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Introduction to modeling disease spread in
space

Vittoria Colizza*

*INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et
de Santé Publique (IPLESP), 75012 Paris, France

Summary - The spatial structure of populations is a key element in the
description and understanding of the spatiotemporal propagation of infec-
tious diseases spread. Host population in space is often characterized by a
highly fragmented environment where it is structured and localized in rela-
tively isolated discrete patches or subpopulations connected by some degree
of hosts movements. Metapopulation models provide the ideal theoretical
framework to capture the separation of a host population into local commu-
nities, with strong homogeneous mixing within each community and weaker
interactions between communities corresponding to the underlying substrate
of commuting patterns, mobility networks and/or transportation infrastruc-
tures. This paradigm can be applied to model the spatiotemporal propaga-
tion of epidemics in structured populations at different scales, by considering
for example families, city locations, hospital wards, farms, urban areas or
regions as local communities connected by hosts’ mobility processes.

Here we present the computational approach to the modeling of epidemic
processes in spatially structured systems. We introduce metapopulation
models as the standard modeling framework for the study of epidemic spread
among localized communities of hosts. Taking into account the coupling pro-
vided by the interactions among localized populations, different modeling ap-
proaches are described, including mechanistic (i.e. microscopic) simulations
and effective approaches, and the possible presence of memory effects. Top-
ics like invasion dynamics and local vs. global containment of an emerging
epidemic will be addressed, and the theoretical results will be put in relation
with the design of possible intervention policies for epidemic control. These
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notes represent a theoretical introduction for the development of data-driven
realistic metapopulation models for application in public health.
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1 Spatial spread of infectious disease epidemics

Space represents, in many circumstances, a relevant feature in the spread
of an infectious disease. While this is intuitively clear if we think about re-
cent outbreaks of directly transmitted diseases that spread throughout the
world, such as the 2002-2003 epidemic of Severe Acute Respiratory Syndrome
(SARS), the 2009 H1N1 influenza pandemic or the recent Zika epidemic, the
importance of space must be noted in more localized processes as well. Con-
sider for example outbreaks in close and localized populations (may them be
a city, a village, a community, or a hospital, for example): the geographical
structure of the population or of the space in which the epidemic takes place
(e.g. different locations in the city, households in the village or community,
wards in the hospital, and others) often represent key elements that shape the
propagation pattern of the disease. The diffusion of the disease in a given
environment is indeed dependent on the spatial distribution of susceptible
hosts and on the geographic features of such environment that may facilitate
the transmission along given routes or accesses, and prevent it across obsta-
cles. Such features effectively embed the ability of hosts to move from one
region to another of the space, connecting distinct localized communities and
providing the means for the movement in space of the pathogen.

That human displacements and travel were related to carrying the dis-
ease across space has long been recognized in the history of human diseases.
Historians recorded the initial spread of the plague of Justinian’s reign (A.D.
542) affecting the lands bordering the Mediterranean Sea through travel and
trade [1]. Historical records for the Black Death in 14th century Europe
report the rapid infection of dock workers and sailors, as the immediate con-
sequence of infected ships arriving in the ports of European cities, as in the
cases of Messina and Marseille [2]. SARS rapidly disseminated from South-
East Asia to Europe and North America brought by infected passengers
traveling by plane [3, 4]. Historical examples not only provide the evidence
supporting that hosts movements in a generally non-uniform environment
represent an important mechanism for disease spatial spread, but also show
how the intrinsic features of these movements are able to lead to completely
different patterns of spatial spread, regarding both speed and geographical
aspects.

In pre-industrial times, the spread of directly transmitted diseases was
mainly a spatial diffusion phenomenon. Originating from Asia, the Black
Death arrived in South-East Europe in the fall of 1347 and traveled across
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most of continental Europe in less than three years reaching the far northern
regions of the continent [2]. Despite the current debates on the origin of
the plague, its epidemiological aspects emerging from historical records seem
to indicate the presence of a direct contagion that could explain the high
clustering of cases in households, and the vast spatial spread also to regions
that would not favor the sustained epizootic transmission. In this perspec-
tive, the spatial propagation of the disease may be due mostly to human
movements, and the diffusive pattern reported in contemporaries reports be
the outcome of the relatively few traveling means available at that time to
cover relatively short distances on the time scale of one day. Historical stud-
ies confirm that the disease diffused smoothly, generating an epidemic front
that travelled through the continent as a continuous wave at a rate of about
200-–400 miles/year (see Figure 1) [2].
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Figure 1: Epidemic spreading patterns changed dramatically after the de-
velopment of modern transportation. In pre-industrial times, the spread of
diseases was mainly a spatial-diffusion phenomenon (left). The speed and
pattern of the 2009 H1N1 pandemic, in contrast, were radically different in
terms of speed and non-local diffusion (right).

The advent of modern transportation has dramatically altered this pic-
ture, speeding up and favoring spatial disease transmission significantly. For
example, already the dissemination of the 1889 influenza pandemic was ex-
tremely rapid. The so-called“Russian flu” moved along the travel routes
by sea and along the network of railroads, and reached the United States
through transatlantic travel [5]. The influenza pandemic of 1918 took less
than one year to spread from its US or European source to isolated Pacific
islands, while the 1957 flu virus swept the globe in about six months. For
the first pandemic of the 21st century, the 2009 H1N1 influenza pandemic,
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only two months passed between the first international alert and the WHO
announcement that the epidemic had reached global proportions. Besides
the speed of disease invasion that has rapidly changed with the advent of
ever faster and efficient transportation systems, the same pattern of invasion
has radically changed, from a continuous diffusive phenomenon to a discrete
pattern of localized outbreaks in far away regions. This requires a change in
the corresponding modeling framework as well. Although the spread of the
Black Death can be adequately described mathematically using continuous
differential equations with diffusive terms, the modeling of the spread of epi-
demics in modern times has to explicitly incorporate the spatial structure
and deep interconnectedness of today’s modern society.

Going beyond the simple description of an epidemic in terms of “numbers
appearing along the time horizon” [6], here we introduce spatial thinking in
the modeling of disease transmission and provide the conceptual framework
along with the corresponding qualitative and quantitative results of a class
of spatial models – metapopulation models.

2 Spatially structured populations and metapop-

ulation approach

The metapopulation modeling approach is an essential theoretical frame-
work to describe a population dynamics whenever the spatial fragmentation
of the host population is known to play a key role [7]. Conceptually, it re-
lies on the basic assumption that the system under study is characterized
by a highly fragmented landscape or environment in which the population is
spatially organized in relatively isolated discrete patches connected by some
coupling process. This means that, being structured into local populations,
hosts have typically a higher degree of interaction when they are located in
the same patch than when they belong to different patches. The interac-
tion between different patches is however non-null, as it is provided by the
coupling, given by hosts movements from one patch to another, which could
take several different forms and generally represent migration or mobility
processes. A typical example could be individuals located in different cities
connected by transportation infrastructures along which they can travel and
thus move from one city to another. Mobility represents the means by which
people originally located in different cities can travel to the same location
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and have the opportunity to interact. Departing from the homogeneous mix-
ing assumption of basic compartmental models in single populations, the
metapopulation approach is one of the simplest approaches that allows for
the introduction of a spatial dimension in the modeling framework.

The approach was originally developed in ecology, to provide a spatial
context to the studies of population biology [7]. Often, indeed, landscapes
or environments can be seen as a network of connected habitat patches in-
habited by local populations. This happens when the landscape itself is
fragmented and prevents a continuous spatial distribution of the species, or
when habitat loss occurs, i.e. when a natural habitat is destroyed and be-
comes functionally unable to support the survival of the species, or it is
simply due to varying levels of fitness of the species to given locations of the
environment. The application of the metapopulation approach to plants and
other sessile organisms has been straightforward and has proved to be very
effective, as the critical role of space and of neighborhoods (leading to cou-
pling effects) is easily recognizable for organisms that do not move. Spatial
positions became increasingly important also in ecological models focusing on
mobile organisms, e.g. animals or individuals, due to the different capability
of movements within subgroups of the same species (e.g. insect species with
mobile adults but immobile larval stages), or to the emerging discontinuous
structure of the species. With mobility not always being an adequate means
to allow for efficient mixing in the population, the metapopulation approach
offers a framework to analyze different ecological problems related to space,
such as local extinction, recolonization and regional persistence [8, 9].

From ecology, this paradigm has been applied to genetics and evolution,
and it is also very useful in the study of epidemics, aimed at the understand-
ing of the influence of spatial structure in shaping the dynamics of infectious
disease spreading in populations [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
The approach allows taking into account those situations in which space
prevents the random mixing of individuals throughout the whole system,
and different approximations need to be considered to define the interactions
among hosts. From this point of view, space can be viewed as an additional
heterogeneity of the host population that breaks down the assumption of
homogeneous mixing. Similarly to age and social structuring of the popula-
tion introduced to go beyond simple homogeneous mixing approximations,
from a modeling perspective this translates into grouping the individuals ac-
cording to different structuring criteria and in defining appropriate infection
mechanisms among these groups of individuals, where the groups are now
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identified by the individuals’ spatial locations. However, there is a subtle
difference between the age/social structure of the population and its spatial
structure. Age and social features relevant to the transmission of infectious
disease do not typically change in time or at most are characterized by some
deterministic trend behavior. This is the case, e.g., of gender considered in
the propagation of sexually transmitted diseases, or age for the transmission
of childhood infectious diseases where the age of each person is updated year
after year in the model following a deterministic increasing trend. On the
other hand, the location of an individual, and thus her/his belonging to a
specific group in the population substructure, can change repeatedly in time,
and even explore several different locations depending on the specific mobil-
ity process considered. In migration processes, e.g., individuals may move
permanently from one center to another. Temporary and recurrent move-
ments are instead associated to commuting processes, from ’home’ patch to
’workplace’ patch, whereas temporary and non-recurrent movements behav-
ior are typical of other hosts, such as e.g. livestocks, and are dictated by
trade patterns among animal holdings. The changing nature of the location
of hosts adds a level of complexity that can be addressed by modeling through
different approximations, as we will see in the following section. In general,
differently from age and social structure where the interaction process re-
quires a single level of description (given by the fixed or deterministically
changing nature of the groups), the explicit description of movements make
metapopulation models intrinsically hierarchical, representing a population
of so-called subpopulations, each identified with a patch in the system and dis-
playing a substructure that describes a set of interacting individuals who can
move from patch to patch and enter different subpopulations (see Figure 2).
From the individual, to the subpopulation, to the metapopulation level, the
approach is characterized at least by two different scales of interactions: the
intra-patch scale describing the hosts’ interaction and contagion processes,
and the inter-patch scale describing the interactions among subpopulations
of hosts at the spatial level. Each level of description corresponds to spe-
cific time and length scales. Additional scales could be considered, e.g., to
describe different processes of host movements, such as when dealing with
multiple transportations and mobility dataset. For this reason, metapopula-
tion models are also generally referred to as multiscale models.
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Figure 2: Schematic representation of a metapopulation model (from
Ref. [20]). The system is composed of a set of subpopulations or patches,
connected by coupling processes. Each patch contains a population of in-
dividuals who are characterized according to their stage of the disease (e.g.
susceptible (S), infected (I), removed (R)), and identified with a different
color in the picture.

2.1 Patches and coupling

Given the very large applicability of the metapopulation approach to a wide
range of phenomena, the definition of a patch is intrinsically flexible. As we
will see with illustrative examples, it is indeed hard to provide a clear-cut
definition and classification of the various instances, and the choice of the
correct scale and modeling approach – i.e. which patch definition and which
interactions to consider – will mostly depend on the problem under study,
on the data availability, and on the questions we aim to answer. By turning
our attention to human hosts, several different modeling scales are possible.
Along with the introduction of specific examples, in the following we will
outline some general features and requirements that are valid at all scales.

Let us consider the study of the spatial spread of human infectious dis-
eases, through two different scales and examples: seasonal influenza in a
country, and an emergent disease such as pandemic influenza or SARS at the
global scale. The overall scales of interest are automatically defined by the
focus of our studies, thus models need to be centered on country geographical
scales in the first example, and on the worldwide scale in the second exam-
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ple. Plausible definitions of patches are urban aggregations, such as cities or
large metropolitan areas where individuals are assumed to be homogeneously
mixed. Coupling among patches is provided by the human movement pat-
terns describing the mobility of individuals from one city to another. The
coupling highlights the first difference between the two examples: which hu-
man movements are relevant for the description of an infectious disease like
seasonal influenza in a country and of SARS invasion in the world? When
the reference scale is the global one, it is rather straightforward to include
the movements of individuals by air travel, as this is the relevant and crucial
mean of transportation, given its ability to rapidly connect regions of the
world that are very far apart. As discussed at the beginning of these notes,
the features of high interconnectedness and rapidity that characterize mod-
ern transportation systems lead to the possibility of rapidly disseminating an
emerging virus across the globe by means of infectious travelers, as experi-
enced during the 2002-2003 outbreak of SARS and the 2009 H1N1 pandemic.
Not considering air travel, and limiting the coupling to ground transportation
only would clearly provide an inadequate modeling structure to describe the
process. In the within-country description, on the other hand, it is reasonable
to assume that air transportation by itself would not be enough to properly
capture the movements of individuals relevant for the disease spreading, as
this would neglect a large fraction of human movements that occur at a scale
(short-range scale) comparable to the scale of the problem. Thus additional
transportation means, such as ground transportation should be included as
well. In this respect, many countries routinely collect data on the commuting
behaviors of individuals [21]. Commuting generally include different means
of transportation (from bicycles, to cars, buses, trains, and flights) and re-
fer to the recurrent mobility behavior of individuals who live in a location
(‘home’ location) and regularly travel to a different location for work or study
(‘workplace’ location). These data provide the interactions among patches
within a country, and the role of separate transportation modes can also be
investigated.

A second difference can be noted in the identification and definition of
patches. The commuting data, collected from national census or transporta-
tion surveys, are typically defined into georeferenced administrative areas –
e.g. counties or municipalities, provinces, states – that map the whole terri-
tory of the country. If commuting is included in the metapopulation model as
the coupling process, then administrative areas become the natural choice for
the identification of patches for the description of an infectious disease within
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Figure 3: Schematic representation of patches and coupling where patches
extension and boundaries are contiguous (left) or not (right).

the country. This corresponds to a demographically and geographically de-
fined set of patches, with clearly defined extension and boundaries. In the
metapopulation model characterizing the worldwide population distributed
into cities connected by air travel, instead, patches may have a demographic
definition only, obtained from census data to indicate the population of each
patch, without a formal geographical extension. This is induced by the choice
of the coupling, the air travel, and the lack of a spatial extension for the
centers of mobility data. Commuting data is defined at the county or mu-
nicipality level, representing a region, whereas air traffic data is defined at
the airport level, which corresponds to a set of discrete points in space. The
analogous of the administrative regions would be the definition of basins of
attraction for each airport, representing the geographical boundaries of the
area whose population would travel from/to the given airport. In general,
if patches are well separated in space, a basic demographic definition of the
patch with no spatial reference is adopted. This is the case for example of
models that consider a sample of the worldwide air transportation network,
with 52, 150 or 500 top airports spread across the globe. Given that the
distance between two airports, e.g., Rome and Paris, is so large, the patches
corresponding to associated airports do not specifically need a spatial def-
inition (see Figure 3). This, however, also corresponds to neglecting the
population not living in the patches included in the model, whereas in the
case of administrative areas the whole population of the country is consid-
ered. If a higher level of detail is considered in the model aiming at covering
the whole population of the system, the approximations needed in the ap-
proach may change. The large density of airports in given regions of the
world coupled with high resolution demographic databases may require the
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definition of the spatial extension of each patch, to identify geographically to
which patch the population living in a given area belongs. This corresponds
to a segmentation of the landscape which is not based on a priori defini-
tions of administrative areas, but emerges directly from the definition of the
metapopulation model. While georeferencing and definition of boundaries
is a known problem in geography, its application to metapopulation models
for infectious diseases was first introduced with a tessellation of the world
into geographic census areas around main transportation hubs (i.e. airports)
where short-range mobility between neighboring census areas is also consid-
ered in addition to air travel [22] (Figure 4.
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Figure 4: GLEAM – Global Epidemic and Mobility model –is an example of
multiscale metapopulation model, with patches obtained through a tessella-
tion procedure around major transportation hubs (left), and multiple modes
of mobility including air travel and commuting (right, where a zoom on the
US is shown, GLEAM extending on the entire globe). From Ref. [22].

In general, while it is often intuitive to identify a definition for a patch
and the associated coupling adequate for the problem under study, the de-
mographic and geographic definitions of the patches are not always straight-
forward. Very often, indeed, it is the identification of the coupling and the
availability of the data quantifying it that allows the definition of the patch
for the specific problem.

From the whole world to regions to countries, increasingly zooming in
the spatial scales, metapopulation approaches can also be used to model
epidemic outbreaks in small community settings, e.g. within a city. The in-
creasing availability of data describing the movements of individuals within
a city, from traditional traffic data to massive surveys to unsupervised data
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collection, allows for the quantification of aggregated fluxes of individuals
moving from location j to location l of the city. In this approach, patches
can thus be identified by locations and coupling corresponds to the measured
or estimated fluxes among locations [23]. While a metapopulation framework
in essence, these modeling approaches are typically classified as agent-based
approaches, since the high level of detail of the system and the creation of syn-
thetic societies reproducing the real ones also require the inclusion of a vast
number of features and parameters associated to each individual (e.g. age,
employment/school activity, household structure, etc.), that go beyond the
simple characterization of the population in terms of groups corresponding
to locations. In addition, while individuals are indistinguishable in metapop-
ulation approaches due to the homogeneous mixing approximation assumed
inside subpopulations, their identity is tracked in time in agent-based model,
as the specific features mentioned before need to be preserved and determine
a set of behaviors at the individual level.

Another example in which spatial transmission is very relevant is the
spread of infectious diseases among animals. Here the natural definition of
the patch is the farm or premises where animals are being held, and the cou-
pling represents the animals movements from one farm to the other [24, 25].
A common approximation that has generally been used in the literature is to
consider the farm as the unit of the study and to assume an SIR dynamics
at the level of the farms. This corresponds to a Levins-type approxima-
tion [8, 9] of the metapopulation system that ignores the possible impact
of the within-farm epidemic dynamics. The implicit assumption considers
that the disease spreads so fast in the animal population that, as soon as
an animal becomes infected, then the whole farm becomes infected as in
an instantaneous process. Besides biological reasoning, this assumption was
also historically induced by the lack of data to characterize the animal pop-
ulations within the farms and their movements from farm to farm. Also
for this reason, the coupling in the contact network at the farm level ap-
proximation generally assumes an interaction between farms modulated on
the distance [24]. This can be computed from the georeference data of the
locations of the farms, usually available, and hypothesizes a higher transmis-
sion between farms on short distances and a weaker transmission on longer
distances. Under this Levins-type approximation, models for livestock dis-
ease spreading at the farm level use the same description for an epidemic on
contact networks, once the coupling is defined on data or on distance ker-
nel models. However, recent availability of detailed data on animal census
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and movements, allow for an explicit representation of the animal popula-
tion in the model through a metapopulation approach, and few preliminary
studies are available in this direction. Here we would like to note that this
case represents yet another example of mobility. Differently from perma-
nent migration, or recurrent patterns as typically observed in the travel and
commuting of individuals, animal movements are characterized by highly
non-trivial evolutionary dynamics induced by economic and trade driving
forces, that prevent the definition of stable patterns across time [25]. In the
absence of stationary or quasi-stationary processes that prevents the system
to reach an equilibrium, modeling approaches should take into account the
specific temporal aspects encoded in the data as these have a strong impact
on the propagation of the epidemic [26, 25, 27, 28].

Finally it is important to discuss the role of timescales. Till now we have
presented the role of different spatial scales to appropriately capture the hosts
movement dynamics, their spatial structuring into patches and the relevance
of these aspects with respect to specific infectious diseases. Implicitly, we
have considered coupling processes whose timescales are relevant with re-
spect to the characteristic timescale of the disease. In the cases described
before, the timescales of the various processes range from fractions of a day
(in the daily commuting process) to several days (in the air travel) and are
therefore comparable to the timescales of the infectious diseases considered,
influenza or SARS, whose evolution occurs on the timescales of few days. On
the other hand, the fluxes of daily commuting or air travel appear to be less
relevant to capture the spatial spreading of an infectious disease with much
longer characteristic timescales, as e.g. HIV infection. The description at the
global level on such long timescales would require different modeling ingredi-
ents – the movements of interest being not so much represented by the daily
travel of people, but more importantly by the long-term massive permanent
immigration of populations from one part of the globe to another. Empirical
evidence have indeed shown the emergence of new HIV subtypes in Western
Europe, due to migrations from Africa [29]. Metapopulation approaches can
help explaining this phenomenon by using estimates of immigrating fluxes
and rough approximations for the spreading dynamics at the level of large
population.
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2.2 Relevant spatial effects

The spatial structure of the population in relatively separated communities
can have a strong impact on the dynamics of infectious diseases. Some of the
effects known for the epidemics in single populations may be suppressed or
enhanced, depending on the interplay between the spatial separation, the
coupling and the population distribution into the patches. Metapopula-
tion systems are indeed characterized by many subpopulations that inter-
act through the coupling process. The strength of the coupling allows for
different phenomena to occur, such as isolation, local or global extinction,
persistence, synchronization [8, 9, 15, 30]. In the extreme case of absence
of coupling, the epidemics in each single population are totally independent
and isolated, and their behavior depend only on the local conditions of the
population, the force of infection (which may be patch-dependent), and on
the time of the start of the epidemic. If the coupling is very small, then the
subpopulations behave almost independently as the interactions by means of
movements of infectious individuals is very small compared to the local evo-
lution of the disease within the patch, and the main effect of the interaction
is the onset of the epidemic in each patch. In this situation, some patches
may still be isolated though they are coupled to the rest of the system. This
occurs if the patches have a very small exchange of individuals with neigh-
boring patches and thus their populations have few contacts with the other
communities where an epidemic may be unfolding. The spatial separation
thus behaves as a mean of protection against the risk of transmission. If
the coupling is very large, then the subpopulations are strongly interacting
by exchanging a large fraction of individuals and thus increasing their pos-
sibility to mix almost homogeneously beyond the spatial constraints. This
induces a strong synchronization in the time behavior of the epidemics within
the patches that results as if the multiple subpopulations act like one sin-
gle large homogeneously mixed population [30]. Another important aspect
induced by spatial separation concerns the persistence of the disease in the
global population. While in a single population the time of full duration of
an epidemic is given by the epidemic and local conditions only, the same
epidemic may persist for a longer time period if the population is spatially
structured. Once the epidemic is fading out in a subpopulation, movements
of individuals may allow the so-called (re)-colonization events, i.e. the new
infection of a subpopulation not yet infected that enables the survival of the
pathogen in a population of newly susceptibles [30]. Under given conditions,
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host mobility may indeed favor the possibility of spreading of the epidemic.
Very important are also the stochastic events that lead to the extinction of
the disease in a subpopulation. When the population is spatially structured,
such extinction events may occur in each subpopulation, and the conditions
under which this can occur are extremely important from a public health
point of view for the eradication of the disease. Being the system spatial, we
have to distinguish between local extinctions and global extinction. If the
coupling is very small, recolonization events are very rare and the patches
behave almost independently also concerning their possibility of extinction –
rescue effects to reestablish an epidemic in a given subpopulation have a
small chance to occur and epidemics may go locally extinct. However, this
does not necessarily correspond to a global eradication of the disease, as it
may well circulate in other communities of the metapopulation system. If
the coupling is very large, on the other hand, the local epidemics are well
synchronized and extinction events at the local level may lead to the extinc-
tion at the metapopulation level as they all occur at the same time without
the possibility of survival for the pathogen in relatively isolated communities.
Intermediate values of coupling are expected to lead to more complicated con-
ditions for the spread of the disease from one population to another, where
the lack of synchronization is accompanied by the occurrence or recoloniza-
tion events, so that disease persistence is enhanced [30]. The only addition
of the spatial dimension in the population under study allows therefore for
an interesting spectrum of possibilities regarding the persistence of an epi-
demic, with a crucial trade-off induced by the coupling strength. Additional
effects such as seasonal forcing increase the complexity of the problem be-
cause of their interplay with synchronization effects. These aspects, along
with stochastic resonance, have been vastly studied in the analysis of measles
where they were recognized to play a major role in the maintenance of re-
current epidemics [14, 15, 31]. In the following, we will restrict our attention
to the role that discrete and stochastic effects have in shaping the disease
spread in the metapopulation system and the computational approaches that
can be considered, but we will always assume a constant transmissibility that
does not vary with time.
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3 The stochastic discrete metapopulation scheme

In order to present the mathematical and computational descriptions of an
epidemic spatial spreading through a metapopulation approach, we consider
the simple susceptible-infectious-recovered (SIR) model [32, 33]. Differently
from a single population approach, the global dynamics of a metapopulation
system is described by a set of coupled SIR schemes, each associated to
a single subpopulation. We need therefore to define a set of variables to
denote the susceptible, infectious and recovered individuals in each patch, as
a function of time. The variables St, It, Rt thus become:

St → S1,t, S2,t, S3,t, S4,t, . . . , SV,t

It → I1,t, I2,t, I3,t, I4,t, . . . , IV,t (1)

Rt → R1,t, R2,t, R3,t, R4,t, . . . , RV,t

N → N1,t, N2,t, N3,t, N4,t, . . . , NV,t; Ntot =
∑
j

Nj,t

where the suffix j of Sj,t (Ij,t or Rj,y) indicates the number of susceptible
(infected or recovered, respectively) individuals in subpopulation j, with
j = 1, . . . , V and V representing the total number of patches in the sys-
tem. Analogously to the single population case, the population size at each
patch is given by Nj,t = Sj,t + Ij,t + Rj,t, and in principle it may change in
time depending on the mobility process considered. The total population
considered in the metapopulation system, Ntot, is given by the sum of the
populations of each patch of the system.

Similarly to the SIR in a single population, we can write Markov chain
relations describing the time behavior of the SIR in the metapopulation sys-
tem:

Sj,t+∆t = Sj,t +∆Sj,t

Ij,t+∆t = Ij,t +∆Ij,t (2)

Rj,t+∆t = Rj,t +∆Rj,t,

where the quantities ∆Sj,t (∆Ij,t and ∆Rj,t) indicate the variations in the
population of the susceptible (infected and recovered, respectively) individ-
uals during the time step ∆t. These variations are due to two processes: the
within-patch dynamics and the inter-patch dynamics, i.e. the coupling. Let
us start from the processes that occur within each patch. The change in the
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populations of each compartment for each time step ∆t are given by the gen-
eration I+ of new infectious individuals through the successful transmission of
the pathogen from infectious to susceptibles, and by the recovery of R+ infec-
tious individuals that at time t+∆t enter the R class (see Eqs. (2.2)). These
variations are defined by the disease parameters, i.e. the transmission rate
β and the recovery rate µ, and by the homogeneous mixing approximation
assumed in the model, and are modeled with binomial stochastic variables to
ensure the discrete stochastic nature of the processes. The same expressions
can be written also for the metapopulation approach and represent the vari-
ations of Sj, Ij and Rj for subpopulation j. In addition, we have to consider
the coupling process that allow changes in the compartment sizes due to the
mixing of the individuals in subpopulation j with neighboring subpopulation
l. This contribution can be separated from the epidemic process occurring
exclusively within the patch, so that for each compartment X in subpopula-
tion j we can write ∆Xj,t as the sum of the appropriate variations expressed
in terms of the various X+ and the coupling factor. For the moment, let us
indicate the coupling factor with the variable ΩX

j,l,t for the compartment X in
subpopulation j, so that we can write Markov chain relations that explicitly
distinguish the within-patch from the inter-patch dynamics:

Sj,t+∆t = Sj,t − Ij,+ + ΩS
j,l,t

Ij,t+∆t = Ij,t + Ij,+ −Rj,+ + ΩI
j,l,t (3)

Rj,t+∆t = Rj,t +Rj,+ + ΩR
j,l,t.

Here Ij,+ ∼ Bin(Sj,t, β∆tIj,t/Nj) is a binomially distributed random variable
that represents the new infections generated in subpopulation j from the en-
counter of susceptible Sj,t and infected individuals Ij,t within the population
Nj at time t, and Rj,+ ∼ Bin(It, µ∆t) is a binomially distributed random
variable that represents the new recovered individuals at time t + ∆t from
previously infectious individuals in j. Here we also assume that the trans-
mission rate β is kept constant at the metapopulation level. A more general
version of the metapopulation approach may consider a spatial dependence in
the transmissibility that may change from subpopulation to subpopulation,
i.e. βj, to take into account for local aspects (such as environmental factors
or population structure within the patch) that enhance or suppress the trans-
mission. Additional complications may also include the dependence on time,
such as e.g. in the case of the seasonal forcing we discussed before where
the transmission rate may depend on both the location and the time, βj,t.
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This is a mechanism commonly used to model the seasonality of influenza
in different regions of the world, i.e. the empirical evidence that transmis-
sion is enhanced during winter and suppressed during summer times, taking
into account the season (i.e. time) dependence and the different behavior
observed in the Northern and Southern Hemispheres of the world due to the
counter-phase of seasons [22].

The coupling factors ΩX
j,l,t depend not only on the compartment X in the

subpopulation j at time t, but clearly they depend also on the compartments
in subpopulation l, neighbors of j, where neighbors means connected through
coupling processes. The explicit expression of ΩX

j,l,t depends on the modeling
approximation used for the description of the coupling process. In the fol-
lowing, we will see the phenomenological approach that treats the coupling
as an effective force, and the mechanistic approach that explicitly models the
movement of hosts from one subpopulation through another.

3.1 Effective approach

The most basic approach to take into account for coupling effects is achieved
by treating the coupling in a phenomenological way, i.e. allowing for the
definition of a likelihood of contracting the infection for susceptibles of a
given subpopulations j that effectively accounts for the infectious individuals
present in the metapopulation system, besides those present in j [31, 34, 35,
24, 36]. In each subpopulation j, the Markov chain equations can be written
as in Eqs. (3), however the quantity ΩX

j,l,t defined in the previous section is
now expressed as a force of infection arising from the other subpopulations
which are in contact with the subpopulation under study. In other words,
a susceptible individual in subpopulation j is exposed to a total force of
infection λ, which now includes the force of infection induced by the presence
of infectious individuals in the same subpopulation j (i.e. the factor leading
to the new generation of infectious individuals, Ij,+), plus the one induced by
the infectious individuals who are in subpopulations l connected to j. The
latter is defined in a way analogous to the standard definition, βIt/N , of the
force of infection in a single population:∑

l

βlj
Il,t
Nj

, (4)

where l is a subpopulation coupled with j and βlj is the effective transmission
rate from l to j. Clearly, this formulation of the coupling process affects only
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the change in the compartment populations of susceptible and infectious
individuals, since the recovered compartment is not influenced by the force
of infection. In terms of reaction processes we thus have for population j:

Sj + Ij → 2Ij with rate β
Ij
Nj

for within− patch dynamics

Sj + Il → Ij + Il with rate βlj
Il
Nj

for inter− patch dynamics.

If we include the subpopulation j in the sum over the index l, the overall
force of infection for a susceptible individual in j is given by a weighted
sum of forces of infection,

∑
l βljIl/Nj, where it is commonly assumed that

the transmission rate within each community has one value, β, whereas a
smaller value is assumed for contacts between patches:

βlj = β for l = j

βlj = ϵβ for l ̸= j , (5)

with ϵ < 1 defines the coupling strength. Another formulation of the effec-
tive coupling instead assumes the following values for the transmission rates
within and inter-patches:

βlj = β(1− σ) for l = j

βlj = βσ for l ̸= j , (6)

in order to keep the reproductive number R0 = β/µ independent of variations
of the coupling strength σ to allow for the comparison between models with
different coupling strengths. In both formulations, for the sake of simplic-
ity, the dependence of the coupling strength from origin and destination (i.e.
subpopulations j and l) is disregarded and the coupling is considered homo-
geneous across the metapopulation system. More in general, the coupling
strength depends on the specific subpopulations under study as the move-
ments of hosts from l to j is found to dramatically vary in real datasets [20].
In the general formulation where we retain the dependence of the coupling
strength on the specific connections between subpopulation, i.e. ϵij (or, anal-
ogously σij), we can write the following equations regulating the behavior of
an SIR epidemic in a metapopulation system with effective coupling, in terms
of the values sj,t, ij,t and rj,t of the stochastic variables Sj,t, Ij,t and Rj,t:

sj,t+∆t = sj,t −Bin

(
sj,t, β∆t

ij,t +
∑

l ϵljil,t
Nj

)
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ij,t+∆t = ij,t +Bin

(
sj,t, β∆t

ij,t +
∑

l ϵljil,t
Nj

)
−Bin(ij,t, µ∆t) (7)

rj,t+∆t = rj,t +Bin(ij,t, µ∆t).

Finally, it is important to note that the effective approximation described
here attempts to estimate the actual mixing of individuals between subpop-
ulations, without explicitly allowing for the movements of individuals from
one patch to another. Individuals always stay in one patch and are exposed
to the epidemics undergoing in neighboring patches. From this point of view,
this approach clearly oversimplify the two distinct processes of contagion and
movements, and describes the movement process as an effective additional
force of infection. The result is completely analogous to the structuring of
the population in social or age classes of basic compartmental models where
individuals belong to one single class only and their interactions with the
other individuals of the populations is described through an infection ma-
trix βlj between classes l and j [32, 33]. As in the social structuring, also
in the metapopulation system with effective approach, V 2 parameters of the
matrix βlj need in principle to be estimated, with V being the number of
subpopulations. However, several assumptions can be employed to simplify
this task, by assuming that all the values on the diagonal (i.e. within-patch)
are equal to a constant value β and that all off-diagonal values (i.e. inter-
patch) are equal to a fraction of this value, e.g. ϵβ as in Eqs. (5). Additional
simplifications may arise from a more detailed knowledge of the coupling
among the patches, where at least the topology of the interactions between
the subpopulations are known, or are based on modeling assumptions (as e.g.
distance kernel assumptions), or are inferred from incidence data. For this
reasons, the effective approach to describe an epidemic in a metapopulation
system, besides simplifying the dynamics, was also the first to be historically
introduced given the lack of detailed data on hosts movements that could
allow the explicit modeling of the coupling dynamics.

3.2 Mechanistic approach

Mechanistic approaches consider the explicit movements of individuals who
leave a subpopulation j and enter a subpopulation l, so that, at time t,
they are therefore exposed only to the local risk of transmission, i.e. the one
experienced in the subpopulation they are located in at time t. If we indicate
with Xjl,+ the stochastic variable quantifying the number of individuals in

20



compartment X traveling from subpopulation j to subpopulation l at time
t, the coupling variables ΩX

l,j,t introduced in Eqs. (3) can be simply expressed
as:

ΩS
j,l,t =

∑
j

(Slj,+ − Sjl,+)

ΩI
j,l,t =

∑
j

(Ilj,+ − Ijl,+) (8)

ΩR
j,l,t =

∑
j

(Rlj,+ −Rjl,+).

In other words, for population j, they represent the balance of the incoming
flows of individuals in compartment X from neighboring subpopulations l
(Xlj,+ with positive sign in the above equations) and the outgoing flows of
individuals in compartment X from subpopulation j to neighboring subpop-
ulations l (Xjl,+ with negative sign).

The full formulation of the model in the mechanistic approach now re-
quires the definition of the mobility process of individuals and in particular of
the mobility rates at which individuals leave each patch and the probability
to reach a particular destination [20]. In principle, this approach requires
V 2 parameters of mobility rates pjl times the number of compartments to
define the movement of each individual in the population from every origin j
to each possible destination l. As in the previous approach, however, several
possible approximations can be adopted to simplify the problem. Typically
compartments are characterized by the same mobility rate, or, in the case
of more complicated compartmental structures including e.g. hospitaliza-
tions, quarantine, and others, the model may assume that these individuals
are restricted from traveling to ensure realism in the simulations. Simplified
mobility assumptions may also assume that the rate of leaving a patch is
uniform and that the movements of individuals are equally distributed on all
possible destinations, where the set of destinations is identified by available
data (mobility networks) or modeling assumptions (such as nearest neigh-
bors on a spatially embedded topology). Or, having fixed a uniform leaving
rate from each patch, the distribution of the moving individuals across desti-
nations can be assumed to be heterogeneous, based on statistical properties
extracted from the data or based on modeling assumptions that consider a
varying coupling induced e.g. by the distance, as in the distance kernel ap-
proximation. For the presentation of different mobility processes and their
inclusion in metapopulation epidemic models, we refer the reader to Ref. [20].
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Besides modeling assumptions as the ones just discussed that allow the
definition of the metapopulation model in absence of mobility data or its
study from a theoretical point of view (also enabling an analytical treatment
under certain conditions, as shown in Section 4) the power of the mech-
anistic approach is fully exploited when data on the movements of hosts
are available. The recent availability of large spatiotemporal data on hu-
man behavior, interactions and movements have lifted the constraints that
were limiting the design of realistic data-driven metapopulation models, and
allow the definition of mobility rates based on the data. In this frame-
work, the data typically provide the number of hosts traveling from sub-
population j to subpopulation l in a unitary timescale, wjl. This number
is independent of the population size of the patch of origin, Nj, so that
by considering a mean-field approximation we can define the diffusion rate∑

l wjl/Nj as the probability per unit time that an individual located in j
leaves the subpopulation, where

∑
l wjl is the total number of people trav-

eling out of j provided by the data. The approximation is valid for the
case of indistinguishable individuals, where no individual heterogeneity that
may change the mobility behavior of hosts (such as e.g. age, social sta-
tus, profession, and others) is considered. By defining the mobility rate of
individuals from subpopulation j to subpopulation l as pjl = wjl/Nj, the
outgoing flow of individuals Xjli,+ in compartment X from j to any patch
li connected to j (with i = 1, . . . , k, and k being the degree of the patch j)
is thus given by a stochastic variable that follows a multinomial distribution
∼ Mult(Xj,t, wjl1∆t/Nj, wjl2∆t/Nj, . . . , wjlk∆t/Nj, 1−

∑
iwjli∆t/Nj). The

multinomial distribution is needed because the process now involves multi-
ple possible outcomes: an individual in compartment X and location j at
time t may travel to connected patch l1 with probability wjl1∆t/Nj, or to
l2 with probability wjl2∆t/Nj, and similarly for all connected patches li, or
may remain in her/his original location j with probability 1−∑

i wjli∆t/Nj.
The stochastic set of equations regulating the behavior of the epidemic

in the mechanistic metapopulation system under this approximation can be
written as:

sj,t+∆t = sj,t −Bin(sj,t, β∆tij,t/Nj) +
∑
j

(slj,+ − sjl,+)

ij,t+∆t = ij,t +Bin(sj,t, β∆tij,t/Nj)−Bin(ij,t, µ∆t) + (9)

+
∑
j

(ilj,+ − ijl,+)
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rj,t+∆t = rj,t +Bin(ij,t, µ∆t) +
∑
j

(rlj,+ − rjl,+),

where slj,+ and sjl,+ (and analogously for r and i) are the random values
obtained from the multinomial distribution described above for the compart-
ment Sj,t (Rj,t, Ij,t).

It is clear from Eqs. (9) that the mechanistic approach does not lead to a
formulation that is analogous to the one adopted for the structuring of the
population in social or age classes. Differently from the effective approach,
the force of infection is the same as in the single population and is accom-
panied by the description of the movement of individuals. Only through the
explicit movement, individuals may become exposed to an outbreak under-
going in a given location. As discussed at the beginning of the chapter, the
possibility to move and visit different communities in time (thus changing
the group to which the individual belongs to) represents a major modeling
difference with respect to the structuring of the population by age or social
aspects, and thus requires a true multi-level description of the process.

Mobility processes that can be included in the metapopulation model, can
be of very different nature. As discussed when introducing patches and cou-
pling, the movement of hosts may be a permanent migration from one patch
to another (as it occurs in the case of livestock movements from one farm to
another) or a transient mobility process (as typically in the case of travels of
individuals who return to their home location after the trip) with recurrent
patterns to the same destination and almost fixed visiting times (such as for
the commuting form of mobility where individuals typically spend a duration
equal to a working day in a specific work location), or varying destinations
and visit lengths (as in the case of business or pleasure trips to different
destinations). The mobility type has also important implications in the time
behavior of specific quantities as e.g. the population sizes of the patches.
While these quantities are conserved in time for transient mobility processes,
as the mobility is by definition symmetric (traveling individuals will come
back to their home locations), population sizes are found to strongly change
in time for permanent mobility processes (e.g. cattle are moved from one
type of animal holding to another for trade, fattening, etc. without neces-
sarily go back to their initial location). If recurrent, though not symmetric,
patterns are considered, as in the case of homogeneous rate of diffusion out
of a patch but heterogeneous rate of movement to the available possible des-
tinations, a stationary state for the population sizes can be reached after an
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initial transient of the dynamics [20]. This stationarity greatly simplifies the
process and is equivalent to drop the time dependence of Nj,t as we have
done in the previous equations.

The above equations are also based on another assumption. Till now we
have illustrated a process that defines the individuals through compartments
that depend on the location j and the time t only. The location j indicates
the patch where the individual is found at that given time t. Clearly, if we
want to model recurrent mobility processes (as e.g. home to workplace and
return), we would need to add two ingredients: the identification of the origin
patch of the individuals (the home patch), and the definition of the return
rates, depending on the visiting times. This is accomplished by structurally
modifying Eqs. (3) to incorporate a recurrent dynamics and by defining new
variables for the compartments that now explicitly have two location indices
besides the dependence on time – Xjl,t, indicating the number of individuals
in compartment X of population j (home patch) who currently are located
in l (workplace patch). This approach has been originally introduced in
Refs. [37, 38] and also incorporated into a data-driven metapopulation model
with multi-scale mobility [22]. Within the recurrent mobility framework,
moreover, it is possible to reconcile the effective approach and the mechanistic
approach of a metapopulation model by demonstrating an equivalence based
on the appropriate estimation of the parameters on one formulation from the
parameters of the other [37]. In the following, we will adopt the markovian
assumption for the mobility process presented in Eqs. (3), in that at each time
step the rate of movement of individuals is given by pjl and it applies to all
individuals in the subpopulation without having memory of their origin. We
will focus on this approximation for the computational implementation of the
model and for the definition of properties of the metapopulation system. At
the end of these notes we will also address non-markovian mobility processes
and discuss the effects on those properties.

4 Local vs. global invasion

So far we have focused on the definition, characterization, and implemen-
tation of a metapopulation system and its various modeling assumptions
concerning mobility processes and effective vs. mechanistic approaches. An
infectious disease with a given reproductive number R0 can however invade
a closed and fully susceptible population only if R0 > 1 [32, 33]. In the
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simple case of an SIR model we have R0 = β/µ and the threshold condition
translates into stating that the transmission rate needs to be larger than the
recovery rate, i.e. the epidemic needs to generate a number of new infections
larger than the ones who recover. It is natural to wonder whether this condi-
tion still applies to a set of fully susceptible populations which are coupled to
each other in a metapopulation system (i.e. in an overall closed population,
though spatially structured). If we consider the effective approach, the same
expression of the reproductive number can be easily recovered if we adopt the
formulation of Eqs. (6) where also the within-patch transmission rate βjj is
rescaled by a function of the coupling strength σ in order to preserve the R0

value for varying values of σ, as previously noted. In the case of mechanistic
approach, however, the calculation of R0 is complicated by the explicit repre-
sentation of the mobility process that is absent in the effective approach. The
analytical treatment of a metapopulation model, however, is not an easy task
since we need to solve a system of V sets of non-linear differential equations
(one for each compartment) coupled by the mobility process (even in the sim-
plifying deterministic approximation). Prompted by the study of real-world
mobility networks and leveraging on some of the statistical properties recur-
rently found in these systems, an approach was recently introduced based on
the reaction-diffusion (RD) framework (already used to model e.g. chemical
and physical phenomena) that provides an analytic solution of a metapopula-
tion epidemic model with explicit movements [39, 40, 20]. Mobility networks
are indeed found to exhibit important variability in the number of connec-
tions of each patch, a property that can be mathematically encoded in a
heavy-tailed probability distribution P (k) for the degree k of a given patch,
i.e. the number of its connected neighbor patches [41, 21]. The approach
is based on the statistical equivalence for subpopulations of similar degree.
This is a mean-field approximation that considers all subpopulations with a
given degree k as statistically equivalent, thus allowing the introduction of
degree-block variables that depend only on the subpopulation degree. That
is, instead of formulating the model by writing equations in terms of individ-
ual subpopulations j and l as we have done in the previous section, the sub-
populations of the system are grouped according to one relevant topological
feature, their degree k, and all other features specific of a given subpopula-
tion j (such as e.g. its spatial position, the cultural aspects of its population,
etc.) are disregarded. This is analogous to the degree-block approxima-
tion introduced for the study of the epidemic on contact networks [42]. The
difference is that here the nodes have a substructure (i.e. the scale of the

25



individuals inside each subpopulation) where the epidemic unfolds and may
then spread throughout the system through mobility fluxes. Although this is
an obvious approximation of the system description, it has been successfully
applied to many dynamical processes on complex networks and it is rooted
in the empirical evidence gathered in previous works. Besides the large fluc-
tuations observed in k, several scaling properties as functions of the degree
k have been uncovered in the study of real-world demographic and mobility
datasets, including population size, travel fluxes, and others [41, 21].

4.1 Local epidemic threshold

By changing the description of the epidemic metapopulation process from
quantities that depend on the specific subpopulation j (Sj, Ij, Rj, pjl) to
quantities in the degree-block approximation that depend only on the degree
k (Sk, Ik, Rk, pkk′ , where pkk′ indicates the mobility rate of an individual
from subpopulation of origin with degree k to subpopulation of destination
with degree k′) it is possible to express the time behavior of the epidemic
at the metapopulation level in terms of RD rate equations for the quantities
Sk(t), Ik(t) and Rk(t) for each degree class k.

The dynamical rate equations for the number of infectious individuals in
the deterministic continuous limit can be written as

∂Ik = − [pkIk + (1− pk)µIk] +

+(1− pk)βΓk + k
∑
k′

P (k′|k)pk′k [(1− µ)Ik′ + βΓk′ ] , (10)

where Γk = SkIk/Nk indicates the transmission kernel, pk =
∑

k′ pkk′ rep-
resents the diffusion rate out of a given subpopulation with degree k, and
P (k′|k) is the conditional probability that a patch with degree k is connected
to a patch with degree k′. The first term, in [], on the r.h.s of the equation
represents the depletion term of infectious individuals as the sum of those
who diffuse away of the subpopulation (pkIk) and those who stay in the
subpopulation and recover ((1 − pk)µIk). The remaining terms of the r.h.s
take into account both the new infected individuals generated by the disease
dynamics within the subpopulation ((1− pk)βΓk) and the infected individu-
als who diffuse from the neighboring subpopulations with diffusion rate pkk′ .
Similar expressions can be written also for the evolution of Sk and Rk.

An explicit solution to the previous equations can be obtained for the
early stages of the epidemic [20], when we can assume very small densities
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of infectious individuals in the metapopulation system so that contributions
of order I2k can be neglected. In this setting the reaction kernel can be

approximated as Γk = (Nk−Ik−Rk)Ik
Nk

≃ Ik, where we have neglected all terms

of order I2k and considered that Rk is of the same order of Ik in the early
stage of the dynamics. By plugging this expression into the above equations
and assuming an uncorrelated system (i.e. P (k′|k) = k′P (k′)/⟨k⟩, we obtain:

∂Ik = −pkIk + (1− pk)(β − µ)Ik +

+
k

⟨k⟩
∑
k′

k′P (k′)pk′k [(1− µ+ β)Ik′ ] . (11)

At this point we need to characterize the mobility process and define pkk′
to obtain explicit solutions for the early dynamics. Consider the mobility
process described in Subsection 3.2 where pkk′ = wkk′/Nk, and let us assume
the scaling relation found in real networks for the traffic flows wkk′ as a
function of the degrees of the origin and destination subpopulations, wkk′ =
w0(kk

′)θ. The diffusion rate out of a patch with degree k is then pk =∑
k′ w0(kk

′)θ/Nk = Tk/Nk where Tk is the total traffic flow of the patch
and from normalization conditions it is possible to obtain the relation Tk =
k1+θw0⟨k1+θ⟩/⟨k⟩. The equations for the early stage thus become:

∂Ik = −pkIk + (1− pk)(β − µ)Ik +
k1+θ

⟨k1+θ⟩
(1 + β − µ)Ω, (12)

where Ω =
∑

k P (k)pkIk. By averaging both sides of the equation over P (k),
it is possible to write an equation for the early stage behavior of the average
number of infectious individuals Ī =

∑
P (k)Ik, ∂Ī = (β − µ)Ī, yielding

Ī = Ī(0)e(β−µ)t (13)

and thus recovering the epidemic threshold condition R0 = β/µ > 1. The
condition depends only on the reaction rates and is not affected by the spatial
structure of the population [20]. Intuitively this is stating that if the epidemic
is not able to proliferate in each local subpopulation, then it cannot produce a
major outbreak at the metapopulation level. Analogous analytic treatments
can be done for different mobility processes that yield the same solution for
the expression of the reproductive number [20].
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4.2 Global invasion threshold

Although the R0 > 1 result is valid at the level of each subpopulation, the
epidemic behavior at the metapopulation level is determined also by the dif-
fusion process of individuals. In particular, the effects due to the finite size
of subpopulations, the discrete nature of the individuals and the stochastic
nature of the diffusion may have a crucial role in the problem of resurgent
epidemics, extinction and eradication [43, 44, 45, 46, 47]. Each subpopula-
tion may or may not transmit the infection to another subpopulation it is
in contact with, depending on the occurrence or not of the travel event of
at least one infected individual to the non-infected subpopulation during the
entire epidemic duration (see Subsection 2.2). Intuitively, this must depend
on the level of mixing among the subpopulations. If there is no mixing at
all, then the epidemic is restricted to the seeded subpopulation. Varying
coupling strength has important effects in the synchronization of the epi-
demics at the subpopulation level. Here we would like to assess under which
conditions a single initially infected subpopulation is able to lead to an epi-
demic that invades the system at the global level. This is captured by the
definition of a new predictor of disease invasion, R∗, regulating the number
of subpopulations that become infected from a single initially infected sub-
population [43, 44, 45], i.e. the analogous of the reproductive number at the
subpopulation level [32, 33]. The emergence of the global invasion is due to
the interplay of the timing and size of the epidemic in a given subpopulation,
and the diffusion rate that must be large enough to ensure the timely dif-
fusion of infected individuals to other subpopulations of the metapopulation
system, before the local epidemic outbreak dies out. If we want to capture
this phenomenon, we clearly need to consider the discrete stochastic nature
of hosts in their movements, since deterministic continuous description would
always lead to an invasion.

Given the analogy between the R0 and R∗ parameters in determining the
conditions for the spreading at the individual and patch level, respectively,
it is possible to study the invasion dynamics considering the subpopulation
model in a coarse-grained view and provide a characterization of the inva-
sion dynamics at the level of the subpopulations [39, 20], translating epi-
demiological and demographic parameters into Levins-type metapopulation
parameters of extinction and invasion rate. More in detail, abandoning the
description in terms of Sk(t), Ik(t), Rk(t), it is possible to define analogous
quantities at the level of subpopulations, and in particular define the number
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of infected subpopulations of degree k. The notion of time in the microscopic
evolution of the disease at the level of individuals within each subpopulation
translates into the definition of steps or generations n, where n = 0 indi-
cates the infected subpopulations at the beginning of the process, n = 1
indicates the set of subpopulations directly infected by those of generation 0,
and so on for the following generations (see Figure 5 for a schematic exam-
ple of the invasion process). This corresponds to a basic branching process
at the subpopulation level, similar to the chain of transmission occurring at
the individual level. Under the assumption that during the early stage of
the epidemic the number of subpopulations affected by an outbreak (with
R0 > 1) is small, the branching process can adopt a tree-like approximation
that allows relating the number of infected subpopulations at generation n
to the ones at generation n− 1.

Metapopulation scheme - branching process approximation
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Figure 5: Schematic illustration of the branching process of epidemic diffusion
at the subpopulation level, where subpopulation are identified as infected
or not (left, from Ref. [48]). Global invasion threshold in a heterogeneous
metapopulation system: the global attack rate is shown as a function of R0

and the diffusion rate p (right, from Ref. [39].

If we denote with Dn
k the number of infected subpopulations with degree

k at generation n of the branching process, it is possible to describe the
evolution of this quantity in terms of the number of infected subpopulation
at the previous generation n− 1 and the seeding events [39, 20]:

Dn
k =

∑
k′

Dn−1
k′ (k′ − 1)P (k|k′)

(
1−R−φk′k

)(
1−

n−1∑
m=0

Dm
k

Vk

)
. (14)
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The r.h.s. of the equation describes the contribution of the subpopulations
of degree k′ at generation n−1 to Dn

k . Each of the Dn−1
k has (k′−1) possible

connections along which the infection can proceed (-1 takes into account the
link through which each of those subpopulations received the infection). In
order to infect a subpopulation of degree k, three conditions need to occur:
(i) the connections departing from nodes with degree k′ point to subpop-
ulations of degree k, as indicated by the conditional probability; (ii) the
reached subpopulations are not yet infected, as indicated by the probability(
1−∑n−1

m=0
Dm

k

Vk

)
, where Vk is the total number of subpopulations with degree

k; (iii) the outbreak seeded by φk′k infectious individuals traveling from k′

to k takes place, and the probability for this event to happen is given by
(1−R−φk′k). The latter term is the one that relates the microscopic dy-
namics of the local infection occurring within a subpopulation to the coarse-
grained view that describes the disease invasion at the metapopulation level.
It depends on the details of the diffusion process of individuals as well as the
individual travel behavior and its interplay with the disease stages. In the
case of an SIR model we can write φkk′ = pkk′αNk/µ, where α is the epidemic
size in a single subpopulation, and the expression quantifies the fraction of
the total number of cases (αNk) who diffuse (pkk′) while infectious (average
infectious period being µ−1). This relation, defined at the macroscopic level,
contains a quantity that links the two scales of the metapopulation model
from the individual to the patch level, and measures the number of infected
individuals that move from an infected patch at generation n−1 to a not yet
infected patch at the following generation, thus seeding the outbreak with
a probability related to the value of R0. By considering the same mobility
process as before, described by the rate pkk′ = wkk′/Nk = w0(kk

′)θ/Nk, and
an uncorrelated network, the previous equation reads as

Dn
k = (R0 − 1)

k1+θP (k)

⟨k⟩
w0α

µ

∑
k′

Dn−1
k′ k′θ(k′ − 1) , (15)

where we have assumed R0 close to the epidemic threshold so that we can
write (1 − R

−φkk′
0 ) ≃ φkk′(R0 − 1), and we consider that at the early stage

of the epidemic
(
1−∑n−1

m=0
Dm

k

Vk

)
≃ 1. By using the auxiliary function Θn =∑

k′ D
n
k′k

′θ(k′−1), we obtain the recursive relation Θn = (R0−1) ⟨k
2+2θ⟩−⟨k1+2θ⟩

⟨k⟩
w0α
µ
Θn−1,

yielding for the global invasion the condition

R∗ =
2(R0 − 1)2

R2
0

µ−1w0
⟨k2+2θ⟩ − ⟨k1+2θ⟩

⟨k⟩
> 1 . (16)
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We rewrite the expression of R∗ in a simplified form:

R∗ = G(R0) ·H(µ) · F (w0;P (k)) > 1 , (17)

where the functions G, H, and F take the form

G(R0) =
2(R0 − 1)2

R2
0

H(µ) = µ−1

F (w0;P (k)) = w0
⟨k2+2θ⟩ − ⟨k1+2θ⟩

⟨k⟩
,

respectively.
R∗ is therefore equivalent to a basic reproductive number at the subpop-

ulation level, defining the average number of subpopulations to which each
infected subpopulation will spread the contagion process. R∗ thus defines
the invasion threshold, as any contagion process will spread globally in the
network system only if R∗ > 1. Given the dependence of R∗ on the mobility
scale w0, once the topology of the metapopulation substrate and the epi-
demic parameters are fixed, Eq. (17) explicitly defines the critical value for
the mobility above which an epidemic at the global level takes place, ensur-
ing that on average each subpopulation can seed more than one neighboring
subpopulation [39, 20].

The condition for the critical mobility yields [39, 20]:

w0 ≥
⟨k⟩

⟨k2+2θ⟩ − ⟨k1+2θ⟩
µR2

0

2(R0 − 1)2
. (18)

These results have been generalized to different types of mobility pro-
cesses and to more complicated compartmental structures to increase the
realism of the disease description beyond a simple SIR model, and confirmed
by extensive numerical simulations [20]. In all cases, R∗ depends on a com-
bination of functions of the reproductive number (G(R0) in Eq. (17)), of the
disease parameter values (H(µ)), and of mobility and topological aspects of
the metapopulation network (F (w0;P (k))). Particularly interesting is the
explicit effect of the network topology, encoded in the moments of the de-
gree distribution P (k). Indeed, the heterogeneity of the network leads to
very large values of the function F (w0;P (k)) (much larger than in a homo-
geneous network with same size and average degree) that ensure very large
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values of R∗, thus above the threshold value 1 (see Figure 5 where the R∗
surface is obtained considering an SEIR model with asymptomatic infec-
tions for the description of influenza transmission). In the perspective of the
threshold condition on mobility, this implies that the heterogeneity of the
metapopulation network favors the global spread of epidemics by lowering
the critical mobility value. In other words, the topological fluctuations favor
the subpopulation invasion [39], similarly to what happens for heterogeneous
contact networks at the individual level [42]. These findings have recently
attracted attention because, besides enabling the understanding of a quali-
tative threshold behavior for the global invasion of a pathogen in a spatially
structured population, they are able to provide an explicit expression that
allows the calculation of the threshold condition on mobility in a realistic sit-
uation. In other words, they provide a theoretical framework and rationale
for the evidence concerning the inefficacy of travel restrictions in the contain-
ment of global epidemics. Consider for example a metapopulation model for
influenza spread built on the worldwide air transportation network. Taking
into account the heterogeneous topological pattern of the network, the simple
plug-in of the actual numbers for the transportation network, the population
sizes, and realistic disease parameters in the threshold condition indicates
that a reduction of almost 2 orders of magnitude of the mobility would be
needed to bring the system below the invasion threshold [39]. This approach
shows how simplified modeling frameworks may allow the explanation of
effects found in simulation results, and, in the specific case, provide the un-
derstanding of mobility effects in the spread and containment of infectious
diseases.

5 Going beyond basic assumptions

The study of the global invasion threshold presented in the previous Section is
obtained under specific conditions of the mobility process. Various mobility
types are considered that affect the functional form of the mobility rate pjl
and its dependence on the origin patch, destination patch or both. However
the basic assumption underlying those framework is the Markovian nature
of the mobility, i.e. the fact that individuals may leave subpopulation j to
enter subpopulation l irrespectively of their previous movements. This is
typically adopted to describe a range of random diffusive phenomena where
no memory comes into play.
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At the beginning of these notes, however, we have discussed the presence
of different types of mobility modes in which memory is a crucial aspect of
the dynamics that cannot be disregarded. This is especially true for the case
of human hosts whose movements are typically characterized by recurrent
patterns, from specific home locations to given destinations. In the spe-
cific case of commuting, moreover, the recurrent nature is also associated
to a specific destination, i.e. the workplace location, and to a specific vis-
iting time approximately equal to the amount of hours corresponding to an
average working day. Recurrent mobility patterns such as commuting are
clearly poorly modeled by the random diffusive dynamics presented so far,
and specific methodologies and approximations capable of coping with non-
Markovian diffusive processes in complex systems need to be introduced that
go beyond the simple adaptation of previous theoretical frameworks.

The first framework to be introduced is based on the inclusion of memory
effects through the description of the population with two indices – residence
patch and patch of current location at time t [37, 38]. The individuals orig-
inal from the subpopulation j, Nj, are divided in the contribution Njj(t),
who are from j and are located in j at time t, and Njl(t), who are from j
and are located in a neighboring subpopulation l at time t (see the schematic
diagram of Figure 6). In addition to the leaving rate pkk′ (that one can as-
sume to be dependent from the degrees k and k′ of the origin and destination
patches, respectively, as obtained from empirical evidence), the commuting
mobility needs the definition of an additional parameter, the return rate τ−1

with τ being the timescale of the commuting. The interplay between the
different timescales of the processes – the timescale of the epidemic, the one
of the commuting and the inverse of the leaving rate – opens the possibility
to a simplification of the modeling description, under certain conditions. In
particular, if σk ≪ τ−1 and the epidemic characteristic timescale is much
larger than the one of the commuting process, then it is possible to consider
the system in a quasi-stationary state and solve the rate equations obtaining
the stationary values of the compartment populations [22, 37, 38]. These
conditions are met in the case of human commuting, as the leaving rate is
typically very small and smaller compared to the inverse of the commuting
time (generally few hours, representing a working day), whereas an outbreak
caused by influenza epidemic, e.g., has a typical infectious period of about
3 days. Rate equations characterizing the commuting dynamics among sub-
populations can then be defined in terms of the variables Njj(t) and Njl(t)
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as
∂tNjj = −∑l σjlNjj(t) + τ−1∑

l Njl(t) ,

∂tNjl = σjlNjj(t)− τ−1Njl(t) .
(19)

If the conditions for the quasi-stationary approximation are satisfied, sta-
tionary solutions are found by imposing ∂Njj(t) = ∂Njl(t) = 0. By using the
consistency relation Nj = Njj(t)+

∑
l Njl(t), the stationary conditions yields

the equilibrium values

Njj =
Nj

1 + σj/τ
and Njl =

Njσjl/τ

1 + σj/τ
. (20)

Under this approximation, it is possible to write Levins-type equations
as in the Markovian case, where the seeding events φkk′ are calculated on
the obtained stationary values. Results provide a richer phase diagram than
in the previous case, as now the global invasion threshold depends on both
the mobility rates, i.e. the leaving rate and the return rate (Figure 6). The
expression for the global invasion threshold provide the critical values of the
mobility rates that distinguish between a regime in which the pathogen may
invade a macroscopic fraction of the metapopulation system and a regime in
which it is limited to few subpopulations (see Figure 6). Intuitively, this is
explained by considering that if the diffusion rate approaches zero, the prob-
ability of the contagion entering neighboring subpopulations goes to zero, as
there are no occasions for the carriers of the process to visit them. On the
other hand if the return rate is very high, then the visit time of individuals
in neighboring populations is so short that they do not have time to spread
the infection in the visited subpopulations.

Between permanent movements to daily commuting, human mobility is
also characterized by other types of non-Markovian movements where return
rates are not constant. Available statistics indeed show that the time spent
by travelers at destination is characterized by wide fluctuations, ranging from
a single day up to several months (Figure 7). Such varying length of stay
crucially affects the chance and duration of mixing events among hosts and
may therefore have a strong impact on the spread of an emerging disease.
To address this aspect, a novel analytical framework for a metapopulation
epidemic model with heterogeneous lengths of stay at destination was intro-
duced [49, 50]. While the economic literature considers the length of stay as
one of the key elements in the visitor’s decision-making process, its determi-
nants remain however largely undefined. A possible assumption is to consider
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Figure 6: Schematic representation of the subdivision of the population in
each patch into subpopulations Nxy, where x represents the subpopulation
of residence and y represents the subpopulation of the actual location at
time t (left). Phase diagram in terms of mobility rates, with continuous
lines identifying the R∗ = 1 relation and shaded areas corresponding to the
invasion regime (from Ref. [37]).

a scaling function for the length of stay at destination that is proportional
to the destination patch degree [49, 50], i.e.

τk ∼ kχ, (21)

where the parameter χ defines different regimes of the mobility dynamics.
For χ > 0 the length of stay is positively correlated with the degree of the
patch of destination, meaning that individuals traveling to a well-connected
location will spend a longer time at destination, thus being longer exposed
to the local population, with respect to individuals traveling to peripheral
locations. This can be motivated by the attractiveness of popular locations,
for which the pattern of connection is optimized through large degrees to
manage large fluxes volumes of individuals, both at the within-city scale and
at the larger geographical scale where airport hubs handle large traffic due
to tourism or seasonal/temporary job opportunities. The opposite regime,
obtained for χ < 0, implies that the time spent at a location is larger for
decreasing degree of the subpopulation of destination, and may correspond
to an individual choice of optimization between the time spent to reach the
destination and the time spent at destination. Low degree locations are
indeed generally peripheral in the system, so that a trip from a given origin
may take multiple steps to reach the final destination, and thus a longer
length of stay at the hard-to-reach destination may then adequately balance
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and justify the travel time.

Figure 7: Heterogeneous length of stay at destination, for the UK (left) and
for 5 European countries (center). Schematic representation of the subdivi-
sion of the population in each patch into subpopulations, considering return
rates dependent on degree k. From Refs. [49, 50].

Under these conditions and the time-scale separation approximation, it
is possible to solve analytically the dynamics of epidemic invasion in the
metapopulation network and write an expression for the global invasion
threshold, depending on epidemic and mobility parameters [49, 50]. The
solution shows that large fluctuations of the length of stay, as observed in re-
ality, can have a significant impact on the threshold conditions for the global
epidemic invasion (see Figure 8), thus altering model predictions based on
simpler assumptions, and displaying important public health implications.
Two regimes are indeed found that may dramatically favor or hinder the
invasion, induced by the positive or negative degree-correlation, respectively.
The regimes alter not only the conditions for invasion, but also the epidemic
invasion trees once the disease spreads in the metapopulation network (Fig-
ure 8). Despite its simplicity, the framework uncovered an important aspect
that must be considered in interpreting and simulating epidemic spreading
patterns, and in providing detailed model predictions.

6 Conclusions

Our understanding of communicable disease prevention and control is rooted
in the theory of host population transmission dynamics, where contacts be-
tween hosts and contacts between populations of hosts drive the epidemiology
of infectious diseases, determining if and how quickly they spread, and who
gets infected. As the spatial spread plays a crucial role in the management
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Figure 8: Analytical surface of the global invasion threshold R∗ as a function
of R0 and χ (left, from Refs. [49, 50]. Epidemic invasion trees (see [49]
for more details) when the length of stay is positively correlated (center) or
negatively correlated (right) with the destination patch degree k. Nodes are
colour coded according to the time of their seeding, and their size scales with
their degree; nodes in the first layer are ordered according to their degree
to highlight the role of different degree nodes in the hierarchical invasion
pattern in the two cases. From Refs. [49, 50].

and control of a disease, the theory and results presented in these notes form
the basis to build increasingly realistic metapopulation epidemic models for
public health applications. Additional factors such as, e.g., the heterogene-
ity of the travel behavior of the population, the dependence of mobility rates
on socio-economic or geographical aspects, non-homogeneous mixing, adap-
tive behavior, integration of high-resolution contact and mobility data, and
others enable an increasingly accurate description of disease propagation.
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