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OBSERVABILITY
NICOLAS BURQ, BELHASSEN DEHMAN, AND JEROME LE ROUSSEAU

ABSTRACT. The celebrated geometric control condition of Bardos, Lebeau,
and Rauch is necessary and sufficient for wave observability [1, 7] and exact
controllability. It requires that any point in phase-space be transported by
the generalized geodesic flow to the region of observation in some finite time.
The initial smoothness (%) required on the coefficients of the metric to prove
that exact control and geometric control are essentially equivalent was subse-
quently relaxed to ¢?-metrics/coefficients and ¢3-domains [2], which is close
to the optimal smoothness required to preserve a generalized geodesic flow. In
this article, we investigate a natural generalization of the geometric control
condition that makes sense for ¢’*-metrics and we prove that wave observabil-
ity holds under this condition. Moreover, we establish that the observability
property is stable under rougher (Lipschitz) perturbation of the metric. We
also provide a geometric necessary condition for wave observability to hold.
Transport equations that describe the propagation of semi-classical measures
are at the heart of the arguments. They are natural extensions to geometries
with boundaries of usual transport equations. This article is mainly dedicated
to the proof of such propagation equations in this very rough context.
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1. INTRODUCTION

An observability inequality for the wave equation is an estimate of the
energy of a solution by a “recording” of this solution in a restricted domain
for some time 7" > 0. This restricted domain can be in the interior of the
region ) where waves propagate or in a part of its boundary. One interest in
such an inequality lies in its consequences in terms of exact controllability and
stabilization. The observability property has been intensively studied during
the last decades. Until the end of the 80’s, most of the results were proven
under a (global) geometrical assumption called I'-condition and introduced by
J.-L. Lions [26], essentially based on a multiplier method. Later, following Rauch
and Taylor [28], Bardos, Lebeau, and Rauch proved observability inequalities
from part of the boundary in their seminal article [1], and as a consequence,
boundary stabilization, under a microlocal condition, that is, a property in the
cotangent bundle T*(R x 2), the so-called geometric control condition (GCC in
short), exhibiting a connection between the set on which observation is performed
and the generalized geodesics of the wave operator. In addition, taking into
account the work of [7], it is now classical that observability (with stability with

respect to the observation set) is equivalent to the GCC. In terms of geodesics,
the GCC reads as follows:

for any point x and any tangent vector v, the generalized geodesic initiated at
(x,v) enters the observation region in some time T > 0.

Generalized geodesics follow the laws of geometrical optics at boundary points:
reflection if the boundary is hit transversally and possible gliding if hit tangen-
tially.

The proofs of the results in [1, 7] are based on microlocal tools, namely,
the propagation of wavefront sets or that of microlocal defect measures. Let
us notice here that despite their high efficiency and robustness, these methods
present the great disadvantage of requiring a lot of regularity for the domain
and for the metric/coefficients. Starting from the original result developed in
the framework of the Melrose-Sjostrand € *°-singularity propagation results, thus
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requiring % *°-smoothness, the theory has been subsequently developed in the
framework of microlocal defect measures allowing one to relax the assumptions
down to a @2-metric [2], which barely misses the natural smoothness (W?2°°)
required to define a geodesic flow (away from any boundary). An important
remark is that below this smoothness threshold, for instance for ¢'-metrics that
we will consider, generalized geodesics may still exist as integral curves of the €°-
Hamiltonian vector field in the interior of the domain but uniqueness is lost in
general. A natural question lies in the understanding of the relationship between
those nonunique integral curves and the observability property for such a rough
metric.

Many attempts were made in the last years (see, for instance, the works
[14] in dimension 1, and [12]). In the present article, we reach the lowest possible
regularity level for the mere existence of geodesics (with a gain of a full derivative
with respect to all previous geometric results) and lowest possible regularity level
for observability to hold as exhibited by the counter-example in [9, 10].

We prove the following result: for a %'-metric, observability holds, and
consequently exact controllability, if a generalized geometric control condition is
satisfied, that is,

all generalized geodesics enter the observation region in some time T" > 0.

In particular, if considering a point x and some tangent vector v, all generalized
geodesics initiated at this point with v as initial direction fulfill this property.
When uniqueness of generalized geodesics holds the above condition coincides
with the usual GCC. We thus keep the “GCC” denomination.

Moreover, our proof allows us to go beyond the ¢*-threshold in a pertur-
bative regime and consider cases where the notion of geodesics is lost. We prove
that if a reference €'-metric g satisfies the GCC for some time T > 0, for any
other metric g close enough to ¢ in the Lipschitz topology the observability prop-
erty holds also, moreover in the same time 7. We insist once more on the fact
that Lipschitz metrics are too rough to even define geodesics since the associated
Hamiltonian vector field is only L* and hence integral curves do not make sense
in general.

The GCC stated above stands as a sufficient condition for observability to
hold. We also provide a necessary condition that is natural in the sense that it
coincides with the usual necessary condition if uniquess of the flow holds [7].

Our proof of the observability property relies on two key results on semi-
classical measures that appear naturally if the energy of waves concentrates
asymptotically:
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e The derivation of a transport equation that describes the propagation of
such semi-classical measures; this is one of the main contribution of the
present article; see Theorem 6.1. Its proof relies on commutator analysis
and finely tuned properties of semi-classical opertors to address the low
regularity level of metric/coefficients and the boundary /manifold.

e The description of the support of measures that are solutions to the above
propagation equation in terms of generalized bicharacteristics (whose pro-
jection on the base manifold are geodesics) even if uniqueness of such
curves fails to hold; this is the main contribution of the companion arti-
cle [5] stated in Theorem 2.14 here.

In section 1.5 below, we describe how these two results are used in the structure
of the proof of observability inequalities.

An important difficulty in the present article is the presence of a boundary.
In the case of a compact manifold without boundary, we refer to our much less
technically demanding article [4] where both parts of this program are achieved
in that simpler setting.

Our proof of a necessary condition for wave observability to hold is quite
similar and based on:

e the derivation of a transport equation for semi-classical measures across
an isochrone {t = Cst}; see Theorem 10.7;

e the use of this measure equation to ensure that a maximal generalized
bicharacteristic lies entirely in the support of the measure.

1.1. Metrics, elliptic operators and wave equations. Consider a compact
connected Riemannian manifold M of dimension d with boundary, endowed with
ametric g = (g;;). At first M and its boundary are assumed W% and the metric
is assumed Lipschitz. Denote by p, the canonical positive Riemannian density on
M, that is, the density measure associated with the density function (det g)'/2.
We also consider a positive Lipschitz function x and we define the density ~pg.

The L2-inner product and norm are considered with respect to this density
K[y, that is,

_ 2
(1) oo = [ syl = [Tl
M M

We denote by L2V (M) the space of L%-vector fields on M, equipped with the
norm

i = [ 000wy v VM),
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We write

2
)z -2 80D 122y (v

if needed for clarity in particular if different metrics and functions x are considered
simultaneously.
Recall that the Riemannian gradient and divergence are given by

9(V,f.v) = v(f) and /Mfdivgvugz— /Mv(f)ug,

for f a function and v a vector field with supports away from the boundary,
yielding in local coordinates

(Vo f) = Z 970, 1, div, v = (det g) '/ Z ., ((det g)'/*0%),

1<j<d 1<i<d

with (g%) = (gz.4;)~". With the Poincaré inequality a norm on Hj(M) is

el g aay = NGl 2y (-

We introduce the elliptic operator A = A, , = £ 1div,(kV,), that is, in
local coordinates

(1.2) Af =k detg) ™ > 0y, (k(det g)' g7 (2)0,, ).

1<ij<d

The operator A is unbounded on L?*(M). With the domain D(A) = H*(M) N
H} (M) one finds that A is selfadjoint, with respect to the L?-inner product given
in (1.1), and negative.

With the elliptic operator A = A, , one also defines the wave operator

P="P,,=0— A,
Consider the wave equation

Pﬁ,gu:f iDRXM,
(1.3) u= in R x OM,
U= = 1, Opup=o = u' in M.

Solutions are given by the following result.
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Proposition 1.1. Consider k and g both Lipschitz. Let (u°,u') € H}(M) X
L*(M) and f € L (R, L*(M)). There exists a unique

ue € (R; HA(M)) N6 (R; L*(M)),

that is, a weak solution of (1.3), meaning up—o = u’ and Oup—g = u' and
P, gu= f holds in 2'(R x M). The map

(L4) HY(M) @ L (M) ® L (R, L3 (M)) — €°(R; HY(M)) N € (R; L*(M))
(W, u', f) = u,
18 continuous.

One denotes by

1 2 2
Exg(W)() = 5 (NG 2y (pgy + 10 12a0))
the energy of u at time ¢t. For any T' > 0 there exists Cr > 0 such that

lillg% Eng(u) (t)l/Q <Cr (557g(u) (0)1/2 + ||f||L1(—T,T;L2(M)))'

If f =0, then equation (1.3) is homogeneous. This is the case we will most often
consider for the issue of observability. Then, for the weak solution u, the energy
is independent of time ¢ that is,

2 2
(HVQHOHL'ZV(M) + ||Ql||L2(M))-

N | —

Exg(u)(t) = Exg(u)(0) =
In such case, we simply write &, ,(u).

1.2. Regularity levels for manifolds, metrics and coefficients. Two classes
of regularity levels will be of importance in what follows. A first one for which
microlocal methods apply (the spaces X! and X2 below) and a second one for
which basic results (uniqueness, traces, etc) remain true (the space V' below).
More precisely denote by X* (resp. Y*) the sets of manifolds M as above of class
€* (resp. WH*). This regularity of the manifold includes that of its boundary.
Set

X ={(M,r,9); M X" ke@"(M)and gisa € metric on M},
VE={(M,r,g); MeY™F xcWh®(M)and gisa W -metric on M},
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k € N. The levels of regularity we use in what follows are X! and X2 on the one
hand, and V' on the other hand.

Observe that having the manifold M with one order of regularity higher
than that for ¢ is consistent with the transformation rules of a 2-covariant tensor
on M. Next, the regularity of the function x is set equal to that of g because of
the definition of the elliptic operator A, , in (1.2).

With M of class €'** (resp. W1t%>) the same holds for M. Once an
atlas is given on M as in Section 2.1, this is quite clear.

Remark 1.2. Note that V' exhibits a ‘tiny’ loss of reqularity if compared to
XL, Yet, this loss is more like an abyss as far as the geometry underlying wave
propagation is concerned. In fact, if considering a W -metric g the Hamiltonian
vector field that defines the bicharacteristics at higher levels of reqularity is only
L here. Hence, the existence of bicharacteristics is not guaranted. As a result
a Wh-metric is too rough to state the usual GCC and consequently also to
implement standard microlocal tools.

Based on the previous remark we will exploit the geometry of wave prop-
agation available for some (M, k,g) € X! yet consider some (M,k,§) € Y
sufficiently close to (M, k, g). Such closedness will be understood as follows.

Definition 1.3. Consider on the one hand (M, k,g) € X' and w an open subset
of M (resp. I' an open subset of OM) and, on the other hand, (M, &, §) € V!
and & an open subset of/\/l (resp T an open subset ofﬁj\/l) Let e > 0. One says
that (M, &, §,0) (resp. (M, &, §,T)) is e-close to (M, k, g,w) (resp. (M, k,g,T))
in the Y'-topology if the following holds
(1) There exists a W**-diffeomorphism v : M — M such that ¥(w) = @
(resp. Y(I') =1T)).
(2) One has [ = Kllyse 1675 = gl g g < = here [ lynerscan
denotes the W1 -norm for 2-covariant tensors on M.

1.3. Interior and boundary observability. Consider the following homoge-
neous version of the wave equation:

P.gu=0 in R x M,
(1.5) u=20 in R x oM,
U|t 0o — u (9tu‘t ul in M

Let w be a nonempty open subset of M and T" > 0. Observability of the wave
equation from w in time 7' is the following notion.
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Definition 1.4 (interior observability). Let w be a nonempty open subset of M.
One says that the homogeneous wave equation is observable from w in time T' > 0
if there exists Cops > 0 such that for any (u°,u') € HH (M) x L*(M) one has

(16) Sﬁ,g(u) S CobsH]-}O,T[Xw atu“iQ(RXM)’

for the weak solution u to (1.5).

Let I be a nonempty open subset of M. Observability of the wave equa-
tion from I in time T is the following notion.

Definition 1.5 (boundary observability). Let I' be a nonempty open subset of
OM. One says that the homogeneous wave equation is observable from I in time
T > 0 if there exists Cops > 0 such that for any (u°,u') € HJ (M) x L*(M) one
has

(1.7) Exg() < Cons|| Lo 710 ntimxonl| 2z pnay:

for the weak solution u to (1.5).

1.4. Main results and open questions. The following observability results
were proven in [2].

Theorem 1.6 (Burq, 97). Let (M, k,g) € X2

Interior observability. Let w be an open subset of M that satisfies the
interior geometric control condition (see Definition 2.10 below for a precise de-
scription) associated with the infimum time Tgeo(w). Let T > Taoo(w). Then,
the wave equation is observable from w in time T'.

Boundary observability. Let I' be an open subset of OM such that T’
satisfies the boundary geometric control condition (see Definition 2.13 below for a
precise description) associated with the infimum time Tooc(T). Let T > Taoo(T).
Then, the wave equation is observable from I' in time T'.

The proof of these results essentially relies on pseudo-differential calculus
and microlocal tools, namely the microlocal defect measures and their localization
and propagation properties.

One of our main contributions in the present article is to improve upon the
regularity assumptions on the metric g, the function x and the manifold M.

Theorem 1.7. Let (M, k,g) € X'. The two conclusions of Theorem 1.6 hold.

In fact, we prove a stronger result, namely that these observability results
are stable by small perturbations in !, that is, perturbations that are slightly
less smooth.
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Theorem 1.8. Let (M, k,g) € X'

Interior observability. Let w be an open subset of M that satisfies the
interior geometric control condition associated with the infimum time Tooo(w).
Let T > Tgee(w). Then, there exists € > 0 such that if (M, &, §,&) is e-close to
(M, K, g,w) in the Y'-topology in the sense of Defintion 1.3 for (M, k&, §) € W'
and & an open subset of M, then the wave equation associated with Pz on M
18 interior observable from @ in time T.

Boundary observability. Let I" be an open subset of OM such that I" sat-
isfies the boundary geometric control condition associated with the infimum time
Taoo(T). Let T > Taee(T). Then, there exists € > 0 such that if (M, &,§,T)
is e-close to (M, k,q,T) in the Y -topology in the sense of Defintion 1.3 for
(/\?l,&-,g) e V' and I an open subset of DM, then the wave equation associated
with Pr 5 on M is boundary observable from T in time T

Remark 1.9. First, as pointed out in Remark 1.2 above, note that standard
microlocal tools cannot be used at the Wb level of reqularity of & and the metric

gJ.

Second, Theorem 1.7 shows that the observability property is stable by small
Lipschitz perturbations around rough (€') metrics satisfying GCC. We ezhibited
in [4, Remark 1.13] an ezample showing that the observation property is not stable
by small (even smooth) perturbations of the geometry/metric around geometries
satisfying only the obervation property. This counter example is actually con-
nected to an example due to G. Lebeau [25]. In particular, this shows that our
perturbation argument will have to be performed on the proof of the fact that the
geometric control condition implies observability and not on the final property it-
self. Since Theorem 1.7 is a straightforward consequence of Theorem 1.8 we will
hence focus on the proof of Theorem 1.8 in what follows.

In the two kind of observability-inequality results stated above, the GCC
of Definitions 2.10 and 2.13 appear as sufficient conditions. We also formulate
the following weak GCC condition

For all point in the tangent bundle, at least one generalized geodesics intitiated
at this point enters any region larger than the observation region in some time
T >0.

A more precise definition is given in Section 10.1. Observe that this condition
reduces to the classical necessary condition in the case of uniqueness of generalized
bicharacteristics.

We prove the following result proven in Section 10.
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Theorem 1.10 (Necessary geometric control conditions). Let (M, k,g) € X!,
Interior observability. Let w be an open subset of M and T > 0 such that
interior observability holds from w in time T. Then the weak geometric control
condition holds.
Boundary observability. Let I' be an open subset of OM and T > 0 such
that boundary observability holds from T in time T. Then the weak geometric
control condition holds.

In the framework of the present article, sharpness of GCC as a sufficient
condition for observability is an open question. Sharpness of the weak GCC as a
necessary condition for observability is also open. In the case where generalized
geodesics are not unique, there is quite a gap between the GCC and the weak
GCC. Note that this gap closes as soon as uniqueness holds. Note also that a
lack of uniqueness of generalized geodesics can be connected to a low regularity
of the coefficients, as in the present setting. However, even in the case of smooth
coefficients and a smooth manifold, an infinite contact order of a generalized
geodesics with the boundary can be a source of nonuniqueness. We refer to
the Taylor example [29] (see also [20, Example 24.3.11]). No thorough study of
nonuniqueness issues at boundary has been carried out for €% coefficients, k > 2,
up to our knowledge.

1.5. Method to prove observability and outline. We present here the scheme
of the proof of the observability inequalities even though some material needs to
be introduced. Yet, this will provide the reader with a road map.

The strategy of the proof of observability follows the following steps:

e First, we reduce the observation estimate for general data to a high-
frequency observation estimate for semi-classically localized initial data.
This step is quite classical [6].

e Second, we proceed by contradiction and obtain sequences of L2-normalized
initial data that are spectrally localized and vanishing asymptotically in
the observation region.

e Third, associated with these sequences is a semi-classical measure p that
characterises in phase space points where mass concentrates asymptoti-
cally. The main result of the present article is a propagation equation
provided in Theorem 6.1 and fulfilled by the measure pu.

e Fourth, we exploit the result of the companion article [5] stated here in
Theorem 2.14 and we deduce that the support of p is a union of max-
imal generalized bicharacteristics. This leads to a contradiction with p
vanishing in the observation region.
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The remainder of the article is organized as follows.

In Section 2 we introduce the necessary geometrical notions to precisely
state the geometric control condition (GCC) in our low regularity framework and
to state the main result of the companion article [5]. In Section 3 we perform
some classical a priori estimates for the normal derivatives of solutions to wave
equations and we recall that an observability inequality is equivalent to an exact
controllability result for the wave equation. Section 4 is devoted to a semi-
classical reduction of observability estimates and the definition of semi-classical
measures. In Section 5, we recall and introduce some aspects of semi-classical
pseudo-differential operators with minimal regularity properties of the symbols.
We also recall the notions of semi-classical measures and some of their properties.
In Section 6.2 we write the contradiction argument that leads to the proof of a
semi-classical observability inequality. This generates a semi-classical measure
associated with a sequence of solutions to the wave equation and a semi-classical
measure associated with their normal derivatives on the boundary. The measure-
propagation equation that links these two measures is stated in Theorem 6.1 of
Section 6.1 allowing one to conclude the proof of the semi-classical observability
inequality. Sections 7 to 9 are dedicated to the proof of the measure-propagation
equation of Theorem 6.1. Section 7 exposes the commutator argument that is
the foundation of the measure-propagation equation. In Section 8 we present
a Weierstrass division argument to be applied to the test functions to prove
the measure-propagation equation. This leads to symbols with low regularity
and low decay in the conormal direction. Further analysis for such symbols
and associated operators is provided. Finally, in Section 9 the different symbols
obtained in the Weierstrass division are quantized leading to the proof of the
measure-propagation equation.

In Section 10 we prove that observability implies a weak GCC (Theo-
rem 1.10). The proof is based on the measure equation that is stated in Theo-
rem 10.7 and proven in Section 11.

1.6. Acknowledgements. This research was partially supported by Agence Na-
tionale de la Recherche through project ISDEEC ANR-16-CE40-0013 (NB), by
the European research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme, Grant agreement 101097172 - GEOEDP
(NB), and by the Tunisian Ministry for Higher Education and Scientific Re-
search within the LR-99-ES20 program (BD). The authors acknowledge GE2MI
(Groupement Euro-Maghrébin de Mathématiques et de leurs Interactions) for its
support.
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2. GEOMETRY

In this section we define the basic notions required to understand the state-
ments of our results. We will work in special quasi-normal geodesic coordinates
near the boundary. We refer to [5, Section 5] for a more thorough and intrinsic
presentation of the geometry.

Here, M is a €?-compact connected Riemannian manifold of dimension d
with boundary, endowed with a € '-metric g. An example would be a bounded
open subset Q of R? with a ¢?-boundary, that is, with the boundary given locally
by p(x) = 0 with ¢ € €%(R?) and dp # 0. Then M = QUAIQ and one can simply
consider the Euclidean metric. In the spirit of this simple example, consider an
open d-dimensional manifold! M such that M C M and extend the metric g to
a neighborhood of M is a ¢'-manner.

2.1. Local coordinates. Equip a compact neighborhood M of M in M with a
finite ¢?-atlas. A local chart is denoted (O, ¢) with O an open subset of M and
¢ a one-to-one map from O onto an open subset of R?. Charts can be chosen so
that

d(ONM)=¢(0)N{xy >0} is an open subset of @,
(O NOM) = ¢(0) N{xq = 0}, and ¢(O\ M) = ¢(0) N{zq < 0},

if O NOM # . Denote the local coordinates by = = (2/,14) with 2/ € R4-L.
Note that M being compact it contains its boundary oM.

In a local chart, the metric g is given by g, = g;j(x)da’ ® da?, where g;; €
€' (¢(0)). We use the classical notation (¢*(z));; for the inverse of (g;;(x)); .
The metric g, = (gij(z));; provides an inner product on 7,M. The metric
gt = g¥(x)d&; ® d¢; provides an inner product on T*M, denoted g*(&,€), for
£,€¢e T M. Define the associated norm

€], = g5(€.6)"2.

Near a boundary point, local coordinates are chosen according to the following
proposition. They simplify the exposition of some geometrical notions and are
key in arguments developed in what follows.

Proposition 2.1 (quasi-normal geodesic coordinates). Suppose m® € OM. There
exists a €>-local chart (O, ¢) such that m® € O, ¢(m) = (2, 2), with 2’ € RI~1
and z € R, and

1The manifold M can be constructed by embedding M in R2? thanks to the Whitney theorem [32].
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(1) 6O N M) = {z = 0} N 4(0), (O NIM) = {z = 0} N $(0), and
60\ M) = {z < 0} N (0) ;

(2) at the boundary, the representative of the metric has the form

g(z',2=0)= Z gi; (2,2 = 0)dx' @ da? + |dz|*.

1<4,j<d—1

In other words the matrix of g = (g;;) has the block-diagonal form at the
boundary

(2.1) g(2',z=0)= *

— oo

Naturally, the same form holds for g% = (¢ (x)) at the boundary. One deduces
that

9ja(2’, z) = zhja(2',z) and gaa(a’, 2) =1+ zhaa(2’, 2),

for some continuous functions hjq, 7 =1,...,d.

Proposition 2.1 can be found in [8] with a different regularity level. A proof
of Proposition 2.1 at the regularity level we consider is written in Appendix B of
[5] with a generalization to other levels of regularity.

Remark 2.2. Because of the low regularity of g and M one cannot choose normal
geodesic coordinates, that is, local coordinates for which gjq = gq; = 0 for j # d
and gqq = 1 near a point m® of the boundary. The coordinates that Proposition 2.1
provides only have this property in a neighborhood of m° within the boundary OM.

One sets £ =R x M and £ = R x M . From a local chart (O, ¢) in the
atlas for M one defines a map ¢z : (t,m) — (t,¢(m)) from © = R x O onto
R x ¢(0), yielding a local chart (O, ¢.) for £ and thus a finite atlas.

For z = ¢(m), m € O N M, denote by v = (v',v?) and £ = (£,&;) the
associated coordinates in T, M and T* M, with v,¢ € R*! and v & € R.
We write T, M and T*M by abuse of notation. In what follows, it will be
convenient to write z in place of x4, in particular for the local coordinates given
by Proposition 2.1. Accordingly we denote the associated cotangent variable &,
by the letter ¢, that is, £ = (£, (). We however do not change the notation for
the associated tangent variable v¢. With local charts at the boundary given by
Proposition 2.1, if z € OM and v € T,0M then v = (v/,0) and we use the
bijective map (&’,0) — & to parameterize T)OM.
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Also classically set

TM= |J{z} xTM, T"M= | {2} x ;M

zeM zeM
(resp. TM = U {=} x WM, T*M = L {=} x T:M).
reM reM

With M containing its boundary OM, one sees that TM (resp. T*M) contains
{z} xT, M (resp. {z} x T M) for x € OM. We denote by 9(T*M) the boundary
of T*M that is the set of (z,£) with x € OM. In the local coordinates, 9(T*M)
is given by {z = 0} and T*M by {z > 0}.

In the associated local chart on L, the representative of (t,m) € L is
(t,x) = (t,2',z). We use the letter p to denote an element of T*L, that is,
o= (t,x;7,&) with (t,x) € L, 7 € R and £ € T M. Classically, we write T*L\ 0
for the set of points ¢ = (¢, z;7,&) with (7,&) # 0. The boundary 9(T*L) is the
set of points o = (¢, z; 7, &) such that € OM. Note that 9(T*L) is locally given
by {z =0} and T*L is locally given by {z > 0}.

2.2. Wave operators and bicharacteristics. On the manifold M consider the
elliptic operator A = A, , = k! div,(kV,), that is, in local coordinates

Af = k™Y (det g)~1/2 Z Op, detg)l/2 ()0, f).

1<i,5<d

Its principal symbol is simply a(z, &) = —g*(€,€) = —g¥&€; = —|¢[2. Note that
for k = 1, one has A = A, the Laplace-Beltrami operator associated with g on
M. Together with A consider the wave operator P, , = 07 — A, 4. Its principal
symbol in a local chart is given by

p(o) = —* + [€].

Note that p(p) is smooth in the variables (7,¢) and ¢ in z.

For a function f of the variable p, the Hamiltonian vector field Hy is defined
by Hf(h) = {f,h}, where {.,.} is the Poisson bracket. In local coordinates one
has

Hy(0) = 9-p(); + Veple) - Vi = Var(e) - Vi

= —27'815 + 291](1.)528% - :ckg ( )glgjafk

Recall the following definition.
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Definition 2.3. Suppose V' is an open subset of T*L\ O(T*L) and J C R is an
interval. A €'-map v : J — V N Charp is called a bicharacteristic in 'V if

d%fy(s) =H, (’y(s)), seJ.

It is called maximal in V' if it cannot be extended by another bicharacteristic also
valued in V.

Note that th f(g) = 2Tatf(9) - 2896] (gij (x>§zf(g)) +a§k (@xkgm (x)g’bgjf(g))

and deduce

Recall also that
d

(2.2) H, f(v(s)) = d—f(y(s)), if y is a bicharacteristic.
s

2.3. A partition of the cotangent bundle at the boundary. Denote by

la(T*L) c &(T*L) the bundle of points ¢ = (¢,0) = (t,2/,z = 0,7,¢,0) € T*L

for o/ = (t,2',2 = 0,7,¢&) € T*OL. Identifying ¢’ and (¢’,0) as presented above

thanks to the chosen local coordinates allows one to indentify HG(T*E) and T*0L.
Denote by 7 the map from J(T*L) into la(T* ) given by

7T||<ta [L'/, Z = 07 T, 6/7 C) = <t7 $,7 z = 07 T, 6/7 0)

Definition 2.4 (elliptic, glancing, and hyperbolic regions). One partitions ll@(T*E)
into three homogeneous regions.
(1) The elliptic region 1€y = 10(T*L) N {p > 0}; if 0 € 1& it is called an
elliptic point.
(2) The glancing region 'Gy = 10(T*L) N {p = 0}; if 0 € Gy it is called a
glancing point.
(3) The hyperbolic region "Hy =18(T*L) N {p < 0}; if 0 € My it is called a
hyperbolic point.

Since p(0) = —72 + * + ¢.(&, &), by (2.1) if o € O(T*L), one has the
following properties:

(1) If o € 1€ then W[l ({o}) N Charp = 0.

(2) If 0 € Gy then 7 ({0}) N Charp = {o}.
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(3) It 0 = (t, 2,2 = 0,7,¢,0) € IH, then m; ' ({o}) N Charp = {07, 0"},

where
(2.3) of = (t,2',2=0,7,6F), where & = (¢/,¢F) with ¢* = £/ —p(0).

Associated with the previous partition of H8(T *L) is a partition of Charp N
O(T*L). Indeed, if p € Charp N I(T*L) then (o) € lo(T+ L) and p(m(e0)) <0.
Note that having ¢ € Charp N 9(T*L) and p(7T||(Q)) = 0 is equivalent to having
0€G,.

Definition 2.5 (partition of Charp at the boundary). One partitions Char p N
O(T*L) into two homogeneous regions Go and Hy:

(1) Gy = 1Gy: 0€ Gy < o€ Charp and mi(0) = o.

(2) 0 € Hy if o € Charp and m(0) € 194y, It is also called a hyperbolic point.
If o= (t,2',2 =0,7,&,C) one says that o € H} if ¢ > 0 and o € H if
¢ <0.

Thus, if o € 1M, then W[l({g}) N Charp = {0, 0"} with o™ € H} and
0~ € H,, with ¢* as given in (2.3).
Introducing the following involution on 9(T*L)

E(t7 ‘r/7 z = 07 T7 5/7 C) - (t7 x/7 z = 07 T? 5/7 _C)7

one finds that $(o~) = 0" if o € Hy. Thus, ¥ is a one-to-on map from H, onto
HY.

2.4. Glancing region, gliding vector field, and generalized bicharacter-
istics. One computes

H, z(0) = H, 2(x, &) = 29% ()¢, (recall x4 = z and & = ().

Observe that H, z is a ¢'-function and that Hy, z,—o = 2¢ in the present local
coordinates. Hence, locally one has

Gy =Gy ={2=H,2=p=0} and Hf ={z=p=0, H,z =0}.

With (2.2) this means that a bicharacteristic going through a point ¢ € Hy has
a contact of order exactly one with the boundary: it is transverse to 9(7T*L). A
bicharacteristic going through a point ¢ € Gy has a contact of order greater than
or equal to two: it is tangent to I(T*L).

One can further compute H; z. It is a continuous and gives the following
partition of Gg.
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Definition 2.6 (partition of Gy). Introduce

Gy = {0 € Go; H 2(0) > 0},
G5 = {0 € Go; H; 2(0) = 0},
G5 = {0 € Go; H 2(0) < 0}.

One calls G§ the diffractive set, G5 the gliding set. One calls G3 the glancing set
of order three: if 0° € G3 a bicharacteristic that goes through ¢° has a contact
with the boundary of order greater than or equal to three.

On '8(T*L) one defines

W) = (1%

referred to as the gliding vector field. In the present coordinates one has H2 p = 2.
Define the following vector field on 7L

G ~JHp(e) ifoeT* L\ G,
X(o) = {Hg(g) if 0 € G5,

that is, °X = H, +1gg(Hg —H,). More explainations on the vector field Hg are
given in Section 5 in the companion article [5].

Definition 2.7 (generalized bicharacteristic). Let J C R be an interval, B a
discrete subset of J, and

Cv:J\ B — CharpNT*L.

One says that ®v is a generalized bicharacteristic if the following properties hold:
(1) For s € J\ B, ®y(s) & Ha and the map v is differentiable at s with

£L69(5) =X (s)).

(2) If S € B, then ®y(s) € T*L\ O(T*L) for s € J\ B sufficiently close to S
and moreover
(a) if [S—e,S] C J for somee >0, then GV(S*) = lim,_g- ®y(s) € Ha ;
(b) if [S,S+e] C J for some e > 0, then ®y(ST) = lim,_, g+ ®y(s) €
(c) and if [S —e,5 +¢€] C J for some e > 0, then ®y(S*) = X(°y(S~ ))
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Recall that T*L contains its boundary 9(T*L); as a result a generalized
bicharacteristic ®y(s) may lie in the boundary for s in some interval. Details on
generalized bicharacteristics can be found in Section 5 of the companion article [5].

When one refers to a (generalized) bicharacteristic one often means the
points visited in T*L by s — ©v(s) as s varies, that is,

{®7(s); s € J\ B}.

Observe however that this set may not be a closed set if B # () as its intersection
with Hy is empty. Consequently, we rather use its closure to describe the set of
reached points.

Definition 2.8 (generalized bicharacteristic). By generalized bicharacteristic one
also refers to

¢y ={%(s); s € J\ BY ={%(s); s € J\ B}U | J{¥(s7),%(s)}.

seB

The following theorem states that for every point of 7*L one can find a
maximal generalized bicharacteristic that goes through this point.

Theorem 2.9. Suppose J\ B > s — ®y(s) = (t(s),2(s),7(s),£&(s)) is a gen-
eralized bicharacteristic. If ®v is mazimal then J = R. Moreover, t(R) = R if
7(s) = Cst # 0.

If o° € Charp NT*L there exists a mazimal generalized bicharacteristic
s+ Sy(s) with s € R\ B such that ®y(0) = ¢° if o° & Hy and ®y(0F) = o° if
o € HF.

Note that there is no uniqueness of such a maximal generalized bicharac-
teristic because of the limited smoothness of ©X. This result is classical in the
case of smooth coefficients; see [27] or [20, Section 24.3|. Here, in the case of the
present limited smoothness it can be proven with the arguments developed in the
companion article; see [5, Appendix A] for a proof.

2.5. Geometric control conditions. In the present low regularity framework
we state the geometric control conditions (GCC) that coincide with the usual
definitions found in the literature. First, we state the interior geometric control
condition.
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Definition 2.10 (interior geometric control). Let w be an open subset of M.
One says that w controls geometrically the manifold M if there exists T' > 0 such
that any generalized bicharacteristic reaches a point above |0, T[xw. One says
that (w,T) fulfills GCC. In such case, one sets

Toeo(w) = inf{T > 0; (w,T) fulfills GCCY}.

To state the boundary geometric control we introduce the notion of bound-
ary escape point.

Definition 2.11 (boundary escape point). (1) a point o € O(T*L) is said to
be a boundary escape point in the future if locally in time all bicharacter-
istics initiated at o immediately leave T*L in the future. One denotes by
BE, . the set of all such points

(2) a point o € O(T*L) is said to be a boundary escape point in the past if
locally in time all bicharacteristics initiated at o immediately leave T*L
in the past. One denotes by BL.. the set of all such points

Moreover B.,. = B, U B is called the boundary escape set and points in

B.s. are the boundary escape points.

The reader should note that the definition of escape points relies on bichar-
acteristics, that is, integral curves of H, in Charp C 7L, and not on the notion
of generalized bicharacteristics. The latter curves do remain in 7*L.

Lemma 2.12. The following properties hold.
(1) H, € BE\BL, and H)  BE .\ BE,

K Fesc ]gsc esc esc”
(2) ga - Besc N Besc'

(3) GaN By = 0.
(4) ga \ Besc - gg U gg

Definition 2.13 (boundary geometric control). Let I be an open subset of OM.
One says that I' controls geometrically the manifold M if there exists T' > 0 such
that any generalized bicharacteristic encounters a boundary escape point above
10, T[xI. One says that (I',T') fulfills GCC. In such case, one sets

TeeeI) =inf{T > 0; (I',T) fulfills GCC}.

2.6. Invariant measure supports. For a manifold M € X ! we will consider
an extension M as in the begining of Section 2. The following result is proven in
the companion article [5].

Theorem 2.14. Let (M, r,g) € X' and let pn and v be two nonnegative mea-

sure densities on T*L and T*0L ~ ”8(T*£) respectively that fulfill the following
properties:
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(1) supppu C CharpnNT*L\ 0.
(2) One has, in the sense of distributions,

Opr — Oy
2.4 H,u=-"H ,u:/ ¢ ¢ dv(o),
( ) ’ 8 o€l Ul G5 <€+ - 5_7 nﬂ:)T;M,TxM ( )

where o= and £F are as given in (2.3). Here, n, stands for the unitary
wmward pointing normal vector in the sense of the metric.

Then, the support of the measure p is a union of maximal generalized bicharac-
teristics.

With the notation of Definitions 2.7 and 2.8, the result of Theorem 2.14
means that if o € supp pu, there exists a maximal generalized bicharacteristic
s — %y(s), s € R\ B such that ¢ € °§ C supp pu.

The identification T*9L ~ 10(T* L) is explained in Section 2.3.

Remark 2.15. If o € IGy then o= and o coincide with o and EF =¢. The
value of the integrand in (2.4) thus requires some explanation in this case. In fact,
first consider 0° = (0,0) € Hy with 0¥ = (t°, 2, 2 = 0,7°,€Y). Then % # o°
and (2.3) give &% — & = 2(dz, yielding (£%F — €% ngo) e = 2¢ since
n, = 0. in the coordinates we consider here. Considering a €1-test function q(o)
one has

<5g0v+ - 5_90** ) Q> = q(QO/7 g) - Q<Q0/7 _g) .
The integrand s thus

q(0”.¢) —q(0”,—¢)
2 '

If now a sequence (o™),, C 1945 converges to o € 1Gy then

(O pm+ — Oytn)—, Q)
(€0t — €00~ ng) e oM

— 0cq(0)-

The integrand in (2.4) for o € |Gy is thus to be understood as the derivative
with respect to the variable ¢ at ¢ = 0. Note that this interpretation is very
coordinate dependent. We give a more geometrical interpretation using more
intrinsic coordinates in the companion article [5, Section 5.7].

This result was proven in [2, Théoreme 3| in the case (M, k,g) € X2
The proof of the result of Theorem 2.14 in [5] is more intricate due to the lower
regularity of the metric g and the function k.
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3. A PRIORI ESTIMATES AND EXACT CONTROLLABILITY

In this section we consider (M, k,g) € V', that is, M is W?* and both &
and the metric g are Lipschitz.

First we recall a classical a priori estimation for the normal derivative
of a solution to the wave equation. Second, we recall the equivalence between
observablity and exact controllability.

3.1. Normal derivative estimation. Denote by n the unitary normal inward
pointing vector field to OM in the sense of the metric. It has the regularity of
the metric, that is Lipschitz here. For a function w and x € M then d,w(x) =
n(w)(z) = dw(z)(n,). In the quasi-normal geodesic coordinates of Propositon 2.1
that can also be obtained in the Y!-regularity setting [5, Appendix B] one has
n = 0, and thus Jyaw = Jyw.

Proposition 3.1. Assume that (M,k,g) € Y. For any T > 0 there emists
C > 0 depending only on T, M, ||Kly1.0c () Hgl\wl,w@o(/\,{) such that for any
(u®, u') € HY(M) x LAH(M) and f € L (L), if u is the solution to the wave
equation (1.3) then

2
||anu||L2(]o,T[xaM)

T+1
< C(/l Eng(u)(t) dt + ||VguHL2(_17T+1;L2v(M))HfHLZ(]—l,T—i-l[xM))‘

Below we will use the Neumann trace as an observation operator for the
wave equation. In this context, with f = 0, Proposition 3.1 provides a so-called
admissibility result; see for instance [31].

Note that a more usual and natural form of the estimation is simply

T+1
2 2
HaﬂuHL2(]O,T[><8M) S /1 Eng(u)(t) dt + Hf||L2(}—1,T+1[><M)'

This form is however not sufficient in one argument we use in what follows; we
refer to the use of Proposition 3.1 made below (7.3).

Note that since u vanishes on OM one has || Vjujgaml|| = |Onu|. The result
of the previous proposition thus can be transferred to HVQWRXBMHL?(}O,T[X(’?M)'

The proof of Proposition 3.1 follows from an examination of the standard
proof and a carefull handling of the low regularity metric. We will also need to
approach the weak solution to the wave equation 1.3 by a sequence of strong
solutions.
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Proposition 3.2. Suppose that (u°,u') € (H*(M)NH(M)) x Hj(M) and that
f e Ll (H}(R;M)). There exists a unique

u € €°(R; H2(M) N HL (M) N 6" (R; HL(M)) N E2(R; LA(M))

0

that is a strong solution of (1.3) meaning that (u, Oyu) = = (u°,u') and P, gu =

f holds in Li, (R; L*(M)).

Note that a strong solution is also a weak solution. Then, if (u° u') €
H} (M) x LA(M), [ € LIOC(R L*(M)) and u is the weak solution to (1.3) given
by Propostion 1.1 and if (u%,u;), C (H*(M) N Hi(M)) x Hi(M), (fu)n C

L} (H} 1(]R M), with (u,), the sequence of associated strong solutions, are such
that (v, up) — (u°,u') in HY(M) @ L* (M), and f,, — fin L{ .(R; L*(M)) then

?7,7 n

u, = uin €°(R; HY(M)) N € (R; L2(M)) from the continuity of the map (1.4).
Proof of Proposition 3.1. First we consider the case of a strong solution
w € EO(R; HA(M) N H (M) NG (R; HL(M)) N € (R; LA(M)),

with f € L2 .(L).
Consider a Lipschitz vector field X that coincides with n on the boundary.

We view X as a first-order differential operator. For y € €>°(—1,7T + 1), non-
negative and equal to 1 on ]0, 77, one finds that [P, x(¢)X]u € €°(R; L*(M)).
Set I = ([P, x(t)X]u,u)r2(z). With the Green formula, that is, two integrations
by parts, one finds
(3.1) 10t Z2 g0, r1xony < (X)X ujort, Ontt) 2oy

< T — (x(t)Xu, [z + (f, x(0) X u) 2z

ST+ vau”L2(—1,T+1;L2V(M))HfHLQ(}—l,T+1[><M)'
Writing [P, x(t)X] = [07, x(t)]X — x(t)[A, X]. One has [ = J — K with

J = / (93, XU, U) (M ),Hé(./\/l)dta

/ A X U u) (M),H(}(./\/l)dt

Since [0?, x| is a first-order operator and compactly supported (in time) we can
integrate by parts in the time variable and obtain the bound, using the Poincaré
inequality,

(3.2)
T+1 T+1
1S [ (10 + Nellzgan) ISl @t 5 [ Enyld(®) .

-1
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To estimate |K| we use a partition of unity subordinated to an atlas on M and
we consider the commutator [A, X] in local coordinates. Recall that A takes the
form

A =Fi"0,, 0 kg” 0y,

with & = r(det g)'/? where we use Eistein’s summation convention. One thus
finds

(33) A X] =0, 0 fg"[0n,, X] + 70, 0 [Rg?, X] 0 0,

+ ’%71 © [8117 X} o /%gijaxj + [/%717 X] o aﬂﬁz © /%gijaxj'
Write K = K+ - -+ K4 in association with the four terms in (3.3). Since X has
Lipschitz coefficients then [0, , X] is a vector field with bounded coefficients and

[£g%, X| is a bounded function in the local coordinates. Thus, with an integration
by parts in space the contribution |K;|, |Ks|, and |K3| can by estimated by

(3.4) | K|+ | K| + | Ks| < /Rx(t)IIVgUIlisz) dt.

For the term K since [#~!, X] is only bounded, an integration by parts in space

is not possible. Instead, exploiting that u is a solution to the homogenous wave
equation one writes

[F™, X] 00y, 0 kg7 0pu = [R™Y, X]RAu = [, X]RO}u.
This now allows one to perform an integration by parts with respect to the time

variable yielding
T+1

T+1
2
35) 1K [ 10t [ Tl 0l d

~1
+ Jull g1 raoan 1 L z2go1 1
T+1
S /1 Eng(w)(t) dt + HVQUHLQ(—LT—H;LQV(M))HfHLQ(]fl,TJrl[XM)'

Combining (3.1), (3.2), (3.4) and (3.5) gives

T+1
3O Iulagran S [ EnsOdr

+ ||V£JUHL2(—1,T+1;L2V(M))||f||L2(}—1,T+1[><M)‘

If u is now a weak solution, if one approches u by a sequence of strong solu-
tions as described below Proposition 3.2 one finds that the normal trace 0,ujam
makes sense in L?(]0, T[xOM) and (3.6) remains true for the weak solution. [
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3.2. Exact controllability notions. We make the classical connexion between
the observability properties of the homogeneous wave equation given in (1.5)
and the exact controllability of the wave equations. We will consider two differ-
ent wave equations here, one with an interior source term and a homogeneous
Dirichlet boundary condition and one with a boundary source term through the
Dirichlet boundary condition. In each case we describe what is meant by exact
controllability.

3.2.1. Exact interior controllability. Suppose w is an open subset of M. The
notion of exact interior controllability for the wave equation on M from w in
time T’ is stated as follows.

Definition 3.3 (exact interior controllability in H}(M) & L*(M)). One says
that the wave equation is exactly controllable from w in time T > 0 if for any
(y°,y") € Hy(M) x L*(M), there exists f € L*(]0, T[xM) such that the weak

solution y to

Pn,gy = 1]U,T[><w f7 YRxoOM = 07 (y: aty)\tzo = (g07g1)7

as given by Proposition 1.1 satisfies (y, 0yy)je=r = (0,0). The function f is called
the control function or simply the control.

3.2.2. Exact boundary controllability. Consider the nonhomogeneous wave equa-
tion with source term given by a Dirichlet boundary condition.

P.,y=0 in R x M,
(3.7) y=fs on R x oM,
Yjt=0 = QO, 8ty|t:[) = gl in M,

Standard results show that it is well-posed.

Proposition 3.4. Consider x and g both Lipschitz. Let (3°,y') € L*(M) x
H Y (M) and fs € L} (R x OM). There exists a unique

loc
y € €°(R; L*(M)) N €' (R; H'(M)).
that is a weak solution of (3.7).

Let I' be a nonempty open subset of 9M and T > 0. The notion of exact
boundary controllability for the wave equation from I' in time T is stated as
follows.
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Definition 3.5 (exact boundary controllability in L?(M) @ H~Y(M)). One says
that the wave equation is exactly controllable from I' in time T > 0 if for any
(y°,y") € L* (M) x H-Y (M), there exists fo € L*(|0, T[xOM) such that the weak

solution y to

Pogy =0, yrxom = Lorixrfo, (Y, 0) =0 = (goagl)a

as given by Proposition 3.4 satisfies (y, Owy)=r = (0,0). The function fy is called
the control function or simply the control.

3.3. Exact controllability equivalent to observability and corollaries.
The following proposition is standard and states that in the two cases we consider
exact controllability is equivalent to an obserbability inequality.

Proposition 3.6. (1) Let w be an open subset of M and T > 0. The wave
equation is exactly controllable from w in time T if and only if the homo-
geneous wave equation is observable from w in time T'.

(2) Let T be a nonempty open subset of OM and T > 0. The wave equation
18 exactly controllable from T in time T if and only if the homogeneous
wave equation is observable from I" in time T.

With the previous proposition and Theorem 1.8 one deduces the following
corollary.

Corollary 3.7 (Exact controllability result). Let (M, k,g) € X'

Interior exact controllability. Let w be an open subset of M that sat-
1sfies the interior geometric control condition associated with the infimum time
Teoc(w). Let T > Tgee(w). Then, there exists € > 0 such that if (/\?l,/%,g,@)
is e-close to (M, K, g,w) in the Y'-topology in the sense of Defintion 1.3 for
(/\?l,/%,g) € V' and & an open subset of M, then the wave equation associated
with Pr 5 on M is exactly controllable from & in time T.

Boundary exact controllability. Let I' be an open subset of OM such
that T satisfies the boundary geometric control condition associated with the in-
fimum time Tgoo(T). Let T > Tgeoo(T'). Then, there exists € > 0 such that if
(M, %, §,T) is e-close to (M, k,g,T) in the Y -topology in the sense of Defin-
tion 1.3 for (M, k,g) € V' and T an open subset of DM, then the wave equation
associated with Pz on M s ezactly controllable from T in time T.

4. SEMI-CLASSICAL REDUCTION

In [4], on a compact manifold without boundary, we proved an interior ob-
servability estimate for the Klein-Gordon equation by means of microlocal defect
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measures. The more general case we consider here, in the presence of a boundary
is technically more involved and requires a semi-classical approach. We recall
in this section how observability estimates as in Definitions 1.4 and 1.5 can be
obtained from counterpart semi-classical observability estimates.

4.1. Dyadic decomposition. Consider (k,g) € X'(M) and the associated op-

erator A = A, , with Dirichlet boundary conditions. Denote by A, the nonde-

creasing sequence of positive eigenvalues of —A that goes to +oo and consider

(e,), a Hilbert basis of L?(M) = L*(M, kpu,) of associated real eigenfunctions.
Let 0 < o<1, o €]1,1/af and set hy = o~ *l and

Jo={reN; a<hyV <a '} ={reN; agkl <), < o"/a},
for £ € Z*. Introduce
By = span{es; v € Ji},

equipped with the L?-norm HuHiQ(M) = HuHiQ(M’Wg) = > ey w|? for u =
ZVEJk uye, € Ep. Observe that if u € E) then A"u € FE,. Hence, E, is a
subspace of all the iterated domains of A.

At this stage it is important to note that J_, = J, implying £_, = Ej.
However, we will identify u € E} with the following solution of the wave equation

U= 2 :esgn(k)zt\/)\yuyey‘
veJg

The sign of k£ here becomes important. Yet, note that v € Ej if and only if
u € E_j, through this identification since the eigenfunctions e, are chosen real.

Following up, we identify ofu with u = 3_,, (i sen(k)) A/ %u,e, € By, its
value at ¢ = 0. Similarly, one identifies A*u with }_ _; ANu.e, € Ej.

Lemma 4.1. For u € Ej, the norms
||hkvgu”1:2v(/\4) and ||hkatuHL2(M)

are both equivalent to |ul| ;2 ), uniformly with respect to k € Z. More generally,

for 0 € N and s € R, the norm h£+23||8fAsu||L2(M) is equivalent to |lul| o ny) for
u € Ey, uniformly with respect to k € Z*.

Proof. For the first result one writes
2 2
A (hiAu, ) p2(p) = 17Dt gy-

Then one concludes using hyA\Y/2 = 1 for v € J,. O
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As a consequence the L2-norm and the square root of the semi-classical
energy £"(u)

1
(4.1) E"(u) = §(HthgUHisz) + | ndeullpgy) = PRE (w),

are equivalent on Ej. Note that for u € E} both terms in the semi-classical energy
coincide; this is not the case in general for a solution of the wave equation.

We introduce the following sets of sequences of functions

B = {(u")ez+; uF € By and Huk’HLQ(M) <1},
Bt = {(uk)keiN*; u® € E) and ||uk||L2(M) <1}

4.2. Semi-classical observation. The result of Proposition 4.3 below for bound-
ary observation is proven in [2, Section 4] following a strategy of G. Lebeau [24].
The result of Proposition 4.2 for interior observation can be proven similarly. In
[2] domains and metrics are smoother, yet lowering the regularity does not affect
the proof that is only based on semi-classical analysis arguments with respect
to the time variable. In fact, the proofs of both propositions can be carried out
within an abstract framework that can be found in [6].

Proposition 4.2 (interior semi-classical observation implies classical observa-
tion). Let w be a nonempty open subset of M. Assume that there exists C > 0,
ko >0, and 6 > 0, such that for any U = (u¥)peny € BT and any k > ko one has

(4.2) ||u@:0||L2(M) < Cl1 reehi || 2 g any with I =]6,T — 4.
Then, the homogeneous wave equation is observable from w in time T > 0 in the
sense of Definition 1.4.

Proposition 4.3 (boundary semi-classical observation implies classical observa-
tion). Let I' be a nonempty open subset of OM. Assume that there exists C' > 0,
ko > 0, and 6 > 0 such that for any U = (u*)ren € BT and any k > ko, one has

2 .
(4.3) ||u|’1:0||L2(M) < C||Lrerhadntt® || 2 pconn)- with I =16, T — 6].

Then, the homogeneous wave equation is observable from T' in time T > 0 (in the
sense of Definiton 1.5).

Propositions 4.2 and 4.3 state that if an observability inequality as in Def-
inition 1.4 or Definiton 1.5 holds in Fj uniformly for large |k|, then it also holds
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for any initial data with possibly a small loss (here § on each side) in the time
interval required for observation.

The proof presented in [6] is based on several properties of the observation
operator L, here L = 1;,,h.0; in the first case and L = 1;41h0, in the second
case:

(1) a unique continuation property, L u = 0 implying u = 0 for eigenfunctions
of the operator A, ,4; this condition holds in the both cases we consider;
see for instance [19, Theorem 2.4] and [22, Theorems 5.11 and 5.13].

(2) an optional admissibility condition, here given by Proposition 3.1 in the
case L = 1;4rhi0,. In the first case, L = 1;4,hi0; the admissibility
condition is trivial.

Remark 4.4. In (4.1), we pointed out that the L*-norm [ z2 ) 25 equivalent

to the square root of the semi-classical energy EM(u), uniformly in k. Here, E"(u)
18 constant w.r.t. time t, since uy is solution of the homogeneous wave equation.
Consequently, one can also replace the l.h.s. in (4.3) and (4.2) by

2 2
HukHLOO(R;LQ(M)) or HukHLQ(JXM)?

for any finite interval J C R.

5. SEMI-CLASSICAL OPERATORS AND MEASURES

5.1. The Schur lemma. Here, we recall a result that is important in our anal-
ysis of some semi-classical operators on R? in what follows.

Lemma 5.1 (Schur’s Lemma). Let K(z,y) be a measurable function on RY x
RY such that K(z,.) and K(.,y) are L*-functions for almost all x and y in R?
respectively, with moreover

esssup || K (z, )| p1gay < A and esssup | K (., y)|| 1 gy < B,
x€RC yER4

for some A >0 and B > 0. Then, the operator % with Schwartz kernel K(.,.)
extends as a continuous operator on L*(RY) with 1 22 mayy < (AB)Y/2.

Assume that the kernel of the operator J# is of the form

K(x,y) = h“k(z, = ; N,
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for some measurable function k& defined on R? x R?. Changes of variables give

s I o ety = (1R Cs ) p1 ay
Gl ay = 1Ry + Ay )l gy

The Schur Lemma can be translated accordingly.

Lemma 5.2. Let the operator # have Schwartz kernel K (z,y) = h™¢ k(z, %)
with the function k satisfying

esssup |[k(z, )|y gay < A and esssup [[k(y +h., )|l L1 ga) < B,
z€RC yeERC

for some A >0 and B > 0. Then, the operator J# with Schwartz kernel K(.,.)
extends as a continuous operator on L*(RY) with 1 2y < (AB)V2.

Corollary 5.3. Let the operator X have Schwartz kernel K (z,y) = h™%k(z, %)
with the function k satisfying

—d—6 d d
) = L0 ) ) )
|k(x,v)| < Lo(v) reRY veER

for some 6 > 0 and Lo > 0. Then, J& extends as a continuous operator on
L2(Rd) with ”L%/”£(L2(Rd)) S C(d,6LO fOT some Cd,f; > 0.

5.2. Semi-classical operators on R%. We recall and develop here some aspects
of semi-classical pseudo-differential operators associated with symbols with fairly
low regularity.

Let hg > 0. In the semi-classical setting we denote by h € (0, hg| a small
parameter.

Definition 5.4 (symbols). Let m,n € NU {+oo}, withn > d+1, and N € R*.
Denote by ™" ((€)~N; R the space of all functions a(x,€), v € RY, € € RY,
such that 6§8§a € LL .(R*) for o, B € N with || < m, |B] <n, and

loc

(5.1) MY (a) := max esssup ‘8?8?@(:6,5)‘ N < 0.

m,n
la|<m
Bl=n (@€

In addition, one sets Y3 ((&)™V;R?*?), n > d + 1, as the set of all symbols
a € X ((€)~N: R2) with moreover 8;2‘8?@ € 6o(R??) for a, B € N with |a] <m
and |B] <n—1-d.

Recall that %,(R??) is the space of continuous functions on R?? that con-
verge to 0 at infinity. Both spaces Y™™ ((£)~V;R?) and """ ((£)~V;R%) are
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complete if equipped with the norm M, (.). The space €:°(R*?) is dense in
So"((€) 7N R%) for N > 0.
At first, we will be interested in the case N = d + 1. Since

£ ()N R € S () R
ifm'">m,n >n,and N > N, set
E(RQd) _ ZO,d+1(<€>—(d+1); de).
Set also
So(RH) = S5 ()~ R).

Faster decay with respect to £ will be considered, starting in Section 7.2.
For symplicity, we will use

(52) 280,00(< —o0, RQd m EOO oo N; ]RQd)

N>0
in those later sections.

Definition 5.5 (semi-classical operators). For u € . (RY) and a € X(R?*?) one
sets

(5.3) Op"(a)u(z) = a(x, hDy)u(z) = (27?)_d/em'fa(x, h&)u(€)dE.
The Schwartz kernel of Op”(a) is given by
Ka(o,y) = (2n)* [ 0 ala, heydg = (2mh) [ & ala, )

= k(e ),

with
(5.4) ku(z,v) = (2) / ¢z, €)dE.

Note that (5.4) is well defined in the sense of classical integrals by the decay
property in the variable £ of the symbol a. Observe that Lexp(iv-§) = exp(iv-§)
with L = (1 — v - V¢)/(v)? leading to, with integrations by parts,

ka(,0) = (27) / eE(1L)Va(z, €)de .



32 NICOLAS BURQ, BELHASSEN DEHMAN, AND JEROME LE ROUSSEAU

for N <d+1, with 'L = (1 +4v - V¢)/{v)2. One then obtains

(5.5) lka(,0)| S Myt (@) ()=, v eRY, 2 € R ae.,

With Corollary 5.3 one deduces the boundedness of Op”(a) on L?(R?) with a as
above.

Lemma 5.6. Let a € X(R?*!). Then Op"(a) extends as a uniformly bounded

operator on L*(RY) and

—(d
| OP" (@)l gpzmey < CaMo iy (@),
The following remark will be used in what follows.

Remark 5.7. If a € ¥%4+2((¢)=(@+1): R2d) note that one has
(5.6) kagja(x,v) = —iv;kq(x,v), j=1,...,d.

In fact, with an integration by parts one has
k:ggja(x,v) = (27r)_d/ei”'585ja(x,§)d§
= —(27r)d/(9§j (e")a(z, &)dE = —iviky(, ).

Lemma 5.8. Let a € Xo(R*). Then, ko(x,v) — 0 as |z| — oo uniformly with

respect to v € R,

Proof. One writes |kq(z,v)| < g(z) = 2m)7¢ [|a(z,&)|d¢. Since |a(z,&)] <

(€)7471 one finds that g(z) — 0 as |z| — oo by the dominated-convergence

theorem. 0
The following lemma will be of great use in what follows.

Lemma 5.9. Let a € Yo(R*). Let pp(z,v) € €°(R? x R?) be such that
(1) |lpnll e < Co uniformly in h,
(2) pr(z,v) = 0 as h — 0 uniformly for (z,v) in any compact set.
Then, one has

esssup || puka(@, )|l 1 gay = 0 and esssup ||ppka(z + he, )| 11 gay = 0,
zeRY zERd

as h — 0, with k,(z,v) as in (5.4).
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Proof. Set my, = ppk,. For R > 0, by (5.5) one writes
/ |mp(z, )| dv < C’O/ (v) "y,
[v|[>R [v|>R

for almost all # € R%. Let ¢ > 0. For R > 0 chosen sufficiently large one has
(5.7) / |mp(z,v)|dv < e —i—/ |mp(z,v)| dv, reR ae.
Rd [v|<R

Next, one writes
/ (2, 0)] dv < co/ oo (2, )] do.
[v|<R [v|<R

Thus, by Lemma 5.8, for some R’ > 0, one has f|v|<R |mp(x,v)|dv < e/Cy for
|z| > R'. One thus has

esssup [ |mp(z,v)|dv < 2e.
|z|>R' JRd

Consider now the case |z| < R'. By hypothesis |py(x,v)| — 0 as h — 0 uniformly
with respect to « and v if |x| < R and |v| < R. With (5.5) one finds

/ |mp(z,v)| dv < / |on (2, v)| dv,
v|<R v|<R

for almost all = such that |z| < R’. One thus finds that f|v|<R |mp(x,v)|dv < e

for such = and for h > 0 chosen sufficiently small. With (5.7) one thus concludes
that

esssup [ |my(x,v)|dv < 2,
|z|<R' JRd

if h > 0 is chosen sufficiently small and thus esssup,cga [pa [mn(2z,v)| dv < 2e.

One obtains mutatis mutandis that esssup,cga [ga [mn(z + hv,v)| dv < 2e,
for h chosen sufficiently small. O

Proposition 5.10. Let a € $o(R*?).
(1) Consider 0 € €°(R?) N L>*(RY). one has

(5.8) lim [[a(z, hD.), 0]l £ 12 (mayy) = 0.
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(2) More generally, if (Ox)ren C L®(RY), 0 € €°(R*Y) is such that ||0) —
O||p~ — 0 as k — 400, then

(5'9) ||[a(:1c, th>a ek] “L(L?(Rd)) = 0<1)h—>0 and k—ro00-

(3) Assume in addition that a € X*T((€)~(+D.R2) and consider 0 €
Whe(R%) then one has

|10p" (@) 4] = O(h).

L(L2(RY))

(4) For a € $Y* (€)=, R2) if moreover 6 € €HRY) N WL (RY) then
one has the following properties

(5.10) H[ +mz (% ‘ — o(h),
T L@y
and
(5.11) H[ +thO gg aae = o(h).
7O ey

(5) More generally, if (Ox)ren C Lip(R?) is such that |0 — 0Ly, — 0 as
k — +o0, then

(.12)  [|(Op"(a 9k+zhz 85 9| = 10(1)h 50 i ks
T (L2 ray)
and
a 00
|[0p" (@), +thOp 585 = h0(1)1-20 ani ks
T r e way)

(6) Finally, assume that a € SN TH(€)~WHD).R2) Let ¢ € €>(RY) be
such that ¢a = 0. One has

(5.13) | Op"(a) o ¢Hc(L2(Rd)) = o(h™).
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Proof. The kernel of the operator [a(x, hD,), 0] is given by
_ r—y
G18)  K(y) = Kule) (0) ~ 0) = h-mi e, 2 0),

with my,(z,v) = ke(x,v)(0(x — hv) — 6(z)). Since 6 is continuous it is uniformly
continuous on any compact set. Thus, one finds |#(z — hv) —0(x)| — 0 as h — 0
uniformly with respect to = and v if |z| < R" and |v| < R. With Lemma 5.9 one
obtains that

esssup ||mp(z,.)|| 1. ®y) = 0 and ess sup ||mp(x + h., )”Ll(Rd) — 0,
z€RA yeR4

as h — 0. With Lemma 5.2 one concludes that the limit in (5.8) holds.

To obtain (5.9) one writes

la(x,hDy,), 0x] = a(x,hD,) (0, — 0) — (0x — 0)a(x, hD,) + [a(x, hD,),6].

Assume now that a and 6 fullfil the requirements of point (3). The kernel
of the operator Op”(a), ] is given by (5.14). With the first-order Taylor formula
one writes

1
O(x — hv) —0(zx) = —h/ d.0(x — shov)( = —th] (z, hv),
0

with O;(z, hv) = fol 0;0(x — shv)ds. With the additional regularity of a(x, &) and
Remark 5.7 one finds

——thkagaxv i(z, hv),

yielding
(d -+ (d+
Imp(z,v)| Sh E MOd 11 (O¢,a)(v)~ @) < M, 0.d 21)( )(v) =@+,

J

as |0;(x, hv)| < 1 uniformly in x, v and h. With Corollary 5.3 one deduces the
result of point (3).

Assume now that a and 6 fullfil the requirements of point (4) of the propo-
sition and denote by K(z,y) the kernel of [Op”(a), 8] + ih Z?zl 92,0 Op™ (0, a).
One has K(z,y) = h=%ry,(z, (z — y)/h) with

(2, v) = ko(z,v) (0(z — hv) — 0(z) + hd,0(z)(v)),
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using Remark 5.7. The first-order Taylor formula gives
0(x — hv) — 6(x) + hd,0(x h/ (d,0(x) — duf(z — shv))(v)ds.

Setting A (z,v) fo (0;6(z) — 0;6(x — shv))ds, one finds
rn(z,v) =ih Z Al (x, v)kagja(x, v),
J

using again Remark 5.7. Since § € € (R%) N W=(R?) one finds A} € €°(R>)
and || Az || o geay < Co for some Cp > 0 uniformly with respect to h. Moreover,

if L is a compact of R?*?, and 0 < h < hg, if z,v € L then z — shv remains
in a compact set of R where 9;6 is uniformly continuous. One concludes that
Aj (z,v) — 0 as h — 0 uniformly with respect to (x,v) € L. Since d,a € So(R>?),
with Lemma 5.9 one concludes that

esssup |1 (z, )| 1 gay = 0 andesssup |[rp(z + he, )|l L1 gay = 0,
r€ERA yeR4

as h — 0. With Lemma 5.2 one concludes that the limit in (5.10) holds.
Following the same strategy, one finds that the kernel of the operator

[Op”(a) —zZOp (0¢;a)0,0(x)

is given by h=47,(x, (x — y)/h), with
P (2,0) = ko(z,v) (0(z — hv) — 0(x) + hdb(z — hv)(v))

and applying the Taylor formula as above and Lemma 5.9 one obtains the limit
in (5.11) by Lemma 5.2.

To prove (5.12), as above one writes
la(z,hD,), 0] = [a(z, hD,), 0k — 6] + [a(x, hD,), ).
and by point (2) of the proposition one observe that it suffices to prove

(5'15) ||[CL(I, hDﬂJ)v O — 9]||L(L2) = h0(1)7
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as k — +oo. Set ay = 0 — 0. The kernel of [a(x,hD,), ay] is given by L(z,y) =
h=4q,(x, (x — y)/h) with

an(x,v) = ko(z,v) (ar(z — ) — ag(x)) = —hk,(z, v)/O dyax(x — shv)(v) ds
d
= _hZQgL,kkasﬂ(‘T’ v),

where Q{L’k(x, v) = fol O;jai(x — thv) dt. Arguing as above one obtains (5.15).
Finally, we consider the last statement of the proposition, with ¢ € € >°(R?

such that a¢ = 0. The kernel of Op”(a)¢ reads h=%sy,(z, (x—y)/h) with s (2, v) =
ko(z,v)p(x — hv). With the Taylor formula one writes

dlx — hv) = Z (_,—hydjqﬁ(x)(v,...,v)

JEN-1 J!
+ %/0 d¥p(x — shv)(v, ..., v)(1 —s)Vtds,

which we write

o — hv) = Z (_j—l!l)]d%(:c)(v, )+ RY (z,0),
with
N I G ORI R N-1
Ry (z,v) —m/o d" ¢(x — shv)(v,...,v)(1 —s)" " ds

N N
— (T!)d o(z)(v,...,v)

— %/ﬂ (d"p(z — shv) — d™p(x)) (v, ..., v)(1 —s)" 'ds.

Since ¢a = 0 the same holds for d?¢ga for any 38 and s,(x,v) = ko(z, v)RY (x,v).
One has

R;ZV(JT,U) = hN Z Uﬁ¢ﬁﬁ($7v)7
|Bl=N
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with Hw,JXBHLOO(Rded) < (p for some Cy > 0 uniformly with respect to h and

Upg(x,v) — 0 as h — 0 uniformly with respect to (z,v) in a compact set.
Iterating (5.6), one finds

ko(z,v)RY (2,v) = hY Z ilmkaga(x,v)w,]xﬁ(x,v),
|8l=N '

and thus Lemma 5.9 and Lemma 5.2. imply that (5.13) holds. O

Let K be a compact set of R? and a € $y(R??) such that suppa C K x R%
For these particular symbols, if ¢ € €°(R?) is equal to 1 on the z-projection of
supp a then

| Op”(a)(1 — Ol £(z2ay = o(1), h — 0,

by Proposition 5.10. In fact, we will be inclined to define semi-classical operators
up to operators in £(L*(R?)) whose norm is o(1) as h — 0. Then we denote
[Op”](a) the class of operators defined by Op”(a)(¢u) where ¢ is as above. This
is further explained by our intention to use semi-classical operators on manifolds,
here M or L, that we now present.

5.3. Tangential symbols and operators. In what follows we also use tangen-
tial operator. They are associated with symbols of the form a(y,n’) with y € R?
and ' € R4L.

Definition 5.11 (tangential symbols). Let m,n € NU {400}, with n > d, and
N € RT. Denote by ST"({(n)~N;R? x R%1) the space of all functions a(y,n),
y € RY, 1 € R¥L, such that 86“05& € LL (R%*Y) for a € N4, 8 € NO1 with
la] < m, |B] < n, and for some C’Oé,/g > 0,

loc

0500y, n)| < Cap)™,  yeR:, y eR

In addition, one sets XT3 () V;RT x R™™"), n > d, as the set of all symbols
a € SP"((n) "N R x R4 with moreover a;ag,a € 6(R** 1) fora € N% 3 €
N with |o) < m and |B| < n —d.

Equipped with the norm

—N
Tmmn

(@) = max  esssup ‘30‘3 a(y,n) ’<77 ",

<
‘fé'@i? (y,n')ERA xRd—1

both spaces X7 ((17')"V;R? x R*™) and X707 ((n)~"; RY x R*') are complete.
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Note that Z?l’”l(m’)*N/;Rd x R Cc 7" () VR x RTY) if m! > m,
n' >n, and N’ > N. The case N = d is of interest similarly to symbols defined
in Section 5.2. Set

Sr(R? x R = 229(() "4 R < RTY),
Sro(R? x R = Spi((n) R x RTY),
and

N,(a) = M5 (a) = maxesssup |0 a(y, )| ()"
o Bl<n gy

With y = (¢, z), observe that N, (a) correponds to Mo_ﬂf(a) in (5.1) with z acting
as a parameter.

For a € Y1 (RY x R?71), the associated operator is defined by

Op"(a)u(y) = a(y, hD,)u(z,y) = (27T)1_d/ eV a(z,y by Ya(z, 0 )diy

Rd-1

where the Fourier transformation acts in the ¢y’ variables. In fact, the action of
Op”(a) is through the Schwartz kernel

K<y7 g) = Kll(y/7 g/7 Z) ® 52—27

with the tangential kernel

(5.16) Ko(y,§;2) = (2m)' ¢ / VT oy 2, )y

Rd-1

Then, one has

(5.17) Oph(a)u(y’, z) = . K.(y, 7 2)u(y, 2)dy'.

If € S1(R? x R1) one finds K, (v, 75 2) = b~k (y, y/_—,flz) and
ka(y,v;2)| < CNy(a)(v)™, v e R 2R, iy e R ae,
as in (5.5). With Corollary 5.3 one has

10p"(a)u(., 2)ll 2oy < CaNa(a)[[u(., 2)l| 2oy, 2 ER ace,
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for some C; > 0 uniform with respect to z, yielding

2 2 2
10p" (a)ull 2 gay = /]R 10" (@)u(., 2) 2(ga-r)dz S Na(a)® /R [ul 2) I a1y dz
2
< Na(a)*[[ull gy,
that is, the following continuity result.

Lemma 5.12. Let a(y,n') € L1(RxR41). Then Op"(a) extends as a uniformly
bounded operator on L*(R?) and

10p™ (@)l £(12(ray) < CaNa(a).

In what follows, we also use symbols of the form a(y,n) = b(y,n")f(C)
with b(y,n’) € S1(R? x R4 1) and f(¢) a Fourier mutliplier; see for instance
Proposition 8.2 In fact, one has

(5.18) Op" (b(y, ') f(¢)) = Op"(b) f(hD>),
and thus one can write
(519)  [[Op" (0(y, M) F ()| ppoeryy < 11OP" O ooy I (D) £z ey
that we will use several times in what follows. Since
F(AD:) = F f(hO)Fonsc
if f is bounded one finds
(5.20) 1 CRD) £z gayy < Il oo

since the Fourier transformation F. ¢ is a an isometry on L2(R; L2, (R*"1)).
Similarly f(hD.) has kernel on R given by

Oy - ® K¢(y; 2, 2),
with the part only acting in the 2z variable given by
(5.21) Ky(z2) = b7y (= 2)/h),
with

(5.22) kmwz@mléawﬂoaszy
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5.4. Semi-classical operators on a manifold. Let N be a €'-manifold of
dimension d equipped with a density measure p that allows one to define L*(N).
We denote by P(N) the algebra of bounded operators B;, on L*(N), depending
on h € (0, ho) as a parameter, and by R(N) the ideal of P(N') of the operators
By, such that || Bl 12y = o(1). Set QN) = P(N)/R(N).

The following lemma is key towards the notion of semi-classical operators
on a manifold.

Lemma 5.13 ([16, Lemme 1.10]). Consider ¢ : V. — U a €*-diffeomorphism
between two open subsets of RY. Let a € €2(UxRY) be such that 8?@ € 6°(UxRY)

Jor |B] < d+1. Set b(y,n) = a(¥(y),'d; (n)) € €2(V x RY). Then, for any
compact set K C U one has

la(e, hD,)uwo & — b(y, hD,)(wo &)l o) = oDllull zys =0,

uniformly with respect to u € L*(U) with support in K.

Definition 5.14. Let N be a €' -manifold of dimension d. Denote by X.(T*N)
the space of functions a € €°(T*N') such that for |3| < d + 1, one has 8?@ €
GTN).

For a € ¥.(T*N) and a chart C = (O, ¢) we denote by a® the local represen-
tative of a in this chart. Consider two local charts C; = (Oq, ¢1) and Co = (Oa, ¢2)
with W = O; N0y # 0 and a € Y. (T*N) supported in W. Then, the repre-
sentatives a®' and a® fulfill the assumption of Lemma 5.13 with U = ¢1(W),
V = ¢o(W) and ) = ¢y 0 65 .

Consider a chart C = (O, ¢) as above, a € X (T*N) and 0,y € 6.(0),
6 = 1 in a neighborhood of supp x. For u € L?(N') one may compute

¢" o (xa)’(w,hDy) o (¢™1) " (Ou),

yiedling an L?*-function on N

Consider now a locally finite %’*-partition of unity (;)iez subordinated to
a given atlas A = (C;)iez, C; = (O;,¢;) and a familly of localisation functions
0;)ier with suppd; C O; and 0; = 1 on supp x;. We form

Au = Z o7 o (xia) (z,hD;) o (¢; ') (iu).
el

From Lemma 5.13, the class of the operator A defined above in Q(N) is
independent of the choice of the atlas A, the partition of unity (x;):cz, and the
localisation functions (6;);cz. We denote this class by [Op”](a).
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Let ¢ € CKON(/V ). Let By, and By, be two representatives of a class in Q(N),
that is, [By] = [By). Observe that [pBy] = [¢By], thus defining a multiplication
by the function ¢ on Q(N), which one writes [pBy] = ¢[Bp). If a € Z(T*N)
one has

[0p"](pa) = ¢[Op"](a).

5.5. Semi-classical measures. This section is borrowed from [16] and [2]; it
recalls the basic properties of semi-classical measures.

In what follows, we call a sequence of scales H = (hy)r a sequence of
positive real numbers that converges to 0. If such a sequence of scales is used we
will write Op” in place of Op”* for concision if no confusion can arise.

Definition 5.15 (semi-classical measure). Let H = (hy)x be a sequence of scales
and (uy,)x, be a bounded sequence of L*(R?). Let ji be a nonnegative Radon measure

on R*. One says that (uy), admits p as its semi-classical measure (s.c.m.) at
scale H = (hg )y if one has

(623 Jim (00" (0w, u)szqey = / ale, du(r, ) = (. a),

R2
for any a € Yo(R?).

Definition 5.16 (mass leakage at infinity). One say that no mass leaks at infinity
at scale H if one has

lim limsup </ |uk(x)|2dx+/ |ﬁk(f)|2d§> =0.
R—=+o0 k400 |z|>R hilé|>R

One says that there is some mass leakage at scale H at infinity otherwise.

Lemma 5.17. Suppose that (hz|Dw|suk)k is L*-bounded for some s > 0. Then

lim limsup/ |, (&) 2 d€ = 0.
hilé|ZR

R—=400 k400
Proof. Wiite J, o [ix(©)PdE < R [, I[P an(€)PdE < R 0

The following proposition states that up to a subsequence extraction, every
bounded sequence in L?(RY) admits a s.c.m. at some given scale. It moreover
provides a criterium for mass conservation in the limiting process.

Proposition 5.18 ([16, Propositions 1.4 and 1.6]). For any sequence of scales
H = (hg)r, and any bounded sequence (uy), C L*(R?), there exist a subsequence

(kn)nen and a mnonnegative measure p on R*? such that the following properties
hold:
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(1) p is the s.c.m. for the sequence (ug, ), at scale (hg, ),
(2) If no mass leaks at infinity at scale H in the sense of Definition 5.16, then

(5.24) lim ”uaniQ(R’i) = p(R*).

n—-+0o00
meaning mass is preserved in the limiting process.

Lemma 5.19. Assume that p is the s.c.m. for the sequence (uy )y at scale (hy)g.
Let (ap)r C So(R%) be converging in Yo(R?) to some a, and (by), (b,)r C
L>®(RY) that converges uniformly to some bt/ € €°(R?) N L>®°(R?) respectively.
Then

lim (b}, Op™ (ar) bk wk, ur) r2(ray = (1, bb'a).

k——+o00
Proof. One writes

(5.25)
b, Op"(ay)be = (b, — b') Op™ (ag)by, + b Op™(ax, — a)by + b Op™(a) (b, — b)
+ ' Op"(a)b.

Convergence in ¥o(R??) shows that the operator norms || Op”(a) — Op”(ay,) lez2)

converge to 0 uniformly with respect to A > 0 by Lemma 5.6 and Op”(ay,) is
uniformly bounded in £(L?). With the convergences of (by)x, (b},)x one sees that
the first three terms in (5.25) contribute with a vanishing limit because of the L*-
boundedness of (uy)x. It thus suffices to study the limit of (' Op”(a)b ug, ur) £2(ra)-
One writes

(bl Oph (a)b U, uk)L2(Rd) = (b’[Oph ((Z), b]uk, uk)LQ(Rd) + (b/b Oph (a)uk, uk)Lz(Rd) .

Since V'ba € Yo(R?*?) and v'bOp™(a) = Op”(b'ba) the result follows from (5.8),
the L%:-boundedness of (uy);, and (5.23). O

A consequence is the following result.

Corollary 5.20. Assume that u is the s.c.m. for a sequence (uy)y at scale (hy)g
and let 6 € €°(R?*?) N L>(R??). Then |0|?u is the s.c.m. for the sequence (Quy)x
at scale (hy)y.

The convergence in (5.23) can be extended to more general symbols and
semi-classical operators.
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Proposition 5.21. Let (uy);, be bounded in L?(RY). Suppose ¢ € €>°(R?) is such
that (o(hpD)uy)y is bounded in L?(RY). Suppose u is the s.c.m. for the sequence
(ug)k at scale (hy)y and there is no mass leakage at infinity at scale H = (hy,)y, in
the sense of Definition 5.16 for the sequences (ug)r and (@(hxD)ug)g. Suppose
a(x,§) (ora(z,£'), that is, a tangential symbol), continuous in x and (d+1)-times
differentiable in &, is such that Op™(a) is bounded on L*(R?). Then, one has

Tim (0P (@)p (D), ) sy = (1 0z, E)(€)).

A Typical example is a € X1(R? x R4 by Lemma 5.12. Other examples
are a € SO(R? x RY) or a € SO(R? x R¥1), with S° denoting the usual class
of symbols of order 0; see [20, Definition 18.1.1]. The result also applies to any
a € S(1,g) for any slowly-varying temperate metric g in the sense of the Weyl-
Hormander calculus [20, Section 18.4-18.5]; such generality is not needed here.

Remark 5.22. An inspection of the proof shows that a sharper assumption is

lim limsup </|I>R|ukn(x)|2d:v—|—/ Iw@ukn(ﬁ)lmg) = 0.

Note also that Lemma 5.19 also holds in the tangential case, for instance for
a < ET(Rd X Rd_l).

Proof. The proof is the same in both cases and is along the line of Proposition
1.6-(iii) in [16], yet simpler. With the no mass-leakage assumption and since
Op”(a) is bounded on L*(R%) one finds

(5.26) lim limsup |(Op"(a)p(heD)ug, ur)r2ma) — (Op" (ar)ur, ur) p2ra)| = 0,
R=too postoo

with ap(x,€) = x(x/R)x(£/R)a(z,&)p(€). Since ap € Yo(R*) with (5.23) one

has

lim (Oph(aR)uk, uk)LQ(Rd) = <;JJ, CLR>.
k—+o00

With (5.26) one concludes by means of the dominated-convergence theorem, since
w has finite mass by (5.24). O

We now extend the notion of semi-classical measures to the case of man-
ifolds. As above N is a % '-manifold of dimension d equipped with a density
measure p that allows one to define L?(N'). For some basic details on density
measures on manifold we refer for instance to [23, Section 16.2].
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Set A = £ /¢y as the space of bounded sequences modulo the space of
sequences converging to 0. Let U = (ug)x be a bounded sequence in L*(A) and
H = (hy);, be a sequence of scales. For a € X.(T*N), denote by

[([Oph] (a)ulm uk)LQ(N,p)} by

the class in A of the sequence ([Oph] (a)ug, uk)LQW e
If now U = (uy)y is bounded in L _(A) it is sensible to compute

hn
([Op ](G)¢Ukna ukn)L2(N7p)
for a € 3.(T*N) and ¢ € €>°(N) with ) = 1 on suppa.
Definition 5.23. Let U = (uy)y, be a bounded sequence in L (N) and H = (hy)y

loc
a sequence of scales. Denote by M™T(U) the set of measures y on T*N such that
there exists a subsequence k,, such that

n—-+0o0o
for any a € S (T*N) and ¢ € €°(N) with ¢ =1 on supp a.

What follows explains that this definition is sensible in the sense that it is
independent of the choice made for the function . In particular, this coincides
with the definition of a s.c.m. in the case of a L*-bounded sequence.

If p is the s.c.m. associated with U = (uy)g, then in any local chart C =
(0, ¢), denote by uC the local representative of j, that is, (¢~1)*u. Denote also
by u$ the local representative of uy, that is, u§ = (¢~1)*uy, = ug o ¢~1. Then, if
K C ¢(0) is compact, a € Zo(R*!) with suppa C K x R%, and ¢ € €>°(4(0))
equal to 1 in a neighborhood of the xz-projection of supp a one has
(527) lim (Oph(a)wu%ug)Lg(Rd,p) = <MC’ a)‘

k——+o0

In what follows p will be given by rpu,, that is, in local coordinates p¢ =
K€ det (gc)l/2dx. One then has

pC = k€ det (gc)l/Qm,

if m is the s.c.m. associated with (u$)y yet using the L-inner product given by
the Lebesgue measure as in Definition 5.15, that is,

khm (Op’%(l)lﬂui, ug)[ﬂ(ﬁ@,dm) = <m7 CL>-
—+00

Some of the properties of s.c.m. on R% can then be extended to the case on a
manifold. For instance one has the following result.
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Lemma 5.24. Assume that p is the s.c.m. of a sequence U = (uy)r at scale
(hi)k on N. Let (ax)r C L (T*N) be converging in L.(T*N') to some a, and
(b )k, (0} )x C L=®(N) that converges uniformly to some bt/ € €°(N) N L>®(N)
respectively. Then

lim [(b%[Oph](ak)bk Uk, uk)Lz(N’)] N </L, bb'a).

k——+oo

The local chart version is
(5.28) . E‘foo(b;f Op"(a) by Yus, uf,) p2ma ) = (1€, bb'a),

for a and ¢ as given for (5.27) and ag, bg, b), also defined locally accordingly.

The following result that yields the existence of s.c.m..

Proposition 5.25. Suppose H = (hy) is a sequence of scales and U = (uy)y a
sequence of functions on N.
(1) If U = (ug)x is bounded in L*(N') the set MT(U) is nonempty.
(2) Suppose N is countable at infinity. If U = (uy)y is bounded in L2 (N)
the set M (U) is nonempty.

Proof. The result of the first part, that is, if U = (u), is bounded in L*(N),
holds by [16, Section 1].

For the second part, as N is countable at infinity, there exists a sequence
of open sets (0,,), with O,, € O,,1 € N and U, 0,, = N. The sequence (uy) is
L*-bounded on O;. Suppose a € X.(T*N) supported in O; and ¢ €€ €>(N)
with ¢» =1 on O;. One has

[([Ophn] (a)Yuy,, ukn)L?(N,p)] AT [([Oph"] (a)Yuy,, wukn)p(/\f,p)] A

The sequence (1uy, )y, is L?>-bounded. By the first part, there exists an inscreasing
function ¢; : N — N and a measure puq; on 7%(0;) that is the s.c.m. for the
subsequence (Vg i))r = (Ug, (k))x 00 O1. With the same reasoning there exists
an inscreasing function 1y : N — N and measure py on 7%(0,) that is the
s.c.m. for the subsequence (uw(k))k on Oy, with g = 19 0 1. One has pus = 1y
on T%(01). One proceeds by induction yielding two sequences of inscreasing
functions ¢, : N — N and v¢,, : N = N, with ¢,11 = 1,11 0 ¢, and a sequence
of measures p, on 7%(0,,), with p, the s.c.m. of (uy,,@x))r on O,. Moreover,for
¢ € N, one has pi,1¢ = p, on T*(O,,).

There exists a unique measure p on 7*(N) such that g = u, on 7%(0,,). A
diagonal extraction yields the subsequence (., (x))r implying that p, is its s.c.m.
on O, for any n € N. Hence, p is its s.c.m. on N. O
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The notion of s.c.m. can be extended to vector valued sequences. If N € N*,
denote by M(T*N; My (C)) the space of N x N-matrix valued Radon measures on
T*N, and by M (T*N;My(C)) the subspace fromed by nonnegative Hermitian
such measures.

Definition 5.26 (Hermitian measures). Suppose N € N* and U = (uy)g is a
bounded sequence in L2 (N;CN) and H = (hy), a sequence of scales. Denote

loc

by Mt (U) the set of measures p € MT(T*N;My(C)) such that there exists a
subsequence k, such that

nl_lgloo [([Ophn](@)wukna ukn)LQ(_/\/'w)])\ = (tr(ap), 1) = /T*./\/' tr(a(z, §)du(z, §)),

for any N x N matriz a with entries in S.(T*N), and [Op™](a) the associated
class of matriz valued operators, and 1 € €>(N) with ¢ =1 on supp a.

We refer the reader to [15, 3]. Each element of the matrix valued measure
can also be understood as follows:

lim [([OphnKG)wui,km uj’k")LQ(/\/',p)] N <,Uij7 a), a <€ ZC(T*N)

n—-+o0o

Each diagonal term is nonnegative. One finds that

1/2 1/2
Hij < Nu‘/ ij/ )

in the sense that |(u;;, ab)|* < {(p, |a|?) (uis, |b]?)-
The counterpart to Proposition 5.25 is the following result.

Proposition 5.27. Suppose N € N* and H = (hy) is a sequence of scales and
U = (ug)r a sequence of function on N valued in CV.
(1) If U = (ug) is bounded in L*(N;CV) the set MT(U) is nonempty.
(2) Suppose N is countable at infinity. If U = (ug)y, is bounded in L _(N; CV)
the set M™(U) is nonempty.

6. THE MEASURE PROPAGATION EQUATION AND PROOF OF OBSERVABILITY

We first state a result that is at the heart of the proof of Theorems 1.7 and
1.8. It expresses how a s.c.m. p associated with solutions to wave equations varies
in the direction of the hamiltonian vector field H,, in particular at the boundary
0L = R x OM where this variation is connected to a s.c.m. v associated with the
Neumann trace.
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6.1. The measure propagation equation. Suppose (M, x,g) € X', H = (hy)
is a scale, and (kg, gx)x such that (M, kg, gr) converges to (M, k,g) in the P!
topology.

Suppose (ug)x are weak-solutions to

2
Opup — Ay gk = [

with homogeneous Dirichlet boundary condition, as given in Proposition 1.1.
Extend u; and fi by zero to L. )
Suppose (uy,)y, is bounded in Lf (L), (hyOn, urjac )k is bounded in L (9L),

and (hgfi)r is bounded in L2 _(£). With Proposition 5.27, a Hermitian 2 x 2

A

s.cm. M on T*(L) is associated with a subsequence at scale H of (uy, hxfr).

Write
Moo Mo
M = ' ).
(MLO M1,1>

Set p1 = M. Similarly, with Proposition 5.25, there exists a measure v on T*0L
such that the s.c.m. measure associated with (a subsequence of) hxt)(t)0n, ur oz
is [1(t)|?v at scale H.

Theorem 6.1. Suppose that
(6.1) supppu C CharpNT*L\ 0 and suppv C T*0L\ 0.

Then, the two measures p and v fulfill, in sense of density distributions,

Ot — 0p-
6.2) M, u— —'H,u—=2Im M, +/ ——
(6.2) pH p U e, (€F — € na) rem

dv (o).

The hyperbolic set Hy and the glancing set |Gy are introduced in Definition 2./
and o and £* are as given in (2.3). The vector field n, is the unitary inward
pointing normal vector in the sense of the metric g.

Here, p = p, 4 and thus H, = H,,_, the sets 14, and Gy are constructed
with respect to the metric g as in Section 2.3. Recall that we identify T*0L and
I7*£. Hence, the measure v defined on T*9L is also a measure on |T*£. The
integral performed on Hy UG, thus makes sense. Also, the meaning of the right
hand side is explained in Remark 2.15.

Sections 7 to 9 are dedicated to the proof of Theorem 6.1. The result of
Theorem 6.1 is key in the proof the main observability result as presented in the
next section. There, one only considers the case f; = 0 implying My; = 0. The
addition of the source term f; does not provide any complication for the proof
Theorem 6.1, hence this slight generalization that can be of use elsewhere, in
particular for the study of stabilization issues.
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6.2. Proof of the observability results. Here, we provide the proof of Theo-
rem 1.8 based on the measure equation of Theoerm 6.1. Suppose (M, k, g) € X!
and w is an open subset of M (resp. [' an open subset of M) such that the
interior geometric control condition of Definition 2.10 (resp. the boundary geo-
metric control condition of Definition 2.13) is fulfilled and we consider some
time 7" > Tgoo(w) (resp. T > Taoce(I')). We also consider 6 > 0 such that
T—206 > Tgcc(w) (resp. T—26 > Tgcc(r)).

According to Propositions 4.2 (resp. Proposition 4.3), to achieve the ob-
servability inequalities of Theorem 1.8 for the time interval |0, 7| it suffices to
prove the semi-classical observability inequality (4.2) (resp. (4.3)) for the time
interval I =]5,T — §[ for any (M, &, §,&) (resp. (M, 7, §,T)) that is e-close to
(M, K, g,w) (resp. (M, k,g,T)) in the Y'-topology in the sense of Definition 1.3
and € > 0 chosen sufficiently small. We preform a contradiction argument based
on propagation properties of semi-classical defect measures.

Below we consider a sequence (M, k,, g,) that converges to (M, k, g) in
the V! topology. For k € Z*, one denotes by E, , the space of functions defined
in Section 4.1, here built on the elliptic operator A, 4, on M,,.

6.2.1. Initiation of the contradiction argument. In the case of an interior ob-
servation, we assume that (4.2) does not hold for some (M, &, §, @) arbitrary
close to (M, k, g,w) in the sense recalled above. Thus, there exists a sequence
(Mo, Fny Gn, wWn)n that converges to (M, k, g,w) in the V! topology, and for each
n € N and each k € N* there exists £(n, k) € N, with £(n, k) > k and v/ ™ €
E, (k) such that

(63) 1= HU (n.k) > k ||1I><wnh€(nk 8tu

|t= O||L2 (Mo Kinpign) HLQ(RXMTL:”n#gndt)’

with I =], T — ¢[. Note that we have normalized the Lh.s. of (6.3) to be equal
to 1. The notation uﬁ(”’k) may seem very cumbersome at this stage; it will be
greatly simplified by a diagonal extraction in what follows shortly.

Similarly, in the case of a boundary observation we assume that there exists
a sequence (M, kn, gn, I'n) that converges to (M, k, g, T') in the V! topology, and
for each n € N a sequence (uf™*); oy, with u™® € E, 4, 1) and €(n, k) > &,
such that

(6.4) 1= [ult ) > k|| Lrxr, hon,i) On, tn

9ol )
[t=0 L2(Mup K ign L2( RX@Mn,nn,u,gnadt)

where n,, is the normal to the boundary 0M,, in the sense of the metric g,.

We now proceed with a diagonal extraction along with a zero-extension of
the solutions outside L. Set uy = uk( )15, that is, the extension by 0 of the
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function uk( to L =R x M (see Section 2) and vy = hyOh, ugjp. its normal

partial derivative (in the sense of gx). In what follows we will denote hy ) and
Jogkk) by Iy, and Jj, for simpicity. Yet, there will be no possible confusion.

First, with the W2-diffeomorphism of Definition 1.3 the analysis can be
pulled back from M, to M for each £ € N. By abuse of notation we use the same
letters for the pullbacked functions and metric. Hence, without loss of generality
we may assume that M, = M.

Second, observe that since [|ug—ol| ;. Montiog) = = 1 one has
k

||uk|t:0||L2(M) =1+ O(l)k—>oo

If no precision is given, the L2-norm on M is given by the density measure r,
in what follows.
From Lemma 4.1 and Remark 4.4 one obtains that

(6:5) 1= flun(t ) 2 mmggy) = MesOun(t ) 2 pny = Vg ww (s )] 2
~ Ik Awegitti(t, )l 2 gy

for any t € R and k large. From ellipticity up to the boundary one deduces [18,
Theorem 8.12]?

(6.6) Ie(t, )y = 1
for any t € R.

6.2.2. Measures for the wave equations. From Proposition 3.1 in the case f =0,
(6.5), and (6.3) and (6.4) (and the fact that , converges to k and g, to ¢ in the
sense given in Definition 1.3) one obtains the following proposition.

Proposition 6.2. The sequences u, € L®(R; L2(M)) and v, € L2, (DL) satisfy
(1) For any bounded interval J C R there exists C' > 0 such that

||Uk||L2(JxM) + ||Uk”L2(JXaM) <C.

(2) With I =]6,T — 6|, one has
® limyyyoo [kl p2(rx0y =0, if the case (6.3) holds, that is, for interior
observability,
o limy s yo0 [[Vkl fo(rury = 0, if the case (6.4) holds, that is, for boundary
observability.

2Notice that in [18] the boundary is assumed %2. Still, W1 *-regularity suffices to reach the conclusion
since it is enough to make the boundary straight in local coordinates and apply the argumentation therein.
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Recall that we consider on OM the density measure sjig,. From Proposi-
tions 6.2 and 5.25 we deduce the following result.

Proposition 6.3. (1) There exists a semi-classical measure p on T*L asso-
ciated with a subsequence of (uy)g.
(2) There exists a semi-classical measure v on T*OL associated with a subse-

quence of (vx).

By abuse of notation we will use the notation (uy); and (vg), for both
subsequences. Then one has

(ma) = T [(Op"](@)un,w)pop)] @ € STL),

(v,b)y = lim [([Oph](b)vk,vk)Lz(ag)]/\, beX.(T"0L),

k—4o00

where both limits are understood in the sense given in Definition 5.23. Recall that

~

the spaces of symbols X.(T*L) and X.(7T*0L) are introduced in Definition 5.14.

Proposition 6.4. The three following properties hold.

(1) If J C R is a bounded nonempty open interval, one has M(T*(JXM)) > 0.
(2) One has

(6.7) supppu C CharpNT*LN{a <7< a '},
(6.8) suppy C T*OLN{a <1 <a '}

(3) With I =]6,T — d] as above one has
e the measure p vanishes on T*(I x w), in the case of an interior
observation,
e the measure v vanishes on T*(I x T), in the case of a boundary ob-
servation.

Proof. Consider a finite €*-partition of unity (x;)iezr subordinated to a given
atlas of M; see Section 2. Let ¢ € €°(R) be nonvanishing. From (6.5) one has

o) xiukll 2y 2 1, for some i € 7.

The semi-classical measure associated with (¢(t)xsur)x is |¢(t) x;|*p by Lemma 5.24
for the L*-inner product associated with the density measure xu,dt. In a local
chart C = (O, ¢r) of L, where © = R x O and oc(t,x) = (t,0(x)) (see Sec-
tion 2.1), with supp x; C O, from (6.5) and Lemma 5.17 one has

—

[ Lhelre)zr (OXiUR| ooy S BT
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There is thus no mass leakage at infinity at scale H in the sense of Definition 5.16.

Denote by uC the local representative of u. Recall that # = x(det g)'/2.
Using that the s.c.m. of the local representative of ¢(t)y;u, with a L*-inner
product associated with the Lebesgue measure dx is m = & |o(t)x;[*uC, with
Proposition 5.18 one finds

m(R*2) = T () xiullrames 2 Hm (loxil g 2 1

—+00

hence the first result.

We place ourselves in a local chart (O, ¢.) of L. Here, 9L is given by
{z = 0}. Let b € €>°(R**2) with suppb C ¢£(O) x R and 1, ) € € (6.(0))
with 1) equal to 1 in a neighborhood of the (¢, z)-projection of supp b and ¥ equal
to 1 in a neighborhood of supp. Here, Op"(b) = b(t, z, hy Dy, hi.D,). One has,
for any s > 0,

(6.9) 1 OD" (0) | £ gg-= sty r2gasny < Csh™.
In fact, one uses that Op™(b) Op"({€)*) = Op"(b(¢)*) is bounded on L? and
p(€)* < (hE)* yielding
1) Op" (D)ull p2gary < B¥I1OP" ((6)*)ull paqgasny = 17 [hE) ~*itll 2o,
S 16l o marny = Null s gasay-
One has
(6.10) B Pry gu ik = —hivr ® 6,—.

Note that v, ® d.—¢ is bounded in H™*(R.; L .(RY,)) € Hygs(R™9) if s > 1/2.

loc loc
Thus, with (6.9) one finds || Op"(b)Yhyvg ® d.—ol| 2 < by *. With 1/2 < s < 1,
with (6.10) and since (uy)y is bounded in L?, one concludes that

. 2 h
kl—l>r—|{loo hk ( Op (b>¢Pﬁk79kuk7 uk)L2 (Ri+1 kg dt)

_ : h _
- kgr-i{loo (Op (b)whkvk X 52:0) uk’)LQ(Rd+l7ﬁugdt) = 0.

Now, one has

Op" (b)Yhid; = — Op" (7°b)y + hi Op" (b)), O]
= — Oph(TQb)’gZ) + hio(l)E(Hl,L2)-
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With the form of A,, , in local coordinates one writes, with &, = ry(det gi)/?,

ph(b>¢h2A’€k Gk
—n2op) Y (a gy (2)0s, + Wiy, Ou)Rrgy (x )%)
1<4,5<d
= > i0p"(b&) gy (2) e, + B O(1) g 12)
1<4,5<d
= > (vl (@) Op"(bei&y) + i[OD" (66:), g ()| ad, )
1<4,5<d

—|— hz O(l) (H1 L2)
— Y g () Op" (&) + hi O(1) g 12y,

1<i,5<d

where in the last line we used Proposition 5.10. From Lemma 5.24 and (5.28)
one finds

0= kgrfoo hi(Op ( )wpl‘”vk gkuk7uk)L2(L Kopgdt) <:u bpﬂg)
Since b is arbitrary in €>°(R?¥?) this implies that supp ¢ C Char (p, ), which

is the first inclusion in (6.7).

To prove the second property, that is 7 € [a, a™!], consider ¢ € €>(R)
such that ¢ = 0 in a neighborhood of [a, o], say [(1 — €)a, (14 &)a™!] for some
e > 0 to be kept fixed, and now ¢ € €>°(R). We write

p(heDe)p(tyup = > (i Dy) (W ()™ uye, ().

vedg

The Fourier transform of ¢ (hyDy) (¢(t)e™V™) is gp(hkT)lﬁ(T —VA). As hy/A, €
[, a” ] if v € Jy and hy7 ¢ [(1 — ¢)a, (1 4+ &)o' if in the support of ¢, then

T = VAR T+ By

in the support of the above Fourier transform. With the rapid decay of @ZA) one
finds, for any N € N,

(b)) (T — V/A)| < On(I717 + i)Y,

leading to
(6.11) (D) (B )™)Y | ey < O
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for any ¢ > 0. With ¢ = 0, one deduces

ng(tht)w(t)uk HiQ(ﬂ,Hugdt)
. 2
< DO s iy = 3 Pl D (B

veJy

< Onhy Y lun|? = Cn By lunpeoll 7 Morertgy) S ONBE

veJy

for any N € N, using (6.3) or (6.4), implying (u, |p(7)¥(t)*) = 0, which gives
the last inclusion in (6.7) since u is nonnegative.

We now prove the inclusion in (6.8). One has

|’¢<tht)w(t)ukHLQ(R;HQ(M,nkugk)) 5 ng(tht)w(t)uk’HLQ(E,HMgdt)
+ HHggp<tht>¢(t>uk||L2(E,fi,ugdt)7

where H, denotes the Hessian operator. Using the elliptic regularity and that wuy
is solution to the wave equation one obtains

g (P D) )l 2 2 sy ey S 19k D) () Ay gt 22 et
S Nl (hu D) ()0 urll 2 gt
S./ ng(tht)w@)atzukHLQ(L,nkugkdt)'

Then, one writes

2 i » 2
o (e Doy oyt = S [t PA2 (i D) () ]

VEJk

L2 (M, kg )
for any N € N, using (6.11) and that hi)\, < 1 for v € J;. Hence, one has

| (hiDy ) (t )ukHLQ(R H2(M kipigy)) ~ S Ol

implying, by the trace formula,
2
||(p(tht)¢(t)hka”kuk‘8£||L2(8£,nkugk8dt)) s CNh;cV

This yields (v, |p(7)¥(t)[*) = 0, which gives (6.8) since v is nonnegative. O
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6.2.3. Final step of the proof of observability. With Theorem 6.1 at hand we can
complete the proof of the observability results of Theorem 1.8. The two measures
p and v given by Proposition 6.3, with scale hj, = o~ *! of Section 4.1, fulfill the
assumptions of Theorem 6.1 by Proposition 6.4. Hence, one has

/ Syt — 0y
el oulgy (€1 — &7, e e o m

since the considered wave equations are homogeneous here. Theorem 2.14 recalled
from the companion article [5] implies that the support of the measure p is a union
of maximal generalized bicharacteristics.

Recall that I =5, T — 6[. Let o° = (t°,2°,7°,£%) € supp i, with t° € I.
According the first point of Proposition 6.4 such a point exists. Then, there exists
a generalized bicharacteristic ©y with ¢v(0) = ¢° such that ®§ C supp pu.

leu: dV(Q)7

Case of an interior observation.

With the interior geometric control condition fulfilled by (w,T — 2§) (Def-
inition 2.10) the bicharacteristic ®y reaches a point above I x w. Yet, from the
last point of Proposition 6.4, the measure p vanishes above I x w, which gives a
contradiction and concludes the proof in this case.

Case of a boundary observation.
With the boundary geometric control condition fulfilled by (I", 7" —26) (Def-
inition 2.13), there exists s € R such that t(s) € I and
(1) eiher o' = lim,_,,- ®y(s) € BE,;
(2) or o' = lim,_, .+ ®y(s) € BE...

The sets BE,. and BZ_ are introduced in Definition 2.11. With the measure v
vanishing above I x I' by the last point of Proposition 6.4, the measure propa-
gation equation is locally “H, 1 = 0. Thus locally, the support of x is a union of
bicharacteristics. In both possibilities, all such bicharacteristics exit 7™ L reach-
ing a region where p vanishes, which gives a contradiction and concludes the

proof in this case.

7. PROOF OF THE PROPAGATION EQUATION I

7.1. Preliminary remarks and observations. Recall that u; is the zero-
extension to £ of a weak solution to the wave equation in £. With the ho-
mogeneous Dirichlet condition this extension is H*.

Consider x € €>°(R) with 0 ¢ supp x. Since the coefficient of the wave
operator are independent of time ¢ then 4y = x(hD;)u; also solves the wave
equation in £ with f, = x(hD,)fs as source term and the Hermitian s.c.m. of
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(g, hifi) is |x(7)]2M. Similarly, the s.c.m. of (PkOn X (A Dy )uk o )i i Ix(7) v
If we prove that (6.2) holds for M and v replaced by |x(7)]*M and |x(7)[*v
then, using (6.1), one finds that (6.2) holds also for M and v by the dominated-
convergence theorem. Without any loss of generality we may thus replace u by
ug and fr by fk. Then, there exists 0 < C,, o < 1 < C),; < oo such that

(7.1) suppp C CharpNT*LN{C,0 < |7| < Cua},
supp MO,l C T*[, N {CM,O S |7" S Clhl}’

and

(7.2) suppr C T*OLN{Cupo < |7| < C,1}.

If no precision is given, the L?-norm on M is given by the density measure rpu,
in what follows.

Suppose [ is a time interval. With the 7-microlocalisation performed above,
one has

(7.3) HukHLQ(IxM) ~ thatzukHLQ(lxM) ~ 1P Ay gt + hikaLQ(IXM)'

using the wave equation. Assume that a subsequence of wu; converges to 0 in
L*(I x M). This gives 4 = 0 on T*(I x M). With (7.3), one finds that
1P2OF k]l pogreney — 0 and [|AE A g upll 200y — O also, using that hyfy is
Lf,-bounded. Ellipticity up to the boundary gives ||hfug|l y2(;.p) — 0 and in-
terpolation gives

1Pl 2 pgy = O and (7N, ull 27 pq) = O-

With Proposition 3.1 one conludes that ||20nugll 2oy — 0. Hence, all
terms in the measure equation vanish, in this case. One may thus assume that
[kl p2(rx ) 2 1, for any interval I.

With the arguments given just above, one has

(7.4) 1 [unll o grney = 10R0Fukll o runny = 1k Anegetill g2
~ ||hzuk||H2(I><M) ~ ||hkatuk||L2(l><M) ~ ||hkv9kuk||L2(I><M)’
and more generally one has

(7.5) hit2s||0f Az

fimgkukHL?(M) ~1

?

using that |[2407 fill 2 runny = el 27
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Note that equation (6.2) is local. Consequently, the proof can be carried
out in local charts. It greatly simplifies away from the boundary: there (6.2) is
H, i = 2Im M, which follows from Proposition 7.2 below. We will thus only
consider the case of a local chart C = (O, ¢,) near a boundary point, where the
boundary is given by {z = x4 = 0} and M = {z > 0}; see Section 2.1. By abuse
of notation we will use the notation A, k, g, ux and p for their representative in
the local chart.

For concision we will write y = (¢,z), v = (t,2'), n = (1,£), and ' = (7, ).

A consequence of (7.4)—(7.5) that we will use is as follows in C, for ¢ €
CRM,

(7.6) > DD | aganny + D 0hED; Dart|| gy

1<i,j<d—1 1<j<d—1
+ Hd’hiDzuk”H(Rdjl) S L

Note that the last term hiD2u”* does not lie in L*(R%1) in general as Dguy, is
not continuous across z = 0. This explains the computation of its norm only on
REH,

As mentioned in Section 3.1, in the quasi-normal geodesic coordinates of
Propositon 2.1 one has 0, = 0,4, if n is the unitary normal inward pointing
vector field to M. Here, we will not use a different coordinate system if the
metric g varies. In the chosen local chart C, quasi-normal geodesic coordinates
adapted to the “reference” metric g will be kept fixed. In such coordinates one has
n, = Zj gzjﬁj. For a function like u;, that vanishes at 2 = 0 one has Oy, ugjs, =
ggdaduk‘zzo. Hence

(77) Vi = hkggdazuk|zzo+a

in local coordinates. Note that ggd|zzo =1+o0(1) as k — oo, since gdd|Z:0 =1lin
the chosen quasi-normal geodesic coordinates; see Section 2.

From the “jump formula” the sequences u; and vy satisfy

(78) hi(@f — A,{k,gk)uk = hifk — hkvk X (Sa[;.

The proof follows the lines of the proof of [16, Theorem 2.3] (or also [2,
Théoreme 4]). The main differences are as follows.

e The sequence (uy)y is solution to a family of wave equations associated
with Lipschitz metrics.
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e On the Lh.s. of (7.8), the wave operator is k& dependent. In fact, in the
application we make in Section 6.2, the sequence (uy) is not spectrally
localized with respect to a fixed operator, but rather with respect to the
family of operators A, = A,,, g,,

Ur = 1,hiAk€[a2,a—2[uk.

e With respect to [2, Théoréme 4] the result here assumes less smoothness
(W1 as opposed to ¢?), while the difference with respect to [16, The-
orem 2.3] is more subtle: in [16], the authors study only rough (17%)
domains of R? with the usual flat metric, which ensures the existence
of local coordinate systems that are regular with respect to the variable
tranverse to the boundary, which simplifies greatly the analysis. Note
that neither the result of [16] nor its proof are preserved by change of
coordinates. To the opposite the result and proofs in the present article
are coordinate invariant and thus geometrical.

The lack of regularity and the geometrical framework we consider, if compared
with [2, 16], generate technical difficulties. In Sections 8-9, we will use a particular
decomposition of symbols based on the Weierstrass preparation theorem. This
allows one to express symbols as a first-order polynomial in ¢, the dual variable
of z = x4, with coefficients that are tangential symbols, and a remainder term.
An issue is then the handling of the different terms that lack decay in (, even
if the initial symbol is smooth with fast decay. This is a main reason for the
introduction of ad hoc symbol spaces, taking into account both the low regularity
in the z variable (that originates from the regularity of the metric we consider)
and this low decay in the ( variable. This makes some of the statements quite
technical even though we made an effort to minimize this aspect.

7.2. Commutator analysis. To establish the propagation equation of Theo-
rem 6.1 we carefully compute a commutator. In fact, assume for a second that
p and b are smooth symbols —ih H,b = —ih,{p, b} is the principal symbol of
the commutator [Op”(p), Op"(b)]. Hence, to find the value of (u, H,b) it is very
natural to analyse the limit of

(hk [Pﬁlwglw Oph(b)]uka U’k’)LQ'

Technicalities arise because of the limited smoothness of the coefficients of P, ,,
that prevent one from using standard semi-classical calculus results. However,
there is no restriction on the smoothness and decay properties of the test symbol
b. In fact, in the course of the proof of the Proposition 7.2, differentiations of the
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symbol b with respect to x are needed as well as some decay in . For simplicity,
symbols in Y5 ((£)7; R*?) are thus considered; see Definition 5.4 and (5.2). A
classical result is the following one.

Lemma 7.1. Let b € X7°((€)™>;R?) and s,s' € R. There exists Cyy > 0
such that

10" ((€)) OP" (D)ull 2(zay < Co | OP" () Vull poray,  u € S (RY).

This means that Op”(b) sends any semi-classical Sobolev space in the inter-
section of all semi-classical Sobolev spaces. This is due to both the smoothness
in z and £ and the fast decay in £ of b.

Here, and in what follows one writes H)L2, in place of H’(R.; L*(R%,)) in
norm indices or duality bracket indices for the sake of concision for 6 € [—1,1].
For a density measure p on RY we will denote by

p
g ')H;5L§,,H§L§,’

the complex duality bracket understood with L*(RY, p) as a pivot space.

Proposition 7.2. Suppose b € Y% ((£) 7 R?42) with suppb C K x R+
for K a compact of ¢.(0), and suppose v € €>X(p-(O)) be equal to 1 in a
neighborhood of the y-projection of suppb. Set

(7.9) Li(b,v) = i( Op" (b)guy, v © 52:0)2:1“55/?;;1,;2,
_ i(’Uk ® 8,0, ¥ Oph(b)*uk)ﬁkugkdt

—1 .
H L% HLL?,

One has limy_, 4 o Li(b, 1)) = — (i, Hy, , b) — 2(Im Mo 1, b).

Recall that v, ® d.—g lies in Hj 2 (R.; L*(R%)) for any s > 1/2, hence one
finds the duality brackets appearing in the definition of Lj. Here, Op”(b)* stands
for the adjoint in the sense of the L*(R!, kyu,, dt)-inner product.
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Proof. Using L?(R4*, mkugkadt) as a pivot space and the symmetry of P, , for

the associated inner product and using (7.8) one has

k-9k

([Pﬁk:gk’ Op ( ) ]'Lbk, uk)LQ(]Rd‘H;nkugkdt)
K dt
( (b)wuka Koy g U k)l_;MLg; JHT 1L2, - (Oph(b)wpnk,gkuka uk)LZ(Rd+l
y

( (b)¢uka fk)Lz Rk g, dt) ( Oph(b)¢fk7 uk)Lz(Rd+1;HkMgkdt)

KkHgy, dt)

h K gy dt
p wuk; Vi X 5z 0)H1L2 HflLil

h (O
( ph ¢Uk (%9 52 0 U/k)L2(]Rd+1 ik figy, dt)

= ( Op (b)wuka fk)LQ(Rd+1§5kugkdt) - ( Oph(b)d]fky uk)LQ(]Rd+1;Hkugkdt)
+ ihy, ' Li (b, 1)).

Since one has

. hy
hm - (( Oph(b)wuka fk)LQ(RdJFI;nk,ugkdt) - ( Oph<b>wfk7 uk)Lz(Rd+1;lik#gkdt))
= ;(<M0,1ab> - <M1,0, b>) = 2<Im MO,lab>7

the result follows if one proves

lim [, = —(u, Hy, b)),

k—+o00
with

hk h
I, = 7([‘Pl‘ilmgk7 Op (b)w]uk" uk)L2(Rd+l;”k“9kdt)

Lo h
th (FJ 1/§k[hipnk,gka Op (b)i/f]uk, uk)LQ(Rd“;nugdt)'

Recall that & = xdet(g)'/? and & = xy det(gx)'/2. First one writes

[hipﬂk,gkv Oph(b)w] = [hipﬂk,gm Oph(b)]z/} + Oph(b) [hipﬁk»glﬂ 7/}]

Since [P, 4., %] is a differential operator of order one with Lipschitz coefficients
one finds

[hz;PHk,gkv Oph(b)¢] = [thfw,gkv Oph(b)]d) + h% Oph(b)o(l)E(Hl,L2)>
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and one obtains

) ) | S
(7.10) lim [ = lim ,—(/4; 1“k[hipmwgk,Oph<b)]wukaUk)Lz(RdH;,ngt)-

k——+o0 k—+o00 1Ny,

According to symbolic calculus one has

(7.11) [h207, Op"(b)] = ihy Op™(270,b) + o(hi) (1
The contribution of (7.11) to the limit in (7.10) is then
(7.12)

. L
kEI-Poo E (li 1’%16 [hiatQ? Oph(b)]¢uk7 uk)L2(Rd+1,,‘iM9dt) = (1, 210:b) = (u, {7_27 b}),

by Lemma 5.24 and (5.28).
Next, with repeated indices convention, one writes

Ao = Ph0; +970,0; with pl = &[0y, Frgl),
with (p])x C L™ that converges to some p/ € €° N L*®. One computes
[thf%,gk? Oph(b)] = Al + A2 + A3 + A4>

with
Ay = hipi[0;, 00" (b)],  As = B [o],, OP" (b))},
As = h2gP[0,8;,0p"(b)], A4 = h2[g, Op"(6)]8;0;.
One writes

Ay = hZpl Op"(9,,b) = O(h}) (12),

with Lemma 7.1 since 9,,b € $57%((£)~>°; R***2) (one can also argue that d,,b €
Y(R?¥2) and use Lemma 5.6). With (5.9) in Proposition 5.10 one finds

A2 = hi Z 0<1)£(L2) 8j = O(hi)ﬁ(Hl,L2)~
J
Thus, with (7.4) one finds that the contributions of A; and As to the limit in
(7.10) are 0.

Next, one writes
As = hig’[0,0;, Op"(b)] = huigy Op" (£i0x,b + &0,b) + higy? Op”(0y,0,b)
= hyigy Op™" ({&¢&;,b}) + h20(1 )c(c2)s
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as 0,,0,,b € B ((€) 7> R*2). Since {£¢;,b} € Zo(R**?), with (7.4) one
finds that the contributions of As to the limit in (7.10) is

. I, . i
(713) - k1—1>r—&l—loo % (K' 1’£kA3wuk’a uk’)L2(Rd+1,nugdt) = _<M7 g ]{57,6]7 b}>7

by Lemma 5.24 and (5.28). Finally, with (5.12) in Proposition 5.10 one writes

Ag=ihi Y (9e,9) OD" (9,0)0,0; + o(hid) caz 2y
4

= —ihi Y (90,97 ) OP" (£:€;06,b) + 0o(h) (2. 1),
y4

implying with (7.4) that the contributions of A, to the limit in (7.10) is

. | P i
(7.14) — lim ,—(/@ 1l€kA4wuk’uk)L2(Rd+1,nugdt) = Z(M, £i€;05,9" O¢,b)

k—+4o0 1hy, 7
= —<u, §ifj{9ija b}>
Gathering (7.12), (7.13) and (7.14) and writing
{720} — g7{&i¢;, b} — &&i{9” 0} = {7* — 97685, b} = —{pwg, 0} = — Hy, , b,
one obtains the result of the proposition. O

7.3. Time microlocalization. Above in Proposition 7.2, we defined Ly(b, 1))
for symbols b in ¥ ((£)7°°; R??) and we are interested in the limit of Ly (b, 1))
as k — +oo. With the support properties of the measure p given in (7.1) one
obtains the following lemma.

Lemma 7.3. Suppose x € 99”600(6’570,0371) be equal to 1 on a neighborhood of

[Clo, Cpnl. Let b € 7 ((€)7>°;R*) and ¢ be as in Proposition 7.2. Then, one
has

lim Ly ((1 = x)(7) b)) =0.

k——+o0
8. MORE ON SEMI-CLASSICAL SYMBOLS AND OPERATORS

8.1. Preparation theorem: Euclidean symbol division. For technical rea-
sons, it is convenient to consider symbols with finer properties here and in what
follows.

Definition 8.1. One says that a € SJHR?**2) if a € B0 (€)=, RE42) gnd
satisfies moreover the following properties
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e a(y,n) is compactly supported in the y variable;
e a(y,n) has a compactly supported Fourier transform in the n variable and,
consequently, is holomorphic with respect to the n variable.

This choice is possible and relevant observing that ¥2f(R?¢*2) is dense in
Yo ((€)7°°; R242) | the symbol classes we consider in Propositon 7.2. Recall
that y = (t,z) and n = (7,€), © = (2,9’) (the boundary is given by {z = 0}. See
the beginning of Section 7.

Below we will need the following quantification of the decay of a symbol
a € Y(R?*2) with the n variable allowed to slightly depart from the real axis:
for any R >0, o, 3 € N**! and N € N there exists C, 5y > 0 such that

81)  18507a(y,n)| < Capnr(m™, yeR™ e C™ with [Imy| < R.
This is given by the Paley-Wiener theorem; see for instance [21, Theorem 7.3.1].

The following proposition gives a decomposition of a symbol b € L2t (R?¢+2).
For our purpose, that is, using such symbols in the identity given by Proposi-
tion 7.2, with Lemma 7.3 it suffices to work with a time-frequency truncated
symbol. Recall that n = (1/,¢{) with ' = (7,¢’) and ( is the dual variable to
zZ = Xq.

Proposition 8.2 (Euclidean symbol division). Let x € 6.°(C,C~ ) be equal

to 1 on a neighborhood of [C,.0,Cy1] and b(y,n) € S (R?**2). For k € N, there
exist bo (v, 1), bik(y,n') and qi(y,n) such that

(8.2) xX(T)b(y, ', ¢) = bok(y, ') + bi(y, 0 )¢ + a(y. 7', ) pe(y, 1, C),
with the following symbol properties
) 1050, bix(y.1)| < Cwsln) ™Y,
for NeN, a e N |a| <1, BN j=0,1, y € R¥™ o € RY,
and
(8.4) [05050%ak(y. ', Q)| < Cnps(n) N ()72,
for NeN, a e N |a] <1, Be N §eN, ye R (i, ¢) € RT,

uniformly with respect to k € N. Moreover, q, admits a polyhomogeneous devel-
opment in the ¢ variable: there exist ql(y,n'), j € N*, such that

(85) [0onal(y,n)| < Cnsln)™Y,
for NeN, a e N o] <1, BN, ye R 5 eRY,
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uniformly with respect to k € N, and q; ~ ijl qi{‘j in the following sense: for
¢ € €(R) equal to 1 near 0 one has

(8.6)

050508 (ar(y ', Q) — < Cwargs(n) N1,

M:

w57
]:1

for M,N €N, a e N |a| <1, BeN¢, § N yecR™ (y,() e R

The decomposition of symbols given in Proposition 8.2 makes tangential
symbols appear; they are introduced in Section 5.3. Observe that ¢; has limited
decay in (. Yet, the polyhomogeneous development will be used in what follows.

Proof. Recall that py(y,n) = —72 + > i gy (x)&€; is the principal symbol of
P, g.- For 7 € suppx, and ¢ = (y,n’), with ' = (7,&’), having pi(¢’,{) = 0
reads

glzgjfzfj = 7—2 € (OﬁOa Cﬁ,l)a 6 = (5,7 C)?
meaning that |¢'|+[¢] < C7, if y = (¢, ) remains in a bounded domain. Hence for

suppb C K x R™! with K compact of R4™! one sees that there exist a bounded
domain L’ of R and R > 0

(8.7)
y=(t,2',2) e K, = (r,¢) eR? (€C, resuppy and pi(y,n,{) =0
= ¢ el and |(| < R.

For » > R we will consider the rectangular curve in the complex plane postively
oriented and made with the following pieces

L.p={2€C; —r <Rez<rand Imz==+R}
U{z€C; Rez=4r and — R<Imz < R},

that encloses the open ball centred at 0 with radius R. The important aspect of
this contour is that the distance from the real axis is bounded by R from above
allowing one to use the estimation (8.1)

Consider y € €>°(R?!) that is equal to 1 in a neighborhood of L'. We
decompose symbols in B} (R?*¥+2) according to Weierstrass preparation Theo-
rem [21, Section 7.5]. Let b(y,n’,¢) € B¥(R**2). One may write for || < 7,
with r > R,

ADHE) . dC

X(T)X(ENb(y, 1, ) = 50 /L b(y,n’,g)é_c.
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Following the proof of [21, Theorem 7.5.2], using (8.7), one further writes

X(T)X(Eb(y, 0. ¢) = by, 7, ) + 7y, n) prly, M),
with

(8.8)  bily,n,¢) =

X(T);((fl)/ b(yan,aé? pk(yan,aéz_pk(yan/>C) dé
2 Jr,n pe(y, 1, €) ¢—¢

and

iyt €)= XDXE) / by, n', Q) _dC

2im e e, 0 (= ¢

Observing that (px(y, 7', Q) — iy, 17, €))/(C =€) is a first-order polynomial in ¢
one finds that b; has the form

(8.9) bk(y, 1, ¢) = box(y,n') + bi(y, n')C.

It is important to notice that the values of 7, by, and by 5 are independent of
the value of r, provided that > |{|. From (8.1) and the explicit formula (8.8)
one deduces that (8.3) holds uniformly with respect to k € N.

Setting

b(y,n',¢)

(8.10) a(y, 1, ¢) = 7y, n', ) + (1 = X)(ﬁ/)x(f)pk@’n,? 0’

where the second term is properly defined by (8.7), one has

(8.11) x(T)b(y, 1", ¢) = bor(y, 1) + biw(y, ')+ @y, 7', ) pe(y, 7', €).

Using that g is smooth in the 1/,  variables and that py(y, 7', ¢) is invertible for
|(¢', ()| large and 7 € supp x, with (8.3) and (8.11) by induction one finds that
(8.4) holds uniformly with respect to k& € N.

We now consider the polyhomogeneous development of g in the ¢ variable.
Observe that the second term on the r.h.s. of (8.10) can be estimated by the
remainder in (8.6). Hence, it suffices to consider the term 7. In the support
of this term one has |n'| = [(£,7)| bounded. Observe that it suffices to have
the polyhomogeneous development for |¢| large. With (8.7), if |¢| > R one has
pr(y,m) # 0 and one can write
(8.12) 7, = XOX(Ey, ', ) = oy, 1) = brely, )<

Pr(y,m)
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and pi(y,n) takes the form

pe(y,n) = (¢ = ply,n)) (¢ =0y, 7)),

with the two roots having the same regularity as the coefficients in the x variable
and homogeneous of degree one in 7/, a classical result based on the Rouché
theorem; see for instance [23, Section 6.A]. Observe that the first term on the
r.hs. of (8.12) can be estimated by the remainder in (8.6). For the other terms
one writes

bok(y, 1) + bir(y,n')¢ box(y, 1) /¢ + by, n')/¢

pe(y,m) (1= ply,)/Q) (L= p'(y,n)/C)

Since here || is bounded and y remains in a compact domain, for |(| sufficiently
large one obtains the sought polyhomogeneous development with a truncated
Neumann series. (|

Remark 8.3. Recall that the symbol py(y,n) is in fact smooth in t since inde-
pendent of t. Hence, estimates (8.2)-(8.6) remain valid with an arbitrary number
of derivatives in t. This is however not needed in what follows.

8.2. Low regularity /low conormal decay symbolic calculus. The limited
smoothness with respect to the x variable of the symbols obtained in Propo-
sition 8.2 and their limited decay in the ( variable force us to investigate the
symbolic calculus properties of operators with low regularity (W) that we will
need in what follows.

In (8.4) and (8.5) we have found symbol estimates with distinct decays in
the variables 1 and . For a symbol a(y,n) we thus set

(8.13) Ni(a) = maxess sup |95 as(y, )| (()* ().

o<t (y,n)

Observe the difference with M e(dﬂ)(a) in (5.1).

Lemma 8.4. Let x € €°(R) be equal to 1 in a neighborhood of 0. Consider a
symbol a(y,n) that is compactly supported in the y variable and of the form

(1 —x(<)
¢

with a; € Sr(RA x RY), j = 0,1, and Ngyo(as) < +oo. Then the operator
a(y,hD,) is bounded on L*(R*') and

la(y, hDy)||[;(L2(Rd+1)) < C(Nati(ao) + Nati(ar) + Nd+2(a2))-

a(y,n) = ao(y,n') + a1 (y, 1) + az(y,n),
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Proof. The estimate of the contribution associated with aq is given by Lemma 5.12.

The contribution associated with a; is given by (5.19), Lemma 5.12 and 5.20.
The contribution of the symbol as is dealt with by using the same method

as in the proof of Lemma 5.6. In fact, the kernel of as(y,hD,) is given by

K(y,9) = h™""k(y, (y — §)/h) with

k(y,v) = (2m)~ ! / " May(y,n)dn = (2m)~ ! / e""("L) " ay(y, n)dn,

Rd+1 Rd+1

with L = (1—iv-V,)/{(v)? and 'L = (1+iv-V,))/{v)? since L exp(iv-n) = exp(iv-n).
Using (8.13) and that (¢)~2(n)~(@*Y is integrable one finds

(Y, v)] S Nasa(az)(v) 42 /R<77’>_d_1<C>‘2d77’dC < Naa(a2) () @),

One concludes with Corollary 5.3. |
An inspection of the part of the proof of Lemma 8.4 dedicated to the term

ai(y,n') shows that multiplying ao(y,n’) and a;(y,n’) by a uniformly bounded
function of ( leaves the result unchanged.

Lemma 8.4'. Let x € €°(R) be equal to 1 in a neighborhood of 0. Let m((, h)
be a bounded function uniformly with respect to h > 0. Consider a symbol a(y,n)
that is compactly supported in the y variable and of the form

(1 —x(¢))m(¢, h)
¢

with a; € ST(R x RY), j = 0,1. Then, the operator a(y, hD,, hx) is bounded
on L*(R™Y) and

la(y, hDy, h)||£(L2(Rd+l)) < C(Nati(ao) + Nati(ar)).

a(y,n, h) = ao(y,n)m(¢, k) + ai(y, 1)

Lemma 8.5. Let x € €°(R) be equal to 1 in a neighborhood of 0. Consider a
symbol a(y,n) that is compactly supported in the y variable and of the form

(1—x(¢)

a(yv 77) = aO(ya 77/) +a <y7 n,)# + aQ(?/? 77)
(1) Assume that Ngyo(a;) < 0o, j = 0,1, that is, a; € X3 ((f )~ 1 RHT x
R?), and Ngy3(az) < oo. Then, for 6 € W' (RIH), one has

(8.14)
H [G(y, hDy)7 9} HE(L2(R4+1)) < Ch<Nd+2(@O) + Nd+2<al) + Nd+3(a2)) HGHWLOO'
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(2) Assume that Ngyo(V,pag) < 00, Naya(Vya1) < 0o, and Nay3(Vyag) < 0o.
Then,

(8.15) Hd(y, hD,)* — a(y, hDy)Hc(L2(Rd+1))
S Ch(NdJrQ(Vy/aO) + Nd+2(Vya1) + Nd+3(Vya2)).

The adjoint is understood with respect to the inner product L>(R**, dxdt).

Proof. First, we consider the contribution of as to the commutator. The kernel
of the commutator is then given by Ky (y,7) = b~ Vky(y, (y — §)/h)

kaly. ) = ()4 [ 00y — o) = 00))aa(y. )y
= (2m) @D [ 0Ly — ho) — 6(0)) (L) sl m)dn

with L = (1—iv-V,))/(v)? and 'L = (1+iv-V,))/{v)? since L exp(iv-n) = exp(iv-n).
Using that ((y, hv) = (6(y — hv) — 0(y))/||hv|| is bounded one can write

ko) = hiem) 40 [y ) ol (1) oty .
Rd+1
With the form of 'L and (8.13) one obtains
a0 S Wasa(a) Bl (o) [y [ (0726

R
S hNgys(a2) [|0]| 0 (0) 742

One concludes with Corollary 5.3 as for the proof of Lemma 5.12.

Second, we consider the contribution of ay to the commutator. Since
[Op”(ay), 0] is tangential one can consider its action in the 3 variable only. As
n (5.16)-(5.17) one writes

OB ao)uly',2) = [ Kuy(y/52)ulif2) '
R
with

Kooy, 75 2) = (2m) ¢ / . W oy 2, hay')
R
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with z as a parameter. The associated tangential kernel for the commutator is
Ko(y', 05 2) = Koo (v, 7 2) (0(7, 2) = 0y, 2)) = ko (v, (v = 7)/h; 2),

with

ko(y',v; 2) = (27T)_d/ e 0y — hv, z) — 0(y, 2))ao(y,n) dny’.

Rd

Note that here v € R?. With the same argument as above one finds
kol vs2) = h(2) ¢ [ e ) o (o) o) i
Rd

with ¢/ (y, hv, z) = (Q(y/ — hv,z) — 0y, Z))/Hhv” and 'Ly = (1 +iv - V) ()2
yielding
ot/ 12| £ Nasa (@Bl ) [ (1)
< hiNgp2(ao) 10| .00 (v) ~ .

One concludes with Corollary 5.3.

Third, we consider the contribution of a; to the commutator. Set f(() =
(1 = x(¢))/¢. As observed in (5.18) one has Op"(aif(¢)) = Op™(a1)f(hD,

allowing one to write

[Oph(alf(g))’ ‘9] = Oph(al)[f(th)a 9] + [Oph<a1)’ e]f(th>

By (5.20) one has |[f(hD:)| z(p2garny S 1 and [Op"(a1), 0] < hNaya(a) 0]l
similarly to the treatment of the term associated with ag, yielding

10p" (1), 01 (hD2)|| 1 sy S 7elNar2(@n) 16l

With (5.21)—(5.22) the commutator [f(hD,), 0] has tangential kernel acting only
in the z variable

K(y;2,2) = h'k(y; 2, (2 — 2)/h)

with

k(y; z,0) = (2m) 7 / e (0(y', 2 — hv) = 0(y', 2)) F(C) d,

R
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where v € R here. One writes

k(y; 2,v) = h(2m)~ / 0e™ly(yf 2, o) f(C) de,

R

with {4(y/, z, hv) = (H(y’,z — hv) — Q(y’,z))/(hv) with [£4(y', 2, hv)| < [|0]|y1.00-
Since ve™* = —id €™, with an integration by parts, one finds

k(y; z,v) = ih(2m) ! / e ly(y, 2, hv)0c f(C) dC.
R

Moreover with 'L; = (1 + ivd,)/(v)? one writes
k(y: 2, v) = ih(27)"! / Ly 2, ho) (L )20 F(C) d.

R
Since |(“Ly)?0cf ()] < (v)~2(¢) 72 one finds [k(y; z,v)| S [0y (v) 2, implying
H[f(th)v Q]Hﬁ(m(Rdﬂ)) S hHeHleOO’
With Lemma 5.12 one obtains

1 Op™ (@) [f(hD2), 0[] o 12marryy S hNar1 (@) 10l S BNara(@) [10llpce-

This concludes the proof of the estimation of the commutator norm.

We now turn to the proof of the estimate for the adjoint. We will observe
that the proof is in fact along the same lines as that for the commutator. We start
with the contribution of ay(y,n). The kernel of the operator Op”(as)* — Op”(as)
is given by K (y,9) = h™*"'k(y, (y — §)/h) with

k(y,v) = (2m)~"! " (az(y — hv,n) — as(y,n))dn,

Rd+1

with v € R¥!, and one writes

k(y,v) = (2m)~*! / e"1("L) (ax(y — hv,n) — as(y, n))dn,

Rd+1

with 'L = (1 + v - V,)/{v)2. Since

|(L)™ (az(y — hv,n) — az(y, )| < Bl|v|l|| V(L) Paz(y,n)||
< W) 1 Nays(Vyaz) ()~ 47H(¢) 2.
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The sought estimate follows.

For the contribution of the symbol ay(y,7n), the tangential kernel of the
operator Op"(ag)* — Op™(ag) is given by K(y/,7') = h~%% (v, (v — gj’)/h) with

k(y',v) = (2m)~ / e (ag(y — o, ) — aoly/ 1)) i,
Rd
with here v € R?, and one writes
k(y v) = (2m)~¢ / e ("L)H2 (ag(y — hv, ') — ao(y', ') dny,
Rd

with 'L = (1 + v - V,/)/(v)? and one finds similarly

|('L)***(ao(y — hv,m) — ao(y.m))| S h{v) ™ Napa(Vyao) (n') =

The sought estimate follows.

For the contribution of a;(y,n) one writes

p" (a1 f(Q))" — Op" (a1 f(¢))
- f(hD )C_L <y7 hD ) - al(ya hDy)f(th)
- f hD ( y> hD - CL1<y, hDy)) + [f(th)v al(:‘/» hDy)]a

using that f(hD.)* = f(hD.). With (5.20) and applying the argument made for
the term associated with ag one finds

| f(hD.)(a1(y, hD,)* — ax(y, hD,)) S hiNay2(Vyar).

HE(LQ(W“))

We now consider the commutator [f(hD,), ai(y, hD,)]. The kernel of f(hD.,)
is given by

Kl(y7 Zj) = 53/*@’ & Kd<z7 2)7
with
Ki(z.9) = (2m) [ @955 (0.
R
The kernel of a;(y, hD,) is given by

Ko(y,9) = K'(y, 71 2) ® 0.,
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with
K',9;2) = (27r)_d/ ei(y/_g/)'”/al(y/,z, hn')dn' .
Rd

This leads to the following kernel for the commutator [f(hD,),a:(y, hD,)]

K.d) = [ | (Ku00)Kali )~ Kaly. )2 (5,5) 5,

where the integration is understood in the sense of distribution action. Products
here make sense; see [21, Theorem 8.2.14]. This gives

K(p.g) = (2n) 7 [ e pngyic
R
v / W' =9 (al(y’, z) hﬁ') . al(y’,z, hn'))dn',
Rd
that we write K (y,7) = h~*"'k(y, (y — §)/h) with

k) = (2m) 0 [ PO [ e ez = b)) = oz ) i
for v = (v/,w) with v € R? and w € R. Considering the bounded function

€<y’ 2, hwa 77/) = (al(y/7 z = hw7 77/) - a1<y/a Z, n/))/<hw)7

one writes

k(y,v) = h(2r) 0! /

eiwcwf(g)dC/ e Uy, 2, hw, ) dy.
R R

Set L¢ = (1 —iwd;)/(w)? and L,y = (1 — v - 0y)/(v')2. With we™* = —ide™e,

. . ] ol oo .
Lee™ = ™ and Lye™ ™ = e one writes

k(y,v) = ih(2m)~"" 1/ e ("Le)?0c f (¢ dC/ W (LT (y, 2, hw, o )diy
R
and one finds

)] S ) >0) ™ Nasa(02) [ (€)72dC [ (o) e

R

since (‘L )" Y(y, 2z, hw,n') < Nap1(0,a1)(n')~%"1. This leads to the conclusion
of the proof. O
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Multiplying ao(y,n') and a1 (y,n") by a sufficiently rapidely decaying func-
tion of ( leaves the result nearly unchanged.
Lemma 8.5'. Let x € €°(R) be equal to 1 in a neighborhood of 0. Let m((, h)
be a bounded function of ¢ and h > 0 with moreover

olm(¢,h) € L}, 1<j<3,

uniformly with respect to h > 0. Consider a symbol a(y,n) that is compactly
supported in the y variable and of the form

aly,m) = ao(y, ' )m(C, ) + ay(y, ') L X(Cg)m(é, h)

(1) Assume that Ngyo(a;) < 0o, j = 0,1, that is, a; € S92 ((f )~ 1 RH x
R?). Then, for 8 € W' (RIH), one has

H[a(y7 hDy)ae]Hﬁ(L2(Rd+1))
< Ch(Nata(ao) + Nag2(a)) 0]y, S [0iml]| -
)

(2) Assume that Ngi2(Vyao), Nara(Vyar) are finite. Then one has

HEL(y, hDy>* — a(y, hDy)H[,(LQ(]RUHl))
< Ch(Ngs2(Vyao) + Napa(Vyar)) sup. |02m]| 1.
SIS

The adjoint is understood with respect to the inner product L*>(R**!, dxdt).

Note that Ng2(Vyap) is replaced by Ngyo(Vyap) in the second estimate if
compated with Lemma 8.5.

Proof. Considering the properties of m({, h) in both results, only the contribu-
tion associated with the tangential symbol ag(y,n’) needs to be analyzed. For
the commutator, as for the treatment of the term a; in the proof of Lemma 8.5
one estimates the operator norm of [m(hD,, h),d]. Its tangential kernel is

K(y;2,2) = h_lkj(y; z,(z — 2)/h)
with

k(y; z,v) = (2m)~! /Rewc(ﬁ(y’, z—hv) = 0(y, 2))m(¢, h) d¢, veR.
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Following the proof of Lemma 8.5 one obtains

k(y: 2, 0) = ih(2r)"! / ULy 2 ho) (L) 20em(C, ) dC.
R

where l4(y',z,w) = (0(y',z — hv) — 0(y',2))/(hv) and 'Ly = (1 + ivd;)/{v)?.
With the properties of the function m((, h) one obtains

|k(y; 2,0) S hllOllyroe (0) 2 sup [|0Zml|is S B8]y sup ([0 11 (v) 2,
1<5<3 1</<3

implying
D200 gy, S MOl st (02

Considering the argument for the adjoint given in the proof of Lemma 8.5
one needs to estimate the operator norm of [m(hD,, h),ao(y, hD,)]. Its kernel
reads K (y,9) = h""'k(y, (y — g)/h) with

ko) = @2m) [

e"““m(¢, h)d¢ / e (ag(y/, 2 — hw, ) — ao(y', z,1') ) dny,
R R4

for v = (v/,w) with v’ € R? and w € R. One obtains

k(y, v) — ih(2r) 0! /

e ("Le)20em(C h)dC | €™ ("Ly) ey, 2, hw, ') dy
R R4

with £(y, z, hw,n') = (ao(y', 2 — hw,n') — ao(y/, z,1')) /(hw). This leads to
[y, )| S P{w) 2 (v") " Nys1(8za0) sup [|d7ml|s / U
1<5<3 R4

and the conclusion of the proof. O

Remark 8.6. A particular choice of Fourier multiplier m(C, h) appearing in Lem-
mata 8.4 and 8.5 is m((, h) = o(hP¢) for ¢ € S (R;R) and some 3 > 0. Indeed,
the following properties hold:

(1) One has m(C,h) < 1 uniformly with respect to h > 0 as required by
Lemmata 8.4 and 8.5.
(2) One has obviously

sup sup ||0§m||L1 < 4o00.
h 1<5<3

In what follows, we will use m(¢,h) = @(h3¢) with ¢ € €>(R).
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8.3. A class of error terms.

Definition 8.7. Let R be the class of sequences of operators (Ry) bounded on
LA(RHY) by Chy, 6 >0, and from L*(R™') to H'(R.; L*(R%)) by Chy, p > 0,
with moreover § + p > 0. Denote by Ry the class obtained in the case (J,p) =
(1,0).

Lemma 8.8. Let (fi)r be a bounded sequence of L>(R¥1) and (gx)x be a bounded
sequence of L2,(R?). Then, if (Ry)x € R one has

kgrfoo | (g1 ® 0., kak)Hgle/,HZlLi,‘ =0.

Proof. As the sequence gj, ® d.— is bounded in H~?(R.; L*(R},)), for any o >
1/2, the result follows from the bound

L4 (o—1)(p—0)
IRkl craqmasy ez, < Chy* 77200,

obtained by interpolation and choosing o > % sufficiently close to % O

Corollary 8.9. Let b € L7 ((€)7°°; R**2) with suppb C K x R™! for K a
compact of ¢£(O), and let p € €°(p(O)) be equal to 1 in a neighborhood of the
y-projection of suppb. Let Ly(b,v) be as defined in (7.9). One has Li(b,¢) =
Ly (b,1) 4+ 0(1) k400 with

(8.16) Ly (b, ) = i(OP" (b)bue, v @ Somo) 18 1

- i(Uk ® d,—0, Oph([_,)wuk)ﬁkugkdt

H;lLi,,H;Li, :
Proof. One has to prove that
o h * /{kugkdt
I = (v ® 0=, Op"(D) uk)Hz—lLihH;Lz/

Kk gy, dt

= (Uk ® 0.—o0, Oph(l_))wuk)Hz_lLQ,,HzlL + 0(1)k—>+oo-

2
y/

Let ¢ € ¢ (¢(0)) be equal to 1 in a neighborhood of supp . One has
5 * 7 Kkfbg, d
[k = (ka ® 5z=07 w Oph(b) wuk);;lzzt HL2 ®
y/7 z yl

The adjoint operator with the *-notation is here understood in the sense of
the inner product L2(R¥*, kppu,, dt); see Proposition 7.2. Thus, Op"(b)* =
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%, Op”(b)*&) where the adjoint with the usual *-notation is understood for the
inner product L*(R*, dzdt).

Since (1hug)r and (¢vg), are bounded in L*(R*™') and in L2 (R?) respec-
tively, it suffices to prove that 1 &; ' Op"(b)*&x — Op”(b)y) € Ry by Lemma 8.8.
One has

Wyt Op" (0) i — Op" (b)v = ¢ &y (Op" (Ryb)* — Op" (Reb)) + [, Op" (b))
From (8.14) and (8.15) one deduces that
K% /%El Oph(b)*"%k - Oph(6)¢‘|g(L2(Rd+l)) S h-

To estimate the operator norm from L*(R*') to H'(R.; L*(RY,)) we compose
with D, = h;* Op"(¢) and get

D, (¢ ft Op" (b) R — Op" (b))

= [D., v &' Op"(b)* &y, + ¢ &, ' D, Op"(b)* Ry — [D., Op”(b)] — Op"(b) D,

= D (¥ ;") Op"(b) iy, + by ' O™ (0C) "R — Op™ (D:b)e — By Op" (Ch)v.
One has

HDZ W ’%El) Oph<b)*’%kHﬁ(L2(Rd+1)) + H Oph(DzZS)wH/;(L%RdH)) 5 L.
It thus remains to prove that
||¢ ’?'31;1 Oph(bC)*%k - Oph(CB)@ZJHL:(Lz(RdH)) S hye

The argument is the same as for estimate (8.9) with b replaced by ¢b. We conclude

using Lemma 8.8 with 6 =1, p = 0. O

Corollary 8.10. Let b € 57 ((£) 7>, R?*¥2) with suppb C K x R for K a
compact of ¢p£(O), and let p € €°(d.(0)) be equal to 1 in a neighborhood of the
y-projection of suppb. Let also ¢ € €°(] — 2,2[;R) and equal to 1 on (—1,1).
Let Li(b,v) be as defined in (7.9). One has Li(b, ) = L (b, %) + 0(1)k—s+00 with

L (b, ) = i( Op" (B)p(heD2)bur, v @ b.) 75",

HILZ HI'L2,

) — K dt
— z(vk ® 0,—0, Oph(b)@(hiDZ)@buk);;15122,,1{%2 )
Y ETY!
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Proof. Arguing as for Corollary 8.9, starting from the form of L} (b, 1)) given in
(8.16) it suffices to prove that

Op"(b)(1 — ¢(hpD.)) = Op" () € Ro, e (ysm) = b(y, m) (1 — p(hi())

In the support of 1 — p(h2() one has h|¢| = 1, which combined with the fast
decay of b in n yields

|83765’7hk (y7 77)' S h]kv<77>_N7

for any N. The result follows from Lemma 7.1. O

9. PROOF OF THE PROPAGATION EQUATION II: SYMBOL QUANTIZATION

From the support property of the semi-classical measure p given in (7.1) if
considering the action of y on a symbol in X} (R?¥2) it suffices to work with a
time-frequency truncated version. That is, for x € €°(C7,, Cr ;) equal to 1 on
a neighborhood of [C,, o, C,, 1] and b(y,n) € Z2(R?**2) one has (u, (1 — x)b) = 0,
meaning that

i Z{(1L=x(7)b ) = lim Li((1 = ()b, ) =0.

With Proposition 7.2, we will thus only consider the action of ¢ on a symbol of
the form x(7)b(y,n) through the limit of Ly (x(7)b, %) and we will now quantize
the Euclidean division of Proposition 8.2. Even though the symbol b on the L.h.s.
of (8.2) exhibits rapid decay in the variable (, it is not the case for the symbols
bok, b1k, and gr on the r.h.s. of (8.2). Following [16], adding a cutoff in the
¢ variable in the form of ¢(hiD,), made possible by Corollary 8.10, acts as a
remedy.

Since Lg(., 1) and Lj(., %) have the same limit as k — oo by Corollary 8.10,
in what follows, we will study sequentially the limits of L} (a, 1) as k — +oo with

(I(y, 77) = Qkpk(yv 77)7 a(yv 77/) = bO,k(yv nl)a and Cl(y, 77) = bl,/ﬂ(y7 W/)C

9.1. Contribution of ¢;p;. We prove that the symbol gipy(y,n) yields a van-
ishing contribution to the limit of L} (x(7)b, ).

Proposition 9.1. One has L (qxpr, V) = 0(1)p—100-
Proving this result requires some preliminary results.

Set o, = @(hiD,). Naturally, ¢ is uniformly bounded on L?(R) as a
uniformly bounded Fourier multiplier. One can view ¢, in various manners: one
has

o = Op™ (hi¢) = Op"*(().
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With the second formula, by simply replacing h by k3 in the analysis of Section 5,
with point (3) of Proposition 5.10 one has the following result.

Lemma 9.2. Let 0 € WH(R). Then, [0, oulll 12y < Chi-

Set
Qx = Op"(ar), @ =OD"(@), Pr = hiPeyge
Gy = Op"(qipr), and Gy = Op"(Gipr)-
Note that
= Op"(p1) + Wi,
where P} is a differential operator of order one with bounded coefficients.
Because of the form of p;, and P, one writes P, = P¢ + P with
Pl = & DRl (x) g, D,
Pl =hio}+ Y &' mDifg! (x)hD;,
@

and Gy = G + G| with

Gy = gi(x) Op"(ar) i D

Gy =O0p"(a)hid} + > g/ () Op"(q)hiDiDy,

<zl,a<>lj<§f3>

and G, = G{ + G with

G = g (x) Op" (@) hi. D2

Gi =Op"(@)hid} + > g () Op"(@)hiDiD;.

<if>¥<§,i>
With this notation one has
Li(qepr: ) = Li(qrpe, ) + Ly (qrpr, ),

with

Li(qepr, ¥) = i(Glortur, vp @ 52:0)¥1I§§d2—1L2/

Kk figy, dt

— (v ® 0220, G Glortu k) 112 H1L2,
y Y
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and

. K dt
Lz(qwk, Y) = Z(G;%wuk, v ® 62:0);1“55 H-l2
z y/’ z y/

Kk gy, dt

. AT
— (v ® 6.0, G}, @k¢uk)H;1L2,,H%L2/'
Yy Y

Lemma 9.3. (1) One has hpQx € Ro.
(2) Let (fi)r be a bounded sequence in WH°(R*™V). One has [Qx, fi] € Ro.
(3) The operator Gf — QP is a finite sum of operators that lie in

(9.1) > RepDYD.+ > RohiD§+ > RohpDY,

la’|=1 |af=2 18]=1

with Ry as given in Definition 8.7. The same holds for G — QP
(4) The operators Qi[PY, ¢r] and QL[PJ, vx] are also finite sums of operators
that lie in the space given by (9.1).

A proof is given below.

Observe that R, C R as ¢y, is uniformly bounded on L?(R4*!). Then,
with Lemma 8.8, exploiting (7.4)—(7.5) and the local estimate (7.6), with the
third item in Lemma 9.3 one obtains

. K dt
Ly (qepr, ) = i (QrPy rtbur, vk © 6.—0) 111 511
z y/7 z y/

. = T Kk g, dt
— ik ® 0.m0, Qi SOkl/)uk)H;f%”HZle/ + 0(1) ks +00-

With the fourth item in Lemma 9.3, with the same argumentation one finds
. dt
Ly (qrprs ) = i(Qrepn P bt v @ 02m0) 1y o5 o1
z y/’ z yl

. ~ T K gy, dt
- Z(Uk & 5z:07 ngpkpk wuk)Hz’lgzi,,HzlLi, + 0(1)kﬁ+oo-

Lemma 9.4. Let My(y,D,) be a differential operator with coefficients that are
uniformly bounded with respect to k. Let N € N. For some Cy > 0 one has

|Qrer[M(y, Dy), ¢]Uk\’H;Lz, < Chy.

The same hold for Qy, in place of Qy.
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A proof is given below. Applying Lemma 9.4 gives
. K dt
LT (qrprs ©) = i(Quprt0 P g, 0 © 6220) 1y 41
z y/7 z y/
. = K dt
— i (vk ® .0, Qk@k¢P1;ruk);;522”H1Lz + 0(1) ks +o0-
Y E Y
Our goal is now to handle the terms associated with the operators G¢ and

G¢ in LY(qrpr, v). With the forms of G¢ and G¢ and Lemma 9.4, using that g
is uniformly Lipschitz as k — 400, one has

. K dt
Lii(akpr, ©) = i (90" Qoo hi D2uy, vy @ 5z:o);§§”H;1L§/
. = K dt
— i (v, ® 6.0, gngkSOWhiDiuk);;fzz iz T o(Dkotoo
y/7 z yl
With the ”jump formula” one has

hiDguk = —hi@zukzzw & 6,2:0 + hiDguk
= —hi (i) ok ® 0amo + My D2uy,

recalling (7.7), where f denotes the zero-extension of f|.o. One writes
L(qprs ) = Li(quprs ) + L (qpn ) + 0(1)is oo
with
. _ K dt
(92)  L(qpr, ) = =ik (91 Quprtd (987) ™ 0k @ Gamo, vk ® Gamo) (1l 5712
z y/7 z y/
. ~ _ K dt
+ iy (g ® 0omo, G Qripr (7)o © 52:0);;1922 Hi2 )
y/7 z yl
and
L{z>0} __ .+ dd h2D2 5 Kiofigy, dt
v (akprs ¥) = (93 Qrerhi Doug, v @ 0o0) /5 a2
z y/7 z y/
. ~ K dt
- y17 z y/
With Lemmata 9.2 and 9.3 one has

GHQrprt = Qrergi® mod Ry and ¢{Qrprth = Qrergi® mod Ry.
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With Lemma 8.8, as hi D?uy, is bounded in L? by (7.6), one obtains
L (quepr, ¥) = 1(Quontd gih3 D2uy,, vy, @ 52:0)2655/?;;1%
— i (U ® 0,0, Qi) gZ"hiDiuk)“Hk;‘f;;H;L;.
One writes
ggdhiDg = m;lthZg,‘fd/@kthZ + hk/{,zl(Dz(g,‘fd/@k))thz.
Since hi @, € Ro by Lemma 9.3 one obtains
L7 qupr. ) = i (Queprt) 5 hic Dagiiir b Do, vy, ® @:o)j;;fgf;;l%

. = -1 dd Kk bgy dt
- Z(Uk ® 020, Qrprt Ky, hi D gy, /ikthzuk)Hz—ngthlel
Y Y

+ 0(1) k100
One thus obtains
L™ (g ) + L (@pr, ¥) = 0(Diroc
since Py, = x;, 'hy,D.glk,h. D, + P and thus
Ly (qepr, ) = Ly(qepi, ) + 01k 4o,

with LS (qxpr, ) given in (9.2). One then writes

K gy dt

Li(qkpka w) = th<Nkvk & 5Z=07 (%3 & 6z:0>HaL2 H-“L2)
z yl7 z y/

for any o > 1/2, with

Ni = (g8 e Qigi — g Quprb (i),

where the adjoints with the x-notation are understood in the sense of the inner
product L2(R*L, kyp,, dt), that is, ¢iQ% = &; '¢rQLk), where the adjoint with
the x-notation is understood for the inner product L?(R%™ dzdt). One thus has

Ni = (g "Ry ' orQrfrgi — g Qrprt(gf®) !
= g <¢ (/%k(ggd)Q)_lsokQZ Fr(gih)? — Qk@k¢> (g1,
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Lemma 9.5. Let (fy)r be a sequence of functions such that

[fillwrce + 11/ Fillwroe < €,

uniformly with respect to k. Let € > 0. For a > % chosen sufficiently close to %
Then,

||ngpk¢ - @Z)fk_lskal:fk||£(HZQL§,,H§‘L2,) = O(hlzs)k—H—OO‘

A proof is given below.

As & and ¢{? and their inverses are Lipschitz uniformly with respect to k,
with Lemma 9.5 one finds that L{(qupk, ) = o(h) )k 10 for any 0 < & < 1,
which concludes the proof of Proposition 9.1. O

Proof of Lemma 9.3. Let fi be as in the statement. Both operators [Qg, fx]
and hyQy are bounded in £(L?*(R%*!)) by Chy, by Lemma 8.5 for the first one and
Lemma 8.4 for the second one, recalling the properties of g given in (8.4)—(8.5).

To estimate their operator norm from L*(R*") to H'(R.; L*(R%)) we com-

pose with D, = h; ' Op™(¢). On the one hand one gets
D.[Qx, fx] = Op™(D.qx) fr. — Op™ (D.(fraqr)) + by ' [OP™(Car), frl-

The first two operators are bounded in E(LQ(RdH)) uniformly with respect to
k by Lemma 8.4. For the third operator, using that (¢ is of the form given in
Lemma 8.5 by the polyhomogeneous expansion of g given in (8.5), one also finds
a k-uniform bound in £(L*(R%*!)). On the other hand, one has

D.hQx = hi Op"(D.qx) + Op" (Ca),

that also has a k-uniform bound in £(L*(R%")) by Lemma 8.4. The first two
points of the lemma are proven.

For the third point, we provide the proof for G} and Q. The proof of G,
and Qj, is identical. One sees that it suffices to prove that Op” (qral,) — QrA;, is
a finite sum of operators that lie in the space given by (9.1), with

ap,= Y gl&& and A= > E ' Difg) (x)hiD;.
1<4,5<d 1<4,j<d
(4,5)#(d,d) (i,5)#(d,d)
One writes
Ae= Y (9/hiDiD; + hiit (Di(gy ia)) i Dy),

1<4,j<d
(4,5)#(d,d)
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and
Qrgy heDiD; = g QxhiD:D; + [Qy, g’ 1hi D; D;
= Op"(qrg) &i&)) + [Qr, 9 1hi DDy,
yielding
QAL = Op"(qeay,) + Y [Qr, 9710 DiD; + hiQuiiy, ' (Di(gy o)) b D;.
1<i,j<d
(i.5)#(d.d)

The result thus amounts to having [Qg, g,ij | € Ro and hyQr € Ry, which holds
by the first two points of the lemma proven above. This concludes the proof of
the third point of Lemma 9.3.

We now turn to the proof of the fourth point. Since [0?, x| = 0 it suffices
to consider Qx[A}, px]. One writes

A, = Z (92 hiD:iD; + iy ' (Di( gy Rr) ) i Dy)
G
yielding
Aed = Y2 (197 el hEDiD; + bk (Dilgi? 7)) i D;

1<i,j<d
(4,7)#(d,d)

— hirfy (Di<giij’%k)) thj)) :

Since @ is bounded on L*(R*') and also bounded by Ch;* from L*(R*!) to
H'(R.; L*(RY)) uniformly in %y it suffices to prove that [g,’, )] is bounded by
Chy, on L?(R4*1). This is a consequence of Lemma 9.2. O

Proof of Lemma 9./. First, we prove

(9-3) HQkSOk[Mk(yaDy)aw]uknm(mdﬂ)) 5 h]kv'

Second, we prove

(9-4) ||Dsz90k[Mk(y7 Dy)7¢]uk”L2(Rd+1)) N hl]cv‘

Together (9.3) and (9.4) give the sought result.
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Proof of (9.3). Note that [My(y, D,),¥]u, is bounded in L*(R+Y) by Ch, ™,
where m is the order of My (y, D,), by (7.5).

With the polyhomogeneous development in the ( variable of g; given in
(8.5)—(8.6) one writes

a(y, 1, ¢) = %Mqli(y,n’) +qe(y, 1, C),

with

9.5) |0 a0akat(y.n',0)| < Cwpsln) (0>,
for NeN, a € N o] <1, BN § €N,y ¢ R*™ (1, () € R

One writes Q; = Op”(q;}) Op” ( . ) +Op"(qf).

Recall that we work in the local chart (O, ¢,) at the boundary. Since ) = 1
in a neighborhood of the y-projection of supp b, note that supp([My(y, D,), w]uk)
does not meet the y-projection of supp gx since supp g C suppb. Let w w €
( (gzﬁﬁ( )) with 1/) equal to 1 in a neighborhood of suppt and with ¢ equal
to 1 in a neighborhood of the y-projection of suppb and moreover ¢» = 1 in a
neighborhood of supp . One has [Mi(y, D,),¢] = (1 — @@)[Mk(y, D,), ] and

96) 1u(1 = )l + 1F OB (¢ = 6(O)) 0 = D)l ppnguanny
S ONhiVJ N € N7

by standard calculus. Since Op”(qi) and Op”(qf) are bounded on L?(R4+1),
to obtain (9.3) it thus suffices to study the L?*-boundedness of the operators

Op”(g4)(1 — %) and Op”(gf)(1 —1)). i
The tangential kernel of Op”(qi)(1 — 4)) is given by

K(y,5) = (2m)™ / VML — (7 )y 2 ) dif
With the joint support properties of ¢i and ¢ one finds that ly =7 >C >0

|
in the support of the integrand. Since Lexp(i(y' — ¢') - n') = exp(i(y' — ¥') - ')
with L = —i||y — 7| ">(y' — ¥') - 9,y one can write

K(y,§) = (2n) / = (1 — (7, 2)) (L) gy 2, hae) .
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With the estimation (8.5) for ¢i one finds

KW, S e
RV
which, by the Schur lemma (Lemma 5.1), gives
(9.7) | Oph(q;:)(l - @Z)||L(L2(Rd+1)) S h;ev'

The kernel of Op"(¢¢)(1 — ) is given by

K(y,§) = (2m)™" / e WIN (L — () gf (y, han) .

Here, ||y — g|| > C > 0 in the support of the integrand, yielding
K(y,§) = (2m)~ ! / L= (@) (D) V gy, hen) dn,

with L = —i|ly — gl *(y — 9) - 9,, implying with (9.5)
hy

A

K(y, 9)| < ="

which, by the Schur lemma, gives

(9.8) I Oph(qg)(l - &)Hc(LQ(RdH)) S hfcv-

Together (9.7) and (9.8) give estimate (9.3).
Proof of (9.4). Here, we write

_1-9(¢)

ar(y,n',¢) = Tq;i(y,n’) 1o ?0)

<‘2 qz(yﬂf) _'_ QZ(%U/;C)»
with

%Rkl )| < Owaalol) (0

for NeN, a € N o] <1, BN § €N,y e R*™ (1, ¢) € R

One writes

1 —¢(¢)
¢

Qr = Op"(q;) Op” ( ! _Cf(o

) + Op"(qp) Op" (———=) + Op"(q}).

85
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One has
D.Q;, = Op"(D.q;) Op” (%m) + Op"(D.qp) Op” (1_6—(5(0) + Op"(D.qp)
0 0P (gh) Op* (1~ 6(0)) + it Op' () Op* (2

¢
+ byt Op"(Cap).

Similarly to (9.6) one has
||QZJ Oph (C_Z(l - gb(C)))@k(l - QZ])Hﬁ(LZ(Rd-&-l)) S CNh]kV’ N eN.
Observe that (q¥ has the same symbol properties as ¢¢. The symbol properties

of D.qi, D.q2, D.q’ also allow one to carry out the same kernel estimations as
above yielding (9.4). O

Proof of Lemma 9.5. We claim that

(99) ||Q/€§0k¢ - Q,ka_l(,OkQ;;fk||E(H;1/2L2,’HZI/2L2/) = O(l)v
and
(9.10) |Queit = 0 orQiell a2,y arscazy = O

Interpolation of the two estimations then gives the result of the lemma.

We now prove the claimed estimates.

Proof of estimate (9.9). First, one has

Quert — U f  ouQi S
= Quert fi ' fr — U fy ok Qr i
= [Qrer, VS 1 fi + fk_liﬁ(oph (ave(hiC)) — Op” (ZlkSO(th))*)fk-

With Lemmata 8.5 and 8.5 one has

H [ngpka Q/szgl] HE(L2(Rd+1))
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yielding
(9.11) |Qrpry) — Wk_l@kQka“g(Lz(Rdﬂ)) S hye.
Second one writes

D.(Quert — U I ' orQi fr)
= Op"(D.qr) i — (D £ 1) ox Qi
+ hy (O™ (Car)prtd — v i or OD" (CTL)" fi).
With Lemma 8.4 one finds
I Oph(DzC]k)SDk@/)||L(L2(Rd+1)) +1(D-(wfi ") en Oph@k)*kaﬁ(Lz(RdH)) S L
Arguing as for (9.11) one finds

|| Oph<CQk)‘;0k:77b - wfk_lgpk Oph(CGk)*kaE(LQ(Rd-»—l)) 5 hk

This gives

(9.12) 1D-(Quprts — 500 Qif) | ppaqmassy) S 1
Together, (9.11) and (9.12) give

(913) HQkSOkw - wfkjlgka_ka|’£(L2(Rd+1)’Hzlel) S_, 1.

By duality this implies
(9-14) HQkSDkw - Q/Jf];lSOkQ;;fk||£(HZ_1L§”L2(Rd+1)) 5 L.

An interpolation of (9.13) and (9.14) yields (9.9).

Proof of estimate (9.10). Above we computed D.Qy, = Op”"(D.qy)+hy* Op™(gr()
yielding

HQkH[,(LQ(]Rd“),HZlLi/) <
and thus
(9.15) 1QkoRt | cqramarsy s,y S hi
One also computes

D.QrpivD. = D.QrppD v — D.Qrpr(D.).
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Since D, = h;.> Op” (p(h2¢)h3() one finds that o). D, is bounded on L*(R**)
by Ch;? thus yiedling

(9.16) HQWWDZH,C(Lz(RdH),H;Li,) S byt
Together (9.15) and (9.16) give

(9.17) HQkﬁpkac(HglLi,,H;Lj,) S hI;A"

The same holds for Q;, in place of Q) and by duality one obtains
(9.18) 108 orQifull pqaazrn, e,y S P

and together (9.17) and (9.18) yield (9.10). O

Remark 9.6. Note that the proof we give of (9.10) is far from optimal. However,
this has no consequence on the final result of Lemma 9.5.

9.2. Contributions of by and b . First, we prove that the symbol by x(y, n’)
yields a vanishing contribution to the limit of L} (x(7)b, ). Second, we prove that
the symbol b (y,n') yields a contribution to the limit of L} (x(7)b, 1) as opposed
to the other symbols appearing in the Euclidean division of Proposition 8.2. This
contribution implies the action of the semi-classical measure v at the boundary.

The tangential nature of Op”(by;) and Op™ (b1 ;) allows one to consider
traces through the action of the Dirac measure d,—g. A key point of the proof
of this section is the understanding of traces after the action of the regularizing
operator @g.

Consider w € L*(R*™!) such that w* = wyp.»0p € H'(RF; L*(R%)) and
W™ = wz<oy € H'(R;; L*(RY,)). One the one hand, w* € €°([0, +00l.; L*(RY,))
and wy,—p+ = w_ss = lim, o+ w(z) makes sense in L*(Ry,) classically. Similarly
W—p- = W,_o- = lim, ,o- w(z) makes sense. On the other hand, the trace of
(prw)|.=o can be approximated by the mean of the two traces of w as in the
following lemma.

Lemma 9.7. Let ¢ € €>°(R) be real valued and equal to 1 near 0. There ezists
C > 0 such that

1
H@(hBDz)wp’:O - 5 (w|z:0_ + w‘zz0+) HLz(Rd)

3
< Chz (HaszL?(R;;L?(RZ,)) + ||8Zw||L2(Rj;L2(R;l,))>7

for h >0 and w € L*(R™") such that w* € H'(RE; L*(R%)).
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Proof. By linearity and symmetry it suffices to consider w such that wy,«oy =0
and prove®

1 3
(919) Hgo(h?’Dz)w|Z:g — §w|Z:O+HL2(Rd) < Ch= HaszLQ(Rj;LQ(RZ/)).
Denote by ¢ the inverse Fourier transform of ¢. The Parseval formula gives
(9.20) 2o (D, Yupog = /]R P(h3C)i(C) dC
= / o(2)w(h?z) dz = / o(2)w(h?z) dz.
R R+

For z > 0, with the Cauchy-Schwarz inequality one finds

(92]‘) ||w<Z) - w|Z=0+HL2(Rd) - H /O\ agW(S)dS‘

< 21/2HaszLQ(Rj;L?(Rd,))'
L2(Rd) Yy

Using that ¢ is even since ¢ is real valued one has [, ¢ = 7 since [ ¢ =
2mp(0) = 2m. With (9.20) and (9.21) one thus obtains

1
27|l o(h® D)) wi,—g — —wi,— :H/ 5(2) (w(h3z) — w),— dz‘
ng( Jwlz=o 2 0+HLQ(W) R+ #(2) (w(h’e) ==ov) L2(R7)
< h3/2HaszLQ(Rj;LQ(RZ,)) /R+ ’@(3”21/2 dz S h3/2”aZwHLQ(Rj;LQ(RZ/))v
which is the sought result (9.19). O
Proposition 9.8. One has Lj(box, 1) = 0(1)k—too-
Proof. Using that |[¢ur|| g g+, r2ga ) = O(h;") by (7.4) one writes
’ y/
L// b —i(O h b nk,ugkadt
k( 0,k> ¢) = Z( p ( O,k‘zzo) (¢k¢uk)\z:0+a Uk)LQ(Rd)’L2(Rd)
. Kk g;. odt
- Z(Ulm Oph (bO,k|Z:0> (Spk,lvz)uk)|z:0+)LZ(Hg§Z?7L2(Rd)
) Kl bg, o dt
= 5 ( Oph (bO,k|Z:0) (¢Uk)|z=0+7 Uk)LQ(HgQI:iE)”L%Rd)
'i K dt 1/2
- 5 (Uk‘a Oph (bO,k|Z:0) (@Duk)\z:OJﬁ)LQ(HZZ?’L%Rd) + O(hk/ )
= O(h?),

using the homogeneous Dirichlet boundary condition, that is, uy,—o+ = 0. O

3In what follows, we will actually use Lemma 9.7 in the case of a function vanishing in {z < 0}.
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Proposition 9.9. One has

Kk gy qdt

L/k/(bl,kga ¢) = (Oph (b17k|z:0) ((ggd)_l¢) \Z:O,Uk” Uk)L2(Rd?,L2(]Rd) + 0(1)k—>+oo
Proof. With (7.6) one has |[hx D up| g gt r2ga ) = O(h;. '), which gives
’ y/

Kk gy o dt

LZ@LICC; IP) = Z( Oph (bl,k|z:0) (Sokthzwuk)p:O*" ,Uk)L2(Rd?,L2(Rd)

Iikugkadt

- Z.(Uku Oph (61,k|z:0) (@kthz¢uk)\z=0+)L2(Rd)’L2(Rd)

Hk,ugkadt

1
"2 (Op" (b17k|z=0) (hn0bur ) =0+, Uk)L?(Rd),L%Rd)

1 - Kk g, odt
+ 5 (Uka Oph (bl,k‘zzo) (hkazwuk)|z:0+)LZ(RZiLQ(Rd) + O<h]:i;/2)?

by Lemma 9.7. With (7.7) one has v, = hpgf?d.up|,—+ yielding

hk:azqujuk|z:04r = hlc(82;¢)|z:0uk|z:0+ + hk’¢|z:0(8zuk)\z:0+ = (ggd)_1¢|z:00k-

One then obtains

1 K dt
Lg(bl,k<> ¢) = 5 ( Oph (bl,k‘zzo) ((gltﬁid>71¢) |Z:0Uk7 Uk)[é?ﬂi@?@%ﬂ@d)
1 - K d
5 (06, 0D" (Bragoc) (91)719) |_g0) 1508 gy + 0.
One writes
_ K dt
(Uk’ Oph (blvk\z:O) ((ggd)_1¢) |z:0vk)LZl(Lﬂg§Z?7L2(Rd)

Kkfgyqdt

= (((ggd)_1¢) |z=0 Oph (Bl,k|3:0)*vk> Uk)Lz(Rd?,LQ(Rd)a

with the adjoint operator with the x-notation understood in the sense of the inner
product L*(R?, (k) [z=o/tg,,dt), that is,

Oph (617k‘z=0)* = ("‘%I;I)V:O Oph (517k‘z=0)*(,%k>|2:0’

where the adjoint with the x-notation is understood in the sense of the inner
product L*(R%, da’dt). With the two points of Lemma 8.5 one finds

1 OD" (b11.=) (92919 .
- (Tﬁ/%;;l(ggd)_l)‘zzo Op”" ([_?17k|zzo)*(/%k)|z=0HL(L2(Rd)) S P

yielding the result. O
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9.3. Proof conclusion and further support property of the measure v.
With Proposition 7.2, Corollary 8.10, and Propositions 9.1, 9.8, and 9.9 one now
has

(9.22)  —(u, H,b) = 2(Im Moy, b)
ﬁkugkadt

+ lim (Oph (bl,k|zzo) ((gl(cid>71¢) \z:OUk’ Uk)LQ(Rd)yLQ(Rd)‘

k—oo

Let b € B} (R?*+2). With Proposition 8.2 one writes

x(M)b(y, ', ¢) = bor(y, ') + b1k(y, ') + @ (y, 7', ) pey, 7', €),

and

(9.23) x(M)b(y, ', ¢) = bo(y,n') + bi(y, 1) + q(y, 7', ¢) p(y. 7', C).

With (8.8) and (8.9) one finds that Ngii(by — b1x) = 0(1)gsee. Since also
Rk — Kl oo = 0(1)k—00 ONE gets

K dt
( Oph (b17k|z:0) ((ggd)*lw) |Z:0Uk:7 Uk)LZl(L];IZl?LQ(Rd)

— Kb dt
= ( Oph (b1|z:O) ((glcfld) 1¢) |Z:00k7 Uk)LZ(]%d)’LQ(Rd) + 0(1)k~>+oo-
Since the s.c.m. of (vg) is v, with (9.22), Lemma 5.24 and (5.28), one obtains
(924) —(,u,Hp b> = 2<IH1 M[)’l,b> -+ <V, bl\z:O)»
|;1:0 - 1HL<>O

as k — +oo since gf’jzo = 1 in the chosen quasi-normal geodesic coordinates
associated with the metric g; see Proposition 2.1.

as Y|.—o = 1 in a neighborhood of supp(bi|,—,) and as | (g2) — 0

With the results obtained above, the description of supp v in (7.2) can be
refined.

Proposition 9.10. One has suppv C (H?-la U ”Qa) N{Co<7<C,1}.

Proof. The inclusion 7 € [C),0,C), 1] is given in (7.2).

Consider a(y,n') € € (R4 x R?) supported in a neighborhood of {z = 0}
and with a(y’, z = 0,7') supported in the elliptic region ey = (115 U ”ga)C. One
has

7 (Charp N {z = 0}) Nsupp aj.—o = 0.
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See Section 2.3. If the support of a is chosen sufficiently small in the 2z variable,
then this remains true away from {z = 0}, in the sense that

a(y,z,n) #0 = py,z,0,() #0 V(eR.

Because of the homogeneity of p = p., and pr = py, 4., by compactness, the
same property holds for p, in place of p for k chosen sufficiently large. For such
choice one can set

_aly,n')¢
pk(za C) .

It is Lipschitz in y, smooth and compactly supported in 7" and admits a polyho-
mogeneous development in the ¢ variable as in (8.5)—(8.6). In fact, it reads

ar(y,m) =

0= a(y,n)¢ + a(y, mpr(z,¢),

precisely of the form given by the Euclidean symbol division of Proposition 8.2,
with b =0, by, = 0, and b, j, = a.
With (9.22) and the definition of the semi-classical measure v, one finds

(v,a,=0) = — (1, 0) = 0.

This gives the result considering the support property of a).—o. O

Let b € XM (R?**2) as above, with bi(y,n’) defined by (9.23). Let o =
(y,z = 0,7') € suppr. With Proposition 9.10 one has ¢ € 745 U 1Gsy and
7 € [Cho,Cua]. Let ¢* be defined as in (2.3) and o* = (¢, (*) € Hi UGy. With
(9.23) one finds

b(e") —ble™) =bi(d)(¢T = ¢7) if ¢ € suppr.

Hence, in supp v the function (b(o™) —b(07))/(¢* — ¢7) is well defined even for
points ¢’ € 1Gy. One has
b(o™) —b(o~ Opt — 0y, b
bi(d) = (93 (_Q)Z +<"+_ R , ¢ €suppy,
¢t —¢ (€T — & na) e mrm
since n, is here the unitary inward pointing normal vector in the sense of the

metric g. Hence, from (9.24) and Proposition 9.10 one concludes the proof of
Theorem 6.1. O
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10. MEASURE EQUATION AT ISOCHRONES AND NECESSARY GEOMETRIC
CONTROL CONDITION

In this section and in Section 11, we suppose (M, k,g) € X! chosen fixed,
and write p = p,. 4. Thus, H, = H

Pr.g

10.1. Necessary geometric control condition. The geometric conditions we
formulate here state that given any point of ¢ € T*L at least one bicharacteristic
that goes though o° reaches a point above the observation region.

Definition 10.1 (weak interior geometric control condition). Let w be an open
subset of M and T > 0. One says that (w,T) fulfills the weak interior geometric
control condition if for any o° € Charp N T*L and for any neighborhood V of
[0, T] x @, at least one generalized bicharacteristic that goes through ¢° reaches a
point above V.

Definition 10.2 (weak boundary geometric control condition). Let I" be an open
subset of OM and T > 0. One says that (I',T) fulfills the weak boundary geo-
metric control condition if for any o° € Char pNT*L and any neighborhood Vs of
[0, T)xT, at least one generalized bicharacteristic that goes through o° encounters
a boundary escape point (see Definition 2.11) above V.

The following theorem states the result of Theorem 1.10 in the framework
of the precise Definitions 10.1 and 10.2.

Theorem 10.3. (1) Interior observability (Definition 1.4) implies the weak
interior geometric control condition.
(2) Boundary observability (Definition 1.5) implies the weak boundary geo-
metric control condition.

This theorem is proven in Section 10.5. Its proof uses a measure equa-
tion similar to that of Theorem 6.1, yet across isochrones {t = Cst}, and the
construction of concentrating initial conditions.

Remark 10.4. e In the case of uniqueness of generalized bicharacteristics,
the weak geometric control condition stated here coincides with the usual
necessary condition for observability to hold.

e [f one replaces the rough cut-off 1o 77xw (resp. 1[07T]><F) by the smoother
version 1pm©(x), then the (properly modified) geometric control condi-
tion is a necessary and sufficient condition in the case of uniqueness of
generalized bicharacteristics (see [7]). However, when uniqueness does not
hold this is no more the case as there is still the discrepancy between the
two conditions (necessary: at least one generalized bicharacteristic reaches
the set [0,T] x {© > 0}; sufficient: all generalized bicharacteristics reach
this set).
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For a given point ¢° = (2°,¢°,7°,£% € T*L, the proof of Theorem 10.3
requires the construction of a sequence of initial data spectrally localized such that
the measure of the associated sequence of solutions is supported on generalized
bicharacteristics passing through ¢". This is performed in several steps:

e By an explicit calculation, it is possible to do so if one forgets the spectral

localization (See Section 10.3).
e We then apply the spectral dyadic projector. Here, the difficulty comes
from the low regularity assumptions on the coefficients (see Section 10.4).
e We prove a transport equation which allows one to transfer the informa-
tion on the traces of the solutions at t = t° to {t > t°} (see Section 10.5).

10.2. Measure equation at isochrones. With ¢t € R, we consider the isochrone
Z = {t =t} In L. We naturally identify Z with M, and T*M with T*Z. For
(x,€&) € T* M, identified with o = (¢, 2,7 = 0,&), the polynomial 7 — p(t, z, T,&)
has exactly two roots 77(gp) > 0 and 7 (0) = —77 () < 0. If compared to
Section 2.3 one only faces hyperbolic points in the present situation. Set

QGB = (t,l’,7+(g)7£), Qe - (Z,ZE,T_(Q>,§)-

Denote by a, 4(z,&) the principal symbol of A, ,, that is, a, 4(z,&) = —g¥&¢&; in
local coordinates. Suppose H = (hy,) is a scale. For each k, suppose u) € Hj (M),
ul € LA(M), fr € L} (L), and uy is a weak solution to

loc
PK,g uk = fk‘ ln R X M,
_,,0 A
Uk|t=t = Uk 8tuk|t:; = U 1 M.

One extends the diffent functions by zero outside M and L. Suppose the following
holds.

Assumption 10.5. (1) The sequences (ul)r and (hyui)x are both bounded in
L2(M) and U, = (9, hyul) admits at scale H the Hermitian s.c.m. on

T*M
0 0
O (Vo,o Vo,l)
V?,o V?,l
supported away from OM. )
(2) The sequences (ug)r and (hyfi)r are both bounded in L2 (L), and (ug, hi fr)x

~

admits at scale H the Hermitian s.c.m. on T*L

Mooy Mo
M = ’ .
(MLO M1,1>
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Set n = M()’o.
(3) No mass leaks at infinity at scale H for (¢ (t)ug)r and (hib(t) fi)k, for any
Y € €°(R), and there exists C' > 0 such that, for any interval I C R,

(10.1) funllzrreney + Wil zrng < CHL - R EN.
(4) One has
(10.2) suppp C CharpNT*L\ 0 and suppr® C T*M\ 0.

The sequence t(1t>;uk, 1i~ihi fr)r admits at scale H a Hermitian s.c.am. M

N

on T*L, with the following natural connection with M.
Lemma 10.6. One has M =144 M.
A proof is given below. One sets it = Mgy = 15 1.

At t =t and away from OL the measure y is solution to H,p = 0. The
measure equation we establish concerns p* and involves M&“ ; and the Hermitian

measure /0.

Theorem 10.7. Suppose Q is an open subset of M with QN OM = 0. In
T*(R x Q) one has

0

0o — 00
(10.3) H,p" = ~"Hyp* =2Im M(;,rl +/ = d(an, Vg,o —v11)(0)

+/ (59@ + 5g9) dIm V[()),l(g)u
oET* M

in the sense of distributions.
A proof is given in Section 11.

Remark 10.8. The open subset Q is introduced as the measure equation (10.3)
is only proven to hold away from the boundary OL.

In the simpler context of the wave coefficients with constant coefficients,
one can find in [17, Proposition 4.4] a result expressing the measure p by means
of measures associated with intial conditions. In the more general context we
have here, deriving a formula for g or p™ is not possible. Yet, the result of
Theorem 10.7 provides a transport equation solved by u*.
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Proof of Lemma 10.6. For simplicity we consider ¢ = 0 here without loss of
generality.

We prove that M&“ 1 = 1454 My 1. The proof is the same for the other matrix
entries. Set vy = hy fr. Suppose that § € €°(R) with 0 < g <1 and §(0) =
Then, for 38,(t) = S(nt), with Proposition 5.21 (adapted to Hermitian measures)
and dominated convergence, one obtains

lim (5nuk,vk)L2([; <M0 lv/Bn> s (Mo 1,1{t 0}>

k—+o00

using that no mass leaks at infinity for both u; and v; by Assumption 10.5. By
(10.1) one has|(8,us, vk)LQ(LA)‘ < 1/n uniformly in k. Thus one finds

(10.4) 10y Mo,1 = 0.
Suppose x € € (R) is such that 0 < y <1 and x(¢) =0if t <0 and x(t) =1 if
t > 1. Set x,(t) = x(nt). Consider b € X.(T*L), B" a representative of [Op”(b)],
and Y€>°(L) with ¢» = 1 on the (¢, z)-projection of supp(b). One writes
(Bh¢1t>ouk, 1t>o’Uk)L2([:)
= (B"Lis0ur, (Liso = Xn)0k) 22y + (B "9 (Lis0 = Xn) Uy XnVk) 122
+ (Bthnulm Xnvk)L2(ﬁ)

Let e > 0. Since B" is bounded on L2(£), (uy,)y, and (vg)y, are bounded in L
by (10.1) there exists ng € N such that,

bel(L);
|(Bh¢1t>ouk, (Le=0 = Xn)Uk) p2(z) + (BMp(1ys0 — Xn)ts, Xnvk)Lg(ﬁ)‘ <e,
uniformly in k, for n > ng. There exists also n; > ng such that
(Mo, b(Leso — xp))| < e
for n > ny by dominated convergence using (10.4). One thus concludes that
| (B9 1m0, 1es00k) 1202y — (Mo, Lisob) |
< 2 + [(B"YXntt, XnVk) 12() — (Mo, X2) |,
for n > ny; and k € N. Set n = n;. Then, there exists ky € N such that
|(B"1s ot 1es00k) 122y — (Mo, Lisob)| < 3e,
for k > ko implying the result. O

Remark 10.9. Similarly one proves that the off-diagonal entries of the measures
of (Lysotg, Iy frr) and (ug, Lisohy fr) are also given by Mgfl = 14=0Mp, and Mffo =
1is0Mip.
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10.3. Concentration at a point. Pick ¢ € .Z(R?), 2° € R? and ¢° € R\ 0.
Set

wp(x) = = (R (2 — 2%)).

One has |Jwy|| 2 = ||| ;> and (wy, ), admits the measure [|1]|. 0(20,¢0y as its semi-
classical measure (at scale h); this follows from computations based on oscillatory-
integral arguments.

Lemma 10.10. For all s € R one has ||(—A)" 2wy || ;> ~ B~ |€12||Y]| L2
Proof. Write ty,(€) = h¥/*) (R'/2¢ — h=1/2¢%) assuming 2 = 0 without any loss

of generality. One then computes

. _9s 510 _ag s 2
ll€[*an]Z = b2 / W26 4 €25 [(6) 2de ~ B0 ) e

by the dominated-convergence theorem. O

If b(z, £) € O0((¢)~N;R??) for some N, note that Op”(b) as in (5.3) makes
sense if acting on . (RY).

Proposition 10.11. Suppose b(z, &) € X942((&)=N: R??) for some N € R, and

1
bi(z, &) = (&)™ / O, bz, s€ + &) ds € B(R*) = TOH((&)HT R,
0
j=1,...,d, for some m; > 0. One has

Op" (bywy = b, E)wn + > My (150 (b) O(h'?) in L*(RY) as h — 0.

1<j<d
Proof. Set Yy (z) =1 (v — h'/22%)) and
v, = h_d/4¢(h_1/2(:v - 1:0)) = h_d/41/1h(h_1/23:).

Then, wy, = b(z, hD + &)v;, and Op" (b)wy, = em'go/hb(aj, hD + &)vy, by standard
computations, yielding with q(z,&) = b(x, £ + £°) — b(z, £°),

Wy, = (0p"(b) — b, £%))wy, = e/ (b(x, hD + &) — b(x, "))y
h—d/4eiz-§0/h

= g [ e e de
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Note that ||@y,|| ;2 = ||usl| ;2 with w, given by
1 , .
_ iz 1/2 1/2
() = o / e q(hV 2, BY2E) i (€) dE.

Write gq(z,8) = 2, &; Iy Og,b(x, s€ + €°) ds. This gives uy(z) = h'/? >, ujn(w)
with

ujn(w) = (Qi)d / €' by (B!, h2€) (BY/2€) ™53l (€) d,

with b; as in the proposition statement. Set 1), = (hl/QD)mexjwh. Then
wjp(x) = bj(hY 2z, K12 D)1y, (), that is, a semi-classical operator acting on 1y, j,
yet with h replaced by h'/2. First, observe that |1%njl ;2 is bounded uniformly in
h. Second, with Lemma 5.6 one finds

—(d+1
ltinlle S Moy (bi (0 2. €)).
which concludes the proof since M(;C(lfﬁl) (b;(h'%2,€)) = M(;C(lﬁl)(bj). O

Set b.(z,£) = (24any(z,€)) " with 2 € C\R. Then, b, € X04T2((£)72; R??).
Define b; as in the statement of Proposition 10.11 with b, in place of b and
m; =m = 2d + 3.

Lemma 10.12. There ezists C' > 0 such that Mo_,c(zﬁl)(bj) < C|Im 2| 7374,
Proof. First, one has 0¢,b.(z,&) = — (2 + ayg(x,£)) 20c, ang(x, £), implying
() os (@, O < (O™ Tm 2| 72(1€°] + [¢]) < [Tm 2|7,

as m = 2d + 3. Second, note that 8?(<§>*m6§jbz(m, s€ +&°)) is equal to a linear
combination of terms

0¢ ()™ s\ (020, be) (w, € +€°), with 1+ By = 5.
As ‘(0?28@1)2) (2, s€ + €0)| < [Tm 2| 71%172(|€0) + |¢])1%2I+1 one obtains
(€)F0gb; (W22, €)] S (T TIm 2|77 < [ Tm 2| =,

for |5 <d+1as m=2d+ 3. O
Corollary 10.13. Set b.(z,&) = (2 + any(z,£)) " with z € C\ R. One has

Op"(b)wy, = b, (z, 2wy, + K2 Im 2|74720(1) in L*(R?) as h — 0.
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10.4. Dyadic projection. Consider (z°,¢%) € T*M with z° ¢ OM and C =
(0, ¢) a local chart with 2° € O. In this local chart, introduce (wy,); as above:

(10.5) wy(x) = h—d/4eix-§0/h¢(h—1/2(x _ xo)),

with ¥ € €>°(R?) with 1y = 1 in a neighborhood of 0 here. Consider a scale
H = (hg) and choose k sufficiently large so that suppv, C O, with vy = ¢ wy
for wy, = wp, .

As above, denote by a, 4(z,£) the symbol of the operator A, ,, that is,
in local coordinates, a, ,(x,&) = —g”(x)&;. Suppose 0 < a < 1, and y €
€>(Ja?, a7 ?[), with x = 1 on [a,a™!]. Here, we prove that x(—a,(z,&%))vy
and x(—hiAg)vr coincide in L?(M) up to a o(1) remainder. One can view
X(—hiAy,g)vr as some “projection” of vy, onto the dyadic subspace Ej, introduced
in Section 4.1.

Lemma 10.14. Suppose 6,0 € €>(4(0)), with § = 1 on a neighborhood of
suppf. Set § = ¢*0 € €2(0). For z € C\ R set b,(z,) = (any(z, &) + Z)_l.
One has

(h?Ayg +2)710 = ¢*0 Op"(b.)8(6™)" + Ry,
with || Ryl g2y = O(h)| Tm(2)] 7 (1 4 [2]*72).

A proof is given below. Note that if z € C\ R, the operator Oph(bz) is well
defined and bounded on L?*(R?) by Lemma 10.16 given below.

With y as above, consider Y € €>°(C) an almost analytic extension of x.
The Helffer-Sjostrand formula [13] gives

(10.6) xX(—=h*A,,) = i lim OX(2)(R* A,y + 2) " 1dz A dz.

21T e—0t | Im z|>e
The function x has the following properties: yr = X, there exists C' > 0 such

that supp x C supp x + i[—C, C], and for any n € N there exists C,, > 0 such
that

10x(2)| < Cp| Im 2|™.
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Choose 6,0 as in Lemma 10.14 and 6 = ¢*0. One obtains

1 _ .
2 _ : ~ 2 1 _
X(—=h"Ay )0 = 5 Elféi o OX(2)(h*Ag g+ 2) " 0dz Ndz
_ 1 * : 3. h =0 4—1\*
= %gb 661_13%1+ — Ox(2) Op"(b.)dz A dz8(¢ ") + O(h) (12
I TP 5o NG a—1\*
= %qﬁ 6 Op (el_1>1r(1)1+ /Imz'26 ox(2)b.dz N dz>9(¢ )+ O(Rh) 12

= ¢"0 Op" (x(—any))0(¢7")" + O(h) £(z2),

meaning that

(10-7) X(_h2Amg) = [Oph] (X(_aﬁ,g))7
with the notation introduced in Section 5.4.

Consider now 6 such that § = 1 on supp vk, for k sufficiently large. One
has

X(_hQAH,g>Uk - QS*Q Oph (X(_an,g))wk + O(h)L27

yielding, with Proposition 10.11,
(10.8) X(—=h? A g)ve = X (= (2, %)) vk + O(B?) 201y

Since (vx)x has |97 d(z0,¢0y for s.c.m., one has the following result.

Lemma 10.15. The two sequences x(—h*A, g )vp and x( — anq(z,£°))vy, have
2
X( - aﬁ,g(l‘07go))| ||¢||i2 5(x0,§0)'

the same s.c.m., that is,

Proof of Lemma 10.14. For z € C\ R and w € .(R?) one has

0 Op" (1) (Fu) ) = (2m)* [ e OLa)bu (. hPu(e) de.
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With the form of the differential operator A, , in local coordinates compute
P2 Ay (€020 (2, h)

= iR Y B, (¢ SRg 0D 2, hENE,
1]
Ty Z ho,, (eixf%gijamj (sz) (x, hf))
0,
= 4 (Bab.) (@, hE) + i~ ¢ S, hE) + WY 0, i, he),

where

m(a,€) = > (0, (kg 6b.) (., )¢, + Ry, (6b.) (. )& ).

i,J
with ¢; = Zj f{giﬂ'a% (sz). We deduce that

10.9) (h*A,, + 2)0 Op"(b,)0 = 0 + ihia~ ' Op"(m)0 + h2>  &',, Op”(£,)6.
7g - 1

One checks that m fulfills the assumptions of Lemma 10.16 with 6 = 1 and so do
the symbols 4;, 1 < i < d, with § = 2, implying that Op”(m), and Op"(¢;) are
bounded on L?(RY).

The following bounds hold for the resolvent

1002 Ay +2) L piaaany < T2l
10 Ay +2) "M ez oy < [RImz| 7' (| Re 2| + | Im z[)'/2.
From the second estimate one deduces also that
100 Ay +2) " g1 oany 22y < 1o Imz| 7 (| Re 2| + | Im 2]) /2.
One thus obtains
[(h2 Ay + 2)7' 6" OD (M6 ™) o ngy < 1Tm(2)
and

[(h? A +2) 7 56702, OD" (4)0(™) 1 g2 uny

< I Im(=) [ Ry i =1, d.
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If one applies the resolvent (h?A,, + 2)~! to the left of identity (10.9), one then
obtains

[(h* Ay +2) 710 — "0 OD"(0)0(6™1) || 112 0
(L2 (M)
< A Tm(2) 71+ |2V )E oo )

which gives the result. O

For 6§ > 0 set

L% (a) = max su 8ﬂ a(x 1B1+4
a(0) = s sup oo, )€

Compare LO a1 and M dﬁl Here, less decay is expected on a(z,&); yet decay

improves with differentiations with respect to &.

Lemma 10.16. Suppose a(z,&) € L>(R*?) is smooth in & and Ly d+1( a) < oo
for some 6 > 0. Then, Op”(a) is bounded on L*(R?) and

| Oph(a)Hg(m(Rd)) < Cé,dLa,gH(a)'
Compare with Lemma 5.6.

Proof. Consider § € €>°(R%)such that 0 < 0 < 1, §(¢) = 1 if [¢] < 1/2, and
6(&) =0if |£] > 1. Set ¢y = 6 and

»(€) = 0(§) — 0(2€) and ;(€) = »(277¢) for j € N,

yielding a dyadic partition of unity 1 = >, yv;. Set a;(z,§) = ¢;(§)a(z,§).
With Lemma 5.6 one finds

00" (o) o2y € Moaits”(a0) £ L a14(a) S Ly (),
since g has compact support. Consider now j > 1. With ilj = 277y, one writes
OB (a5)o(x) = (2) " [ =02 Ime)ale, hu)o(€) de
= (2m)? [ e uliigale. hy2€)0(6) de

= Op™ (b )o(a).
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with b;(z, &) = ¥(&)a(x,2¢). The symbol b; is compactly supported in ¢ and for
B € N4, with |3 < 1+ d, one finds

AL (x,€)| S Y 07 w(©)]|0f alx, 27¢)]
B/+p"=p
S Lo (@@ D7 270@e) 171707y (¢)).
BI+8"=p

Since |£] 2 1 in the compact supp ¢, one obtains

&) 0gbi(x,€)| S 2L (a) Y (@O ()] £ 27V Ly (a).

B+6"=F
Lemma 5.6 implies || Opﬁj(bj)Hc(LQ(Rd)) <279 Z+1( ). Convergence of .27
gives the conclusion. O

In what follows we will also need the following results.

Lemma 10.17. There ezists C > 0 such that Hthgx(—hZA,{,g)kaLz(M) < C.
If (2°,€%) in the definitions of wy in (10.5) and vy, = ¢*wy, is chosen such that
X (= arg(2°,8°)) # 0, then there exists C' > 0 such that

1/C < Ix(=hiArg)vill 2 < € and 1/C < [ hiNyx(=hig A g) Vil 120y < C

)
for k sufficiently large.

Lemma 10.18. One has
2 0 1/4
MV X (=i A g)vr = by (X (= g (2, 7)) vr) + Oy ") 200y
Proof of Lemma 10.17. Set 0, = x(—hi A, )vs. One writes

(1010) Hthg@kHig(M) = ()Z(_hiAn,g)Uk7{}k)L2(M)7

with X(A) = AX(A\). The same analysis used for @), applies to x(—hiA, 4)vk. In
particular X(—h2A,  )ox = X( = s g(x, ) v + O(hy/*) 2. One thus obtains the
first result

There exists a neighborhood V' of 2° such that |x( — axy(z,£%)| 2 1 for
x € V. For k sufficiently large supp vy C V implying

||X< - a'n,g(x7€0))vk||L2(M) Z ||Uk||L2(M) Z L.

With (10.8) one concludes that ||0g| 2 2 1.
Arguing the same with (10.10) and using that | ¥ x( — axg(2,£"))| 2 1in a
neighborhood of x°; one obtains that 170 Nl L2 ) 2 1- O
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Proof of Lemma 10.18. Set z, = x(—hiA.g)ve — X( — apg(2,£%)) v With

(10.8) one has ||zkl z2 g = O(h,lc/Q). Lemma 10.17 gives a L?-bound for the se-

quence hyVx(—hi A, ,)vr, and a simple computation gives thgx( — (2, 50))’uk

also L?-bounded. Hence, a preliminary estimate is 17Nkl o0y = O(1).
Compute ||thngHiz<M) = N; + Ny with

Nl = (_hiAmgX(_h’iAn,g)vkv Zk)LQ(M)y
Ny = (hkvgx( - CL,@Q(ZL’, £0>)Uk7 hkvgzk)Lz(M)-

Note that —hZA,,X(—hiA. v = X(—hiA.,)vk , with y(A) = Ax()), is L*-
bounded since the same analysis used for X(=h}A, v applies. Hence, Ny =
O(h)/*). Writing

T NpX (= g (2, €%)) Yo = e [V x (= g (,€9))Jor + X (= g, €)) BV,
one finds

Ny = (x( = ang(z, 50)))hkvgvlm hkvgzk)Lg(M) + O(hg).
With a similar commutator computation one further obtains

N2 - (X( - aﬁ,9<m7 go))hiAm,gvka Zk)Lg(M) + O(hk)

With Lemma 10.10 one concludes that Ny = O(h,lc/Q). O

10.5. Proof of the necessary geometric control condition. Here, we prove
Theorem 10.3. Assume that observability holds and yet the condition of Defi-
nition 10.1 (resp. Definition 10.2) does not hold. This section aims to reach a
contradiction.

If the weak interior geometric control condition does not hold, there exist
0" = (t°,2°, 79, £9%) € Char pnT*L and V an open neighborhood of [0, 7] x @ such
that no generalized bicharacteristic going through ¢° reaches a point above V. If
the weak boundary geometric control condition does not hold, there exist ¢° and
Vs an open neighborhood of [0,7] x T’ such that no generalized bicharacteristic
going through ¢° reaches a boundary escape point above Vj.

10.5.1. Interior initial point. We first treat the case ¢" € Char(p)N(T*L\OT*L).
The case ¢° € Char(p) N OT*L is treated in a second round.

One has 7 # 0. With some scaling in the cotangent variables, one may
assume |7°| € [o,a7!] for some 0 < a < 1. One has (7°)? = —a, ,(2°,&°) =

g7 (x)§0E5.
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Suppose x € €°(R) is such that x > 0, supp x Cla?, o2, and x((7%)?) =
4]/ 2, with 1 used in (10.5). With the sequence (vy), C L*(M) constructed
above set

ul = x(=h*A, )vp and uy, = ih, 70U

and denote by u; the solution to the homogeneous wave equation
Pn,gukzo iIl]RXM7
(10.11) up =0 in R x OM,

0 ol
Uk |g=t0 = Uy, 8tuk|t:t0 =u, n M.
: 0 S a0 — 0
Since uy C By, with up = >~ ., uy €, one finds

i(t—t2)v/ L —i(t—t9) VA,
up =y (e, e TV e,
veJg

with wg 1, = uf) , (1 £ ki 'A;1/27°) /2. With Lemma 10.17 observe that

(10.12)
N 1 0112 12 1 0112 0N21,, 0112 ) —
EM(un) = 5 (1w Ngaig Iz + llhwg | 2) = 5 (1w NIz + (7°) e 1) = 1.

The solution (uy,);, is bounded in L2 (L) as in Section 6.2.1, and can be associ-

ated with a s.c.m. p (up to a possible subsequence extraction). Associated with
hiOqug|pe is @ s.cm. v. Arguing as in Proposition 6.4 one finds
(10.13) suppp C CharpNT*LN{a < |7| < a™'},

suppr C T*OLN{a < |7] < a™'}.
Hence, Theorem 6.1 applies and both measure y and v satisfy the measure prop-
agation equation (6.2). As in the proof of Proposition 6.4 one finds that no mass
leaks at infinity at scale H, in the sense of Definition 5.16.

As the s.c.m. of (vy) at scale H = (hy)y is ||¢||ig§($0’£0), with Lemma 10.15
one finds the following results.

Lemma 10.19. The sequence (ul, hyu}); admits the Hermitian s.c.m.

0 V&O 1/871 (1 —i70 5( o e0)
=1.,0 o ] = 1.0 0\2 0,
Viop Vi1 it (77)

on T*M at scale H = (hy)g.
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As in Section 10.2 denote by ™ the s.c.m. associated with (1;50ug). By
Lemma 10.6 one has p* = 1,50 p. Observe that

ayg,o — V?}l = —2(7’0)25@0,50) and Im Vg,l = —705(550150).

1/2

Theorem 10.7 applies and, as 77 — 77 = 2|a, 4(2°,£)|"" = 2|7, one obtains

(10.14) H,ut = —"H,ut = -27° 5,0,

away from 9(T*L), using that for o = (t°,2°,0,£°) one has ¢ = ¢® if 7° > 0 and
o’ = 0°if 7 < 0.

Lemma 10.20. The measure u vanishes in a neighborhood of {t = t°} NO(T*L).

A proof is given below. With Lemma 10.20 and (10.14), one concludes that
supp utN{t = t°} = {0°}. As u™ = 1,504 one also has supp uN{t =t} = {"}.
With Theorem 2.14 one obtains the following lemma.

Lemma 10.21. The support of  is a union of mazximal generalized bicharacter-
istics that go through o°.

Case 1: interior observation. If interior observablity holds, then inequality
(1.6) is valid for the sequence (uy ). By (10.12) one has || 110 r{xw hkﬁtukHLQw) 21,
implying

(10.15) supp p NT*V 0.

The open set V' is introduced in the beginning of the proof. In fact, consider ¢ €
¢>° (L) nonnegative such that supp ¢ C V and ¢ = 1 in a neighborhood of [0, 7] x
w. With Proposition 5.21 one finds (u1, p7%) = limy_, 4o (@hsOyur, huOyug) 12(c) 2
1, yielding (10.15). With Lemma 10.21 however, the existence of a point in
supp 4 N T*V yields a contradiction with the choice of the point ¢° made at the
beginning of the proof.

Case 2: boundary observation. If boundary observablity holds, then inequal-
ity (1.7) is valid for (uy)r. With (10.12) one has ||1jo7[xr 8nu‘RXaMHL2(a£) 21,
implying that supp v N T*Vj, # 0; the open set Vj is introduced in the beginning
of the proof. Suppose lo' = (!, 2!, 71, 1) € T*Vj.

Case llp* € 4, a hyperpoblic point: Denote by o'+ € Hai the points
such that 7 (o%) = lp'. They are boundary escape points. With
Lemma 10.21 the existence of such a point in supp p yields a contra-
diction. Thus p = 0 locally near these points. With Theorem 6.1, near a
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hyperbolic point one has "H, 4 = ji®J,—¢, for ji some measure on d(T*L).
Here, one has o"* ¢ supp(i®d.—o) implying o' ¢ suppv. One concludes
that 1Hy N supp v = 0.

Case llp! = o' € Gy N Be.,e, a glancing escape point: o' € IG; = Gs.
If o' € suppp one reaches a contradiction with Lemma 10.21 as o' is
boundary escape point. Thus, locally p = 0. In local coordinates, in a
neighborhood W of ¢!, Theorem 6.1 and Remark 2.15 give

<V7 va|Z:C:0> - 07

for any g € €>°(R***2) supported in W, since there is no hyperbolic point
in suppr N W. As any compactly supported function ¢ on {z = ¢ = 0}
can be written in the form d¢q,—¢—o, this implies that v vanishes in a
neighborhood of ¢'. One concludes that Gy N B, Nsupp v = 0.
With Proposition 9.10, Lemma 2.12, and the two cases above, one concludes that
suppv C Gg \ Bese C gg U G3. Yet, the measure v has no mass on this set by
Proposition 3.5 in the companion article [5], that is, (v,1ga,gs) = 0, implying
that v vanishes; a contradiction.

10.5.2. Boundary initial point. We now treat the case ¢° € Char(p) N 9T*L.
Case 3: @° € Charp N dT*L for a interior observation. Suppose that V'
is a neighborhood of [0,7] x @ in OT*L such that no generalized bicharacteristic
going through ¢° reaches a point above V. Consider V a neighborhood of [0, T xw
in OT*L such that V € V and ¢ = dist(V,V¢). For o = (t,z,7,£) € T*L and
T >0, set B -

TT(y) ={lt—t| <Tyn | ¥

yey

that is, the union of all generalized bicharacteristic that pass through y, restricted
to the time interval [t — T, ¢+ T].

With the continuity result of Proposition 2.11 in the companion article [5],
for T > 0 there exists § > 0 such for any ¢° € T*L one has

dist(g°, 0”) < dand p € TT(g°) = dist (0,7 (")) < &/2.

Thus, for T chosen sufficiently large there exists g° € CharpN (T L\ dT*L) such
that no generalized bicharacteristic going through g° reaches a point above V,
meaning we are back to the configuration considered above.
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Case 4: @° € Char p N 8T*L for a boundary observation. Note that one
cannot argue as in the case of an interior observation since Gy \ Bese C Ho.
However, the method used here applies to the case of an interior observation; the
argument is yet much more involved. Note also that the argument simplifies if
generalized bicharacteristics are uniquely defined, that is, in the presence of a
generalized bicharacteristic flow.

Suppose Vj is a neighborhood of [0, T] x I in &T*L such that no generalized
bicharacteristic going through ¢° reaches a boundary escape point above Vj.
Write ¢° = (t°,2° 7°,£9), where 2° = (2/2%) with 2° = 0. One considers a
sequence (0"), C CharpNT*L\ O(T*L) such that o" = (t° 2"0 2" 7" &) — ©°
as n — +o0o, that is, 2" — 0% and (77, £") — (79, £%). With each ¢, construct
a sequence of solutions (u, )i to the wave equation as done above, that is, with
a s.c.m. [, whose support is a union of maximal generalized bicharacteristics
that go through ¢". One has supp p, C Charp N {a < |7| < o'}, With this
construction, the mass of p, on T*((=T,T) x M) is uniformly bounded for any
T > 0. This implies, that (u,), is a bounded sequence of measure in the sense of
the measure topology. Consequently, there exists a measure p such that p, — @
for a subsequence, still denoted by f,, in the measure topology on T’ “£. One has
suppu C Charpn{a < |7| < a7}

Consider M a bounded neighborhood of M in M and set £ = R x M.
Denote by U a neighborhood of Charp N T*£ N {a < |7| < a~'} in T*L, such
that Ur = U N {|Jt — t°| < T} is compact. There exists a increasing function
¢ : N — N such that

1
(1 = prpmy, a)| < EHGHLW a € 6, (Un),

recalling that the strong topology is equivalent to the weak topology for a con-
verging sequence of measures; see [30, Section 34.4]. Denote by p, this extracted
sequence for concision:

1
(10.16) = @) < e, @ € GATL)

Consider a sequence (1), C €°(R) such that ¢, = 1 on a neighborhood
of [-n,n] and supp, C [-n — 1,n + 1]. We write ¢, in place of ,(t) for
concision. The measure [, |2, is the limit of p, . = [Wibpunil? as k — +o0
in the measure sense, where Wi, u,, ;. is (a variant of) the Wiegner transform of
U (t)Un i (t, x); see [16]. Thus, there exists a increasing function ¢ : N — N such
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that
(10.17)

1
‘(Mn,gé(n) - !%!2%,@)\ = ‘(:un,@(n) - /Lma>| < EHCLHL‘%? a € chO(Un»

From (10.16)-(10.17), one finds that fi,, 3,y — p on U in the measure sense

as n — oo. It follows that p is the s.c.m. of v, = up 4m) on L at scale Pp(n)
by [16, Proposition 1.4]. Denote by v the s.c.m. of hy,)0,v,, by potentially
performing yet another subsequence extraction. One has suppr C {a < |7| <
a1}, Theorems 6.1 and 2.14 apply, implying that supp p is a union of maximal
generalized bicharacteristics.

Suppose T > 0 and a € €°(Ut) is such that suppa NTT(g°) = @. In
particular, set ¢ = dist (suppa,I'"(¢°)). There exists N € N* such that

n>Nand pel'"(o") = dist (o, FT(QO)) <e/2,

by Proposition 2.11 in the companion article [5]. Because of the description of
supp (i, given above one finds that (yu,,a) = 0if n > N. With (10.16) one obtains
[(p,a)| < Llal| o if n > N thus giving (i, a) = 0. Hence,

supp N Ut C TT(°).

One concludes that supp p is a union of maximal generalized bicharacteristics
that all go through o°.

One is now in the same position as in the proof of the case of a boundary
observation where ¢° ¢ T*L. The proof can be carried out mutatis mutandis:
first, suppr N 1My = 0, second, Gy N B.se Nsupp v = O implying that supp v C
G4 U G3 yielding a contradiction.

This concludes the proof of Theorem 10.3. O

Proof of Lemma 10.20. Consider y; solution to the homogeneous wave equa-
tion (10.11) with yg—p0 = gz = X( =y g(2, )0 and Oyyk—po = g}{ = ih;lrogz.
Since supp(yk‘t:to) and supp(@tyk|t:to) are away from M, by finite-speed prop-
agation yj, vanishes in a fixed open neighborhood W of {t = t°} N 9L. By (10.8)
and Lemma 10.18 one has

[AACTEST =0 and [Pk =yl o = O-

locnn

One concludes that the semi-classical energy of u; — yx converges to 0. Hence,
one finds

2 2
1Ny || 72 ) + (PO || 7247y — O,
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yielding (|7|> + |£|?)u = 0 in T*W. In particular, this implies that the support
of u is restricted to the null section in 7*W. With (10.13) one obtains that p
vanishes in T"W. 4

11. PROOF OF THE MEASURE EQUATION AT AN ISOCHRONE

Here, we prove Theorem 10.7. We treat the case t = 0 without any loss of
generality. At the hypersurface ¢t = 0, there is no boundary condition. The two
traces up—o = ud and Otuk|t:0 = u; have to be taken into account in the analysis.
Proceeding as is done for the measure equations at the boundary 0L in Sections 7
and 9 makes a double-layer potential appear, and it cannot be handeled by the
method used therein. We choose to proceed differently here, letting the measure
act on tangential symbols. This approach can for instance be found in [11] for
the treatment of Zaremba boundary conditions at a boundary.

11.1. Preliminary filtering. As in the proof of the measure equation of Theo-
rem 6.1 we first apply some filtering to reduce the support of the measures. The
principle is very similar to what is done in the beginning of Section 7.1, yet more
technical because of the low regularity of the coefficients of the operator A, ,.
Consider x € €>*(R) with 0 ¢ suppx. Set w, = x(—h*A.y)u, fo =
X(—=h2A, ) fr, @) = X(—h%A,  )ul, and G; = x(—h?A, ,)us. One has

P,{’gﬂk:fk in]RXM,
u =0 in R x (9/\/{,
~ ~0 ~ ~1 .

Uk|t=0 = U atuk|t:0 =1, in M.

Proposition 11.1. The sequence (i, hifi)x admits |x(—ax,)|>M as its Her-
mitian s.c.m. on T*L \ O(T*L) at scale H. The sequence (42, hyiit) admits
IX(—awg)PV" as its Hermitian s.c.m. on T* M\ 9(T*M) at scale H.

The proof of this intuitive result is given in Section 11.1.1 below. Note that
the s.c.m. of @ also reads |x(72)[*u from the assumed support properties.

With Lemma 10.6, the sequence (1, 1t>0hkfk)k has |x(—ay4)*M™ for
measure. If we prove that the measure equation (10.3) holds for M* and 1°
replaced by |x(—axg)?M* and |x(—a,4)|?v°, then using (10.2) one finds that
(10.3) holds also for u* and ° by the dominated-convergence theorem. Without
any loss of generality we may thus replace uy by g, fr by fk, u) by @3, and u}
by ;. Then, there exists 0 < C,, o0 < 1 < C,,; < oo such that

(11.1) supput C CharpNT*LN{C,0 < [£| < Cua},
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and
supp’ C T*M N {Cpp < €] < Cui}
Suppose [ is a time interval. With the filtering used above, one has
(11.2) HukHLQ(IXM) ~ HhiAn,gukHmeM) ~ [|hEOFur — hikaLQ(IXM)'

Assume that a subsequence of u; converges to 0 in L?(I x M). This gives
pp=0on T*(I x M). With (11.2), one finds that [|h{07ur|l 2 p — 0 and

1y — 0 also, using that hy fy, is Li,-bounded. Then, ellipticity
up to the boundary gives ||hfuy|| m2(rxa — 0 and interpolation gives

112 A gt 2

HhkaﬁukHLQ(IxM) — 0 and Hhkvgkukum(lx/w) — 0.

Since (10.1) implies the time continuity of the semi-classical energy uniformly in
k one obtains that

170 (0, )| 2y = 0 and [V, (0, )| 2 gy = O

One concludes that v° = 0. Hence, all terms in the measure equation vanish, in
this case. One may thus assume that |[uk||j2(;x g 2 1, for any interval I. Then,
one finds that

1= ||uk||L2(IxM) ~ HhiAmgukHLQ(IXM) ~ Hhi@tZUkHL?(IXM)?
and one further obtains

(11.3) | W24 DEAL 1, (0 €N,

P P

and

HhkatukHLQ(IxM) ~ HhkvgkukHL2(I><,/\/l) ~ 1.

By (11.3) one finds that 1,50 (t)u, € HE.(L) for any s € [0,1/2[ and ¢ € €°(R).
From Lemma 5.17 one deduces the following result.

Lemma 11.2. No mass leaks at infinity at scale H for 1io(1(t)u)y.
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11.1.1. Proof of Proposition 11.1. We prove that the s.c.m. of @y, is |x(—a,q)|*1
on T*L\ O(T*L). The proof for the other sequences and measures are the same.

Suppose j € €2°(T*L) and ¢ € €>(L) with ¢» = 1 on the (¢, x)-projection
of supp j and supp(v)) N L = (). Arguing as in Proposition 7.2 one proves the
following lemma.

Lemma 11.3. One has [[Op"](j)v, h?A, 4] € hL(LE.(L)).

One deduces the following result.
Lemma 11.4. One has [[Op"](j), (= + h?A, ) 7] € h|Im 2| 2L(LE . (L)).
Proof. Suppose Im z # 0. With Lemma 11.3 one writes

(2 + h* A g) 0D (1) — [OP") ()% (2 + h?Aryg) € hL(L, (L))

Letting (24 h?A, )" act, both from the left and the right one obtains the result
using that ||(z + thn,g)_lHL(LE(M)) < [Imz|[ 7 O

With the Helffer-Sjostrand formula (10.6) the result extends to x(—h?*A, ,).
Lemma 11.5. Suppose x € €°(R). One has

[[Op")(j)¥, X(—h*A,,)] € hL(LE (L))

With the previous lemma, one writes

—h?A,,)[Op M (5)x(—h? A,ig g, uy,)

—h?A,4)*[Op"] )zpuk,uk)m(ﬁ +O(
Y2 (=h*A,,)[Op " )wuk,uk)m(c + O(
[OD"](x* (—eg)) [OD"] (1) ¥uk, k) oy ) + Oh),

LQ

(4 h)
(7 hi)

using (10.7).

It suffices to prove the result of the proposition with a test function sup-
ported in a local chart. Moreover, it can be chosen of the form j(t,z,7,§) =
Gi(t, 2)ja(7, &) with ji,jo € €X(R?Y). Then, Op"(j) = j10p"(j2). With a
partition of unity and using Proposition 5.10 one has [[Oph] (X} (—any)), J1] €
hL(L*(M)) yielding

([ ]( X (= h*A ﬁg)uk <_h2An,g)uk)L2(£)
= ([0p")(j1s2x (_an,g))¢ukauk)Lz(L) + O(hy).
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One thus obtains

kgr-i{loo ([Oph] (j)X(_hQAmg)wuka X<_h2Aﬁ,g)uk)L2(£) = <ﬂ> XQ(_ali,g)j>7

which is the result of Proposition 11.1. O
11.2. Symbol decomposition. The measure equation is local. Consequently,
the remaining of the proof can be carried out in local charts. Suppose C = (O, ¢r)
is such a local chart, with O neighborhood of a point ¢° € £\ 9L.

As in Section 8.1 we consider b(p) € Z¥(R?*?) and proceed with a Eu-
clidean symbol division. The symbol b has compact support in the y = (¢, )
variables, suppb C K x R¥! K a compact subset of ¢(O) and fast decay in
the n = (7, &) variables.

Consider 0 < Cy < Cf < €1 < Cy and x € €>°(R?) such that x(£) = 1 in
a neighborhood of {C] < |£| < C7} and supported in {Cy < |£] < C4}. One has

X(f)b(Q) - bO(ta Z, 6) + bl(tv Z, 5)7— + qp(Q),

by Proposition 8.2, here, with the role of the variable &, played by 7. The symbols
by and by fulfill (an adapted version of) Property (8.3), that is,

(11.4) |0902b;(y.€)] < Cn (&)™,
for NeN, a ¢ N || <1, BN j=0,1, y € R*™ ¢ecR?

and ¢ fulfills (an adapted version of) Property (8.4).

Recall that o = (t,z,&,7) € suppp™ implies |£| € [C0,Cunl; see (11.1).
Without loss of generality one can assume C,o < 1 < C,;. The constants
Co, Cf, C1, Cy are chosen such that

suppx C {Clo < [§] < CF .}

and x =1 in a neighborhood of {C, o < [{| < Cpa1}.
One writes

("Hp 1, b) = (e, Hy b) = (p, x Hy b) = (1, Hy(xd))
since x = 1 on supp p and supp dex Nsupp g = 0. One has
H,(xb) = Hy bo + (Hy b1)7 + (H, )p,

implying
(115) <tHPN7b> = </’L7HP bO + (HP bl)T>‘

With the support properties of p given in (11.1) this last duality bracket makes
sense.
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11.3. Commutator and limits. As in Section 7.2 we consider the commutator
given by [hZ P, 4, Op"(b)y)]. With (11.5), the symbol b can be chosen of the form
b(o) = bo(y, &) +bi(y,&)7, with supp b; C K x R4 for K a compact of ¢(O) and
b; fulfilling Property (11.4), j = 0,1, meaning fast decay in the £ variable and
only one derivative in the x variable. Recall that y = (¢t,z) and ¢ = (¢, z,7,¢).

The symbols b; are tangential with respect to time ¢.
Suppose ¢ € €°(¢-(0)) is equal to 1 in a bounded neighborhood of K.
Arguing as in the proof of Proposition 7.2 one obtains the followins result.

Lemma 11.6. One has
[h Ps.g, OD" (b)) = —ihy Op™ (H, b)Y + 0(hy) £(12).-
One computes

H,b(0) = {p,b}(0) = bo(y, &) + bi(y, &) + ba(y, )77

From (11.4) one has the estimations
100b;(y,€)| < Cnp(&)™, for NeN, BN, yeR™ ¢eR,

that is, b; € SE((n) VR x RY), for any n and N. Note that ) = 1 on a

neighborhood of the (¢, x)-projection of suppb;, j = 0,1,2. By Lemma 5.19 in
the tangential case (see Remark 5.22) and Proposition 5.21, one has

lim (Oph(go)wuk,uk)p(bo) = kgriloo(oph(go)wl»ouka LisoUp) L2(rd) = <M+750>,

k——+o0

using that that no mass leaks at infinity at scale H by Lemma 11.2.
The following two results also hold.

Lemma 11.7. One has

lim (Op” (b1)hxDytug, ug) 20y = (1™, bi7)

k—+o00
and
kETm(Oph(gz)hinlpuk, )20y = (W, bo7?).
With Lemmata 11.6 and 11.7 one concludes that
(116)  lim i([Ae Py, Op" (B)lun, ) 2y = %, Hy b) = (‘H, %, ).

k——+o00
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Proof of Lemma 11.7. We treat the second limit. As [hD?, ] € hL(L*)hD;+
hL(L?), with (11.3) one has
(Op" ()R Dirpug, ur) 20y = (Op™(ba)yhi Diug, ug) 1250y + O(hi)
= —(Oph(ih)whif‘ln,guk,Uk)L?(t>o) + O(hk>
= —(Op" (ba)h} Ar g 1isoun, Lsour) 2 + O(hy).

Then, one obtains

lim (Oph(BQ)hiDthuk,uk)LQ(t>0) = —(u", 52@&9%

k——+o0

arguing as in Proposition 7.2 and using Lemma 5.19 in the tangential case (see
Remark 5.22) and Proposition 5.21, using that that no mass leaks at infinity at

scale H by Lemma 11.2. Then, using that suppu® C supppu C Charp where

7% = —a,,4, one obtains

lim (Op"(bo)hi DApur, wp) r20) = (1™, bat?).

k—+o0

Second, suppose ¢ € €°(R) with ¢ = 1 in a neighborhood of 0. One writes
(Op" (by) e Detouge, ) r2>0) = (OD™ (b1) Lisohu Detbuig, Lesoun) g2 = It + I,
with
I, = (Op"(by) Op” (1 — o(7/R)) Lisohik Dythuk, Lisouk) 2,
and
I, = (Op"(by) Op" (¢(7/R)) Lisohi Ditbug, 1isour) 12,

Since hy " Df AL tuy, is bounded in L? by (11.3) for any ¢, ¢’ € N, one finds that
1isohk Dipuy, € HE.(L) for any s € [0,1/2]. With Lemma 4.3 in [11] one obtains,
for such s,

| Op” (1 — @(T/R))1t>0thtwuk||L2 < C,R7%,
uniformly in k. Thus, for any s € [0,1/2[, one has
(11.7) || < CIR™™.
Next, to treat the second term one writes

Lisohi Dytpuy, = hie Dy (Y 1isour) + ihathy—oup & di—o,
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yielding I, = I} + I3 with
I, = (Oph(i’l) Oph (@(T/R))tht (¢1t>ouk>7 Lisour) L2,

and

fé/ = th( (i) )1/1|t:022 & Oph (SO(T/R))5t:0, 1t>ouk)L2
= ihy(Op (5 )¢|t=0?_ig & Oph (‘P(T/R))ét:oa Lisothug) 2.

Set by (t,z,7,&) = To(1/R)bi (x,€); it is smooth, with compact support in (¢, z)
and has fast decay in (7,£). One has I} = (Op”(b,) (Y1isour), Lisoug) 2 and

lim Ij = (b)) — (uF,7hy),

k—oo R—o0

by dominated convergence as supp u is compact in the (7, ) variables by (11.1).
One has Op" (¢(7/R))di—o = h™'Rp(h~'Rt), with ¢ the inverse Fourier
transform of . Thus one obtains

(11.8)

Sq— 1/2 y 1/2
51 S RIR 2 o 120 B 2y [0 im0tk 2y S BR8] oy S B> RY2.
With (11.7)—(11.8) one concludes the proof. O

11.4. End of the proof of the measure equation at an isochrone. With
integrations by parts and one computes

i([hi Pe.g, OP" (0) Y uk, ur) 2150y = L + J,
with
Iy = {(Op™ (b)vug, hy fr) 2(50) — (0P ()R, fo, we) £2(10)
Jp = —ihy (0 Oph(b)wuk‘tzo, Uk [t=0) L2 (M) T i(Op™ (b Vg =0, POkt i=0) £2(M)-
With Remark 10.9 one obtains
(11.9) lim I, = (Mg, b) — i(Miy, b) = 2(Im M, b).

k—o0

One writes 8, Op"(b)y = Op"(b)y0; + (Op™(9ub)y + Op™(b)(D))). As Ib =
O¢bo + (0;by)T, this gives

—ihi(0, Op" (b)tk =0, Weji=0) 2 My = —1(OP" (D) i Dstigy—o, Ukjr—0) L2 (M)
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using that (Uk:\tzo)k and (hkﬁtuk|t:0)k are bounded sequences in L*(M). One
thus finds

Ji = —i(Op" (b)YhiOytkji—0, Weji—o) z2(m) + 1(OD™ (B) o, POrtigeji—o) 12(m1)
+O(hy).
One further writes
Op"(b)¢ = Op" (bo)> + Op" (b1) Dets
= Op”(bo)y + Op" (b1 )¥ Dy — iy Op™ (1) (O40)),
implying
(Op™ (b)Y hy, Otk =0, Unji—0) 12 (M)
= (Op" (bo) W huOstug o, Wkjt=0) L2(M) — i(oph(bl)l/’hzafuk“:o, Uk |1=0)L2(M)
+ O(hy)
= (Op" (bo) W huOstug o, Wkjt=0) L2(M) — i(oph(bl)i/}thn,guk‘t:O? Uk |1=0) L2 (M)
+ O(hy),

and

(Oph(b)d}ukuzo’ hkatuk|t:0)L2(M)
= (Op" (bo)vtu)i—o, PicOstiryi—o) r2(m) — (0P (b1) P hdyti im0, MOt imo) L2 (M)
+ O(hy).
This yields
Ji = —i(Op" (bo) Y hiOptik =0, Uje—o) 2(m) — (OP" (bL) VAR Ay gt e—o, Ukjimo) 22(M)
+i(Op" (bo) Ytk jmos hieOrtiye—o) 2 (my + (OP™ (b1) IOyt o, PrOptikjimo) 12(m)
+ O(hg).
Arguing as in the proof of Proposition 7.2 one finds
(Op" (b1)Whi Ar gtiji—o, Wejmo) 22(Mm) = (OD" (Braucig) Pt je—o, Ukjimo) 22ty + O ().
With (11.6) and (11.9), this gives
(11.10)
<th :u+7 b> <11’I1 M(i—l? b> - i<V10,07 b0> - <V((J),07 blamg) + i<yg,17 b0> + <V?,1a b1>

=2
= 2(Im M(i—l? b) — 2(Im ngl, bo) + (1/?,1 — aﬁ,gyg70, by).
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With the analysis of Section 11.2, Equation (11.10) holds for a symbol
b(o) € X (R?¥2) that we write b(0) = bo(t, x, &) + by (t, 2, £)T + qpx 4(0). Suppose
(x,€) € T*M and set p = (t =0,2,¢,0), and

QEB - (07I7T+(Q)7§)7 Qe - (071‘77_(9)75)‘

as in Section 10.2. Since %, 0® € Charp and 77 (9) = —77(p), one has

@ o —0.2.6) = b(0®) — b(e®
(b(0®) + (), bi(t=0,2,8) = — =

Plugged in (11.10), this gives the result of Theorem 10.7. O

b0<t = 07'7775) =

N | —
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