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ABSTRACT

Analyzing volumetric data with rotational invariance or equivariance is an active topic in current
research. Existing deep-learning approaches utilize either group convolutional networks limited to
discrete rotations or steerable convolutional networks with constrained filter structures. This work
proposes a novel equivariant neural network architecture that achieves analytical Equivariance to
Local Pattern Orientation on the continuous SO(3) group while allowing unconstrained trainable
filters - EquiLoPO Network. Our key innovations are a group convolutional operation leveraging
irreducible representations as the Fourier basis and a local activation function in the SO(3) space
that provides a well-defined mapping from input to output functions, preserving equivariance. By
integrating these operations into a ResNet-style architecture, we propose a model that overcomes the
limitations of prior methods. A comprehensive evaluation on diverse 3D medical imaging datasets
from MedMNIST3D demonstrates the effectiveness of our approach, which consistently outperforms
state of the art. This work suggests the benefits of true rotational equivariance on SO(3) and flexible
unconstrained filters enabled by the local activation function, providing a flexible framework for
equivariant deep learning on volumetric data with potential applications across domains. Our code is
publicly available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/ILPO/-/
tree/main/EquiLoPO.

1 Introduction

Deep-learning methods have shown remarkable success in analyzing spatial data across various domains. However,
in many real-world scenarios, the data can be presented in arbitrary orientations. Therefore, the output of the neural
network should be invariant or equivariant to rotations of the input. While data augmentation can partially address this
requirement, it leads to increased computational demands, especially for volumetric data with three rotation angles.

To tackle this challenge, researchers have developed equivariant neural network architectures that utilize rotationally
equivariant operations. We can broadly categorize these methods into two classes: group convolutional networks and
steerable convolutional networks. Group convolutional networks achieve rotational equivariance by convolving data in
both translational and rotational spaces, but they are typically limited to a discrete set of rotations. On the other hand,
steerable convolutional networks employ filters that are analytically equivariant to continuous rotations, but they impose
constraints on the filter structures.

In this work, we propose a novel equivariant neural network architecture that combines the strengths of both approaches.
Our key contributions are:

1. We present a group convolutional network that achieves analytical equivariance with respect to the continuous
rotational space SO(3) by leveraging irreducible representations as the Fourier basis.

2. Contrary to steerable convolutional networks, our approach does not impose constraints on the filter structures
beyond the finite resolution limits.

3. We present a local activation function in the rotational space that provides a well-defined mapping from input
function values to output function values, ensuring the preservation of equivariance properties while avoiding
the reduction of the architecture to a steerable convolutional network.

https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/ILPO/-/tree/main/EquiLoPO
https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/ILPO/-/tree/main/EquiLoPO
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By addressing the limitations of existing methods, our approach offers a powerful and flexible framework for analyzing
volumetric data in a rotationally equivariant manner without the need for data augmentation or constraints on filter
structures.

2 Related work

2.1 Deep learning for volumetric data and equivariance

In recent years, deep learning has firmly established its place in the analysis of spatial data. Neural networks
learn a hierarchy of features by recognizing spatial patterns at various levels. However, in real-world scenarios,
multidimensional data are often given in arbitrary orientation and shift, as the coordinate system is not defined. In
such cases, it is desirable for the output of the neural network to be independent of the rotation or shift of the input
data. While dealing with shifts is straightforward through the use of convolution, which is inherently shift-equivariant,
achieving equivariance with respect to rotations requires additional efforts. A primary solution for achieving this effect
is augmentation of the training dataset with rotated samples [Krizhevsky et al., 2012] . Augmentation leads to an
increase not only in the dataset size and consequently training time, but also in the number of network parameters
needed to memorize patterns in multiple orientations. In volumetric cases, this increased demand for computational
resources can be overwhelming, as there are three angles of rotation in 3D, compared to just one in 2D. For some
data types, a canonical coordinate system may be defined [Pagès et al., 2019, Jumper et al., 2021, Igashov et al., 2021,
Zhemchuzhnikov et al., 2022]. However, in most real-world scenarios, such a coordinate system cannot be identified,
and even within a canonical coordinate system, the same local patterns may be encountered in different orientations.
These circumstances have led the community to focus on methods that are analytically invariant or equivariant to
rotations, utilizing rotationally equivariant operations.

Rotational equivariant methods for regular data can be divided into two groups: group convolution networks and
steerable convolutional networks. Our method formally belongs to the first group but without a specific approach to
activation in the Fourier space can be reduced to a method from the second group as it is shown in Appendix D. Thus,
we will briefly describe below group convolution networks, spherical harmonic networks and activation in the Fourier
space.

2.2 Group Convolution networks

The pioneering method from the first class was the Group Equivariant Convolutional Networks (G-CNNs) introduced
by Cohen and Welling [2016a], who proposed a general view on convolutions in different group spaces. Many more
methods were built up subsequently upon this approach [Worrall and Brostow, 2018, Winkels and Cohen, 2018, Bekkers
et al., 2018, Wang et al., 2019, Romero et al., 2020, Dehmamy et al., 2021, Roth and MacDonald, 2021, Knigge et al.,
2022, Liu et al., 2022b, Ruhe et al., 2023]. Several implementations of Group Equivariant Networks were specifically
adapted for regular volumetric data, e.g., CubeNet[Worrall and Brostow, 2018] and 3D G-CNN [Winkels and Cohen,
2018]. Methods of this class achieve rotational equivariance by convolving data not only in translational but also in
the rotational space. The authors of these methods consider a discrete set of 90-degree rotations, which exhaustively
describe the possible positions of a cubic pattern on a regular grid. However, equivariance with respect to this discrete
group of rotations does not guarantee equivariance on the continuous group SO(3). Separable SE(3)-equivariant network
[Kuipers and Bekkers, 2023] approximates equivariance in SO(3) but lacks analytical equivariance since the authors
sample only a finite set of points in the SO(3) space. Analytical rotational equivariance in 3D can be achieved by using
irreducible representations in the O(2) or the SO(3) group.

2.3 Spherical harmonics networks

Cohen and Welling [2016b] introduced steerable networks, a class of methods that use analytically equivariant filters
with respect to a particular group of transformations. The first two approaches that applied analytically-equivariant
filters to the 3D data are the Tensor Field Networks (TFN) [Thomas et al., 2018] and the N-Body Networks (NBNs)
[Kondor, 2018]. Kondor et al. [2018] presented a similar approach, the Clebsch-Gordan Nets, applied to data on a
sphere. Weiler et al. [2018] presented steerable networks for the regular three-dimensional data. The authors deduced a
complete equivariant kernel basis where input and output irreducible features have arbitrary degrees. The filter must
belong to the subspace of the equivariant kernels. This requirement may limit the expressiveness of the network [Duval
et al., 2023, Weiler et al., 2024]. To summarize, group convolutional networks do not put constraints on filters but
provide equivariance only on a discrete space of rotations. Spherical harmonics networks use irreducible representations
to achieve analytical equivariance on the continuous rotational space but imply constraints on the filters. Our method
employs irreducible SO(3) representations (Wigner matrices) as the Fourier basis in a group convolutional network.
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This approach allows us to obtain analytical equivariance and avoid constraints on the filter shape. In a general setup,
such a convolution can be reduced to a steerable network, shown in Appendix D, because an SO(3) irrep can be seen
as a set of O(2) irreps. However, we introduce a novel activation function in SO(3) that prevents the reduction of
the whole architecture to a steerable network. Indeed, our activation is not permutationally invariant with respect to
Wigner coefficients of different orders and the same degree and thus cannot be reduced to a steerable network, as we
demonstrate in Appendix D.

2.4 Activation Operators on Irreducible Representations

Activation functions play a crucial role in neural network architectures as they introduce nonlinear operations. When
working with irreducible representations (irreps) in rotationally-equivariant neural networks, it is mandatory to choose
activation functions that preserve the equivariance properties. Several approaches, listed below, have been proposed to
apply activation functions to irreps. Norm-based activation functions operate on the norm (magnitude) of each irrep,
preserving the equivariance properties. The L2 norm of each irrep is computed, and a scalar activation function is
applied to the norm. The activated norm is then used to scale the original irrep [Thomas et al., 2018]. The same principle
was used for the Fourier decomposition of a function in 3D by [Zhemchuzhnikov et al., 2022]. Gated activation
functions introduce learnable parameters to control the activation of each irrep [Weiler et al., 2018]. A separate set of
learnable weights is used to compute a gating signal, which is then applied to the irrep using element-wise multiplication.
Capsule networks use a special type of activation function called the squashing function Sabour et al. [2017]. The
squashing function scales the magnitude of the output vectors (irreps) to be between 0 and 1 while preserving their
direction. Tensor Product (TP) activation is a learnable activation function that operates on the tensor product of irreps
[Kondor et al., 2018]. It applies a learnable set of weights to the tensor product of the input irreps and then projects the
result back onto the original irrep basis.

The listed activation functions introduce non-linearity in equivariant neural networks. Unlike traditional interpretations,
we view irreducible representations (irreps) as Fourier coefficients of the SO(3) space, offering a distinct perspective on
their role in the network. From this viewpoint, we can classify activation functions as either global or local. Let fin and
fout represent the input and output functions of an activation operation σ. We call an activation global if

fout = σ(fin), (1)

meaning that the value at any point in fout depends on the values at all points in fin. Conversely, an activation is local if

fout(x) = σ(fin(x)), (2)

for any point x. This implies that the value at any point of the output function depends only on the value at the same
point in the input function, establishing a direct and unambiguous mapping between input and output values in real
space.

To the best of our knowledge, all the previously published activation methods in this domain are global. This is
suboptimal and can lead to noncompact representations and a lack of feature hierarchy learning, which our approach
aims to address. By integrating Wigner matrices within a Fourier function framework in SO(3), our method maps values
unambiguously in real rotational space, aiming to approximate the ReLU operator in real space. We further support
the significance of locality with computational experiments, showing that models with local mapping significantly
outperform those with global mapping in terms of accuracy.

3 Theoretical Framework on Spherical Harmonics, Wigner, and Clebsch-Gordan
Coefficients

This section provides an overview of spherical harmonics, Wigner coefficients, and Clebsch-Gordan coefficients,
essential mathematical tools in the field of quantum mechanics for the analysis of angular momentum.

3.1 Spherical Harmonics

Real spherical harmonics Y m
l (Ω) : S2 → R are a set of orthogonal functions defined on the surface of a sphere, denoted

as S2. They are useful in expanding functions defined over the sphere and appear extensively in the solution of partial
differential equations in spherical coordinates. The orthogonality of spherical harmonics is expressed as∫

S2

dΩY k
l (Ω)Y k′

l′ (Ω) = δll′δkk′ , (3)
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where δ stand for the Kronecker delta, signifying that spherical harmonics are orthogonal with respect to both the degree
l and the order m. Any square-integrable function f(Ω) : S2 → R can be decomposed into real spherical harmonics as

f(Ω) =

∞∑
l=0

l∑
k=−l

fk
l Y

k
l (Ω), (4)

where

fk
l =

∫
f(Ω)Y k

l (Ω)dΩ (5)

are the spherical harmonic expansion coefficients. In practice, we use a fixed maximum expansion order L defined by
the resolution of input data.

3.2 Wigner Coefficients

Wigner matrices, denoted as Dl
mm′(R), form the irreducible representations of SO(3), the group of rotations in

three-dimensional Euclidean space. These matrices are rotation operations for spherical harmonics,

Y k1

l (RΩ) =

l∑
k2=−l

Dl
k1k2

(R)Y k2

l (Ω), (6)

highlighting the transformation properties of spherical harmonics under rotation. The orthogonality of Wigner coeffi-
cients is held due to the following property,∫

SO(3)

dRDl
k1k2

(R)Dl′

k′
1k

′
2
(R) =

8π2

2l + 1
δll′δk1k′

1
δk2k′

2
. (7)

Another property of a Wigner matrix is its unitarity,

Dl
k1k2

(R−1) = Dl
k2k1

(R). (8)

Any square-integrable function f(R) : SO(3) → R can be decomposed into Wigner matrices as

f(R) =

∞∑
l=0

l∑
k1=−l

l∑
k2=−l

f l
k1k2

Dl
k1k2

(R), (9)

where

f l
k1k2

=
2l + 1

8π2

∫
f(R)Dl

k1k2
(R)dR (10)

are Wigner matrix decomposition coefficients. Again, for practical considerations in Eq. 9 we will use a fixed maximum
expansion order L .

3.3 Clebsch-Gordan Coefficients

The Clebsch-Gordan coefficients facilitate the coupling of two angular momenta in quantum mechanics, leading to
composite states with well-defined total angular momentum. The interconnection between Clebsch-Gordan coefficients,
spherical harmonics, and Wigner matrices is illustrated through the integration of products of spherical harmonics and
the transformation properties under rotation:∫

S2

dΩY K
L (Ω)Y k

l (Ω)Y k′

l′ (Ω) =

√
(2l + 1)(2l′ + 1)

4π(2L+ 1)
⟨l0l′0|L0⟩⟨lkl′k′|LK⟩ (11)

∫
SO(3)

dRDl
k1k2

(R)Dl′

k′
1k

′
2
(R)DL

K1K2
(R) =

8π2

2L+ 1
⟨LK1|lk1l′k′1⟩⟨LK2|lk2l′k′2⟩ (12)
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Figure 1: Comparison of invariant and equivariant networks, subplots A and B, respectively. A layer with an invariant
pattern recognition cannot distinguish some images, producing identical feature maps for different inputs. In contrast,
equivariant pattern recognition allows the discrimination of these images by building feature maps in 6D.

4 SE(3) convolution

4.1 Motivation

[Zhemchuzhnikov and Grudinin, 2024] proposed a method for invariant pattern recognition in 3D CNNs. In each
convolutional layer, they analyzed how the output varies with the orientation of the pattern. The authors examined a
continuous distribution of the output in the rotation space at each voxel, where they conducted sampling and extracted
the maximum value from the sampled points. The method is equivariant with respect to the orientation of the input data
and invariant to the orientation of data patterns. Formally, the method uses a convolutional operator that can be written
down as

h(r⃗) = max
R

∫
R3

f(r⃗ + r⃗0)w(Rr⃗0)dr⃗0, (13)

where f(r⃗) is the input map and w(r⃗) is a trainable filter. In practice, R3 is discretized and the integration is replaced
by a sum:

h(r⃗) = max
R

∑
r⃗0

f(r⃗ + r⃗0)w(Rr⃗0). (14)

However, the invariant pattern recognition approach is not the most expressive, as it cannot distinguish between different
inputs. Figure 1A schematically demonstrates a toy example where a layer with invariant pattern recognition outputs
identical feature maps for smiling and sad faces looking in different directions. A straightforward solution would be to
retain not only the maximum output value over the SO(3) rotation space, but also the distribution over the rotations. In
other words, the result of such a convolutional operator will be a map in 6D: R3 × SO(3),

h(r⃗,R) =

∫
R3

f(r⃗ + r⃗0)w(Rr⃗0)dr⃗0, (15)

where f(r⃗) and w(r⃗) are the input and the filter maps, respectively, or in a discrete form:

h(r⃗,R) =
∑
r⃗0

f(r⃗ + r⃗0)w(Rr⃗0). (16)

From here on, without loss of generality, for brevity, we will only use the integral form. This operation is equivariant to
both orientations of f(r⃗) and w(r⃗). If f(r⃗) → f(R0r⃗), then

h(r⃗,R) →
∫
R3

f(R0(r⃗ + r⃗0))w(Rr⃗0)dr⃗0 =

∫
R3

f(R0r⃗ + r⃗0)w(RR−1
0 r⃗0)dr⃗0 = h(R0r⃗,RR−1

0 ). (17)

Consequently, if w(r⃗) → w(R0r⃗), then

h(r⃗,R) →
∫
R3

f(r⃗ + r⃗0)w(RR0r⃗0)dr⃗0 = h(r⃗,RR0). (18)

It is worth noticing that the equivariant property in the two cases above holds in different manners. In the first case,
both arguments r⃗ and R are rotated. In the second case, rotation R0 is applied only to the second argument. Besides,
the expression in Eq. 17 shows how to coordinate rotation of two components of arguments of a 6D map. Introduction
of such a 6-dimensional feature map leads to the question how to treat such data. In this paper, we present a novel
equivariant convolution in 6D where both input and filter maps are in R3 ×SO(3) and the set of rotations is continuous,

h(r⃗,R) =

∫
SO(3)

dR0

∫
R3

dr⃗0f(r⃗ + r⃗0,R0)w(Rr⃗0,R0R−1). (19)

The usage of a continuous space of rotations ensures analytical equivariance of the convolution. Below we will show
how the irreducible representation helps to perform an integration in the SO(3) rotation space.
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4.2 Integration in the SO(3) rotation space

Let us substitute expansion coefficients from Eq. 10 into the convolution operation h(r⃗,R) in Eq. 19 and compute its
expansion coefficients:

hl1
k1k2

(r⃗) =
2l1 + 1

8π2

∫
SO(3)

dR h(r⃗,R)Dl
k1k2

(R)

=
2l1 + 1

8π2

∫
SO(3)

dR Dl1
k1k2

(R)

∫
SO(3)

dR0

∫
R3

dr⃗0f(r⃗ + r⃗0,R0)w(Rr⃗0,R0R−1). (20)

Let us now decompose functions f(r⃗) and w(r⃗) using Eq. 6, Eq. 4 and Eq. 9,

f(r⃗ + r⃗0,R0) =

Lin∑
l2=0

l2∑
k3=−l2

l2∑
k4=−l2

f l2
k3k4

(r⃗ + r⃗0)D
l2
k3k4

(R0), (21)

and

w(Rr⃗0,R0R−1) =

Lin∑
l3=0

l2∑
k5=−l2

l2∑
k6=−l2

l2∑
k7=−l2

Lfilter∑
l4=0

l4∑
k8=−l4

l4∑
k9=−l4

wl3l4
k5k7k8

(r)Dl3
k5k6

(R0)D
l3
k7k6

(R)Dl4
k8k9

(R)Y k9

l4
(Ωr⃗0),

(22)
where Lin and Lfilter are the maximum expansion orders of the filter in the rotational and the three-dimensional Euclidean
spaces, respectively.Eq. 22 also uses the unitarity property from Eq. 8. Eq. 20 then simplifies to

hl1
k1k2

(r⃗) =

∫
R3

dr⃗0

Lin∑
l2=0

l2∑
k3=−l2

l2∑
k4=−l2

f l2
k3k4

(r⃗ + r⃗0)S
l1l2
k1k2k3k4

(r⃗0), (23)

where

Sl1l2
k1k2k3k4

(r⃗0) =
8π2

2l2 + 1

Lfilter∑
l4=0

(
l2∑

k7=−l2

l4∑
k8=−l4

⟨l1k1|l2k7l4k8⟩wl2l4
k3k7k8

(r0)

)(
l4∑

k9=−l4

⟨l1k2|l2k4l4k9⟩Y k9

l4
(Ωr⃗0)

)
.

(24)
Appendix A presents a more detailed derivation of Eq. 24. Parameters wl2l4

k3k7k8
(r0) are trainable. The output map

expansion coefficients hl1
k1k2

(r⃗) have the maximum degree of Lout. We shall also stress that the values of Lfilter,Lin and
Lout must satisfy the triangular inequality,

∥Lin − Lfilter∥ ≤ Lout ≤ Lin + Lfilter. (25)

The computational complexity of the convolution in Eq. 24 is O(N3L3
filterL

3
inL

3
outDinDout), where N is the linear size

of the input data, and Din and Dout are numbers of input and output channels. Appendix B proves the roto-translational
equivariance with respect to the input data and the rotational equivariance with respect to the filter.

5 Non-linear operations

5.1 The need for local activation function

In neural networks, linear operations typically alternate with nonlinear ones; the latter are often referred to as activations.
Nonlinear operations are necessary to approximate complex dependencies in the data. However, from the perspective of
learning hierarchies of patterns, the two types of operations have different purposes. Indeed, linear layers are tasked
with detecting patterns and fetching a quantity proportional to the probability of finding a certain pattern. Nonlinear
layers, in turn, penalize low pattern probabilities, allowing only high ones to pass and often serve to learn compact
representations. An incorrectly chosen activation can lead to noise accumulation when passing through multiple layers
and also suboptimal latent representations. A classical activation solution is ReLU and its variants, which, despite some
drawbacks, are the most intuitively understandable activation functions. The vanilla ReLU operator passes only positive
values of its input. In convolutional and other networks dealing with spatial data, the critical property that differentiates
activation operations from the rest of the network is their locality, i.e., the activation is applied to different points in the
Euclidean space independently.

In our case, as we have already mentioned, the output of the linear convolution is six-dimensional: R3 × SO(3). Since
the R3 dimension discretizes into voxels, we apply the activation to each voxel separately. The most interesting question,
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however, is how to design the activation function for the SO(3) data dimension. We define the distribution of values in
SO(3) in our architecture with Wigner matrix decomposition coefficients. Each coefficient, similarly to the Fourier
series, represents the global properties of the entire SO(3) distribution rather than an individual point in SO(3). However,
we aim to design a local activation for SO(3) in the space of Wigner coefficients.

A previously used approach [Zhemchuzhnikov and Grudinin, 2024, Cohen et al., 2018] consists in sampling the
SO(3) space and requires a transformation from the Wigner representation into the rotation space, an activation in the
SO(3) space, and an inverse transformation into the Wigner space. However, this approach loses the analytical SO(3)
equivariance. It may not be a problem since sampling a sufficiently large number of points in the rotation SO(3) space
can guarantee effective equivariance. However, this strategy inevitably leads to an increased computational complexity.
Conversely, the proposed Wigner coefficient representation, allows using few values to define a function in SO(3)
and retaining analytical equivariance at the same time. There are no analytical expressions for the decomposition
coefficients of ReLU(f(R)) given the spherical harmonics coefficients of f(R). However, we will use the analytical
expression of the coefficients of a product of two functions, given in Eq. 44 in Appendix C. It enables us to find an
analytical expression for the spherical harmonics coefficients for a polynomial applied to a function in SO(3).

5.2 Local activation in the Wigner space

It has been demonstrated that in NN architectures, on a certain interval, the ReLU function can be approximated
by a polynomial of a low degree [Ali et al., 2020, Leshno et al., 1993, Gottemukkula, 2019]. Even the quadratic
polynomial of degree two showed competitive results in the ResNet architectures [Gottemukkula, 2019]. However,
as mentioned in Appendix C, the product of two functions defined in the SO(3) space with Wigner coefficients, has a
higher resolution than each of the initial functions. Subsequently, to avoid the loss of information, we need to increase
the maximum expansion order of the product, given as the Wigner matrix expansion. For a function in SO(3) defined
with Wigner coefficients of the maximum degree L, the result of applying a polynomial of degree n will have the
maximum expansion order of nL− 1. Since the number of Wigner expansion coefficients grows as the cube of the
expansion order, to approximate the activation function, we chose the activation polynomial of the second degree.

This paper studies multiple approximation strategies to this polynomial in the SO(3) space. Generally, the ReLU
approximation expression can be written down as

fact(r⃗) = DP2(
f(r⃗)

D
), (26)

where P2(x) = c0 + c1x+ c2x
2 and D is a scaling factor. Below, we discuss several approaches for this approximation

in the Wigner space.

5.3 Adaptive coefficients

In the "adaptive coefficients" approach, we approximate the ReLU operator on a [−3σ(f) + µ(f), 3σ(f) + µ(f)]
interval, where (µ, σ) are the mean and the standard deviation of f(R), respectively,

µ =

∫
SO(3)

f(R)dR∫
SO(3)

dR
≡ f0

00, (27)

σ =

√√√√∫SO(3)
(f(R)− µ)2dR∫

SO(3)
dR

≡

√√√√ L∑
l=1

l∑
k1,k2=−l

(
f l
k1k2

)2
2l + 1

. (28)

There are three possible cases to consider. In the special case of 3σ+µ < 0, we make an assumption that ∀Rf(R) < 0.
Then, we put the polynomial approximation to y = 0.01x, instead of y = 0 to avoid zero gradients. In the second
special case of −3σ + µ > 0, we assume ∀Rf(R) > 0 and set y = x. In the general case, the function f(R) ranges
both positive and negative values. For simplicity, we first divide the values of the function by 3σ and then apply a
polynomial that approximates ReLU on [−1 + k, 1 + k], where k = µ

3σ , k ∈ [−1, 1]. To find the optimal polynomial
coefficients in this case, we formulate the following minimization problem,

min
c0(k),c1(k),c2(k)

F (c0, c1, c2, k), (29)

where

F (c0, c1, c2, k) =

∫ 0

−1+k

(c0 + c1x+ c2x
2)2dx+

∫ 1+k

0

(c0 + c1x+ c2x
2 − x)2dx. (30)
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Then, we can consistently deduce (see details in Appendix E)
c2 = 15

32 (k
4 − 2k2 + 1)

c1 = 1
16 (−15k5 + 26k3 − 3k + 8)

c0 = 3
32 (5k

6 − 9k4 + 3k2 + 1)

. (31)

Figure 5 in Appendix E shows the plot of these coefficients as a function of normalized mean k and the error of this
approximation, respectively. Finally, to obtain the polynomial activation, we multiply the result by 3σ,

fact(R) = 3σP2

(
f(R)

3σ

)
. (32)

5.4 Constant coefficients

In the second strategy, we consider the denominator D equal to the third part of the function norm ∥f∥2. In practice,
this means that the function range lies in the [−1, 1] interval. This is a special case of the interval from the previous
approach at k = 0. Such a value of k leads to the following polynomial coefficient values,

c2 =
15

32
; c1 =

1

2
; c0 =

3

32
→ P2 =

3

32
+

1

2
x+

15

32
x2. (33)

We then multiply the result of the polynomial function by ∥f∥2/3,

fact(R) = (∥f∥2/3)P2

(
f(R)

(∥f∥2/3)

)
. (34)

5.5 Trainable coefficients

We have also studied an approach with trainable polynomial coefficients. Here, the denominator D is the same as in the
previous case, D = ∥f∥2/3. However, the three polynomial coefficients (c0, c1, c2) are trainable values.

5.6 Global activation

Above, we introduced a local activation function that requires a higher resolution and, consequently, an increased
number of coefficients. This raises the question of whether the performance improvement offered by this operation
justifies the associated rise in the computational cost. As a baseline for the activation, we explored an operation where
the output resolution is identical to that of the input.

The formalism presented above allows us to define the global activation,
fGlobAct(R) = GlobAct(f(R)) = σ(WSoftMax(f) + b)f(R), (35)

where we use SoftMax from Eq. 40, apply σ = sigmoid, and then multiply the result by the function f(R). W and
b are trainable parameters. Linearity of the Wigner matrix decomposition gives us the following expression for the
Wigner coefficients of the global activation function,

[fGlobAct]
l
k1k2

= σ(WSoftMax(f) + b)[f ]lk1k2
. (36)

This expression can be seen as a gating mechanism that only passes SO(3)-distributions with sufficiently high trainable
positive values, at least for a single point in SO(3). Although the input and output resolutions of this operation
are identical, we still employ a higher resolution (expansion order) in the ReLU approximation within the SoftMax
operation.

5.7 Normalization

The fact that the mean and the standard deviation of a function in the rotational space can be expressed in terms of
Wigner coefficients allows us to introduce an expression for the normalization of a function in SO(3):

fn(R) = γ
f(R)− µ

σ
+ β, (37)

where µ and σ are the mean and the standard deviation of function f , respectively, and γ and β are trainable coefficients.
We can also extend this operation for data in R3×SO(3), where the Euclidean component is discretized and characterized
by a set of functions fijk(R), where i, j, and k are voxel indices. The batch normalization is then defined as follows:

[fijk]n(R) = γ
fijk(R)− µijk

σijk
+ β, (38)
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where µijk and σijk are the mean and the standard deviation of a function fijk, respectively, and µ = 1
N

∑
i,j,k µijk

and σ2 = 1
N

∑
i,j,k σ

2
ijk, with N being the number of voxels.

5.8 Max pooling operation in the continuous SO(3) space

For a wide range of tasks, whether they involve global or local (voxel-wise) prediction, it is necessary to design an
operation that reduces the representation of the function in the rotation space to a single value. For brevity, we may
call it a pooling operation in SO(3). The most straightforward approach, average pooling of a function in the SO(3)
space, entails discarding Wigner coefficients of all degrees higher than zero. However, we aim to design an operation
analogous to max pooling.

Let us note that the polynomial approximation from Eq. 26 allows for the simulation of the SoftMax effect in SO(3).
More precisely, we can define SoftMax as

SoftMax(f) =
∫

SO(3)

w(R)ReLU(f(R))dR, (39)

where weight w(R) = ReLU(f(R))/
∫

SO(3)
ReLU(f(R′))dR′. The weight function estimates the ratio of

ReLU(f(R)) to the positive part of the function f(R). Thus, we can also define the SoftMax function in SO(3)
using only the Wigner matrix expansion coefficients of f(R) as

SoftMaxpoly(f) =

∫
SO(3)

act(f(R))2dR∫
SO(3)

act(f(R))dR
=

∥fa∥22
∥fa∥1

=

∑
l′,k′

1,k
′
2

8π2

2l′+1 ([fa]
l
k1k2

)2

[fa]000
. (40)

We should note that there can be different approaches to SoftMax simulation, even with the usage of polynomial
coefficients.

In scenarios where the pooling operation follows the ReLU operation, there is no need to apply the activation function
again. Instead, we can directly calculate the ratio of the 2-norm squared of the input function to the pooling operation to
its 1-norm.

6 Datasets, architectures and technical details

Our method is centered on applications involving regular volumetric data. Extending this method to irregular data
would necessitate significant modifications that are beyond the scope of this paper. Consequently, we evaluated our
method using a collection of voxelized 3D image datasets.

6.1 Datasets

We assessed our designs on MedMNIST v2, a vast MNIST-like collection of standardized biomedical images [Yang
et al., 2023]. It is designed to support a variety of tasks, including binary and multi-class classification, and ordinal
regression. The dataset encompasses six sets comprising a total of 9,998 3D images. All images are resized to
28× 28× 28 voxels, each paired with its respective classification label. We used the train-validation-text split provided
by the authors of the dataset (the proportion is 7 : 1 : 2).

6.2 Baseline architectures

For our baselines, we employed the same model configurations that the creators of the dataset utilized for testing on
MedMNIST3D datasets[Yang et al., 2023]. These include various adaptations of ResNet [He et al., 2016], featuring
2.5D/3D/ACS [Yang et al., 2021] convolutional layers, alongside open-source AutoML solutions such as auto-sklearn
[Feurer et al., 2019], and AutoKeras [Jin et al., 2019]. We have also added results of the models that were tested on the
collection: FPVT [Liu et al., 2022a], Moving Frame Net [Sangalli et al., 2023], Regular SE(3) convolution [Kuipers and
Bekkers, 2023] and ILPOResNet50 ([Zhemchuzhnikov and Grudinin, 2024]). Table 4 lists all the tested architectures.

6.3 Trained models

We developed multiple architectures with various activation methods, each reflecting the layer sequence of ResNet-18
[He et al., 2016]. The final architecture, featuring reduced-resolution activation, is inspired by ResNet-50 [He et al.,
2016]. Figure 2 schematically illustrates our EquiLoPo architecture along with its main components. These include the
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initial block, the repetitive building block, pooling operators in SO(3) and 3D spaces, and a linear transformation at the
end. Table 2 details the basic block for SE(3) data in ResNet-18. The initial convolutional block, outlined in Table 1,
initiates the architecture. We also specifically adapted the Batch Normalization process for 6D (3D × SO(3)) data.

It is important to note that the Bottleneck block in ResNet-50 (the simplest building block of the architecture), which
increases activation resolution, results in an eightfold increase in the maximum degree. This surge is attributed
to triple consecutive activations without an intervening convolution, potentially escalating computational demands.
Consequently, our exploration was limited to the ResNet-18 architecture, where the activation operation enhances
output resolution. Figure 2 illustrates the EquiLoPO ResNet-18 architecture.

Basic Block

EquiLoPO ResNet Architecture

Initial Block

Input 
(L=0, D=1)

Convolution
(L=2, D=2)

Activation
(L=4, D=4)

Convolution
(L=1, D=4)

Activation
(L=2, D=4)

Initial Block
(L=2, D=4)

Basic Block
(L=2, D=4) SoftMax AvgPool Linear Output

Activation
(L=2, D=4)

Convolution
(L=1, D=4)

Activation
(L=2, D=4)

Convolution
(L=1, D=4)

×8

Figure 2: Schematic representation of the EquiLoPO ResNet-18 architecture, with a sequence of operations in the
Initial and Basic blocks. L is the maximum expansion degree of the the last operator in the block and D is the number
of block’s features.

Step Operation Details (size of the filter in 3D; output, in-
put and filter maximum degrees)

1 Convolution, Eq. 23 3x3x3, Lin = 0, Lout = 2, Lfilter = 2
2 Batch Normalization, Eq. 38 Lin = 2, Lout = 2
3 Local Activation, Eq. 26 Lin = 2, Lout = 4
4 Convolution, Eq. 23 3x3x3, Lin = 4, Lout = 1, Lfilter = 2
5 Batch Normalization, Eq. 38 Lin = 1, Lout = 1
6 Local Activation, Eq. 26 Lin = 1, Lout = 2

Table 1: Sequence of operations in the Initial convolutional block of EquiLoPOResNet-18.

Step Operation Details (size of the filter in 3D; output, in-
put and filter maximum degrees)

1 Convolution, Eq. 23 3x3x3, Lin = 2, Lout = 1, Lfilter = 2
2 Batch Normalization, Eq. 38 Lin = 1, Lout = 1
3 Local Activation, Eq.26 Lin = 1, Lout = 2
4 Convolution, Eq. 23 3x3x3, Lin = 2, Lout = 1, Lfilter = 2
5 Batch Normalization, Eq. 38 Lin = 1, Lout = 1
6 Addition Add input (l = 0, 1) to the output
7 Local Activation, Eq. 26 Lin = 1, Lout = 2

Table 2: Sequence of operations in the Basic block of EquiLoPOResNet-18.

Every filter in our trained networks is confined within a 3× 3× 3 volume in 3D. Filters are parameterized by weights
wl2l4

k3k7k8
(ri), where ri ∈ 0, 1,

√
2,
√
3 represents all possible radii from the center in the cubic space. We used the

ADAM optimizer [Kingma and Ba, 2014]. In order to avoid overfitting, we apply the dropout operation after each
activation operation. The learning rate of the optimizer and the dropout rate are hyperparameters. All the models are
trained for 100 epochs. Table 5 in Appendix F lists hyperparameters optimized for validation data performance. Table
3 presents memory and time consumption metrics for EquiLoPOResNet-18, ILPOResNet-18 and ResNet-18 models
in the inference mode. The current implementation consumes significantly more memory than the vanilla ResNet
architecture and requires longer execution time because the activation is coded in Python rather than C++. Transitioning
the implementation to C++ could significantly reduce both memory and CPU footprints.
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Model Memory, GB Inference time per batch of 32 samples, seconds
ResNet-18 2.47 0.03

ILPONet-18 7.14 0.3
EquiLoPO (local activation) 27.02 2.49

EquiLoPO (global activation) 30.05 2.13
Table 3: Memory and Time consumption for EquiLoPOResNet-18, ILPOResNet-18 and ResNet-18.

7 Results

7.1 The need for higher resolution in the activation function

We previously highlighted the necessity of ensuring that the activation coefficients of the output possess a maximum
degree higher than that of the input to prevent information loss when applying the polynomial, specifically, Lout = 2Lin.
However, investigating the scenario where high output degrees are discarded, aligning the maximum output degree
with the maximum input degree ( Lout = Lin) merits consideration. Figure 3 illustrates the impact of the increased
resolution on the approximation accuracy of the SO(3) ReLU function. For this plot, we analyzed one of the rotational
distributions from the last convolution of the trained model with local adaptive coefficients on the Vessel dataset reported
in Table 4 (Lin = 2) to observe how the activation operator, with constant (subplots A-B) and adaptive (subplots C-D)
polynomial coefficients, operates under two conditions: Lout = Lin and Lout = 2Lin. We sampled 106 points in SO(3)
and computed the values of both input and output functions at these points, presenting the results on a density plot.

Subplots A and C offer illustrations for the scenario with a reduced resolution (Lout = Lin). Here, we note an inherent
ambiguity between the values of the input and output signals. Indeed, each input function value maps to multiple output
values. Such an inadequate mapping is also evidenced by the absence of a sharp negative value cutoff. Subplots B and
D showcase the polynomial approximation with an enhanced output resolution. This setup eliminates the ambiguity
in mapping in the real space, as each input function value uniquely corresponds to a single output function value.
Moreover, this operator exhibits nonlinearity and closely approximates the ReLU function, depicted by a black dashed
line. Consequently, negative input values transform into near-zero output values, a phenomenon clearly visible in the
right-hand histogram, which features a prominent peak near y = 0 and a sharp cutoff of negative values.

The extent to which increasing the resolution enhances the performance of the architecture is evident in Table 4.
We conducted additional tests using a single architecture with a reduced resolution. This architecture employs local
activation functions with trainable polynomial coefficients. As we can wee from the table, the model with reduced
resolution consistently underperforms across all datasets compared to the full-resolution model that also utilizes locally
trainable coefficients.

7.2 Constant and adaptive polynomial coefficients strategies in the activation

In the case when the input function’s mean is close to zero, the adaptive coefficients are almost identical to the constant
ones and the two strategies have very similar effect as suggested by Eq. 33. In practice, zero-mean functions are
frequent but there are also cases when the mean is shifted. Figure 3 demonstrates how the activation acts on a function
with the mean significantly shifted to the negative values.

Upper subplots of the four pictures demonstrate distribution of the input function defined in SO(3). The center of the
distribution is clearly shifted to the left. In this case, the polynomial with adaptive coefficients (subplot D) approximates
the ReLU function more precisely than the polynomial with constant coefficients (subplot B) because the approximation
is closer to the ReLU function. Indeed, according to Eq. 30, the adaptive coefficients strategy gives twofold less
approximation error than the constant coefficients one.

Table 4 presents the performance metrics for both strategies across the dataset collection. The choice between local
and global activation significantly influences the performance. Therefore, our comparative analysis focuses more on
contrasting local activations with adaptive versus constant polynomial coefficients. The strategy employing adaptive
coefficients outperforms the one with constant coefficients on all the datasets, except for Adrenal. This outcome is
expected, as adaptive coefficients typically provide a superior approximation of the activation function.

7.3 Local and global activation

We evaluated global and local activation layers across three distinct strategies for the coefficients of the approximating
activation polynomial. Table 4 indicates that for the trainable coefficients, the performance of global activation is
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Figure 3: Effect of the ReLU approximation with constant and adaptive polynomial coefficients in the SO(3) space for
two resolution strategies: A,C – low-resolution setup, Lout = Lin; B,D – high-resolution setup, Lout = 2Lin. Plots A
and B show results with constant activation coefficients. Plots C and D show results with adaptive activation coefficients.
The x and y axes represent the input and output functions, respectively. The histograms above and to the right of the
main plot display the distribution of these functions’ values. The top histogram plots also compare the input distribution
(blue) with the output distribution (red). Opacity of the main plots indicate the density distributions, overlaid with the
ReLU functions.

comparable to that of the local activation. However, for both constant and adaptive coefficients, the local activation
demonstrates superior results across all datasets.

7.4 Analysis of the SoftMax pooling in SO(3)

To examine the behavior of the SoftMax operation, we analyzed the outputs from the last convolution layer of the trained
model with locally adaptive coefficients on the Vessel dataset reported in Table 4. We extracted the SO(3) function
coefficients for all the maps, voxels, and channels, and then computed the SoftMax for these functions using Eq. 40.
We sampled 106 points in the SO(3) space and reconstructed the functions at these points. Figure 4 demonstrates the
relationship between SoftMax and the sampled maximum. It is evident that there is high correlation between the two
functions in the positive region of the sampled maximum.

Negative values in the sampled maximum lead to SoftMax values of zero. Near zero, uncertainty increases along with a
wide range of SoftMax values. This phenomenon appears due to the polynomial approximation error. Specifically, the
accuracy of the SoftMax approximation hinges on the condition that the mean of the output of the ReLU operation
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approximation must be greater or equal to zero. Additionally, the mean of the SO(3) distribution, or its L1-norm, should
be substantially smaller than the L2-norm. While this condition holds in most instances, there are exceptions where it
does not. These cases are clearly visible in Figure 4 as those providing high uncertainty in the SoftMax estimation near
zero sampled maximum.
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Sampled maximum vs SoftMax
y = 31.94 + 0.53x
95% confidence interval

Figure 4: Correlation between the Sampled Maximum and its SoftMax approximation of the output functions in the
rotational space in the trained model with locally adaptive coefficients on the Vessel dataset

.

7.5 Comparison with other methods

Table 4 lists a detailed comparison of our models’ performance against the baseline models: various adaptations of
ResNet [He et al., 2016], featuring 2.5D/3D/ACS [Yang et al., 2021] convolutional layers, alongside open-source
AutoML solutions such as auto-sklearn [Feurer et al., 2019], and AutoKeras [Jin et al., 2019]. We have also added
results of the models that were tested on the collection: FPVT [Liu et al., 2022a], Moving Frame Net [Sangalli et al.,
2023], Regular SE(3) convolution [Kuipers and Bekkers, 2023] and ILPOResNet50 ([Zhemchuzhnikov and Grudinin,
2024]).

In this context, the classes are imbalanced, meaning that to measure the predictive precision of a model, we need other
metrics besides accuracy (ACC). Consequently, we also consider the AUC-ROC (AUC) metric, which provides a
more informative assessment of imbalanced datasets. According to the metrics, we can observe that our models either
outperform or demonstrate state-of-the-art levels rounded to the third significant digit on nearly all metrics, except
for the accuracy on the organ dataset. The organ dataset is largely resolved, with all tested methods achieving a very
high level of AUC. Additionally, the dataset might benefit from more channels (more than the four we used) within the
model’s layers for improved performance. However, one of our goals was to limit the number of parameters in our
model.

Among the state-of-the-art methods, only the one proposed by [Zhemchuzhnikov and Grudinin, 2024] has fewer
parameters. The ILPOResNet model is based on the same principles of pattern definition and detection but carries out
recognition in an invariant manner while remaining in 3D. In contrast, the presented equivariant model offers a more
expressive architecture, as evidenced by its performance on the collection datasets, but requires more parameters.

When considering the various types of activation we tested, three stand out with the best performance: local activation
with trainable coefficients, local activation with adaptive coefficients, and global activation with trainable coefficients.
Tables 6, 7, and 8 in Appendix G show the results of experiments on architectures with these types of activations but a
smaller number of building blocks (1 or 2 instead of 8). Local activation with adaptive coefficients demonstrates the
highest robustness since, even in small models, it performs relatively well.

Here, a reasonable question may arise whether the local activation is necessary if the global activation already
demonstrates comparable results. We shall notice, however, that global activation, in the current implementation,
employs SoftMax in the argument of the multiplier function, which in turn utilizes the ReLU approximation, a form
of local activation. In Appendix H, we tested an alternative strategy for global activation, replacing SoftMax with
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the 2-norm. As evidenced by the results presented in Table 9, this alternative strategy yields significantly inferior
performance compared to the original approach with SoftMax.

Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 [He et al., 2016]
+ 2.5D[Yang et al., 2021]

11M 0.977 0.788 0.838 0.835 0.587 0.451 0.718 0.772 0.748 0.846 0.634 0.696

ResNet-18 [He et al., 2016]+
3D[Yang et al., 2021]

33M 0.996 0.907 0.863 0.844 0.712 0.508 0.827 0.721 0.874 0.877 0.820 0.745

ResNet-18 [He et al., 2016]+
ACS[Yang et al., 2021]

11M 0.994 0.900 0.873 0.847 0.714 0.497 0.839 0.754 0.930 0.928 0.705 0.722

ResNet-50 [He et al., 2016]+
2.5D[Yang et al., 2021]

15M 0.974 0.769 0.835 0.848 0.552 0.397 0.732 0.763 0.751 0.877 0.669 0.735

ResNet-50 [He et al., 2016]+
3D[Yang et al., 2021]

44M 0.994 0.883 0.875 0.847 0.725 0.494 0.828 0.745 0.907 0.918 0.851 0.795

ResNet-50 [He et al., 2016]+
ACS[Yang et al., 2021]

15M 0.994 0.889 0.886 0.841 0.750 0.517 0.828 0.758 0.912 0.858 0.719 0.709

auto-sklearn∗ [Feurer et al.,
2019]

- 0.977 0.814 0.914 0.874 0.628 0.453 0.828 0.802 0.910 0.915 0.631 0.730

AutoKeras∗ [Jin et al., 2019] - 0.979 0.804 0.844 0.834 0.642 0.458 0.804 0.705 0.773 0.894 0.538 0.724
FPVT∗ [Liu et al., 2022a] - 0.923 0.800 0.814 0.822 0.640 0.438 0.801 0.704 0.770 0.888 0.530 0.712
SE3MovFrNet ∗ [Sangalli
et al., 2023]

- - 0.745 - 0.871 - 0.615 - 0.815 - 0.953 - 0.896

Regular SE(3) convolution
[Kuipers and Bekkers,
2023]

172k - 0.698 - 0.858 - 0.604 - 0.832 - - - 0.869

ILPOResNet-50 38k 0.992 0.879 0.912 0.871 0.767 0.608 0.869 0.809 0.829 0.851 0.940 0.923
Local trainable activation 418k 0.991 0.866 0.923 0.861 0.727 0.563 0.876 0.792 0.950 0.958 0.965 0.878
Local adaptive activation 418k 0.977 0.767 0.916 0.871 0.803 0.613 0.885 0.805 0.968 0.958 0.984 0.940
Local constant activation 418k 0.761 0.282 0.856 0.793 0.758 0.546 0.896 0.836 0.805 0.890 0.883 0.847
Global trainable activation 113k 0.960 0.654 0.904 0.881 0.751 0.600 0.828 0.768 0.958 0.945 0.848 0.807
Global adaptive activation 113k 0.735 0.180 0.674 0.784 0.567 0.438 0.745 0.785 0.680 0.887 0.671 0.727
Global constant activation 113k 0.754 0.203 0.730 0.794 0.620 0.500 0.843 0.768 0.672 0.885 0.584 0.287
Local trainable activation,
const. resolution1

548k 0.944 0.598 0.739 0.794 0.624 0.379 0.507 0.768 0.709 0.885 0.620 0.345

Table 4: Comparison of different methods on MedMNIST’s 3D datasets. (∗) For these methods, the number of
parameters is unknown. (1) Here, we implemented the ResNet-50 architecture. In the other designs, we used the
ResNet-18 versions.

8 Conclusion

This work introduces a novel equivariant neural network architecture that achieves analytical rotational equivariance on
the continuous SO(3) group while retaining the flexibility of unconstrained trainable filters. Our key innovations are
a group convolutional operation that leverages irreducible representations as the Fourier basis and a local activation
function in the SO(3) space that provides a well-defined mapping from input to output function values in the real space.
By employing these operations within ResNet-style architectures, we created an equivariant model that overcomes the
limitations of existing group convolutional networks, restricted to discrete rotation groups and steerable convolutional
networks, which impose constraints on the filter structures.

We thoroughly evaluated our model on the diverse MedMNIST3D collection of 3D medical imaging datasets. Across
multiple datasets, our equivariant architecture consistently outperformed state-of-the-art methods, demonstrating its
effectiveness in analyzing volumetric data while respecting rotational symmetries. The superior performance of our
model highlights the importance of true rotational equivariance on the continuous SO(3) group, as well as the benefits
of a local activation function that preserves equivariance properties while maintaining the flexibility of unconstrained
filters.

Our work provides a powerful and flexible framework for equivariant deep learning on volumetric data, paving the way
for future research in this domain. Potential future directions include exploring opportunities for the local activation
operation within other networks using irreducible representations in various spaces.
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A Filter expression

In this section, we reveal how the expression in Eq. 24 is obtained:
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B Equivariance of the SE(3) convolution

B.1 Equivariance with respect to the input function

Let f(r⃗,R) be rotated by R1. Then consider the output of the convolution in Eq. 19:∫
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B.2 Equivariance with respect to the filter function

Let w(r⃗,R) be rotated by R1. Then consider the output of the convolution in Eq. 19:∫
SO(3)

dR0

∫
R3

dr⃗0f(r⃗ + r⃗0,R0)w(RR1r⃗0,R0R−1
1 R−1) = h(r⃗,RR1) (43)

C Product of two functions in SO(3)

The Wigner matrix decomposition coefficients of a product of two functions defined in SO(3) can be expressed through
coefficients of two multiplier functions.

Let functions f1(R) and f2(R) have coefficients [f1]
l1
k1k2

and [f1]
l1
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and fprod(R) be the product of f1(R) and
f2(R):
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where [fprod]
l3
k5k6

are coefficients of fprod(R), L1 and L2 are maximal degrees of f1 and f2 respectively. In order to
avoid loss of information the maximal degree of fprod is L3 = L1 + L2. Thus, the product operation requires increase
of resolution of data.

D Comparison with Steerable Networks and Importance of Activation

As we indicated in the main text, the EquiLoPo convolution is defined as
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In our implementation, we set coefficients [wEquiLoPo]
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Steerable Networks in the 3-dimensional case [Weiler et al., 2018] employ the following convolution operator:
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and coefficients [pSteerable]
l1l2l4dindout(r0) are trainable.

If we consider convolution in isolation from other operations in a network, then our convolution operator is equivalent
to the Steerable network convolution where the number of input and output degree features are Dl1

in = Din(2l1 + 1) and
Dl2

out = Dout(2l2 + 1) respectively:
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The difference between our method and Steerable Networks lies in the interpretation of the coefficients, namely we treat
them as expansion coefficients in SO(3). This interpretation results in a special approach to activation. We propose
such operation on the expansion coefficients that would correspond to the ReLU operator in the rotational space.

E Derivation of expressions for adaptive coefficients

The solution of Eq. 30 satisfies the following conditions,
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Multiplying the first equation by k and (k2 + 1/3) and subtracting it from the second and third equations, respectively,
we get {

c1 + 2c2k = − 1
4 (k

3 − 3k − 2)
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15 ) = − 1
16 (3k
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Figure 5 shows the plot of these coefficients as a function of normalized mean k and the error of this approximation,
respectively.
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Figure 5: Left: Coefficients of the polynomial as functions of µ
3σ . Right: Approximation error as a function of µ

3σ .

Methods Organ Nodule Fracture Adrenal Vessel Synapse
Local trainable activation lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.00 lr = 0.005, dr = 0.01 lr = 0.005, dr = 0.00 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.00
Local adaptive activation lr = 0.01, dr = 0.01 lr = 0.0005, dr = 0.01 lr = 0.0005, dr = 0.00 lr = 0.0005, dr = 0.01 lr = 0.005, dr = 0.01 lr = 0.01, dr = 0.01
Local constant activation lr = 0.01, dr = 0.01 lr = 0.005, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.0005, dr = 0.01 lr = 0.005, dr = 0.01 lr = 0.005, dr = 0.01
Global trainable activation lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.01 lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.00
Global adaptive activation lr = 0.005, dr = 0.01 lr = 0.01, dr = 0.00 lr = 0.01, dr = 0.00 lr = 0.01, dr = 0.01 lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.01
Global constant activation lr = 0.005, dr = 0.01 lr = 0.005, dr = 0.00 lr = 0.01, dr = 0.00 lr = 0.005, dr = 0.00 lr = 0.01, dr = 0.00 lr = 0.0005, dr = 0.00
Local trainable activation,
const. resolution .(1)

lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01

Table 5: Hyperparameters: learning rate (lr) and dropout rate (dr) of the trained networks.(1) Here, we implemented the
ResNet-50 architecture. In the other designs, we used the ResNet-18 versions.

F Hyperparameters

Table 5 shows optimal hyperparameters for the trained networks. All the networks, except for the last one, follow the
ResNet-18 architecture. The last model is based on the ResNet-50 version.

G Performance with fewer building blocks

In the main experiments, we evaluated the proposed neural network architecture using the standard ResNet-18 con-
figuration with 8 building blocks. To further investigate the method’s performance and scalability, we conducted
additional experiments by reducing the number of building blocks to 1 and 2, respectively, for the three activation
functions that demonstrated the best performance in the main experiments. These were local activation with train-
able coefficients(Table 6), local activation with adaptive coefficients(Table 7), and global activation with trainable
coefficients(Table 8).

As the number of building blocks decreases from 8 to 2 and then to 1, there is a general trend of degrading the
performance across all datasets and activation functions. The extent of performance degradation varies across datasets.
For example, the OrganMNIST3D dataset exhibits a more significant drop in accuracy (ACC) when reducing the
number of blocks compared to other datasets like NoduleMNIST3D or VesselMNIST3D.

The three activation functions (local activation with trainable coefficients, local activation with adaptive coefficients,
and global activation with trainable coefficients) show different levels of robustness to the reduction in building blocks.
Local activation with adaptive coefficients (Table 5) maintains relatively high performance even with fewer blocks,
compared to the other two activation functions.
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Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

8 Blocks 418k 0.991 0.866 0.923 0.861 0.727 0.563 0.876 0.792 0.950 0.958 0.965 0.878
2 Blocks 176k 0.968 0.705 0.902 0.855 0.716 0.525 0.892 0.785 0.962 0.927 0.838 0.832
1 Block 136k 0.936 0.489 0.872 0.861 0.726 0.508 0.885 0.846 0.963 0.914 0.876 0.861

Table 6: Performance comparison for ResNet-like architecture with 1, 2 and 8 blocks with local activation and trainable
coefficients.

Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

8 Blocks 418k 0.977 0.767 0.916 0.871 0.803 0.613 0.885 0.805 0.968 0.958 0.984 0.940
2 Blocks 176k 0.970 0.689 0.929 0.871 0.725 0.513 0.885 0.832 0.970 0.935 0.946 0.866
1 Block 136k 0.961 0.659 0.914 0.852 0.786 0.596 0.909 0.862 0.963 0.932 0.920 0.824

Table 7: Performance comparison for ResNet-like architecture with 1, 2 and 8 blocks with local activation and adaptive
coefficients.

Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

8 Blocks 113k 0.960 0.654 0.904 0.881 0.751 0.600 0.828 0.768 0.958 0.945 0.848 0.807
2 Blocks 43k 0.960 0.643 0.894 0.858 0.746 0.533 0.887 0.829 0.929 0.916 0.816 0.810
1 Block 32k 0.939 0.546 0.894 0.852 0.722 0.538 0.875 0.842 0.923 0.911 0.841 0.813

Table 8: Performance comparison for ResNet-like architecture with 1, 2 and 8 blocks with global activation and trainable
coefficients.

H Alternative strategy for the global activation

In this section, we test an alternative strategy for global activation. Instead of using Eq. 35, we use

fGlobAct(R) = GlobAct(f(R)) = σ(W |f |2 + b)f(R), (54)

where we replace the SoftMax function with the 2-norm of the function. Table 9 compares the performance of the
ResNet-18-like architecture with global activation using trainable coefficients and the two different strategies: SoftMax
and 2-norm. The results show that using the SoftMax function consistently outperforms the 2-norm alternative across
all datasets.

Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

SoftMax 113k 0.960 0.654 0.904 0.881 0.751 0.600 0.828 0.768 0.958 0.945 0.848 0.807
2-norm 113k 0.733 0.220 0.584 0.794 0.602 0.383 0.711 0.768 0.609 0.550 0.539 0.730

Table 9: Performance comparison for the ResNet-18-like architecture with global activation using trainable coefficients
and different aggregation functions.
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