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ILPO-NET: Network for the invariant recognition
of arbitrary volumetric patterns in 3D

Dmitrii Zhemchuzhnikov, Sergei Grudinin

Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
{dmitrii.zhemchuzhnikov,sergei.grudinin}@univ-grenoble-alpes.fr

Abstract. Effective recognition of spatial patterns and learning their
hierarchy is crucial in modern spatial data analysis. Volumetric data ap-
plications seek techniques ensuring invariance not only to shifts but also
to pattern rotations. While traditional methods can readily achieve trans-
lational invariance, rotational invariance possesses multiple challenges and
remains an active area of research. Here, we present ILPO-Net (Invariant
to Local Patterns Orientation Network), a novel approach that handles
arbitrarily shaped patterns with the convolutional operation inherently
invariant to local spatial pattern orientations using the Wigner matrix
expansions. Our architecture seamlessly integrates the new convolution
operator and, when benchmarked on diverse volumetric datasets such as
MedMNIST and CATH, demonstrates superior performance over the base-
lines with significantly reduced parameter counts — up to 1000 times fewer
in the case of MedMNIST. Beyond these demonstrations, ILPO-Net’s
rotational invariance paves the way for other applications across multiple
disciplines. Our code is publicly available at https://gricad-gitlab.
univ-grenoble-alpes.fr/GrulLab/ILP0/-/tree/main/ILPONet.

Keywords: Volumetric data - 3DCNN - Pattern recognition - Rotational
invariance - SO(3) invariance - SE(3) invariance.

1 Introduction

In the constantly evolving world of data science, three-dimensional (3D) data
models have emerged as a focal point of academic and industrial research. As
the dimensionality of data extends beyond traditional 1D signals and 2D images,
capturing the third dimension opens new scientific challenges and brings various
opportunities. The possible applications of new methods range from sophisticated
3D models in computer graphics to the analysis of volumetric medical scans.

With the advent of deep learning, techniques that once revolutionized two-
dimensional image processing are now being adapted and extended to deal with
the volumetric nature of 3D data. However, the addition of the third dimension
not only increases the computational complexity but also opens new theoretical
challenges. One of the most pressing ones is the need for persistent treatment
of volumetric data in arbitrary orientation. A particular example is medical
imaging, where the alignment of a scan may vary depending on the equipment,
the technician, or even the patient.
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2. RELATED WORK

However, achieving such rotational consistency is non-trivial. While data
augmentation techniques, such as artificially rotating training samples, can help
to some extent, they do not inherently equip a neural network with the capability
to recognize rotated patterns. Moreover, such methods can significantly increase
the computational cost, both at the training and inference time, especially
with high-resolution 3D data. The community witnessed a spectrum of novel
approaches specifically designed for these challenges. As we will see below, they
range from modifications of traditional convolutional networks to the introduction
of entirely new paradigms built on advanced mathematical principles.

This paper presents a novel approach to invariant pattern recognition in
regular volumetric data. In contrast to other methods, our convolution operation
maps from 3D to 3D space without constraints on the filter shape. We shall
note that pattern recognition can be invariant or equivariant to the pattern
orientation. The equivariant approach generally allows for a better expressivity
of the model but requires more model parameters and additional dimensions in
the output map to memorize pattern orientations. The invariant approach may
lack expressiveness but enables staying in the 3D space with much fewer model
parameters.

2 Related Work

Neural networks designed to process spatial data learn the data hierarchy by
detecting local patterns and their relative position and orientation. However,
when dealing with data in two or more dimensions, these patterns can be oriented
arbitrarily, which makes neural network predictions dependent on the orienta-
tion of the input data. Classically, this dependence can be bypassed through
data augmentation with rotated copies of data samples in the training set [18].
In the volumetric (3D) case, augmentation often results in significant extra
computational costs. For some types of three-dimensional data, the canonical
orientation of data samples or their local volumetric patterns can be uniquely
defined [22,11,9,36]. In most real-world scenarios, though, it is common for 3D
data to be oriented arbitrarily. Thus, there was a pressing need for methods with
specific properties of rotational invariance or equivariance by design. We can trace
two main directions in the development of these methods: those based on equiv-
ariant operations in the SO(3) space (space of rotations in 3D), and those with
learnable filters that are orthogonal to the SO(3) or SE(3) (roto-translational)
groups.

The pioneering method from the first class was the Group Equivariant Con-
volutional Networks (G-CNNs) introduced by Cohen et al. [4] , who proposed
a general view on convolutions in different group spaces. Many more methods
were built up subsequently upon this approach [32,31,2,29,23,6,24,14,21]. Several
implementations of Group Equivariant Networks were specifically adapted for
regular volumetric data, e.g., CubeNet[32] and 3D G-CNN [31]. The authors of
these methods consider a discrete set of 90-degree rotations and reflections, which
exhaustively describe the possible positions of a cubic pattern on a regular grid.
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However, we shall note that, typically, both discrete and regular data are represen-
tations of the continuous realm, which embodies a continuous range of rotations.
As a result, they cannot be reduced to just a finite series of 90-degree turns.
Another limitation is that this group of methods performs summing over rotations
that can lead to the higher output of radially-symmetrical filters, which limits the
expressiveness of the models because the angular dependencies of patterns are
not memorized in the filters , as we show in Appendix B. Another branch in this
development direction was represented by methods aimed at detecting patterns
on a sphere. In Spherical CNNs, Cohen et al. proposed a convolution operation
defined on the spherical surface, making it inherently rotationally equivariant [5].
Spherical CNNs are a comprehensive tool for working with spherical data, but
they have limited application to volumetric cases. When thinking of expanding
this approach for volumetric data where each voxel possesses its own coordinate
system, there remains the challenge of information exchange between different
spheres.

Let us characterize methods from the second class without delving deeply
into mathematical terms. Here, each layer of the network operates with products
of pairs of oriented input quantities. These products inherit the orientation
of the input, and then they are summed up with learnable weights. The first
two methods to mention in this section are the Tensor Field Networks (TFN)
[28] and the N-Body Networks (NBNs) [16]. Kondor [17] presented a similar
approach, the Clebsch-Gordan Nets applied to data on a sphere. These models
employed spherical tensor algebra working on irregular point clouds. Weiler et
al. [30] proposed 3D Steerable CNNs, where they applied the same algebra to
regular voxelized data. These three methods impose constraints on the trainable
filters and consider only equivariant filter subgroups. As a result, they may
not discriminate some patterns. , as we show in Appendix A A. Satorras et
al. [27] built EGNN on the same idea. However, they achieved equivariance in
a much simpler but less expressive way without the usage of Clebsch-Gordan
coefficients and spherical harmonics. It is also worth mentioning the works of
[25,19,35], where the authors applied the same logic to geometric algebra but
used multivectors instead of irreducible representations of S2.

Apart from the two main directions, we can highlight the application of
differential geometry, such as moving frames, to volumetric data, as demonstrated
by Sangalli et al. [26]. This approach uses local geometry to set up the local
pattern orientation. This idea unites the method with the family of Gauge
networks [3]. The current implementation still depends on the discretization of
input data. Rotating input samples can significantly reduce accuracy, as shown
in [26].

Considering the points mentioned above, there is a need to create a technique
that can detect local patterns of any shape in input 3D data, regardless of
their orientation. This method should approach spaces R? and SO(3) differently.
While operating in R? requires a convolution, one shall avoid summation over
orientations in the rotational space. Andrearczyk et al. followed this approach
in [1], but they restricted the shape of the learnable filters. Additionally, their
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method has a narrow application domain, whereas we intend to develop a data-
generic technique. Below, we propose a novel convolutional operation, Invariant
to Local Features Orientation Network layer, that can detect arbitrary volumetric
patterns, regardless of their orientations. This operation can be used in any
convolutional architecture without substantial modifications. Our experiments
on several datasets, CATH and the MedMNIST collection, demonstrate that
this operation can achieve higher accuracy than the state-of-the-art methods
with up to 3 orders of magnitude fewer learnable parameters. To summarize, our
contributions are:

1. In contrast to previous approaches, our method detects arbitrary-shaped
filters in regular volumetric data;

2. We propose a rotational pooling operation that considers continuous space of
rotations and avoids summing up in the rotational space;

3. The novel convolution can be used in any convolutional architecture without
other modifications.

3 Theory

3.1 Problem statement

The conventional 3D convolution can be formally expressed as:

mA)= [ s+ Aglrir, (1

where f(r) is a function describing the input data, g(r) is a filter function, and
h(A) is the convolution output function that depends on the position of the
filter with respect to the original data A. The meaning of this operation in light
of pattern recognition is that the value of the overlap integral of the filter and
the fragment of the input data map around point A serves as an indicator of
the presence of the pattern in this point. However, such a recognition works
correctly only if the orientation of the pattern in the filter and in the input data
coincide. Therefore, if the applied pattern has a wrong orientation, a conventional
convolution operation cannot recognize it.

The logical solution would be to apply the filter in multiple orientations. Then,
the orientation of the filter appears in the arguments of the output function. In
this approach, we consider a convolution with a rotated filter, represented as

g(Rr), where R € SO(3),

h(A,R) = . f(r+ A)g(Rr)dr. (2)

The outcome of this convolution depends on both the shift A, and the filter
rotation R. The output function h(r,R) is now defined in 6D but if we want
to obtain a 3D map that indicates that a pattern g(r) in arbitrary orientation
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Fig. 1. Schematic illustration of the ILPO convolution. The diagram showcases the
main steps involved in our convolution process: 1) Tensor product of trainable filter
coefficients and spherical harmonics; 2) 3D convolution of the input image and the
rotated filter coefficients; 3) Reconstruction of the convolution output in the SO(3)
space; 4) Orientation (soft)-max pooling.
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was detected at a point A of map f(r + A), we need to conduct an additional
orientation pooling operation:

h(A) = OrientionPoolg [h(A, R)], (3)

which can generally be defined in different ways. The only constraint on this
operation is that it must be rotationally invariant with respect to R or, in the
discrete case, invariant to the permutation of the set of rotations:

OrientionPoolg [f(R)] = OrientionPoolz [f(RR')] Vf and VR'. (4)

The simplest pooling operation satisfying this constraint would be an average
over orientations R. However, this will be equivalent to averaging the filter g(r)
over all possible orientations. Such an averaged filter is radially symmetric and is
thus not very expressive. A better OrientionPoolr operation would be extracting
a maximum over orientations R or applying a softmax operation, as defined
below,

_ f30(3) relu(f(R))?dR (5)

B fso(3) relu(f(R))dR

Attempting to incorporate such a convolution in a neural network, we face
several challenges.

softmaxg f(R)

1. If we assume g(r) to be a learnable filter, it is not trivial to guarantee the
correct backpropagation from multiple orientations of the filter to the original
orientation of the filter g(7).

2. Finding the hard- or soft- maximum in the pooling operation in the discrete
case requires a consideration of a large number of rotations in the SO(3) space
to reduce the deviation of the sampling maximum from the true maximum.
To make the method feasible we need to avoid performing the 3D convolution
for each of these rotations.

3.2 Method

Any square-integrable function on a unit sphere g(f2) : S2 — R can be expanded
as a linear combination of spherical harmonics Y, (£2) of degrees { and orders k
as

0o l
g @)=Y > gV (9). (6)

=0 m=—1

The expansion coefficients f;* can then be obtained by the following integrals,

i = [ al@(@an @
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Wigner matrices DY, ... (R) are defined for R € SO(3) and provide a repre-
sentation of the rotation group SO(3) in the space of spherical harmonics:

Y™ (RRQ) = Z DL o (R)Y,™(02). (8)

mszl
Since Wigner matrices are orthogonal, i.e.,

/ 872
D! Db (R)AR = ——— 06100, m Omom,
AO( 3) mimso (R) kiKY (R) R 2] F1 WO9mim) Ymamls (9)

any square-integrable function h(R) € L?(SO(3)) can be decomposed into them

Z Z Z hm1m2 mlmg(R)a (10)

=0 ma =—1 mo=——
where the expansion coefficients h!, ,m, are obtained by integration as
C20+1
=2 / WR)DL, . (R)dR. (11)
1m2 871'2 S0(3) 1m2

Let us now consider the following decomposition of a function h(A, R),
Z hmlmg m17YL2 (R) (12)
l,my,mso

Inserting the spherical harmonics decomposition of the rotated kernel g(Rr) in
Eq. 2, we obtain

MAR)= | flr+A4) )Y g ()Y (RO, )dr =
i (13)
f +A Zg ZDmﬂnz sz(“(??')drv
Imq

where (r, £2,.) are the radial and the angular components of the vector r. Changing
the order of operations, we get the following expression,

= Y Dhm(R f( A)Gpym, (7)dr, (14)
Imimso

where we introduce expansion coefficients g/, m,(T) at a point r with the radial
and angular components (r, {2,.) as

Tinyma (1) = 97" (1) Y72 (£2:). (15)

Consequently, equating Eq. 12 to Eq. 14 and applying orthogonal conditions
from Eq. 9 on both sides, we obtain

Py (A) = | F(A+7) gy, (r)dr. (16)
R3

In summary, our method comprises four steps, as depicted in Figure 1:
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1. Tensor product of g;"' (r) and Y;"*?(§2,), where g;"" (r) are learnable filters
(see Eq. 15).

2. 3D convolution involving g, ... () and f(r), with f(r) representing the
input data (refer to Eq 16).

3. Wigner reconstruction of h(A,R) (see Eq. 12).

4. Orientation pooling as detailed in Eq. 5.

By employing these steps, we reduce the computational complexity through the
utilization of Wigner matrices following the 3D convolution. The connection
between the number the sampled points in SO(3) and the number of coefficients
is elaborated upon in Appendix C. Furthermore, subsection 4.1 presents an
empirical examination of how these quantities influence the maximum sampling
error. Subsection 3.3 provides details of the implementation of the method in the
discrete case.

3.3 Implementation for the voxelized data

Discrete convolution Here we describe how the convolution introduced above
can be discretized for use in a neural network with reqular voxelized data. Let
us firstly define for each filter g(r), where r = (x;,y;, 2), a regular Cartesian
grid of a linear size L: 0 < 4,5,k < L. This size also defines the maximum
expansion order of the spherical harmonics expansion in Eq. 6. Let us also
compute spherical coordinates (7%, £2;;1) for a voxel with indices 4, j, k in the
Cartesian grid with respect to the center of the filter. For each of data voxel of
radii ;51 inside the filter grid, with the origin in the center of the grid, we define
a filter g/, .., (@i, y;, 2x) and parameterize it with learnable coefficients g™ (7;;1)
and non-learnable spherical harmonics basis functions according to Eq. 15 .

Iimrma (@i Yjs 21) = 97" (i) Y™ (Q2ijk). (17)
After, we conduct a discrete version of the 3D convolution from Eq. 16:

L-1L-1L-1

hlm,lmg (is Y5, 2k) = Z Z Z f(@iir—1) 72 Yj+jr—1/ /20 Pk~ 1 /2)

/=0 4'=0 2'=0 (18)
l
Imims (xi'a Yjis Zk’)a

where f(x;,y;,2x) is the input voxelized data. This operation has a complexity
of O(N?3 x Dy, X Doy x LY), where the multiplier L is composed of the size of
the filter, L3, and the number of g!, 1 m, coefficients o L3 | N is the linear size
of the input data f(r) and D;,, and D,,: are the number of the input and the
output channels, respectively. For the computational efficiency of our method,
we always keep the value of L fixed and small, independent of V.

To perform the Wigner matrix reconstruction in Eq. 10, we need to numerically
integrate the SO(3) space. We can compute this integral ezactly using the Gauss-
Legendre quadrature scheme from L points [12]. It is convenient to represent a
rotation in SO(3) by a successive application of three Euler angles «, 8 and ~,
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about the axes Z, Y and Z, respectively. Then, the Wigner matrix Dfmmz (R)
can be expressed as a function of three angles: D, . (R) = D! (o, B,7) and
written as a sum of two terms:

D£n1m2 (OL, ﬂa ’Y) = C”nl (mla) [dl]lml mo (/B)sz (mQ’Y)

. (19)
+C—m1 (mla) [dQ}mlmQ (ﬂ)c—mz <m27)a
where [d;]}, 1 mo»? = 1,2 can be decomposed into associated Legendre polynomials
P (cos(8)),0 <m <, and C,, is defined as follows:
>
o () = c.os(:t)7 me. (20)
sin(z), m <0

Given such a form of D, . (a, B,7), we discretize the space of rotations SO(3)
as a 3D space with dimensions along the «, 8 and v angles. The dimensions « and
~ have a regular division. We use the Gauss—Legendre quadrature to discretize
cos(f) to define the 5 dimension. Then, we perform the discrete version of the

summation in Eq. 12:

l l
h(xiayjazk7aq7ﬁra’}/s): Z Cm2(m2’}/s)( Z le(mlaq)

mo=—1 mip=—
L-1 l
(O dilmyms By (2057, 20))) + Y Coma(mzys) — (21)
=0 mo=—1
l L-1
(D Comi(maag)(Ydelin,my (B m, (20, Y7 26)),
mi=— =0

where 0 < ¢,7,8 < K — 1, K is the linear size of the SO(3) space discretization.
If we assume that L < K, then the complexity of the reconstruction is O(N? x
Dout x K3 x L), where N is the linear size of the input data f(r), and D, and
Dyt are the number of the input and the output channels, respectively. We shall
specifically note that this operation has a lower complexity compared to the case
of Eq. 2, if the latter is calculated with a brute-force approach provided that the
number of sampled points in the SO(3) space K >> L3.

Orientation pooling For the orientation pooling operation, we have considered
two nonlinear operations, hard maximum and soft maximum defined in Eq. 5.
While only L? points in the SO(3) space are sufficient to find the exact value of
the integration of functions h(x;,y;, 2k, &, 8,), many more points are required to
approximate the integration of relu(h(x;, y;, 2k, o, 8,7))? or h™ (x4, yj, 2k, @, B, 7).
There is not a closed-form dependency between K, L and ¢, the error of discrete
approximation of integrals in Eq. 5 on the grid of K2 points. However, we need to
ensure that the deviation of the sampling maximum from the real maximum for
a given sampling division K is bounded. For this purpose we introduce lemmas
and theorems in Appendix C.
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4 Results

As mentioned in the introduction, we have specifically designed our model for
regular volumetric data. Benchmarking our method on irregular representation
would require significant modifications of the model that are out of the scope
of the present paper. Therefore, we chose two representative benchmarks from
different application domains: CATH and MedMNIST3D, described below in
more detail. We also conducted additional experiments to examine the properties
of our operations.

4.1 Orientation invariance

Relative error
= =
o o
L !

,_.
o
A

10! 102
Linear sampling size of SO(3)

Fig. 2. Standard deviation of sampled maxima relative to the true function maximum
(y-axis) as a function of sampling size K in the SO(3) space (z-axis).

To investigate the sensitivity of orientation-independent pattern detection to
the linear size of sampling, we conducted the following experiment. We initiate
a function in the SO(3) space with a Wigner matrix decomposition up to a
maximum degree of 2 (L = 3). Concretely, we initiate it by random generation of
its decomposition coefficients. To probe the function’s behavior under various
orientations, we applied 100 random rotations to it, producing a collection of
rotated copies. For each of these rotated versions, we found its sampled maximum
over the SO(3) space with the sampling size K. Aggregating these maxima across
all rotations allowed us to determine their standard deviation.

Figure 2 shows the normalized standard deviation (relative to the true maxi-
mum of the initial function) as a function of the linear sampling size K. Even
for relatively small values of K = L, the ratio between the standard deviation of
the maxima and the true maximum hovers around 10~2. This implies that the
deviation of the sampling maximum from the true maximum remains minimal,
underscoring the reliability of our orientation-independent pattern detection
across varying sampling resolutions.

10
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4.2 Experiments on the CATH Dataset

For our first experiment, we chose a volumetric voxelized dataset from [30]
composed of 3D protein conformations classified according to the CATH hi-
erarcy. The CATH Protein Structure Classification Database provides a hi-
erarchical classification of 3D conformations of protein domains, i.e., com-
pact self-stabilizing protein regions that folds independently [15]. The dataset
considers the "architecture" level in the CATH hierarchy, version 4.2 (see
http://cathdb.info/browse/tree). It focuses on "architectures" with a mini-
mum of 700 members, producing ten distinct classes. All classes are represented by
the same number of proteins. Each protein in the dataset is described by its alpha-
carbon positions that are placed on the volumetric grid of the linear size 50. The
dataset is available at https://github.com/wouterboomsma/cath_datasets
[30]. For benchmarking, the authors of the dataset also provide a 10-fold split
ensuring the variability of proteins from different splits.

For the experiment, we constructed three architectures (ILPONet, ILPONet-
small, and ILPONet-tiny) with different numbers of trainable parameters, and
also tested the two types of pooling operations. ILPONet, ILPONet-small, and
ILPONet-tiny replicate the architecture of ResNet-34 [8], but they impliment the
novel convolution operation with 4, 8, and 16 times fewer channels on each layer,
respectively. We conducted experiments for two types of orientation pooling with
K =4 for the softmax version, and K = 7 for the hardmax version.

We compared the performance of ILPO-Net (our method) with two baselines:
ResNet-34 and its equivariant version, ResNet-34 with Steerable filters, whose
performance was demonstrated in [30] where the dataset was introduced. Table
1 lists the accuracy (ACC) and the number of parameters(# of params) of
different tested methods. Since the classes in the dataset are balanced, we can
use accuracy as the sole metric to evaluate the precision of predictions.

Table 1. Performance comparison of various methods on the CATH dataset.

Method ACC|# of params
ResNet-34 [8] 0.61 15M
Steerable ResNet-34 [30] 0.66 150K
ILPONet-34(hardmax) 0.74 1M
ILPONet-34(softmax) 0.74 1M
ILPONet-34(hardmax)-small| 0.73 258k
ILPONet-34(softmax)-small | 0.72 258k
ILPONet-34(hardmax)-tiny | 0.68 65k
ILPONet-34(softmax)-tiny | 0.70 65k

As shown in Table 1, all versions of ILPO-Net outperform both baselines on
the CATH dataset. Furthermore, when comparing the number of parameters,
even the smallest variant of ILPO-Net achieves a better accuracy, while having
substantially fewer parameters than the equivariant baseline, Steerable Network.

11
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Technical details: We used the first 7 splits for training, 1 for validation,
and 2 for testing following the protocol of [30]. We trained our models for 100
epochs with the Adam optimizer [13] and an exponential learning rate decay of
0.94 per epoch starting after an initial burn-in phase of 40 epochs. We used a
0.01 dropout rate, and L1 and L2 regularization values of 10~7. For the final
model, we chose the epoch where the validation accuracy was the highest. Table
1 shows the performance on the test data. We based our experiments on the
framework provided by [30] in their se3cnn repository. We introduced our ILPO
operator into the provided setup for training and evaluation.

4.3 Experiments on MedMNIST Datasets

For the second experiment, we selected MedMNIST v2, a vast MNIST-like collec-
tion of standardized biomedical images [34]. This collection covers 12 datasets
for 2D and 6 datasets for 3D images. Preprocessing reduced all images into the
standard size of 28 x 28 for 2D and 28 x 28 x 28 for 3D, each with its corresponding
classification labels. MedMNIST v2 data are supplied with tasks ranging from
binary /multi-class classification to ordinal regression and multi-label classification.
The collection, in total, consists of 708,069 2D images and 9,998 3D images. For
this study, we focused only on the 3D datasets of MedMNIST v2.

As the baseline, we used the same models as the authors of the collection tested
on 3D datasets. These are multiple versions of ResNet [8] with 2.5D/3D/ACS
[33] convolutions and open-source AutoML tools, auto-sklearn [7], AutoKeras
[10], FPVT [20], and Moving Frame Net [26]. As in the previous experiment, we
constructed and trained multiple architectures (ILPONet, and ILPONet-small)
of different size with two versions of the orientation pooling operation. They
repeat the sequence of layers in ResNet-18 and ResNet-50 but they do not reduce
the size of the spatial input dimension throughout the network.

The models ILPONet-small and ILPONet keep 4 and 8 feature channels,
respectively, throughout the network. We tested these architectures for both
soft- and hardmax orientation pooling strategies. Table 2 lists the performance
of our models compared to the baselines. Here, the classes are not balanced.
Therefore, the accuracy (ACC) cannot be the only indicator of the prediction
precision, and we also consider AUC-ROC(AUC) that is more revealing. We
can see that ILPOResNet models, even with a substantially reduced number
of parameters, demonstrate competitive or superior performance compared to
traditional methods on the 3D datasets of MedMNIST v2.

Technical details: For each dataset, we used the training-validation-test
split provided by [34]. We utilized the Adam optimizer with an initial learning
rate of 0.0005 and trained the model for 100 epochs, delaying the learning rate
by 0.1 after 50 and 75 epochs. The dropout rate was 0.01. To test the model,
we chose the epoch corresponding to the best AUC on the validation set. We
based our experiments on the framework provided by [34] in their MedMNIST
repository. We introduced our ILPO operator into their setup for training and
evaluation.

12


https://github.com/mariogeiger/se3cnn/tree/546bc682887e1cb5e16b484c158c05f03377e4e9
https://github.com/MedMNIST/experiments

ILPO-NET: invariant recognition of arbitrary patterns in 3D

Table 2. Comparison of different methods on MedMNIST’s 3D datasets. (*) For these
methods, the number of parameters is unknown. The best accuracies (ACC) and ROC-
areas under curve (AUC) are highlighted in bold.

Methods # of params| Organ Nodule Fracture Adrenal Vessel Synapse
AUC| ACC | AUC | ACC | AUC | ACC | AUC | ACC | AUC | ACC| AUC | ACC
ResNet-18 [8] + 2.5D[33] 11M 0.9770.788 | 0.838| 0.835 | 0.587 | 0.451 | 0.718 | 0.772 | 0.748 | 0.846 | 0.634 | 0.696
ResNet-18 [8]+ 3D[33] 33M 0.996/0.907|0.863 | 0.844 | 0.712|0.508 | 0.827 | 0.721 | 0.874 | 0.877 | 0.820 | 0.745
ResNet-18 [8]+ ACS|33] 11M 0.994]0.900|0.873|0.847|0.714 | 0.497 | 0.839 | 0.754 | 0.930 | 0.928 | 0.705 | 0.722
ResNet-50 [8]+ 2.5D[33] 15M 0.9740.769 | 0.835| 0.848 | 0.552 | 0.397 | 0.732 | 0.763 | 0.751 | 0.877 | 0.669 | 0.735
ResNet-50 [8]+ 3D[33] 44M 0.9940.883|0.875| 0.847 | 0.725 | 0.494 | 0.828 | 0.745| 0.907 | 0.918 | 0.851 | 0.795
ResNet-50 [8]+ ACS[33] 15M 0.9940.889|0.886 | 0.841|0.750 | 0.517 | 0.828 | 0.758 | 0.912 | 0.858 | 0.719 | 0.709
auto-sklearn® [7] - 0.977]0.814]0.914|0.874|0.628 | 0.453 | 0.828 [ 0.802 | 0.910 | 0.915 | 0.631 | 0.730
AutoKeras* [10] - 0.9790.804 | 0.844 | 0.834 | 0.642 | 0.458 | 0.804 | 0.705| 0.773 | 0.894 | 0.538 | 0.724
FPVT* [20] - 0.9230.800 | 0.814|0.822 | 0.640 | 0.438 | 0.801 | 0.704 | 0.770 | 0.888 | 0.530 | 0.712
SE3MovFrNet * [26] - - |0.745| - ]0.871| - ]0.615| - |0.815| - ]0.953] - |0.896
ILPOResNet-18(softmax)-small 7k 0.960 | 0.631 | 0.887]0.848 0.791 | 0.579 | 0.897 | 0.805| 0.815 | 0.838 | 0.804 | 0.517
ILPOResNet-18(hardmax)-small Tk 0.9510.600 | 0.906 | 0.861 |0.808|0.642| 0.870 | 0.792 | 0.925 | 0.908 | 0.825 | 0.750
ILPOResNet-18(softmax) 29k 0.9670.716 | 0.894 | 0.871 | 0.761 | 0.558 |0.910|0.856| 0.908 | 0.919 | 0.836 | 0.815
ILPOResNet-18(hardmax) 29k 0.9710.705 | 0.900|0.874/0.773 | 0.580 | 0.897 | 0.846 | 0.927 | 0.908 | 0.800 | 0.767
ILPOResNet-50(softmax)-small 10k 0.9790.757 | 0.902 | 0.865 | 0.772 | 0.558 | 0.864 | 0.745 | 0.864 | 0.890 | 0.880 | 0.844
ILPOResNet-50(hardmax)-small 10k 0.9810.780 | 0.887|0.861 | 0.768 | 0.571 | 0.841 | 0.7920.937| 0.901 | 0.861 | 0.784
ILPOResNet-50(softmax) 38k 0.9920.87910.912|0.871 | 0.767 | 0.608 | 0.869 | 0.809 | 0.829 | 0.851 |0.940|0.923
ILPOResNet-50(hardmax) 38k 0.9750.754 1 0.911] 0.839 | 0.769 | 0.521 | 0.893 | 0.842] 0.902 | 0.885 | 0.885 | 0.858

4.4 Filter demonstration

Fig. 3. Visualization of filters from the 1st ILPO layer of ILPONet-50. Each column
corresponds to different output channels, with rows indicating different radii and
input channels. Given that the first ILPO layer only has one input channel, only
three projections (radii) are shown in each column. z and y axes correspond to the
azimuthal and polar angles, correspondingly. The filters’ values are shown in the
Mercator projection. The red color corresponds to the positive values, and the blue
color to the negative ones.

For a deeper understanding of our models, it is useful to delve into the
visualizations of their filters. Of the numerous experiments conducted, we opted
to focus on the MedMNIST experiments, primarily due to the smaller size of the
trained models (in terms of parameter count). Within the MedMNIST collection,
we chose the Synapse dataset because of its more sophisticated and variable
patterns and analyzed the filters from the top-performing ILPONet-50 model with
the softmax orientation pooling. This architecture employs ILPO convolutional
layers, each having a filter size of L = 3. Here, we demonstrate filters from the
first and the last ILPO layers. Depending on the radius (r), these filters could
represent a single point (for » = 0) or spheres for other radii values. We use
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the Mercator projection to show values on the filters’ spheres for » > 0 in two
spherical angles, azimuthal and polar.

Figure 3 shows the first ILPO layer. The layer has a single input channel.
Different rows correspond to different radii(r = 1, ﬂ, \/3), whereas each column
corresponds to a different output channel. Appendix D also shows the last ILPO
layer. These figures demonstrate a variety of memorized patterns. We can see
no spatial symmetry in the filters and that the presented model can learn filters
of arbitrary shape. Interestingly, we cannot spot a clear difference between the
filters of the first and the last layers.

5 Discussion and Conclusion

In real-world scenarios, data augmentation is commonly employed to achieve
rotational and other invariances of DL models. While this method may signif-
icantly increase the dataset’s size and the number of parameters, it can also
limit the expressivity and explainability of the obtained models. Using invariant
methods by design is a valid alternative that ensures consistent neural network
performance. The filter representation introduced here can also be employed in
an equivariant architecture. It will lead to a higher complexity of operations and
an increased number of parameters but may give better expressiveness to the
final model.

To conclude, we proposed the ILPO-NET approach that efficiently manages
arbitrarily shaped patterns, providing inherent invariance to local spatial pattern
orientations through the novel convolution operation. When tested against several
volumetric datasets, ILPO-Net demonstrated state-of-the-art performance with
a remarkable reduction in parameter counts. Its potential extends beyond the
tested cases, with promising applications across multiple disciplines.
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A. LIMITATION OF EXPRESSIVENESS IN STEERABLE NETWORKS

Appendix
A Limitation of expressiveness in Steerable Networks

Convolution operations, foundational to modern Convolutional Neural Networks
(CNNs), serve as a mechanism for detecting patterns in input data. In the
traditional convolution, higher activation values in the feature map indicate
regions in the input where there is a significant match with the convolutional
filter, thereby signaling the presence of a targeted pattern.

Let us consider how this mechanism works in convolutions with steerable
filters [30]. The steerable filter that maps between irreducible features (i — 1) is
defined as:

il N—1
Ki(r) = Z Z Wil LnKil,Ln (1), (22)
L=[i—i| n=0

where r;(r) : R® — REHDEHD Here, wy; 1, are learnable weights and k. .,
are basis functions given by:

Kit,Ln (1) = QM. (r), (23)

where QL ¢ REHDE@HFDXELHD) i the 3-dimensional tensor with Clebsch-
Gordon coefficients and
77Ln(r) = ¢n(T)YL(~Qr)a (24)

Nin(r) : R3 — RELHY and Y7,(£2,) is a vector with spherical harmonics of degree
L. Functions ¢, (n =0,...,N — 1) form a radial basis. For a scalar field as input
data and considering the special case [ = 0, the filter reduces to

Kio(1T) = Z_: Wi0,in®n (1)Yi(£2), (25)

where #;o(r) : R3 — RZiH1x1,
Let us apply the convolution to the following input function,

Limax

% N
Fr)y=3" >0 > finoa(r)Y™(2), (26)

i=0 m=—in=0

where indices i, m correspond to the angular decomposition and n is a radial
index. Without loss of generality for the final conclusion, let us consider a special
case when coeflicients f;' can be expressed as a product: f/' = f"q;». We also
assume that the pattern presented by this function is localised and the function
is defined in a cube. The filter r;0(r) is localised in a cube of the same size. If we
use the integral formulation, the result of the convolution operation at the center

of the pattern will be:

N-1

pm — / F) a0 (M mod 2er2dr = £ S wioindin: (27)
0 52 n=0
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Then, according to the logic of the convolution layer, a nonlinear operator is
applied to the convolution result, which zeros the low signal level. Let us consider
two types of nonlinearities used in 3D Steerable networks: gated- and norm-
nonlinearity. In these operators, the high-degree output of the convolution result
(h™,i > 0) is multiplied with o(h3) and o(||h,||), respectively, where o is an acti-

vation function and ||| = />0 _ (k)2 = |Z£I:_ol Wi0,inGin|\/ Dwme i ([I)?
is the norm of the ith-degree coefficients . In the first case, the gated non-linearity
does not distinguish patterns of different shapes if they have the same decom-
position coefficients of the Oth degree(fg,). The norm non-linearity brings more
expressiveness for representations of the 1st-degree because if two sets of represen-
tations, { ;" 0, £} and {[f']; ", [f)%, [f']}}, have equal norms (|| ]| = ). ),
then f1 can be retrieved from [f']; by a rotation or, in other words, they rep-
resent the same shape . However, this rule does not work for higher degrees
(i > 2). For example, representations of the 2nd-degree fo = {1,0,0,0,0} and
[f']2 = {0,0,1,0,0} represent different shapes but have equal norms.

Accordingly, a single layer cannot cope with the recognition of an arbitrary
pattern in the input data. Thus, the recognition task moves to the subsequent
layers. However, on the second layer, there is an exchange between the voxel of
the feature map where h; is stored and other voxels that contain not only the
pattern information but also the pattern’s neighbors information. Therefore, the
result of the central pattern recognition will not be unique but depends on the
pattern neighbors.

B Limitation of summing up over rotations

Averaging (or summing) of a function in 3D annihilates angular dependencies of
a filter. Let us consider a filter defined by a function g(r):

g(r) =) gf ()Y (12), (28)

where (r, (2,.) are the radial and the angular components of the vector r, and
gl’c are the spherical harmonic expansion coefficients of a function g(r). We then
rotate this function by R € SO(3) and convolve with f(r):

h(A,R) = - fA=mr)g(r)dr. (29)

If we integrate this result over all rotations in SO(3), which is approximately
equal to summing the function over a finite set of (equally distributed) rotations,
we obtain

h(A) = h(A,R)AR =87% | f(A —r)gd(r)dr, (30)
SO(3) R3

where gJ(r) are the zero-order expansion coefficients that equal to the mean value
of the integrated function over the domain. Thus, we can conclude that summing
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over all rotations in SO(3) of the result of the convolution with an arbitrary filter
is equivalent to a convolution with a radially-symmetric filter. On the contrary,
Eq. 16 allows us to keep the dependency of the convolution result on the filter’s
orientation.

Theorem 3 provides an upper bound for the error of the sampled maximum.
The softmax is limited by the hard maximum value for the continuous and discrete
cases, consequently the sampled softmax error is also bounded. We also deduced
an empirical relationship between the error and parameters L and K for both
operations. For example, for L = 3 the error of the softmax approximation follows
the relation € = 4K —3. Therefore, for € = 0.1,0.05 or 0.01 we need to consider
K =4,5 or 7, respectively. The error of the sampling hardmax is approximately
2.75K 2 if L = 3. It means that K = 7,9 or 30 will give ¢ = 0.1,0.05 or 0.01
respectively.

The discrete calculation of the hard maximumum does not differ from the
continuous case. The discrete form of the soft maximum operation has the
following expression:

qus wrrelu(h(xia Yjs Rk Qg B’r'a 75))2
Zq,?‘,s wrrelu(h(:ﬂi, Yj, 2k, Qq, Br, ’Ys))

softmaxg f (4, y;, 2k, R) = ) (31)

where w, are the Gauss—Legendre quadrature weights.

C Upper bound of the sampling maximum error

Lemma 1. Let Y*(0, ¢) be the spherical harmonic function of degree I and order
k. Then, the Lipschitz constant L of Y;*(0,¢) is bounded by:

L<I(l+1)
Proof. Given the following differential relations:
SYk(0, _
Rl — i+, (32)
5Y*(0,9) k k VI=k)(I+Fk)20+1
5¢ l (9,(],5)[(301](@5) l—1(07¢) Sln(¢) 20 —1’ (33)
we can obtain the expression for the gradient of Y;*(6, ¢) as:
SYF syF
E_ (22 271

To determine the Lipschitz constant, we find the maximum magnitude of the
gradient over the function’s domain. Using the provided differential relations, the
squared magnitude of the gradient is:

||vnk|2=(kn—k)2+(n’“lcotw)—y/ilV(Z_W”k) 2”1) @)

sin(¢) 20-1
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Given that ||k|| <, the term k? is bounded by /2. The dominant term from
the second expression is [ cot(¢), which in the worst case is proportional to 2.
Thus, the Lipschitz constant is bounded by the square root of the maximum
term from the gradient’s squared magnitude. This gives:

L<il+1). (36)

Theorem 1. The Lipschitz constant Lp of the Wigner matriz element DfﬂkQ (R)
is bounded by:
LD S 47 l(l + 1)

Proof. First, recall the expression for the Wigner matrix element:
Db ®) = [ ¥ (Ra)Yf(w) da. (7
50(2)

where z = x(0, ¢) is a solid angle, and R is a rotation in SO(3). To determine
the Lipschitz constant for the Wigner matrix element, we find the magnitude of
its gradient with respect to R. Using the chain rule:

OV} (Rx) _ oY} (x) ., (R
OR Y OR

Given the lemma above, we know that the Lipschitz constant L for the
spherical harmonic Y}*(6, ¢) is bounded by +/I(I + 1). Thus,

(Rzx) (38)

aDél ko (R)
IR
Theorem 2. Let f(R) be a function in SO(8) whose maximum degree of Wigner

matrices decomposition is L — 1 and whose 2-norm is C. Then, the Lipschitz
constant Ly of f is bounded by:

| < dm /11 + 1) max Y, < dr\/1(1 + 1). (39)

max ||

c
Ly<4—L3

V3

Proof. Given the decomposition of the function f in terms of Wigner matrices,

L-1 1 l
R)=> > > fiwDhe®), (40)

1=0 ky=—1 ka=—1

we also have the expression for the 2-norm squared of f,

|\f||2—Z Z Z 2Hlnfklkzlﬁ 2. (41)

1=0 ky=—1l ko=—
Knowing that

L-1 1

l l 4L3 - l
Z Z b < EEZE S S L. @)

— — 1=0 k1=—1lko=—1

QML
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C. UPPER BOUND OF THE SAMPLING MAXIMUM ERROR

we deduce:

2
| fh ks > < (4L337_L)02. (43)

2SS

1=0 ki=— -

From the previous expression it follows that:

L AL3 — L)2L -1
P> Il < 2 =DI2EL, (44)

&ML

Considering that the Lipschitz constant for Dj , (R) is 4m\/I(l+ 1), the
Lipschitz constant for f(R) is bounded by the product of the maximum Lipschitz

constant for the Wigner matrices and the maximum magnitude of the coefficients.
Thus,

3 _ — 5
Lf<47r\/c(4L3 L) 22 21 (L—l)L§4£L%. (45)
Uus

This concludes the proof.

Theorem 3. Let the function f(R) be defined in SO(8) with its mazimum degree
of Wigner matrices decomposition being L — 1:

l l
Z Z m1m2 mlmg (R)v

H
ICLML

with the 2-norm of this function C' < co. Given a sampling oy, = kl%ﬂ,kl =
0,..., K, Br, = arccos(xg,) where x; are Gauss-Legendre quadrature points of

K, and iy = ks 2 ks = 0,.., K, if K > Ko where Ko = S™22C1Y3 hen, the
discrepancy between the sampled mazximum and the true maximum of f over its
domain is smaller than €.

Proof. Using the Lipschitz constant from Theorem 2, we get:

C s
|f(a) = f(v)] S4ﬁL [u—vi. (46)

The largest difference in successive sampled points in « and v will be :

2
||usuccessive - Vsuccessive” = f (47)
For the sampling in § we obtain the same relation,
27
max |Bi41 — Bi| < —. (48)
i K
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ILPO-NET: invariant recognition of arbitrary patterns in 3D

Using the Lipschitz property and combining the discrepancies, we deduce:

C 5 2T
‘f(usuccessive) - f(vsuccessive)| S 4%112 ? (49)

For the above discrepancy to be smaller than €, we must require:

- SWL%C/\/E
—

K (50)

5
Thus, the smallest such a value for K is Ky = w.

D Filter Demonstration

Figure 4 visualizes the last, 17th ILPO layer from the ILPONet-50 model trained
on the Synapse dataset of the MedMNIST collection. This layer has multiple
input channels, therefore we split each column into triplets corresponding to
different input channels.
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D. FILTER DEMONSTRATION
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Fig. 4. Visualization of filters from the last, 17th ILFO layer of ILFONet-50. Each
column in the illustration represents a triplet corresponding to three different radii in the
filter. Different triplets relate to different input channels, reflecting the complexity and
feature extraction capabilities of deeper layers in the network. z and y axes correspond
to the azimuthal and polar angles, correspondingly. The filters’ values are shown in the
Mercator projection. The red color corresponds to the positive values, and the blue

color to the negative ones.
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