cst}, and the
construction of concentrating initial conditions.

Remark 10.4. • In the case of uniqueness of generalized bicharacteristics,
the weak geometric control condition stated here coincides with the usual
necessary condition for observability to hold.

• If one replaces the rough cut-off 1[0,T ]×ω (resp. 1[0,T ]×Γ) by the smoother
version 1[0,T ]Θ(x), then the (properly modified) geometric control condi-
tion is a necessary and sufficient condition in the case of uniqueness of
generalized bicharacteristics (see [7]). However, when uniqueness does not
hold this is no more the case as there is still the discrepancy between the
two conditions (necessary: at least one generalized bicharacteristic reaches
the set [0, T ]× {Θ > 0}; sufficient: all generalized bicharacteristics reach
this set).
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For a given point ϱ0 = (x0, t0, τ 0, ξ0) ∈ T ∗L, the proof of Theorem 10.3
requires the construction of a sequence of initial data spectrally localized such that
the measure of the associated sequence of solutions is supported on generalized
bicharacteristics passing through ϱ0. This is performed in several steps:

• By an explicit calculation, it is possible to do so if one forgets the spectral
localization (See Section 10.3).

• We then apply the spectral dyadic projector. Here, the difficulty comes
from the low regularity assumptions on the coefficients (see Section 10.4).

• We prove a transport equation which allows one to transfer the informa-
tion on the traces of the solutions at t = t0 to {t > t0} (see Section 10.5).

10.2. Measure equation at isochrones. With
¯
t ∈ R, we consider the isochrone

I = {t =
¯
t} In L. We naturally identify I with M, and T ∗M with T ∗I. For

(x, ξ) ∈ T ∗M, identified with ϱ = (
¯
t, x, τ = 0, ξ), the polynomial τ 7→ p(

¯
t, x, τ, ξ)

has exactly two roots τ+(ϱ) > 0 and τ−(ϱ) = −τ+(ϱ) < 0. If compared to
Section 2.3 one only faces hyperbolic points in the present situation. Set

ϱ⊕ = (
¯
t, x, τ+(ϱ), ξ), ϱ⊖ = (

¯
t, x, τ−(ϱ), ξ).

Denote by aκ,g(x, ξ) the principal symbol of Aκ,g, that is, aκ,g(x, ξ) = −gijx ξiξj in
local coordinates. Suppose H = (hk) is a scale. For each k, suppose u

0
k ∈ H1

0 (M),
u1k ∈ L2(M), fk ∈ L2

loc(L), and uk is a weak solution to
Pκ,g uk = fk in R×M,

uk = 0 in R× ∂M,

uk |t=
¯
t = u0k, ∂tuk |t=

¯
t = u1k in M.

One extends the diffent functions by zero outsideM and L. Suppose the following
holds.

Assumption 10.5. (1) The sequences (u0k)k and (hku
1
k)k are both bounded in

L2(M̂) and Uk = t(u0k, hku
1
k) admits at scale H the Hermitian s.c.m. on

T ∗M̂

ν0 =

(
ν00,0 ν00,1
ν01,0 ν01,1

)
supported away from ∂M.

(2) The sequences (uk)k and (hkfk)k are both bounded in L
2
loc(L̂), and

t(uk, hkfk)k
admits at scale H the Hermitian s.c.m. on T ∗L̂

M =

(
M0,0 M0,1

M1,0 M1,1

)
.
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Set µ =M0,0.
(3) No mass leaks at infinity at scale H for (ψ(t)uk)k and (hkψ(t)fk)k, for any

ψ ∈ C ∞
c (R), and there exists C > 0 such that, for any interval I ⊂ R,

∥uk∥L2(I×M) + ∥hkfk∥L2(I×M) ≤ C|I|, k ∈ N.(10.1)

(4) One has

suppµ ⊂ Char p ∩ T ∗L \ 0 and supp ν0 ⊂ T ∗M\ 0.(10.2)

The sequence t(1t>
¯
tuk,1t>

¯
thkfk)k admits at scale H a Hermitian s.c.m. M+

on T ∗L̂, with the following natural connection with M .

Lemma 10.6. One has M+ = 1t>
¯
tM .

A proof is given below. One sets µ+ =M+
0,0 = 1t>

¯
t µ.

At t =
¯
t and away from ∂L the measure µ is solution to Hp µ = 0. The

measure equation we establish concerns µ+ and involves M+
0,1 and the Hermitian

measure ν0.

Theorem 10.7. Suppose Ω is an open subset of M with Ω ∩ ∂M = ∅. In
T ∗(R× Ω) one has

Hp µ
+ = −tHp µ

+ = 2 ImM+
0,1 +

∫
ϱ∈T ∗M

δϱ⊕ − δϱ⊖

τ+ − τ−
d(aκ,g ν

0
0,0 − ν01,1)(ϱ)(10.3)

+

∫
ϱ∈T ∗M

(δϱ⊕ + δϱ⊖) d Im ν00,1(ϱ),

in the sense of distributions.

A proof is given in Section 11.

Remark 10.8. The open subset Ω is introduced as the measure equation (10.3)
is only proven to hold away from the boundary ∂L.

In the simpler context of the wave coefficients with constant coefficients,
one can find in [17, Proposition 4.4] a result expressing the measure µ by means
of measures associated with intial conditions. In the more general context we
have here, deriving a formula for µ or µ+ is not possible. Yet, the result of
Theorem 10.7 provides a transport equation solved by µ+.
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Proof of Lemma 10.6. For simplicity we consider
¯
t = 0 here without loss of

generality.
We prove thatM+

0,1 = 1t>
¯
tM0,1. The proof is the same for the other matrix

entries. Set vk = hkfk. Suppose that β ∈ C ∞
c (R) with 0 ≤ β ≤ 1 and β(0) = 1.

Then, for βn(t) = β(nt), with Proposition 5.21 (adapted to Hermitian measures)
and dominated convergence, one obtains

lim
k→+∞

(βnuk, vk)L2(L̂) = ⟨M0,1, βn⟩ −→
n→∞

⟨M0,1,1{t=0}⟩,

using that no mass leaks at infinity for both uk and vk by Assumption 10.5. By
(10.1) one has

∣∣(βnuk, vk)L2(L̂)
∣∣ ≲ 1/n uniformly in k. Thus one finds

1{t=0}M0,1 = 0.(10.4)

Suppose χ ∈ C ∞(R) is such that 0 ≤ χ ≤ 1 and χ(t) = 0 if t < 0 and χ(t) = 1 if

t > 1. Set χn(t) = χ(nt). Consider b ∈ Σc(T
∗L̂), Bh a representative of [Oph(b)],

and ψC ∞
c (L̂) with ψ = 1 on the (t, x)-projection of supp(b). One writes

(Bhψ1t>0uk,1t>0vk)L2(L̂)

= (Bhψ1t>0uk, (1t>0 − χn)vk)L2(L̂) + (Bhψ(1t>0 − χn)uk, χnvk)L2(L̂)

+ (Bhψχnuk, χnvk)L2(L̂)

Let ε > 0. Since Bh is bounded on L2(L̂), (uk)k and (vk)k are bounded in L2
loc(L̂),

by (10.1) there exists n0 ∈ N such that,∣∣(Bhψ1t>0uk, (1t>0 − χn)vk)L2(L̂) + (Bhψ(1t>0 − χn)uk, χnvk)L2(L̂)
∣∣ ≤ ε,

uniformly in k, for n ≥ n0. There exists also n1 ≥ n0 such that

|⟨M0,1, b(1t>0 − χ2
n)⟩| ≤ ε

for n ≥ n1 by dominated convergence using (10.4). One thus concludes that∣∣(Bhψ1t>0uk,1t>0vk)L2(L̂) − ⟨M0,1,1t>0b⟩
∣∣

≤ 2ε+
∣∣(Bhψχnuk, χnvk)L2(L̂) − ⟨M0,1, χ

2
nb⟩

∣∣,
for n ≥ n1 and k ∈ N. Set n = n1. Then, there exists k0 ∈ N such that∣∣(Bhψ1t>0uk,1t>0vk)L2(L̂) − ⟨M0,1,1t>0b⟩

∣∣ ≤ 3ε,

for k ≥ k0 implying the result. □

Remark 10.9. Similarly one proves that the off-diagonal entries of the measures
of t(1t>0uk, hkfk) and

t(uk,1t>0hkfk) are also given byM+
0,1 = 1t>0M0,1 andM

+
1,0 =

1t>0M1,0.
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10.3. Concentration at a point. Pick ψ ∈ S (Rd), x0 ∈ Rd, and ξ0 ∈ Rd \ 0.
Set

wh(x) = h−d/4eix·ξ
0/hψ

(
h−1/2(x− x0)

)
.

One has ∥wh∥L2 = ∥ψ∥L2 and (wh)h admits the measure ∥ψ∥2L2 δ(x0,ξ0) as its semi-
classical measure (at scale h); this follows from computations based on oscillatory-
integral arguments.

Lemma 10.10. For all s ∈ R one has ∥(−∆)s/2wh∥L2 ∼ h−s|ξ0|s∥ψ∥L2.

Proof. Write ŵh(ξ) = hd/4ψ̂
(
h1/2ξ − h−1/2ξ0

)
assuming x0 = 0 without any loss

of generality. One then computes

∥|ξ|sŵh∥2L2 = h−2s

∫
|h1/2ξ + ξ0|2s |ψ̂(ξ)|2dξ ∼ h−2s|ξ0|2s∥ψ̂∥

2

L2 ,

by the dominated-convergence theorem. □

If b(x, ξ) ∈ Σ0,0(⟨ξ⟩−N ;R2d) for some N , note that Oph(b) as in (5.3) makes
sense if acting on S (Rd).

Proposition 10.11. Suppose b(x, ξ) ∈ Σ0,d+2(⟨ξ⟩−N ;R2d) for some N ∈ R, and

bj(x, ξ) = ⟨ξ⟩−mj

∫ 1

0

∂ξjb(x, sξ + ξ0) ds ∈ Σ(R2d) = Σ0,d+1(⟨ξ⟩d+1;R2d),

j = 1, . . . , d, for some mj ≥ 0. One has

Oph(b)wh = b(x, ξ0)wh +
∑

1≤j≤d

M
−(d+1)
0,d+1 (bj)O(h

1/2) in L2(Rd) as h→ 0.

Proof. Set ψh(x) = ψ
(
x− h−1/2x0)

)
and

vh = h−d/4ψ
(
h−1/2(x− x0)

)
= h−d/4ψh(h

−1/2x).

Then, wh = b(x, hD + ξ0)vh and Oph(b)wh = eix·ξ
0/hb(x, hD + ξ0)vh by standard

computations, yielding with q(x, ξ) = b(x, ξ + ξ0)− b(x, ξ0),

w̃h =
(
Oph(b)− b(x, ξ0)

)
wh = eix·ξ

0/h
(
b(x, hD + ξ0)− b(x, ξ0)

)
vh

=
h−d/4eix·ξ

0/h

(2π)d

∫
eih

−1/2x·ξq(x, h1/2ξ)ψ̂h(ξ) dξ.
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Note that ∥w̃h∥L2 = ∥uh∥L2 with uh given by

uh(x) =
1

(2π)d

∫
eix·ξq(h1/2x, h1/2ξ)ψ̂h(ξ) dξ.

Write q(x, ξ) =
∑

j ξj
∫ 1

0 ∂ξjb(x, sξ + ξ0) ds. This gives uh(x) = h1/2
∑

j uj,h(x)
with

uj,h(x) =
1

(2π)d

∫
eix·ξbj(h

1/2x, h1/2ξ)⟨h1/2ξ⟩mjξjψ̂h(ξ) dξ,

with bj as in the proposition statement. Set ψh,j = ⟨h1/2D⟩mjDxj
ψh. Then

uj,h(x) = bj(h
1/2x, h1/2D)ψh,j(x), that is, a semi-classical operator acting on ψh,j,

yet with h replaced by h1/2. First, observe that ∥ψh,j∥L2 is bounded uniformly in
h. Second, with Lemma 5.6 one finds

∥uj,h∥L2 ≲M
−(d+1)
0,d+1

(
bj(h

1/2x, ξ)
)
,

which concludes the proof since M
−(d+1)
0,d+1

(
bj(h

1/2x, ξ)
)
=M

−(d+1)
0,d+1 (bj). □

Set bz(x, ξ) = (z+aκ,g(x, ξ))
−1 with z ∈ C\R. Then, bz ∈ Σ0,d+2(⟨ξ⟩−2;R2d).

Define bj as in the statement of Proposition 10.11 with bz in place of b and
mj = m = 2d+ 3.

Lemma 10.12. There exists C > 0 such that M
−(d+1)
0,d+1 (bj) ≤ C| Im z|−3−d.

Proof. First, one has ∂ξjbz(x, ξ) = −(z + aκ,g(x, ξ))
−2∂ξjaκ,g(x, ξ), implying

⟨ξ⟩d+1
∣∣bj(x, ξ)∣∣ ≲ ⟨ξ⟩d+1−m| Im z|−2(|ξ0|+ |ξ|) ≲ | Im z|−2,

as m = 2d + 3. Second, note that ∂βξ
(
⟨ξ⟩−m∂ξjbz(x, sξ + ξ0)

)
is equal to a linear

combination of terms

∂β1

ξ ⟨ξ⟩−m s|β2|
(
∂β2

ξ ∂ξjbz
)
(x, sξ + ξ0), with β1 + β2 = β.

As
∣∣(∂β2

ξ ∂ξjbz
)
(x, sξ + ξ0)

∣∣ ≲ | Im z|−|β2|−2(|ξ0|+ |ξ|)|β2|+1 one obtains

⟨ξ⟩d+1
∣∣∂βξ bj(h1/2x, ξ)∣∣ ≲ ⟨ξ⟩d+2+|β|−m| Im z|−|β|−2 ≲ | Im z|−d−3,

for |β| ≤ d+ 1 as m = 2d+ 3. □

Corollary 10.13. Set bz(x, ξ) = (z + aκ,g(x, ξ))
−1 with z ∈ C \ R. One has

Oph(bz)wh = bz(x, ξ
0)wh + h1/2| Im z|−d−3O(1) in L2(Rd) as h→ 0.
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10.4. Dyadic projection. Consider (x0, ξ0) ∈ T ∗M with x0 /∈ ∂M and C =
(O, ϕ) a local chart with x0 ∈ O. In this local chart, introduce (wh)h as above:

wh(x) = h−d/4eix·ξ
0/hψ

(
h−1/2(x− x0)

)
,(10.5)

with ψ ∈ C ∞
c (Rd) with ψ = 1 in a neighborhood of 0 here. Consider a scale

H = (hk)k and choose k sufficiently large so that supp vk ⊂ O, with vk = ϕ∗wk

for wk = whk
.

As above, denote by aκ,g(x, ξ) the symbol of the operator Aκ,g, that is,
in local coordinates, aκ,g(x, ξ) = −gij(x)ξiξj. Suppose 0 < α < 1, and χ ∈
C ∞
c (]α2, α−2[), with χ = 1 on [α, α−1]. Here, we prove that χ(−aκ,g(x, ξ0))vk

and χ(−h2kAκ,g)vk coincide in L2(M) up to a o(1) remainder. One can view
χ(−hkAκ,g)vk as some “projection” of vk onto the dyadic subspace Ek introduced
in Section 4.1.

Lemma 10.14. Suppose θ, θ̃ ∈ C ∞
c (ϕ(O)), with θ̃ = 1 on a neighborhood of

supp θ. Set θ̂ = ϕ∗θ ∈ C 2
c (O). For z ∈ C \ R set bz(x, ξ) =

(
aκ,g(x, ξ) + z

)−1
.

One has

(h2Aκ,g + z)−1θ̂ = ϕ∗θOph(bz)θ̃
(
ϕ−1

)∗
+Rh,

with ∥Rh∥L(L2) = O(h)| Im(z)|−1
(
1 + |z|1/2

)
.

A proof is given below. Note that if z ∈ C \R, the operator Oph(bz) is well
defined and bounded on L2(Rd) by Lemma 10.16 given below.

With χ as above, consider χ̃ ∈ C ∞
c (C) an almost analytic extension of χ.

The Helffer-Sjöstrand formula [13] gives

χ(−h2Aκ,g) =
1

2iπ
lim
ϵ→0+

∫
| Im z|≥ϵ

∂̄χ̃(z)(h2Aκ,g + z)−1dz ∧ dz̄.(10.6)

The function χ̃ has the following properties: χ̃|R = χ, there exists C > 0 such
that supp χ̃ ⊂ suppχ + i[−C,C], and for any n ∈ N there exists Cn > 0 such
that

|∂̄χ̃(z)| ≤ Cn| Im z|n.
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Choose θ, θ̃ as in Lemma 10.14 and θ̂ = ϕ∗θ. One obtains

χ(−h2Aκ,g)θ̂ =
1

2iπ
lim
ϵ→0+

∫
| Im z|≥ϵ

∂̄χ̃(z)(h2Aκ,g + z)−1θ̂dz ∧ dz̄

=
1

2iπ
ϕ∗θ lim

ϵ→0+

∫
| Im z|≥ϵ

∂̄χ̃(z)Oph(bz)dz ∧ dz̄θ̃
(
ϕ−1

)∗
+O(h)L(L2)

=
1

2iπ
ϕ∗θOph

(
lim
ϵ→0+

∫
| Im z|≥ϵ

∂̄χ̃(z)bzdz ∧ dz̄
)
θ̃
(
ϕ−1

)∗
+O(h)L(L2)

= ϕ∗θOph
(
χ(−aκ,g)

)
θ̃
(
ϕ−1

)∗
+O(h)L(L2),

meaning that

χ(−h2Aκ,g) = [Oph]
(
χ(−aκ,g)

)
,(10.7)

with the notation introduced in Section 5.4.
Consider now θ such that θ̂ = 1 on supp vk, for k sufficiently large. One

has

χ(−h2Aκ,g)vk = ϕ∗θOph
(
χ(−aκ,g)

)
wk +O(h)L2 ,

yielding, with Proposition 10.11,

χ(−h2Aκ,g)vk = χ
(
− aκ,g(x, ξ

0)
)
vk +O(h1/2)L2(M).(10.8)

Since (vk)k has ∥ψ∥2L2 δ(x0,ξ0) for s.c.m., one has the following result.

Lemma 10.15. The two sequences χ(−h2Aκ,g)vk and χ
(
− aκ,g(x, ξ

0)
)
vk have

the same s.c.m., that is,
∣∣χ(− aκ,g(x

0, ξ0)
)∣∣2∥ψ∥2L2 δ(x0,ξ0).

Proof of Lemma 10.14. For z ∈ C \ R and w ∈ S (Rd) one has

θOph(bz)(θ̃w)(x) = (2π)−d

∫
eix·ξθ(x)bz(x, hξ)

̂̃
θw(ξ) dξ.
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With the form of the differential operator Aκ,g in local coordinates compute

h2Aκ,g

(
eix·ξθ(x)bz(x, hξ)

)
= iκ̃−1

∑
i,j

h∂xi

(
eix·ξκ̃gijθbz(x, hξ)hξj

)
+ hκ̃−1

∑
i,j

h∂xi

(
eix·ξκ̃gij∂xj

(
θbz

)
(x, hξ)

)
= eix·ξ(θa bz)(x, hξ) + ihκ̃−1eix·ξm(x, hξ) + h2κ̃−1eix·ξ

∑
i

∂xi
ℓi(x, hξ),

where

m(x, ξ) =
∑
i,j

(
∂xi

(κ̃gijθbz)(x, ξ)ξj + κ̃gij∂xj
(θbz)(x, ξ)ξi

)
,

with ℓi =
∑

j κ̃g
ij∂xj

(
θbz

)
. We deduce that

(10.9) (h2Aκ,g + z)θOph(bz)θ̃ = θ + ihκ̃−1Oph(m)θ̃ + h2
∑
i

κ̃−1∂xi
Oph(ℓi)θ̃.

One checks that m fulfills the assumptions of Lemma 10.16 with δ = 1 and so do
the symbols ℓi, 1 ≤ i ≤ d, with δ = 2, implying that Oph(m), and Oph(ℓi) are
bounded on L2(Rd).

The following bounds hold for the resolvent

∥(h2Aκ,g + z)−1∥L(L2(M)) ≤ | Im z|−1,

∥(h2Aκ,g + z)−1∥L(L2(M),H1
0 (M)) ≤ |h Im z|−1(|Re z|+ | Im z|)1/2.

From the second estimate one deduces also that

∥(h2Aκ,g + z)−1∥L(H−1(M),L2(M)) ≤ |h Im z|−1(|Re z|+ | Im z|)1/2.

One thus obtains

∥(h2Aκ,g + z)−1ϕ∗Oph(m)θ̃
(
ϕ−1

)∗∥L(L2(M)
≲ | Im(z)|−1,

and

∥(h2Aκ,g + z)−1κ̃−1ϕ∗∂xi
Oph(ℓi)θ̃

(
ϕ−1

)∗∥L(L2(M))

≲ |h Im(z)|−1|z|1/2∥κ̃∥W 1,∞ , i = 1, . . . , d.
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If one applies the resolvent (h2Aκ,g + z)−1 to the left of identity (10.9), one then
obtains

∥(h2Aκ,g + z)−1θ̂ − ϕ∗θOph(bz)θ̃
(
ϕ−1

)∗∥L(L2(M))

≲ h| Im(z)|−1
(
1 + |z|1/2∥κ̃∥W 1,∞

)
,

which gives the result. □

For δ ≥ 0 set

L−δ
0,d+1(a) = max

|β|≤d+1
sup
(x,ξ)

∣∣∂βξ a(x, ξ)|⟨ξ⟩|β|+δ.

Compare L−δ
0,d+1 and M

−(d+1)
0,d+1 . Here, less decay is expected on a(x, ξ); yet decay

improves with differentiations with respect to ξ.

Lemma 10.16. Suppose a(x, ξ) ∈ L∞(R2d) is smooth in ξ and L−δ
0,d+1(a) < ∞

for some δ > 0. Then, Oph(a) is bounded on L2(Rd) and

∥Oph(a)∥L(L2(Rd)) ≤ Cδ,dL
−δ
0,d+1(a).

Compare with Lemma 5.6.

Proof. Consider θ ∈ C ∞
c (Rd)such that 0 ≤ θ ≤ 1, θ(ξ) = 1 if |ξ| ≤ 1/2, and

θ(ξ) = 0 if |ξ| ≥ 1. Set ψ0 = θ and

ψ(ξ) = θ(ξ)− θ(2ξ) and ψj(ξ) = ψ(2−jξ) for j ∈ N∗,

yielding a dyadic partition of unity 1 =
∑

j∈N ψj. Set aj(x, ξ) = ψj(ξ)a(x, ξ).
With Lemma 5.6 one finds

∥Oph(a0)∥L(L2(Rd)) ≲M
−(d+1)
0,d+1 (a0) ≲ L0

0,d+1(a) ≲ L−δ
0,d+1(a),

since ψ0 has compact support. Consider now j ≥ 1. With h̃j = 2−jhk one writes

Oph(aj)v(x) = (2π)−d

∫
eix·ξψ(2−jhkξ)a(x, hkξ)v̂(ξ) dξ

= (2π)−d

∫
eix·ξψ(h̃jξ)a(x, h̃j2

jξ)v̂(ξ) dξ

= Oph̃j(bj)v(x).
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with bj(x, ξ) = ψ(ξ)a(x, 2jξ). The symbol bj is compactly supported in ξ and for
β ∈ Nd, with |β| ≤ 1 + d, one finds

⟨ξ⟩d+1
∣∣∂βξ bj(x, ξ)∣∣ ≲ ⟨ξ⟩d+1

∑
β′+β′′=β

∣∣∂β′

ξ ψ(ξ)
∣∣∣∣∂β′′

ξ a(x, 2jξ)
∣∣

≲ L−δ
0,d+1(a)⟨ξ⟩

d+1
∑

β′+β′′=β

2|β
′′|j⟨2jξ⟩−|β′′|−δ

∣∣∂β′

ξ ψ(ξ)
∣∣.

Since |ξ| ≳ 1 in the compact suppψ, one obtains

⟨ξ⟩d+1
∣∣∂βξ bj(x, ξ)∣∣ ≲ 2−δjL−δ

0,d+1(a)
∑

β′+β′′=β

⟨ξ⟩d+1
∣∣∂β′

ξ ψ(ξ)
∣∣ ≲ 2−δjL−δ

0,d+1(a).

Lemma 5.6 implies ∥Oph̃j(bj)∥L(L2(Rd)) ≲ 2−δjL−δ
0,d+1(a). Convergence of

∑
j 2

−δj

gives the conclusion. □

In what follows we will also need the following results.

Lemma 10.17. There exists C > 0 such that ∥hk∇gχ(−h2kAκ,g)vk∥L2(M) ≤ C.

If (x0, ξ0) in the definitions of wk in (10.5) and vk = ϕ∗wk is chosen such that
χ
(
− aκ,g(x

0, ξ0)
)
̸= 0, then there exists C ′ > 0 such that

1/C ≤ ∥χ(−h2kAκ,g)vk∥L2(M) ≤ C and 1/C ≤ ∥hk∇gχ(−h2kAκ,g)vk∥L2(M) ≤ C,

for k sufficiently large.

Lemma 10.18. One has

hk∇g χ(−h2kAκ,g)vk = hk∇g

(
χ
(
− aκ,g(x, ξ

0)
)
vk
)
+O(h

1/4
k )L2(M).

Proof of Lemma 10.17. Set ṽk = χ(−h2kAκ,g)vk. One writes

∥hk∇gṽk∥2L2(M) =
(
χ̃(−h2kAκ,g)vk, ṽk

)
L2(M)

,(10.10)

with χ̃(λ) = λ χ̃(λ). The same analysis used for ṽk applies to χ̃(−h2kAκ,g)vk. In

particular χ̃(−h2kAκ,g)vk = χ̃
(
− aκ,g(x, ξ

0)
)
vk +O(h

1/2
k )L2 . One thus obtains the

first result
There exists a neighborhood V of x0 such that

∣∣χ( − aκ,g(x, ξ
0)
)∣∣ ≳ 1 for

x ∈ V . For k sufficiently large supp vk ⊂ V implying

∥χ
(
− aκ,g(x, ξ

0)
)
vk∥L2(M)

≳ ∥vk∥L2(M) ≳ 1.

With (10.8) one concludes that ∥ṽk∥L2(M) ≳ 1.

Arguing the same with (10.10) and using that
∣∣χ̃ χ(− aκ,g(x, ξ

0)
)∣∣ ≳ 1 in a

neighborhood of x0, one obtains that ∥hk∇gṽk∥L2(M) ≳ 1. □
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Proof of Lemma 10.18. Set zk = χ(−h2kAκ,g)vk − χ
(
− aκ,g(x, ξ

0)
)
vk. With

(10.8) one has ∥zk∥L2(M) = O(h
1/2
k ). Lemma 10.17 gives a L2-bound for the se-

quence hk∇gχ(−h2kAκ,g)vk and a simple computation gives hk∇gχ
(
−aκ,g(x, ξ0)

)
vk

also L2-bounded. Hence, a preliminary estimate is ∥hk∇gzk∥L2(M) = O(1).

Compute ∥hk∇gzk∥2L2(M) = N1 +N2 with

N1 = (−h2kAκ,gχ(−h2kAκ,g)vk, zk)L2(M),

N2 =
(
hk∇gχ

(
− aκ,g(x, ξ

0)
)
vk, hk∇gzk

)
L2(M)

.

Note that −h2kAκ,gχ(−h2kAκ,g)vk = χ̃(−h2kAκ,g)vk, with χ̃(λ) = λ χ̃(λ), is L2-
bounded since the same analysis used for χ(−h2kAκ,g)vk applies. Hence, N1 =

O(h
1/2
k ). Writing

hk∇gχ
(
− aκ,g(x, ξ

0)
)
)vk = hk

[
∇g, χ

(
− aκ,g(x, ξ

0)
)]
vk + χ

(
− aκ,g(x, ξ

0)
)
hk∇gvk,

one finds

N2 =
(
χ
(
− aκ,g(x, ξ

0)
)
)hk∇gvk, hk∇gzk

)
L2(M)

+O(hk).

With a similar commutator computation one further obtains

N2 = −
(
χ
(
− aκ,g(x, ξ

0)
)
h2kAκ,gvk, zk

)
L2(M)

+O(hk).

With Lemma 10.10 one concludes that N2 = O(h
1/2
k ). □

10.5. Proof of the necessary geometric control condition. Here, we prove
Theorem 10.3. Assume that observability holds and yet the condition of Defi-
nition 10.1 (resp. Definition 10.2) does not hold. This section aims to reach a
contradiction.

If the weak interior geometric control condition does not hold, there exist
ϱ0 = (t0, x0, τ 0, ξ0) ∈ Char p∩T ∗L and V an open neighborhood of [0, T ]×ω such
that no generalized bicharacteristic going through ϱ0 reaches a point above V . If
the weak boundary geometric control condition does not hold, there exist ϱ0 and
V∂ an open neighborhood of [0, T ] × Γ such that no generalized bicharacteristic
going through ϱ0 reaches a boundary escape point above V∂.

10.5.1. Interior initial point. We first treat the case ϱ0 ∈ Char(p)∩(T ∗L\∂T ∗L).
The case ϱ0 ∈ Char(p) ∩ ∂T ∗L is treated in a second round.

One has τ 0 ̸= 0. With some scaling in the cotangent variables, one may
assume |τ 0| ∈ [α, α−1] for some 0 < α < 1. One has (τ 0)2 = −aκ,g(x0, ξ0) =
gij(x0)ξ0i ξ

0
j .
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Suppose χ ∈ C ∞
c (R) is such that χ ≥ 0, suppχ ⊂]α2, α−2[, and χ

(
(τ 0)2

)
=

∥ψ∥−1
L2 , with ψ used in (10.5). With the sequence (vk)k ⊂ L2(M) constructed

above set

u0k = χ(−h2Aκ,g)vk and u1k = ih−1
k τ 0u0k

and denote by uk the solution to the homogeneous wave equation
Pκ,g uk = 0 in R×M,

uk = 0 in R× ∂M,

uk |t=t0 = u0k, ∂tuk |t=t0 = u1k in M.

(10.11)

Since u0k ⊂ Ek, with u
0
k =

∑
ν∈Jk u

0
k,νeν , one finds

uk =
∑
ν∈Jk

(
ei(t−t0)

√
λνuk,ν + e−i(t−t0)

√
λνuk,−ν

)
eν ,

with uk,±ν = u0k,ν
(
1± h−1

k λ−1/2
ν τ 0

)
/2. With Lemma 10.17 observe that

Eh(uk) =
1

2

(
∥hk∇gu

0
k∥

2

L2 + ∥hku1k∥
2

L2

)
=

1

2

(
∥hk∇gu

0
k∥

2

L2 + (τ 0)2∥u0k∥
2

L2

)
≂ 1.

(10.12)

The solution (uk)k is bounded in L2
loc(L) as in Section 6.2.1, and can be associ-

ated with a s.c.m. µ (up to a possible subsequence extraction). Associated with
hk∂nuk |∂L is a s.c.m. ν. Arguing as in Proposition 6.4 one finds

suppµ ⊂ Char p ∩ T ∗L ∩ {α ≤ |τ | ≤ α−1},(10.13)

supp ν ⊂ T ∗∂L ∩ {α ≤ |τ | ≤ α−1}.

Hence, Theorem 6.1 applies and both measure µ and ν satisfy the measure prop-
agation equation (6.2). As in the proof of Proposition 6.4 one finds that no mass
leaks at infinity at scale H, in the sense of Definition 5.16.

As the s.c.m. of (vk)k at scale H = (hk)k is ∥ψ∥2L2δ(x0,ξ0), with Lemma 10.15
one finds the following results.

Lemma 10.19. The sequence (u0k, hku
1
k)k admits the Hermitian s.c.m.

ν0 =

(
ν00,0 ν00,1
ν01,0 ν01,1

)
=

(
1 −iτ 0
iτ 0 (τ 0)2

)
δ(x0,ξ0)

on T ∗M at scale H = (hk)k.
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As in Section 10.2 denote by µ+ the s.c.m. associated with (1t>t0uk)k. By
Lemma 10.6 one has µ+ = 1t>t0 µ. Observe that

a ν00,0 − ν01,1 = −2(τ 0)2δ(x0,ξ0) and Im ν00,1 = −τ 0δ(x0,ξ0).

Theorem 10.7 applies and, as τ+ − τ− = 2
∣∣aκ,g(x0, ξ0)∣∣1/2 = 2|τ 0|, one obtains

Hp µ
+ = −tHp µ

+ = −2τ 0 δϱ0 ,(10.14)

away from ∂(T ∗L), using that for ϱ = (t0, x0, 0, ξ0) one has ϱ0 = ϱ⊕ if τ 0 > 0 and
ϱ0 = ϱ⊖ if τ 0 < 0.

Lemma 10.20. The measure µ vanishes in a neighborhood of {t = t0}∩∂(T ∗L).

A proof is given below. With Lemma 10.20 and (10.14), one concludes that
suppµ+∩{t = t0} = {ϱ0}. As µ+ = 1t>t0µ one also has suppµ∩{t = t0} = {ϱ0}.
With Theorem 2.14 one obtains the following lemma.

Lemma 10.21. The support of µ is a union of maximal generalized bicharacter-
istics that go through ϱ0.

Case 1: interior observation. If interior observablity holds, then inequality
(1.6) is valid for the sequence (uk)k. By (10.12) one has ∥1]0,T [×ω hk∂tuk∥L2(L) ≳ 1,

implying

suppµ ∩ T ∗V ̸= ∅.(10.15)

The open set V is introduced in the beginning of the proof. In fact, consider φ ∈
C ∞
c (L) nonnegative such that suppφ ⊂ V and φ = 1 in a neighborhood of [0, T ]×

ω. With Proposition 5.21 one finds ⟨µ, φτ 2⟩ = limk→+∞(φhk∂tuk, hk∂tuk)L2(L) ≳
1, yielding (10.15). With Lemma 10.21 however, the existence of a point in
suppµ ∩ T ∗V yields a contradiction with the choice of the point ϱ0 made at the
beginning of the proof.

Case 2: boundary observation. If boundary observablity holds, then inequal-
ity (1.7) is valid for (uk)k. With (10.12) one has ∥1]0,T [×Γ ∂nu|R×∂M∥

L2(∂L) ≳ 1,

implying that supp ν ∩ T ∗V∂ ̸= ∅; the open set V∂ is introduced in the beginning
of the proof. Suppose ∥ϱ1 = (t1, x1, τ 1, ξ1) ∈ T ∗V∂.

Case ∥ϱ1 ∈ ∥H∂, a hyperpoblic point: Denote by ϱ1,± ∈ H±
∂ the points

such that π∥(ϱ
1,±) = ∥ϱ1. They are boundary escape points. With

Lemma 10.21 the existence of such a point in suppµ yields a contra-
diction. Thus µ = 0 locally near these points. With Theorem 6.1, near a
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hyperbolic point one has tHp µ = µ̃⊗δz=0, for µ̃ some measure on ∂(T ∗L).
Here, one has ϱ1,± /∈ supp(µ̃⊗δz=0) implying ∥ϱ1 /∈ supp ν. One concludes

that ∥H∂ ∩ supp ν = ∅.
Case ∥ϱ1 = ϱ1 ∈ G∂ ∩ Besc, a glancing escape point: ϱ1 ∈ ∥G∂ = G∂.

If ϱ1 ∈ suppµ one reaches a contradiction with Lemma 10.21 as ϱ1 is
boundary escape point. Thus, locally µ = 0. In local coordinates, in a
neighborhood W of ϱ1, Theorem 6.1 and Remark 2.15 give

⟨ν, ∂ζq|z=ζ=0⟩ = 0,

for any q ∈ C ∞
c (R2d+2) supported inW , since there is no hyperbolic point

in supp ν ∩W . As any compactly supported function q̃ on {z = ζ = 0}
can be written in the form ∂ζq|z=ζ=0, this implies that ν vanishes in a
neighborhood of ϱ1. One concludes that G∂ ∩ Besc ∩ supp ν = ∅.

With Proposition 9.10, Lemma 2.12, and the two cases above, one concludes that
supp ν ⊂ G∂ \ Besc ⊂ Gd

∂ ∪ G3
∂ . Yet, the measure ν has no mass on this set by

Proposition 3.5 in the companion article [5], that is, ⟨ν,1Gd
∂∪G

3
∂
⟩ = 0, implying

that ν vanishes; a contradiction.

10.5.2. Boundary initial point. We now treat the case ϱ0 ∈ Char(p) ∩ ∂T ∗L.
Case 3: ϱ0 ∈ Char p ∩ ∂T ∗L for a interior observation. Suppose that V
is a neighborhood of [0, T ]× ω in ∂T ∗L such that no generalized bicharacteristic
going through ϱ0 reaches a point above V . Consider Ṽ a neighborhood of [0, T ]×ω
in ∂T ∗L such that Ṽ ⋐ V and ε = dist(Ṽ, V c). For ϱ = (t, x, τ , ξ) ∈ T ∗L and
T > 0, set

ΓT(y) = {|t− t| ≤ T} ∩
⋃
y∈Gγ̄

Gγ̄,

that is, the union of all generalized bicharacteristic that pass through y, restricted
to the time interval [t− T, t+ T].

With the continuity result of Proposition 2.11 in the companion article [5],
for T > 0 there exists δ > 0 such for any ϱ̃0 ∈ T ∗L one has

dist(ϱ̃0, ϱ0) ≤ δ and ϱ ∈ ΓT(ϱ̃0) ⇒ dist
(
ϱ,ΓT(ϱ0)

)
≤ ε/2.

Thus, for T chosen sufficiently large there exists ϱ̃0 ∈ Char p∩ (T ∗L\∂T ∗L) such
that no generalized bicharacteristic going through ϱ̃0 reaches a point above Ṽ ,
meaning we are back to the configuration considered above.
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Case 4: ϱ0 ∈ Char p ∩ ∂T ∗L for a boundary observation. Note that one
cannot argue as in the case of an interior observation since G∂ \ Besc ⊂ H∂.
However, the method used here applies to the case of an interior observation; the
argument is yet much more involved. Note also that the argument simplifies if
generalized bicharacteristics are uniquely defined, that is, in the presence of a
generalized bicharacteristic flow.

Suppose V∂ is a neighborhood of [0, T ]×Γ in ∂T ∗L such that no generalized
bicharacteristic going through ϱ0 reaches a boundary escape point above V∂.
Write ϱ0 = (t0, x0, τ 0, ξ0), where x0 = (x′,0, z0) with z0 = 0. One considers a
sequence (ϱn)n ⊂ Char p ∩ T ∗L \ ∂(T ∗L) such that ϱn = (t0, x′,0, zn, τn, ξn) → ϱ0

as n → +∞, that is, zn → 0+ and (τn, ξn) → (τ 0, ξ0). With each ϱn, construct
a sequence of solutions (un,k)k to the wave equation as done above, that is, with
a s.c.m. µn whose support is a union of maximal generalized bicharacteristics
that go through ϱn. One has suppµn ⊂ Char p ∩ {α ≤ |τ | ≤ α−1}. With this

construction, the mass of µn on T ∗((−T,T)× M̂
)
is uniformly bounded for any

T > 0. This implies, that (µn)n is a bounded sequence of measure in the sense of
the measure topology. Consequently, there exists a measure µ such that µn → µ
for a subsequence, still denoted by µn, in the measure topology on T ∗L̂. One has
suppµ ⊂ Char p ∩ {α ≤ |τ | ≤ α−1}.

Consider M̃ a bounded neighborhood of M in M̂ and set L̃ = R × M̃.
Denote by U a neighborhood of Char p ∩ T ∗L̃ ∩ {α ≤ |τ | ≤ α−1} in T ∗L̂, such
that UT = U ∩ {|t − t0| ≤ T} is compact. There exists a increasing function
φ : N → N such that

∣∣⟨µ− µφ(n), a⟩
∣∣ ≤ 1

n
∥a∥L∞ , a ∈ C 0

c (Un),

recalling that the strong topology is equivalent to the weak topology for a con-
verging sequence of measures; see [30, Section 34.4]. Denote by µn this extracted
sequence for concision:

∣∣⟨µ− µn, a⟩
∣∣ ≤ 1

n
∥a∥L∞ , a ∈ C 0

c (Un).(10.16)

Consider a sequence (ψn)n ⊂ C ∞
c (R) such that ψn = 1 on a neighborhood

of [−n, n] and suppψn ⊂ [−n − 1, n + 1]. We write ψn in place of ψn(t) for
concision. The measure |ψn|2µn is the limit of µn,k = |Wψnun,k|2 as k → +∞
in the measure sense, where Wψnun,k is (a variant of) the Wiegner transform of
ψn(t)un,k(t, x); see [16]. Thus, there exists a increasing function φ̃ : N → N such
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that

∣∣⟨µn,φ̃(n) − |ψn|2µn, a⟩
∣∣ = ∣∣⟨µn,φ̃(n) − µn, a⟩

∣∣ ≤ 1

n
∥a∥L∞ , a ∈ C 0

c (Un).

(10.17)

From (10.16)–(10.17), one finds that µn,φ̃(n) → µ on U in the measure sense

as n → ∞. It follows that µ is the s.c.m. of vn = un,φ(n) on L̂ at scale hφ(n)
by [16, Proposition 1.4]. Denote by ν the s.c.m. of hφ(n)∂νvn, by potentially
performing yet another subsequence extraction. One has supp ν ⊂ {α ≤ |τ | ≤
α−1}. Theorems 6.1 and 2.14 apply, implying that suppµ is a union of maximal
generalized bicharacteristics.

Suppose T > 0 and a ∈ C 0
c (UT) is such that supp a ∩ ΓT(ϱ0) = ∅. In

particular, set ε = dist
(
supp a,ΓT(ϱ0)

)
. There exists N ∈ N∗ such that

n ≥ N and ϱ ∈ ΓT(ϱn) ⇒ dist
(
ϱ,ΓT(ϱ0)

)
≤ ε/2,

by Proposition 2.11 in the companion article [5]. Because of the description of
suppµn given above one finds that ⟨µn, a⟩ = 0 if n ≥ N . With (10.16) one obtains∣∣⟨µ, a⟩∣∣ ≤ 1

n
∥a∥L∞ if n ≥ N thus giving ⟨µ, a⟩ = 0. Hence,

suppµ ∩ UT ⊂ ΓT(ϱ0).

One concludes that suppµ is a union of maximal generalized bicharacteristics
that all go through ϱ0.

One is now in the same position as in the proof of the case of a boundary
observation where ϱ0 /∈ ∂T ∗L. The proof can be carried out mutatis mutandis:
first, supp ν ∩ ∥H∂ = ∅, second, G∂ ∩ Besc ∩ supp ν = ∅ implying that supp ν ⊂
Gd
∂ ∪ G3

∂ yielding a contradiction.
This concludes the proof of Theorem 10.3. □

Proof of Lemma 10.20. Consider yk solution to the homogeneous wave equa-
tion (10.11) with yk |t=t0 = y0

k
= χ(−aκ,g(x, ξ0)vk and ∂tyk |t=t0 = y1

k
= ih−1

k τ 0y0
k
.

Since supp(yk |t=t0) and supp(∂tyk |t=t0) are away from ∂M, by finite-speed prop-

agation yk vanishes in a fixed open neighborhood W of {t = t0} ∩ ∂L. By (10.8)
and Lemma 10.18 one has

∥hk∇g(u
0
k − y0

k
)∥

L2(M)
→ 0 and ∥hku1k − hky

1

k
∥
L2(M)

→ 0.

One concludes that the semi-classical energy of uk − yk converges to 0. Hence,
one finds

∥hk∇guk∥2L2(W ) + ∥hk∂tuk∥2L2(W ) → 0,
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yielding (|τ |2 + |ξ|2x)µ = 0 in T ∗W . In particular, this implies that the support
of µ is restricted to the null section in T ∗W . With (10.13) one obtains that µ
vanishes in T ∗W . □

11. Proof of the measure equation at an isochrone

Here, we prove Theorem 10.7. We treat the case
¯
t = 0 without any loss of

generality. At the hypersurface t = 0, there is no boundary condition. The two
traces uk |t=0 = u0k and ∂tuk |t=0 = u1k have to be taken into account in the analysis.
Proceeding as is done for the measure equations at the boundary ∂L in Sections 7
and 9 makes a double-layer potential appear, and it cannot be handeled by the
method used therein. We choose to proceed differently here, letting the measure
act on tangential symbols. This approach can for instance be found in [11] for
the treatment of Zaremba boundary conditions at a boundary.

11.1. Preliminary filtering. As in the proof of the measure equation of Theo-
rem 6.1 we first apply some filtering to reduce the support of the measures. The
principle is very similar to what is done in the beginning of Section 7.1, yet more
technical because of the low regularity of the coefficients of the operator Aκ,g.

Consider χ ∈ C ∞
c (R) with 0 /∈ suppχ. Set ũk = χ(−h2Aκ,g)uk, f̃k =

χ(−h2Aκ,g)fk, ũ
0
k = χ(−h2Aκ,g)u

0
k, and ũ

1
k = χ(−h2Aκ,g)u

1
k. One has

Pκ,g ũk = f̃k in R×M,

ũk = 0 in R× ∂M,

ũk |t=0 = ũ0k, ∂tũk |t=0 = ũ1k in M.

Proposition 11.1. The sequence t(ũk, hkf̃k)k admits |χ(−aκ,g)|2M as its Her-

mitian s.c.m. on T ∗L \ ∂(T ∗L) at scale H. The sequence t(ũ0k, hkũ
1
k) admits

|χ(−aκ,g)|2ν0 as its Hermitian s.c.m. on T ∗M\ ∂(T ∗M) at scale H.

The proof of this intuitive result is given in Section 11.1.1 below. Note that
the s.c.m. of ũk also reads |χ(τ 2)|2µ from the assumed support properties.

With Lemma 10.6, the sequence t(1t>0ũk,1t>0hkf̃k)k has |χ(−aκ,g)|2M+ for
measure. If we prove that the measure equation (10.3) holds for M+ and ν0

replaced by |χ(−aκ,g)|2M+ and |χ(−aκ,g)|2ν0, then using (10.2) one finds that
(10.3) holds also for µ+ and ν0 by the dominated-convergence theorem. Without

any loss of generality we may thus replace uk by ũk, fk by f̃k, u
0
k by ũ0k, and u

1
k

by ũ1k. Then, there exists 0 < Cµ,0 < 1 < Cµ,1 <∞ such that

suppµ+ ⊂ Char p ∩ T ∗L ∩ {Cµ,0 ≤ |ξ| ≤ Cµ,1},(11.1)
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and

supp ν0 ⊂ T ∗M∩ {Cµ,0 ≤ |ξ| ≤ Cµ,1}.

Suppose I is a time interval. With the filtering used above, one has

∥uk∥L2(I×M) ≂ ∥h2kAκ,guk∥L2(I×M) ≂ ∥h2k∂2t uk − h2kfk∥L2(I×M).(11.2)

Assume that a subsequence of uk converges to 0 in L2(I × M). This gives
µ = 0 on T ∗(I × M). With (11.2), one finds that ∥h2k∂2t uk∥L2(I×M) → 0 and

∥h2kAκ,guk∥L2(I×M) → 0 also, using that hkfk is L2
loc-bounded. Then, ellipticity

up to the boundary gives ∥h2kuk∥H2(I×M) → 0 and interpolation gives

∥hk∂tuk∥L2(I×M) → 0 and ∥hk∇gkuk∥L2(I×M) → 0.

Since (10.1) implies the time continuity of the semi-classical energy uniformly in
k one obtains that

∥hk∂tuk(0, .)∥L2(M) → 0 and ∥hk∇gk(0, .)∥L2(M) → 0.

One concludes that ν0 = 0. Hence, all terms in the measure equation vanish, in
this case. One may thus assume that ∥uk∥L2(I×M) ≳ 1, for any interval I. Then,
one finds that

1 ≂ ∥uk∥L2(I×M) ≂ ∥h2kAκ,guk∥L2(I×M) ≂ ∥h2k∂2t uk∥L2(I×M),

and one further obtains

∥hℓ+2ℓ′

k Dℓ
tA

ℓ′

κ,guk∥L2(I×M)
≂ 1, ℓ, ℓ′ ∈ N,(11.3)

and

∥hk∂tuk∥L2(I×M) ≂ ∥hk∇gkuk∥L2(I×M) ≂ 1.

By (11.3) one finds that 1t>0ψ(t)uk ∈ Hs
sc(L) for any s ∈ [0, 1/2[ and ψ ∈ C ∞

c (R).
From Lemma 5.17 one deduces the following result.

Lemma 11.2. No mass leaks at infinity at scale H for 1t>0(ψ(t)uk)k.
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11.1.1. Proof of Proposition 11.1. We prove that the s.c.m. of ũk is |χ(−aκ,g)|2µ
on T ∗L \ ∂(T ∗L). The proof for the other sequences and measures are the same.

Suppose j ∈ C ∞
c (T ∗L) and ψ ∈ C ∞

c (L) with ψ = 1 on the (t, x)-projection
of supp j and supp(ψ) ∩ ∂L = ∅. Arguing as in Proposition 7.2 one proves the
following lemma.

Lemma 11.3. One has
[
[Oph](j)ψ, h2Aκ,g

]
∈ hL(L2

loc(L)).
One deduces the following result.

Lemma 11.4. One has
[
[Oph](j)ψ, (z + h2Aκ,g)

−1
]
∈ h| Im z|−2L(L2

loc(L)).
Proof. Suppose Im z ̸= 0. With Lemma 11.3 one writes

(z + h2Aκ,g)[Oph](j)ψ − [Oph](j)ψ(z + h2Aκ,g) ∈ hL(L2
loc(L)).

Letting (z+h2Aκ,g)
−1 act, both from the left and the right one obtains the result

using that
∥∥(z + h2Aκ,g)

−1
∥∥
L(L2(M))

≲ | Im z|−1. □

With the Helffer-Sjöstrand formula (10.6) the result extends to χ(−h2Aκ,g).

Lemma 11.5. Suppose χ ∈ C ∞
c (R). One has[

[Oph](j)ψ, χ(−h2Aκ,g)
]
∈ hL(L2

loc(L)).

With the previous lemma, one writes(
[Oph](j)ψχ(−h2Aκ,g)uk, χ(−h2Aκ,g)uk

)
L2(L)

=
(
χ(−h2Aκ,g)[Oph](j)ψχ(−h2Aκ,g)uk, uk

)
L2(L)

=
(
χ(−h2Aκ,g)

2[Oph](j)ψuk, uk
)
L2(L) +O(hk)

=
(
χ2(−h2Aκ,g)[Oph](j)ψuk, uk

)
L2(L) +O(hk)

=
(
[Oph](χ2(−aκ,g))[Oph](j)ψuk, uk

)
L2(L) +O(hk),

using (10.7).
It suffices to prove the result of the proposition with a test function sup-

ported in a local chart. Moreover, it can be chosen of the form j(t, x, τ, ξ) =
j1(t, x)j2(τ, ξ) with j1, j2 ∈ C ∞

c (Rd). Then, Oph(j) = j1Oph(j2). With a
partition of unity and using Proposition 5.10 one has

[
[Oph](χ2(−aκ,g)), j1

]
∈

hL(L2(M)) yielding(
[Oph](j)ψχ(−h2Aκ,g)uk, χ(−h2Aκ,g)uk

)
L2(L)

=
(
[Oph](j1j2χ

2(−aκ,g))ψuk, uk
)
L2(L) +O(hk).
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One thus obtains

lim
k→+∞

(
[Oph](j)χ(−h2Aκ,g)ψuk, χ(−h2Aκ,g)uk

)
L2(L) = ⟨µ, χ2(−aκ,g)j⟩,

which is the result of Proposition 11.1. □

11.2. Symbol decomposition. The measure equation is local. Consequently,
the remaining of the proof can be carried out in local charts. Suppose C = (O, ϕL)
is such a local chart, with O neighborhood of a point ϱ0 ∈ L \ ∂L.

As in Section 8.1 we consider b(ϱ) ∈ ΣH
0 (R2d+2) and proceed with a Eu-

clidean symbol division. The symbol b has compact support in the y = (t, x)
variables, supp b ⊂ K × Rd+1, K a compact subset of ϕL(O) and fast decay in
the η = (τ, ξ) variables.

Consider 0 < C0 < C ′
0 < C ′

1 < C1 and χ ∈ C ∞
c (Rd) such that χ(ξ) = 1 in

a neighborhood of {C ′
0 ≤ |ξ| ≤ C ′

1} and supported in {C0 ≤ |ξ| ≤ C1}. One has

χ(ξ)b(ϱ) = b0(t, x, ξ) + b1(t, x, ξ)τ + qp(ϱ),

by Proposition 8.2, here, with the role of the variable ξd played by τ . The symbols
b0 and b1 fulfill (an adapted version of) Property (8.3), that is,

(11.4)
∣∣∂αy ∂βξ bj(y, ξ)∣∣ ≤ CN,β⟨ξ⟩−N ,

for N ∈ N, α ∈ Nd+1, |α| ≤ 1, β ∈ Nd, j = 0, 1, y ∈ Rd+1, ξ ∈ Rd,

and q fulfills (an adapted version of) Property (8.4).
Recall that ϱ = (t, x, ξ, τ) ∈ suppµ+ implies |ξ| ∈ [Cµ,0, Cµ,1]; see (11.1).

Without loss of generality one can assume Cµ,0 < 1 < Cµ,1. The constants
C0, C

′
0, C

′
1, C1 are chosen such that

suppχ ⊂ {C2
µ,0 < |ξ| < C2

1,µ}
and χ = 1 in a neighborhood of {Cµ,0 ≤ |ξ| ≤ Cµ,1}.

One writes

⟨tHp µ, b⟩ = ⟨µ,Hp b⟩ = ⟨µ, χHp b⟩ = ⟨µ,Hp(χb)⟩

since χ = 1 on suppµ and supp dξχ ∩ suppµ = ∅. One has

Hp(χb) = Hp b0 + (Hp b1)τ + (Hp q)p,

implying

⟨tHp µ, b⟩ = ⟨µ,Hp b0 + (Hp b1)τ⟩.(11.5)

With the support properties of µ given in (11.1) this last duality bracket makes
sense.
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11.3. Commutator and limits. As in Section 7.2 we consider the commutator
given by [h2kPκ,g,Oph(b)ψ]. With (11.5), the symbol b can be chosen of the form
b(ϱ) = b0(y, ξ)+b1(y, ξ)τ , with supp bj ⊂ K×Rd+1 for K a compact of ϕL(O) and
bj fulfilling Property (11.4), j = 0, 1, meaning fast decay in the ξ variable and
only one derivative in the x variable. Recall that y = (t, x) and ϱ = (t, x, τ, ξ).
The symbols bj are tangential with respect to time t.

Suppose ψ ∈ C ∞
c (ϕL(O)) is equal to 1 in a bounded neighborhood of K.

Arguing as in the proof of Proposition 7.2 one obtains the followins result.

Lemma 11.6. One has

[h2kPκ,g,Oph(b)ψ] = −ihk Oph(Hp b)ψ + o(hk)L(L2).

One computes

Hp b(ϱ) = {p, b}(ϱ) = b̃0(y, ξ) + b̃1(y, ξ)τ + b̃2(y, ξ)τ
2.

From (11.4) one has the estimations∣∣∂βξ b̃j(y, ξ)∣∣ ≤ CN,β⟨ξ⟩−N , for N ∈ N, β ∈ Nd, y ∈ Rd+1, ξ ∈ Rd,

that is, b̃j ∈ Σ0,n
T,0(⟨η′⟩−N ;Rd+1 × Rd), for any n and N . Note that ψ = 1 on a

neighborhood of the (t, x)-projection of supp b̃j, j = 0, 1, 2. By Lemma 5.19 in
the tangential case (see Remark 5.22) and Proposition 5.21, one has

lim
k→+∞

(Oph(b̃0)ψuk, uk)L2(t>0) = lim
k→+∞

(Oph(b̃0)ψ1t>0uk,1t>0uk)L2(Rd) = ⟨µ+, b̃0⟩,

using that that no mass leaks at infinity at scale H by Lemma 11.2.
The following two results also hold.

Lemma 11.7. One has

lim
k→+∞

(Oph(b̃1)hkDtψuk, uk)L2(t>0) = ⟨µ+, b̃1τ⟩

and

lim
k→+∞

(Oph(b̃2)h
2
kD

2
tψuk, uk)L2(t>0) = ⟨µ+, b̃2τ

2⟩.

With Lemmata 11.6 and 11.7 one concludes that

lim
k→+∞

i([hkPκ,g,Oph(b)ψ]uk, uk)L2(t>0) = ⟨µ+,Hp b⟩ = ⟨tHp µ
+, b⟩.(11.6)
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Proof of Lemma 11.7. We treat the second limit. As [hD2
t , ψ] ∈ hL(L2)hDt+

hL(L2), with (11.3) one has

(Oph(b̃2)h
2
kD

2
tψuk, uk)L2(t>0) = (Oph(b̃2)ψh

2
kD

2
t uk, uk)L2(t>0) +O(hk)

= −(Oph(b̃2)ψh
2
kAκ,guk, uk)L2(t>0) +O(hk)

= −(Oph(b̃2)ψh
2
kAκ,g1t>0uk,1t>0uk)L2 +O(hk).

Then, one obtains

lim
k→+∞

(Oph(b̃2)h
2
kD

2
tψuk, uk)L2(t>0) = −⟨µ+, b̃2aκ,g⟩,

arguing as in Proposition 7.2 and using Lemma 5.19 in the tangential case (see
Remark 5.22) and Proposition 5.21, using that that no mass leaks at infinity at
scale H by Lemma 11.2. Then, using that suppµ+ ⊂ suppµ ⊂ Char p where
τ 2 = −aκ,g, one obtains

lim
k→+∞

(Oph(b̃2)h
2
kD

2
tψuk, uk)L2(t>0) = ⟨µ+, b̃2τ

2⟩.

Second, suppose φ ∈ C ∞
c (R) with φ = 1 in a neighborhood of 0. One writes

(Oph(b̃1)hkDtψuk, uk)L2(t>0) = (Oph(b̃1)1t>0hkDtψuk,1t>0uk)L2 = I1 + I2,

with

I1 = (Oph(b̃1)Oph
(
1− φ(τ/R)

)
1t>0hkDtψuk,1t>0uk)L2 ,

and

I2 = (Oph(b̃1)Oph
(
φ(τ/R)

)
1t>0hkDtψuk,1t>0uk)L2 ,

Since hℓ+2ℓ′

k Dℓ
tA

ℓ′
κ,gψuk is bounded in L2 by (11.3) for any ℓ, ℓ′ ∈ N, one finds that

1t>0hkDtψuk ∈ Hs
sc(L) for any s ∈ [0, 1/2[. With Lemma 4.3 in [11] one obtains,

for such s,

∥Oph
(
1− φ(τ/R)

)
1t>0hkDtψuk∥L2 ≤ CsR

−s,

uniformly in k. Thus, for any s ∈ [0, 1/2[, one has

|I1| ≤ C ′
sR

−s.(11.7)

Next, to treat the second term one writes

1t>0hkDtψuk = hkDt

(
ψ1t>0uk

)
+ ihkψ|t=0u

0
k ⊗ δt=0,
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yielding I2 = I ′2 + I ′′2 with

I ′2 = (Oph(b̃1)Oph
(
φ(τ/R)

)
hkDt

(
ψ1t>0uk

)
,1t>0uk)L2 ,

and

I ′′2 = ihk(Oph(b̃1)ψ|t=0u
0
k ⊗Oph

(
φ(τ/R)

)
δt=0,1t>0uk)L2

= ihk(Oph(b̃1)ψ|t=0u
0
k ⊗Oph

(
φ(τ/R)

)
δt=0,1t>0ψuk)L2 .

Set b̂1(t, x, τ, ξ) = τφ(τ/R)b̃1(x, ξ); it is smooth, with compact support in (t, x)

and has fast decay in (τ, ξ). One has I ′2 = (Oph(b̂1)
(
ψ1t>0uk

)
,1t>0uk)L2 and

lim
k→∞

I ′2 = ⟨µ+, b̂1⟩ →
R→∞

⟨µ+, τ b̃1⟩,

by dominated convergence as suppµ+ is compact in the (τ, ξ) variables by (11.1).
One has Oph

(
φ(τ/R)

)
δt=0 = h−1Rφ̌(h−1Rt), with φ̌ the inverse Fourier

transform of φ. Thus one obtains

|I ′′2 | ≲ R∥u0k∥L2(M)∥φ̌(h
−1R.)∥L2(R)∥ψ1t>0uk∥L2(L) ≲ h

1/2
k R1/2∥φ̌∥L2(R) ≲ h

1/2
k R1/2.

(11.8)

With (11.7)–(11.8) one concludes the proof. □

11.4. End of the proof of the measure equation at an isochrone. With
integrations by parts and one computes

i([hkPκ,g,Oph(b)ψ]uk, uk)L2(t>0) = Ik + Jk,

with

Ik = i(Oph(b)ψuk, hkfk)L2(t>0) − i(Oph(b)ψhkfk, uk)L2(t>0),

Jk = −ihk(∂tOph(b)ψuk |t=0, uk |t=0)L2(M) + i(Oph(b)ψuk |t=0, hk∂tuk |t=0)L2(M).

With Remark 10.9 one obtains

lim
k→∞

Ik = i⟨M+
0,1, b⟩ − i⟨M+

1,0, b⟩ = 2⟨ImM+
0,1, b⟩.(11.9)

One writes ∂t Oph(b)ψ = Oph(b)ψ∂t +
(
Oph(∂tb)ψ + Oph(b)(∂tψ)

)
. As ∂tb =

∂tb0 + (∂tb1)τ , this gives

−ihk(∂t Oph(b)ψuk |t=0, uk |t=0)L2(M) = −i(Oph(b)ψhk∂tuk |t=0, uk |t=0)L2(M)

+O(hk),
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using that
(
uk |t=0

)
k
and

(
hk∂tuk |t=0

)
k
are bounded sequences in L2(M). One

thus finds

Jk = −i(Oph(b)ψhk∂tuk |t=0, uk |t=0)L2(M) + i(Oph(b)ψuk |t=0, hk∂tuk |t=0)L2(M)

+O(hk).

One further writes

Oph(b)ψ = Oph(b0)ψ +Oph(b1)Dtψ

= Oph(b0)ψ +Oph(b1)ψDt − ihk Oph(b1)(∂tψ),

implying

(Oph(b)ψhk∂tuk |t=0, uk |t=0)L2(M)

= (Oph(b0)ψhk∂tuk |t=0, uk |t=0)L2(M) − i(Oph(b1)ψh
2
k∂

2
t uk |t=0, uk |t=0)L2(M)

+O(hk)

= (Oph(b0)ψhk∂tuk |t=0, uk |t=0)L2(M) − i(Oph(b1)ψh
2
kAκ,guk |t=0, uk |t=0)L2(M)

+O(hk),

and

(Oph(b)ψuk |t=0, hk∂tuk |t=0)L2(M)

= (Oph(b0)ψuk |t=0, hk∂tuk |t=0)L2(M) − i(Oph(b1)ψhk∂tuk |t=0, hk∂tuk |t=0)L2(M)

+O(hk).

This yields

Jk = −i(Oph(b0)ψhk∂tuk |t=0, uk |t=0)L2(M) − (Oph(b1)ψh
2
kAκ,guk |t=0, uk |t=0)L2(M)

+ i(Oph(b0)ψuk |t=0, hk∂tuk |t=0)L2(M) + (Oph(b1)ψhk∂tuk |t=0, hk∂tuk |t=0)L2(M)

+O(hk).

Arguing as in the proof of Proposition 7.2 one finds

(Oph(b1)ψh
2
kAκ,guk |t=0, uk |t=0)L2(M) = (Oph(b1aκ,g)ψuk |t=0, uk |t=0)L2(M) +O(hk).

With (11.6) and (11.9), this gives

⟨tHp µ
+, b⟩ = 2⟨ImM+

0,1, b⟩ − i⟨ν01,0, b0⟩ − ⟨ν00,0, b1aκ,g⟩+ i⟨ν00,1, b0⟩+ ⟨ν01,1, b1⟩
(11.10)

= 2⟨ImM+
0,1, b⟩ − 2⟨Im ν00,1, b0⟩+ ⟨ν01,1 − aκ,gν

0
0,0, b1⟩.
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With the analysis of Section 11.2, Equation (11.10) holds for a symbol
b(ϱ) ∈ ΣH

0 (R2d+2) that we write b(ϱ) = b0(t, x, ξ)+ b1(t, x, ξ)τ + qpκ,g(ϱ). Suppose
(x, ξ) ∈ T ∗M and set ϱ = (t = 0, x, ξ, 0), and

ϱ⊕ = (0, x, τ+(ϱ), ξ), ϱ⊖ = (0, x, τ−(ϱ), ξ).

as in Section 10.2. Since ϱ⊕, ϱ⊖ ∈ Char p and τ+(ϱ) = −τ−(ϱ), one has

b0(t = 0, x, ξ) =
1

2

(
b(ϱ⊕) + b(ϱ⊖)

)
, b1(t = 0, x, ξ) =

b(ϱ⊕)− b(ϱ⊖

τ+(ϱ)− τ−(ϱ)
.

Plugged in (11.10), this gives the result of Theorem 10.7. □
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