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Highlights 10 

● New methodology to investigate the influence of roughness on the shear behavior of interfaces 11 
● Methodology to generate databases of synthetic rough rock surfaces with controlled roughness values 12 
● Establishment of numerical simulations as a strategy to perform extensive virtual experimental studies 13 
● The correlation between interface roughness and shear strength is not bijective. 14 
● Assessment of artificial neural network modeling as a complementary alternative to failure criteria 15 

Abstract 16 

This paper presents a new approach to determine more robust shear failure criteria, focusing on rough concrete-rock 17 
interfaces. The proposed method could also be applied to rock joints. The new approach is based on the distribution 18 
and variety of interfaces numerically tested in terms of surface roughness. For this reason, random field simulations 19 
are performed using the turning bands method to generate an extensive database of synthetic rough rock surfaces. 20 
With this database of synthetic rough rock surfaces, numerical simulations of direct shear tests are carried out. Finally, 21 
analytical and neural network models are proposed using the database of shear strength obtained from the finite 22 
element simulations to estimate the peak shear strength of concrete-rock interfaces. The performances of the analytical 23 
and neural network models in estimating this peak shear strength are evaluated by computing the percentage error and 24 
the mean absolute error (MAE) between the predicted and the numerically obtained values. Both models lead to 25 
satisfactory predictions. Nevertheless, it is worth noting that the neural network model mildly outperforms the 26 
analytical model regarding the magnitude of the error. Furthermore, the neural network model reproduces the possible 27 
non-bijective aspect of the correlation roughness-peak shear strength.  28 
 29 
Keywords: roughness, peak shear strength, random field simulation, numerical simulation, analytical model, neural 30 
network model.  31 

List of Symbols 32 

𝛾(ℎ)	 Theoretical variogram function 
𝑍(𝑥)	 Random function 

𝑥	𝑎𝑛𝑑	𝑥 + ℎ	 Pairs of points in a certain domain separated by a distance equivalent to h 
𝑚(ℎ)	 The mean or drift  
𝐶(ℎ)	 Covariance function 
𝐸[⬚]	 Mathematical expectation (linear operator) 
𝑣𝑎𝑟[⬚]	 Variance of a random variable 
2𝛾(ℎ)	 Variance of a random variable 
𝐶!"#(ℎ)	 Covariance function: spherical model 
𝑎	 Variogram range  
𝑏	 Variogram sill 

𝑧!(𝑋)	 3D realization obtained using a turning bands method 
𝑁$	 Number of lines in one-dimensional simulation of the turning bands method 
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1. Introduction  33 

The shear behavior of interfaces is one of the most investigated subjects in rock mechanics. Since the early fifties, the 34 
investigation of the shear behavior of interfaces culminates each year in dozens of scientific communications (Patton 35 
1966; Bandis, Lumsden, and Barton 1981; Grasselli and Egger 2003; Saiang, Malmgren, and Nordlund 2005; 36 
Moradian et al. 2010; Moradian, Ballivy, and Rivard 2012; Tian et al. 2015; Mouzannar et al. 2017) It is today accepted 37 
that, within the range of normal stress useful for most geotechnical problems, the shear behavior of rock-rock and 38 
concrete-rock interfaces are mainly influenced by the cohesion, the normal stress, the geometrical properties of the 39 
interface, the roughness, and the basic friction angle. Despite this interest and the achievements in this area, it seems 40 
that the research for more robust failure criteria linking the most influential parameters of the shear behavior to the 41 
peak shear strength is still ongoing (Patton 1966; Ladany and Archambault 1969; Barton and Choubey 1977; Hoek 42 

𝑧%(< 𝑂𝑋&;;;;;;;⃗ , 𝑢&;;;⃗ >)	 Realization of the turning bands method (1D) 
𝑁$	 Number of lines: turning bands method (1D) 

𝐶'(𝑟)	 Three-dimensional covariance function 
𝐶((𝑟)	 Uni-dimensional covariance function 
𝑑
𝑑𝑥	

Differentiation operator 

𝜃)*+∗ /(𝐶 + 1)	 Grasselli roughness parameter 
𝑘-	 Normal stiffness 
𝑘!	 Shear stiffness 
𝜎°	 Normal strength 
𝜏°	 Shear strength 

𝛿/ − 𝛿0 	 Shear displacement 
𝛼 Damage parameter 
𝜇 Friction coefficient 
𝜏"	 Peak shear strength 
𝜎-	 Normal stress 
𝜏 Shear stress 
𝜙1	 Basic friction angle 
𝐴2	 Maximum contact area during shear 
𝜎3	 Tensile strength 
𝑐	 Cohesion 
𝑓44	 Neural network function 
𝜏44	 Neural network predicted peak shear strength 
𝑀𝑆𝐸	 Mean squared error 
𝑀𝐴𝐸	 Mean absolute error 
𝑛	 Number of points considered in MAE and MSE 
𝑢	 Shear displacement 
𝑢)	 Shear displacement until contact between the two slabs in a direct shear test 
𝜏5	 Residual shear strength 
𝑢"	 Peak shear displacement 
𝛥𝑢"	 Horizontal displacement before the peak 
𝛿!%	 Shear displacement at time i 
𝜏!%	 Shear stress at time i 

  



3 
 

and Brown 1980; Plesha 1987; Amadei et al. 1998; Grasselli and Egger 2003; Liu et al. 2017). In particular, the 43 
influence of roughness in the shear behavior still needs more investigation.  44 

Most studies are usually based on a handful of rough rock surfaces that hardly encompass a more comprehensive range 45 
of roughness encountered in nature. This shortcoming is overcome in the present research by considering the number 46 
and variety of rough rock surfaces. Many parameters have been proposed to quantify the roughness of rock surfaces 47 
to estimate the peak shear strength. These roughness parameters are separated into two main groups, the 2D roughness 48 
parameters (El-Soudani 1978; Myers 1962; Whitehouse 2023; Barton and Choubey 1977) and the 3D roughness 49 
parameters (El-Soudani 1978; Grasselli and Egger 2003; Bryan S. A. Tatone and Grasselli 2009). Of all these 50 
parameters, the JRC (Barton and Choubey 1977) and the 𝜃)*+∗ /(𝐶 + 1) (Bryan S. A. Tatone and Grasselli 2009) are 51 
of particular interest in the problem of the estimation of the shear resistance of a rough interface. The JRC is based on 52 
extensive experimental studies and back-calculation analysis. On the other hand, 𝜃)*+∗ /(𝐶 + 1) has a straightforward 53 
geomechanical rationale. In this paper, the focus is on understanding the influence of roughness as a three-dimensional 54 
entity on the shear resistance of concrete-rock interfaces under low normal loading (e.g: mid-height concrete gravity 55 
dams and rock support systems on shallow excavation); this means that only the 3D roughness parameter 𝜃)*+∗ /(𝐶 +56 
1) (Bryan S. A. Tatone and Grasselli 2009) is used. Collecting rough rock surfaces with specified roughness values is 57 
experimentally very challenging. For this reason, it is essential to define a methodology to generate artificially 58 
synthetic rough rock surfaces. Random field simulation is an example of such a methodology. Random field simulation 59 
has been recently used to generate synthetic rough rock surfaces. Casagrande et al. (Casagrande et al. 2018) performed 60 
random field simulations to generate synthetic rough rock surfaces to estimate the shear strength of rock-rock 61 
interfaces using a stochastic approach. Jeffery et al.(Jeffery et al. 2021)  improved the rigor of the methodology 62 
proposed by Casagrande et al. (Casagrande et al. 2018). The new methodology consists of transforming a 2D trace of 63 
a discontinuity into three daughter profiles, performing the random field simulations using, as input, the parameters 64 
of each daughter profile, and superposing the results of the three simulations into a single profile, which is then used 65 
to obtain one 3D realization. Both Casagrande et al. (Casagrande et al. 2018) and Jeffery et al. (Jeffery et al. 2021) 66 
use the local average subdivision algorithm (LAS) (Fenton and Vanmarcke 1990) to perform random field simulations. 67 
Although this methodology is quite useful when only the trace of a rough rock surface is accessible, it still suffers 68 
from the limitation of characterizing the roughness of rock surfaces using a single two-dimensional profile. In this 69 
study, however, the turning bands method is selected to perform random field simulations using the three-dimensional 70 
geostatistics characteristics of rough rock surfaces. 71 

Even with a rich database of synthetic rough rock surfaces, it is still complex to properly assess the influence of 72 
roughness on the shear behavior of interfaces. This complexity is caused by the challenge of performing many reliable 73 
and repeatable experimental tests. For this reason, numerical simulations of direct shear tests are ideal to investigate 74 
the influence of roughness on the shear behavior of interfaces once the numerical model is validated by experimental 75 
results. Progress has been made on the numerical modeling of the shear behavior of concrete-rock interfaces. Badika 76 
et al. (Badika et al. 2022), Tian et al. (Tian et al. 2015), and Zhao et al. (Zhao, Chen, and Zhao 2018) used the cohesive-77 
frictional model to simulate direct shear tests of concrete rock interfaces using the rough concrete-granite, smooth 78 
concrete-dolomite, and foamed concrete-sandstone interfaces. This model is appropriate for investigating the shear 79 
behavior of concrete-rock interfaces under low normal loading. Specifically, the calibrated and validated model 80 
presented by Badika et al. (Badika et al. 2022) for bonded rock-concrete interfaces is used to simulate the direct shear 81 
tests performed in the present paper.  82 

With a sufficiently large database of shear history representing the numerical simulations of direct shear tests of 83 
synthetic rough rock surfaces, it might be possible to propose more robust failure criteria. The general approach to 84 
define a failure criterion is to define an analytical model based on the interpretation and understanding of the 85 
underlying mechanisms active during the shear process (Grasselli and Egger 2003; Barton and Choubey 1977; Patton 86 
1966; Ladany and Archambault 1969). This approach is one of the two approaches adopted in this research. The other 87 
approach is to associate the understanding of the shear mechanisms active during shear with the computational 88 
capability to recognize complex statistical patterns within the database of shear strength. In this second approach, a 89 
failure criterion is based on artificial neural network modeling that can perform the same task as the analytical model. 90 
Artificial neural networks (ANN) application in rock mechanics research has grown substantially in the last twenty 91 
years. This growth has been fueled by the availability of powerful computers and data usually collected for mining 92 
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engineering projects (Delavar and Ramezanzadeh 2023; Khandelwal and Singh 2009)  and the advances in machine 93 
learning research overall (Krizhevsky, Sutskever, and Hinton 2017). The advances in machine learning have 94 
positioned artificial neural network models as a possible alternative to numerical simulations (Furtney et al. 2022), 95 
analytical models(Dantas Neto et al. 2017), and or experimental studies (Sakaridis, Karathanasopoulos, and Mohr 96 
2022; Furtney et al. 2022). Furthermore, ANN models have been used extensively to estimate the rock properties, 97 
such as the compressive strength of rock(Furtney et al. 2022; Meulenkamp and Grima 1999; Rabbani et al. 2012; 98 
Yesiloglu-Gultekin, Gokceoglu, and Sezer 2013; Jahed Armaghani et al. 2016; Rajesh Kumar et al. 2013), elastic 99 
modulus (Rajesh Kumar et al. 2013), and the major principal stress(Rukhaiyar and Samadhiya 2017). 100 

In this paper, random field simulations are carried out using the turning bands method to generate an extensive 101 
database of synthetic rough rock surfaces. Finite element simulations of direct shear tests of concrete-rock interfaces 102 
are performed using the database of synthetic rough rock surfaces. The results of these numerical simulations yield a 103 
database of shear strength. This database of shear strength is then used to propose two methodologies to estimate the 104 
peak shear strength of concrete-rock interfaces.  105 

2. Generation of synthetic rough rock surfaces 106 

The generation of synthetic rough rock surfaces proceeded in three main steps (Fig. 1). First, the fields of heights of 107 
asperities representing each interface tested are normalized. Second, the normalized data obtained is used in the 108 
variogram analysis, yielding parameters characterizing each field in terms of spatial correlation and variance. Last, 109 
these characteristic parameters are used as inputs of random field simulations to generate synthetic rough rock 110 
surfaces. More details about each of the steps are presented later. 111 

For the generation of synthetic rough rock surfaces in this study, roughness data collected by El Merabi (El Merabi 112 
2018) was used. This data was obtained by scanning rough granite blocks used to generate bonded concrete-rock 113 
samples. These samples were used to perform direct shear tests as part of an extensive experimental study designed 114 
to investigate the influence of roughness on the shear behavior of concrete-rock interfaces. 115 

2.1 The roughness of rough rock surfaces as a random function 116 

Every field of heights of asperities representing a rough rock surface is a dataset that maintains the concept of 117 
regionalization since each field value is correctly associated with a specific location in a physical space and maintains 118 
a correlation with other heights of asperities located in its surroundings. Moreover, it is very challenging to define a 119 
deterministic function that fits all the heights of asperities composing the field. Therefore, a probabilistic approach to 120 
characterize the field of heights of asperities is more suitable. Furthermore, the probabilistic approach introduces the 121 
concepts of randomness, such as each field value can be envisioned as a result of a random mechanism. Therefore, 122 
the association of regionalization and randomness is the base of the definition of random function (Wackernagel 2003). 123 
This association means that the roughness of rough rock surfaces can be considered a random function. Consequently, 124 
the random field theory can be used to simulate synthetic rough rock surfaces. The process of the random field 125 
simulation to generate synthetic rough rock surfaces is displayed in  Fig. 1. The detailed method to statistically analyze 126 
the roughness data (steps 1 to 3) is explained in section 2.2. The random field simulation (step 4) is further developed 127 
in section 2.3. Eventually, the complete process applied to the generation of the synthetic rock surfaces for the present 128 
research is described in section 2.4. 129 
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Fig. 1 Synthetic rough rock surface generator using random field simulation 130 

 131 

2.2 Statistical and geostatistical data processing 132 

The methodology for simulating random fields in this work requires the data to be normally distributed. Unfortunately, 133 
the distribution of heights of asperities constituting the rough rock surface, as many other properties of interest in rock 134 
and soil mechanics, do not automatically follow a normal (or Gaussian) distribution (Fenton and Griffiths 2008; 135 
Casagrande et al. 2018). Therefore, the quantile-to-quantile normal score transformation is used to normalize the 136 
distribution of heights of asperities (Deutsch and Journel 1998; Pyrcz and Deutsch 2020). An illustration of this 137 
transformation for one rough granite surface is presented in Fig. 2. 138 

A further requirement for the simulation of random functions using the random field theory is that the statistical 139 
characteristics of the first and the second moment (mean and variance) must remain constant within the domain. This 140 
requirement is the consideration of stationarity. In this research, the intrinsic stationarity hypothesis is used. This 141 
hypothesis means that the stationarity has to be satisfied only for the sums of differences between pairs of points, 142 
leading to the concept of variogram (Wackernagel 2003). 143 

A variogram function is an expression of the dissimilarity between pairs of points 𝑥 and 𝑥 + ℎ  and is computed using 144 
Eq. (1).  145 

𝛾(ℎ) = 	
1
2𝐸

[(𝑍(𝑥 + ℎ) − 𝑍(𝑥))6]	 (1) 

 146 

where 𝐸[⬚] is the mathematical expectation. 147 

In this research, the interest is in the generation of fields of correlated data. For this reason, the expression of similarity 148 
is more desired than the expression of dissimilarity. Consequently, the covariance function is used in the random field 149 
simulation instead of the variogram function. 150 

The covariance function is defined based on the concept of intrinsic stationarity of the two first moments (mean 𝐸[⬚] 151 
and variance 𝑣𝑎𝑟[⬚]) of a random function 𝑍(𝑥), see Eq. (2) and Eq. (3).  152 

𝐸[𝑍(𝑥 + ℎ) − 𝑍(𝑥)] = 𝑚(ℎ) = 0	 (2) 
 153 

𝑣𝑎𝑟[𝑍(𝑥 + ℎ) − 𝑍(𝑥)] = 2𝛾(ℎ)	 (3) 
 154 
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Fig. 2 Data transformation: the nscores obtained are the normalized distribution of heights of asperities of a rough 155 

granite surface (step 2 of the synthetic rock surface generation process) 156 
 157 

 158 

For all points 𝑥 and 𝑥 + ℎ, the covariance function is defined according to Eq. (4). 159 

𝐸[𝑍(𝑥)	𝑍(𝑥 + ℎ)] − (𝐸[𝑍(𝑥)])6 = 𝐶(ℎ)	 (4) 

 160 

The variogram function can be computed using the covariance function; 161 

𝛾(ℎ) = 𝐶(0) − 	𝐶(ℎ)	 (5) 
 162 

The covariance function used in this research is the spherical model, Eq. (6). This model is selected because it best 163 
fits the shape of point cloud values obtained after calculating variograms of rough granite surfaces. The quality of 164 
fitting the covariance function to the shape of the variogram points calculated is important because these functions are 165 
designed to capture the general characteristics of a field. Using covariance functions instead of simple variogram 166 
points is necessary to add a physical meaning to the characterization of a field (Wackernagel 2003).  167 

𝐶!"#(ℎ) = S𝑏T1 −
3
2
|ℎ|
𝑎 +

1
2
ℎ'

𝑎'W 	𝑓𝑜𝑟	0 ≤
|ℎ| ≤ 𝑎

0																																								𝑓𝑜𝑟	|ℎ| 	> 𝑎
 (6) 

 168 

where 𝑎 represents the range and	𝑏 represents the sill. 169 

The spherical covariance function is defined using three parameters: the nugget effect, the range, and the sill. The 170 
nugget effect is associated with the unreliable variation of variogram values when smaller distances between pairs of 171 
points are considered. According to Eq. (1), this means smaller values of ℎ. This parameter is not considered in the 172 
present study because the rough granite surfaces used in the variogram analysis are small and well-sampled. The range 173 
𝑎 is the distance between pairs of points at which the values of the variograms begin to stabilize. The variogram value 174 
when the range 𝑎 is reached is called the sill 𝑏. The range 𝑎 is an expression of the correlation distance between the 175 
points of a field. The sill 𝑏 can be interpreted differently depending on the geostatistical context. In this study, the sill 176 
is an expression of the variance of the data used in the computation of variograms. Since all the data are normalized, 177 
the sill is limited to one. This consideration can be interpreted as if the variogram values are above the sill, the data 178 
are inversely correlated. The data are directly correlated if the variograms are below the sill (Samson and Deutsch 179 
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2021). The range 𝑎 and the sill 𝑏 are used as the inputs of the random field simulations aiming at reproducing the 180 
correlation between the points with controllable variance. 181 

In this study, the fields of heights of asperities obtained by scanning rough granite surfaces are first normalized, then 182 
the normalized data obtained is used to compute variograms. The variogram points are fitted to a spherical covariance 183 
function defining the range 𝑎 and the sill 𝑏. The range 𝑎 and the sill 𝑏 obtained are used in the random field simulation 184 
presented hereafter to obtain new synthetic rough rock surfaces with similar correlation distance and controllable 185 
variance. 186 

The simulation of random fields, as implemented in this research, is restricted to isotropic random fields; this means 187 
that the covariance function is assumed to be constant independently of the direction of the vector h.  188 

Fig. 3 shows the result of a variogram analysis of a natural rough granite surface in two directions, yielding two 189 
combinations of sill and range (covariance parameters) used as input for two random field simulations: (1, 25) and (1, 190 
20). 191 

 
Fig. 3 Variogram analysis of rough rock surfaces (step 3 of the synthetic rock surface generation process) 192 

 193 
 194 

2.3 Simulation of random fields using the turning band method 195 

Random field simulations are carried out using as inputs the range 𝑎 and the sill 𝑏 of spherical covariance functions 196 
used to fit the variograms computed using the points cloud representing the heights of asperities of rough granite 197 
surfaces. The outputs obtained in these simulations are fields of heights of asperities denominated synthetic rough 198 
rock surfaces. These synthetic rough rock surfaces have geostatistical characteristics (range 𝑎 and sill 𝑏) within an 199 
acceptable range of the ones of the input of the random field simulation. Synthetic rough rock surfaces with defined 200 
roughness values are then selected from the database of synthetic rough rock surfaces generated.  201 

This research uses the turning bands method to perform random field simulations. This method has a solid 202 
geostatistical background and uses variogram analysis. A summary of the method is provided below. A more detailed 203 
presentation of the turning bands methods can be found in the literature (Chilès and Delfiner 2012; Journel and 204 
Huijbregts 1976; Mantoglou and Wilson 1982; Matheron 1973). 205 

The turning bands method reduces two-dimensional and three-dimensional problems into unidimensional ones. 206 
Consequently, instead of performing three-dimensional simulations straight away, a series of unidimensional 207 
simulations are carried out along a set of lines. Then, a single regionalized value of a realization is obtained using the 208 
projected values in the unidimensional realizations according to Eq. (7).  209 
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𝑧!(𝑋) =
1
Z𝑁$

[𝑧%(< 𝑂𝑋&;;;;;;;⃗ , 𝑢&;;;⃗ >)	
4!

(

	 (7) 

 210 

Where	𝑁$, the number of lines and the subscript 𝑠 indicates the simulated synthetic value. 211 

The direct relationship between the three-dimensional covariance function and the unidimensional covariance function 212 
is given by Eq. (8); the demonstration of this equation can be found in Mantoglou and Wilson (Mantoglou and Wilson 213 
1982) and Matheron (Matheron 1973). 214 

𝐶((𝑟) = 	
𝑑
𝑑𝑥 [𝑟𝐶'(𝑟)]	

(8) 

 215 

Where 𝐶((𝑟) is the unidimensional covariance function, and 𝐶'(𝑟) is the three-dimensional covariance function. 𝐶'(𝑟) 216 
is computed using data from three-dimensional data representing a natural rough rock surface. In this project, the 217 
spherical covariance function is used to fit the variogram, that is to say 𝐶'(𝑟) computed according to Eq. (6). Thus, a 218 
unidimensional equivalent of a spherical covariance function can be determined using Eq. (9). 219 

𝐶(7(ℎ) = S𝑏 T1 − 3
|𝑟|
𝑎 + 2

𝑟'

𝑎'W 	𝑓𝑜𝑟	0 ≤
|ℎ| ≤ 𝑎

0																																								𝑓𝑜𝑟	|ℎ| 	> 𝑎
 (9) 

 220 

Furthermore, the implementation of the simulation of the random field using the turning bands used in this research 221 
is based on the Matlab computer program presented in Emery and Lantuéjoul (Emery and Lantuéjoul 2006). 222 

2.4 Results of the synthetic rough rock surface generator 223 

As stated in section 2.1, the random field simulation to generate synthetic rough rock surfaces proceeds in six steps 224 
(Fig. 1). 225 

The first step involved collecting the roughness information of natural rough rock surfaces. Granite blocks with natural 226 
rough surfaces were scanned using a laser-based scanner. The distance between the scanned points is 0.025 mm, and 227 
the vertical resolution of the scanner is 0.05 mm. The selection of this point density is based on the discussion of the 228 
effect of point spacing in the roughness characterization and the peak shear strength estimation (B. S.A. Tatone, 229 
Grasselli, and Cottrell 2010), and the vertical resolution is adequate for the scale of this study. From the scanning, 230 
localized fields of heights of asperities were obtained. The collected data is then interpolated using Matlab functions 231 
to get fields of asperities with a regular grid. This regularization of the grid makes the computation of the roughness 232 
and the variograms easy. Fig. 4 illustrates how this step is applied to the present study. 233 

The second step involved applying the quantile-to-quantile normal score transformation to obtain normal distributions 234 
of the fields of heights of asperities. Fig. 2 illustrates how this step is applied to the present study.  235 

The variogram analysis is carried out in step three. This analysis determines the covariance function parameters used 236 
as inputs of the random field simulation. Fig. 3 illustrates the result of a variogram analysis applied to the present 237 
study.  238 

In step four, the random field simulation using the turning bands method is carried out. Fig. 5 illustrates the theoretical 239 
variogram from which the simulation inputs were drawn, the variograms of the simulated fields, and the average of 240 
the variograms of the simulated fields. 241 
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In step five, the back-transformation is carried out to transform the synthetic surfaces obtained from normal 242 
distribution to the original distribution of the field used as input. Fig. 6 illustrates two synthetic rough rock surfaces 243 
generated. 244 

The last step is the computation of roughness parameters of the synthetic rough rock surfaces to select synthetic rough 245 
rock surfaces with specific roughness values. The roughness characterization is performed using the Grasselli 246 
roughness parameter 𝜃)*+∗ /(𝐶 + 1) (Bryan S. A. Tatone and Grasselli 2009). Fig. 7 shows the 334 synthetic rough 247 
rock surfaces selected for finite element simulations of direct shear tests of concrete-rock interfaces to study the effect 248 
of roughness on the shear behavior of interfaces. The roughness of the 334 synthetic rough rock surfaces generated in 249 
this study (Fig. 7) varies between 6° and 24°(𝜃)*+∗ /(𝐶 + 1)). 250 

 
Fig. 4 Scanning rough rock surface (step 1 of the synthetic rock surface generation process) 251 

 252 
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Fig. 5 Variograms of simulated rough rock surfaces  (step 4 of the synthetic rock surface generation process) 253 

 254 
 255 

  
(a) (b) 

Fig. 6 Synthetic rough rock surfaces generated; (a) sample 1 and (b) sample 2 (step 5 of the synthetic rock surface 256 
generation process) 257 

 258 
 259 
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Fig. 7 Roughness of the synthetic rough rock surfaces generated; 𝜃)*+∗ /(𝐶 + 1)	(step 6 of the synthetic rock surface 260 

generation process) 261 
 262 

3. Finite elements simulations  263 

3.1 The rationale of the numerical simulation 264 

The finite element simulations performed in this research are based on the experimental and numerical study of the 265 
shear resistance of concrete-rock interfaces in the condition of low normal stress presented in Badika et al.(Badika et 266 
al. 2022). These authors reported a series of direct shear tests of smooth concrete-granite, bush-hammered concrete-267 
granite, and natural rough concrete-granite interfaces using three levels of normal stress: 0.5, 1.0, and 1.5 MPa. These 268 
tests were performed under constant normal loading (CNL). Details regarding the direct shear test machine used are 269 
presented in Boulon (Boulon 1995). A complete presentation of the mechanical characterization of concrete and 270 
granite as intact materials is presented in the literature (Mouzannar 2016; El Merabi 2018). The analysis of this 271 
experimental study led to three significant observations. The formation of strong concrete-rock bonds depends on the 272 
micro-roughness of the granite surfaces. The macro-roughness of the granite surfaces influences the shear behavior of 273 
concrete-rock interfaces through surfaces interlocking. Depending on the normal stress, two failure modes are 274 
possible: the first failure mode (with a normal stress of 0.5 MPa) proceeds along the interface with no significant 275 
damage in either concrete or rock, and the second failure mode (with a normal stress of 1.0 and 1.5 MPa) proceeds 276 
mainly along the interface but also shears the tips of concrete. Overall, this experimental study shows that the shear 277 
behavior of concrete-rock interfaces happens at the interface and is driven by the micro-roughness and macro-278 
roughness of the rock surface.  279 

Since failure is observed mainly at the interface, the choice was made to concentrate on the non-linearities at the 280 
interface. With these outcomes, the cohesive frictional model proposed by Tian et al. (Tian et al. 2015) was used to 281 
simulate the shear behavior of concrete-rock interfaces. In this model, the behavior law simulates the micro-roughness 282 
and, therefore, the concrete-rock bonds. The calibrated cohesive-frictional model presented by Badika et al. (Badika 283 
et al. 2022) is used in the present research. In this model, the local evolution of the shear stress is composed of three 284 
successive phases. The first phase is linear elastic and mainly driven by the concrete-rock bonds. The second phase is 285 
characterized by a progressive failure of the bonds (using a damage constitutive law) and progressive friction 286 
mobilization. The third phase is driven by friction. The equations of the cohesive-frictional model are detailed in 287 
(Badika et al. 2022). The calibration of the parameters of this model was performed using the results of direct shear 288 
tests of bush-hammered concrete-granite interfaces. The influence of the concrete strength in the second failure mode 289 
leads to a different value of the parameters used in the interface constitutive law. This is why there are two sets of 290 
parameters for the calibrated model, presented in Table 1. The explicit representation of the rough rock surface 291 
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introduces the influence of macro-roughness. Apart from the interface, concrete and rock are considered linear elastic 292 
materials, with properties displayed in Table 2. 293 

Table 1 Parameters of the model (Badika et al. 2022) 294 

Cohesive 
frictional model Parameters First failure mode 

 (0.5 MPa) 
Second failure mode 
(1.0 - 1.5MPa) Unit 

Cohesive part 

Normal stiffness  15 15 GPa/m 
Shear stiffness  7.5 4.5 GPa/m 
Normal strength  1 1.4 MPa 
Shear strength  1.2 1.6 MPa 
Shear displacement  0.9 2.25 mm 
Rate of damage 
evolution  4 4 - 

Frictional part friction coefficient  0.7 0.65 - 
 295 

3.2 Preparation of the simulation 296 

The point clouds representing the field of heights of asperities composing the rough rock surfaces were generated 297 
using random field simulations (refer to section 2). Then, the point clouds generated were converted into surfaces 298 
through interpolation. Each surface obtained was used to create a 3D solid part using Comsol, which was later 299 
imported into Abaqus. With this imported 3D solid part and the merge and cut tool in Abaqus, two perfectly matched 300 
parts were generated to represent the concrete and granite blocks for the simulation of the direct shear test. 301 

The mesh size was defined such that the macro-roughness of the rock surface is faithfully represented. The average 302 
mesh size of 4 mm was used. The fully integrated eight-node brick element (C3D8) was selected for the simulation.  303 

After meshing, there is a possibility of initial overclosure. The initial overclosure is when the mesh generation modifies 304 
slightly the contacting surface of the two bodies such that they might have a few nodes that intrude on each other. To 305 
deal with this issue, strain-free adjustments of the intruding nodes are conducted. These adjustments modify the 306 
position of the nodes at the interfaces to ensure that concrete and granite blocks are not intruding on each other. This 307 
procedure has no significant consequence in representing macro-roughness but is necessary for the convergence of 308 
the solution.  309 

The boundary conditions are set to reproduce experimental conditions, see Fig. 8. The normal stress is applied as the 310 
pressure in the top part of the half shear box (y direction). The shear boxes apply the shear loading as displacement 311 
(x-direction), and no motion is allowed in the third direction (z-direction).  312 

The properties of the concrete, rock, and encasing steel box used in the simulation are presented in Table 2.  313 

It should be noted that only two levels of normal stress are considered: 0.5 and 1.5 MPa, and the nominal area of the 314 
interface is 100x100 mm2.  315 
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Fig. 8 Boundary conditions 316 
 317 

Table 2 Properties of concrete, granite, and steel 318 

Material Density 
(kg/m3) 

Young’s 
modulus (Gpa) 

Poison’s 
ratio 

Concrete 2370 38 0.20 
Granite 2608 60 0.25 
Steel 8000 193 0.29 

 319 

3.3 Results of the finite element simulations 320 

Fig. 9 presents a selection of the results of the virtual direct shear tests of synthetic rough rock surfaces for each failure 321 
mode mentioned in section 3.1. The shear evolution obtained comprises a pre-peak phase followed by a post-peak 322 
phase and is completed by a residual phase. The succession of these phases is the reproduction of the main stages 323 
encountered in experimental results of the direct shear tests of concrete-rock interfaces (Saiang, Malmgren, and 324 
Nordlund 2005; Moradian, Ballivy, and Rivard 2012; Moradian et al. 2010). From both figures, it is clear that the 325 
roughness of the interfaces influences the peak shear strength. Furthermore, these figures also show that the peak shear 326 
strength depends on the normal stress. It should be pointed out that all the 334 interfaces virtually tested have different 327 
roughness values. 328 

Fig. 10 shows the peak shear strength of the interface in terms of roughness. The correlation coefficients between the 329 
peak shear strength and the 𝜃)*+∗ /(𝐶 + 1) are 0.88 and 0.85 for the simulations performed with 0.5 and 1.5 MPa, 330 
respectively. These results show that the peak shear strength maintains a strong correlation with the roughness of the 331 
interface when the normal stress is below 1.5 MPa. 332 
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(a) (b) 

Fig. 9 Selected results of the finite element simulations: (a) first failure mode (0.5 MPa) and (b) second failure mode 333 
(1.5 MPa) 334 

 335 

  

𝜏" = 0.0594 a
𝜃)*+∗

𝐶 + 1b + 0.8493 𝜏" = 0.1501 a
𝜃)*+∗

𝐶 + 1b + 1.1036 

(a) (b) 
Fig. 10 Peak shear strength in terms of roughness; (a) normal stress 0.5 MPa and (b) normal stress 1.5 MPa 336 

 337 

Fig. 10 also shows that interfaces with the same or very similar roughness values do not always result in the same 338 
peak shear strength. This observation indicates that the relationship between the roughness and the peak shear strength 339 
is not always one-to-one. The reason for the non-unicity roughness-peak shear strength could be related to the global 340 
aspect of the roughness parameter. In fact, 𝜃)*+∗ /(𝐶 + 1) evaluates the global roughness of a rock surface and does 341 
not focus on the local influence of roughness. Rullière et al. (Rullière et al. 2020) also reported a similar observation. 342 
This observation indicates that the local aspect of roughness explicitly considered in the finite element simulations 343 
can significantly influence the shear behavior of interfaces. 344 

Overall, the results of the finite element simulations constitute an extensive database of shear evolutions in terms of 345 
the roughness of interfaces tested. With this database, two approaches are used to define a failure criterion for concrete-346 
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rock interfaces under low normal loading. The first failure criterion proposed is an analytical relationship, while the 347 
second is a function based on neural network modeling.  348 

4. Peak shear strength criterion for rough concrete-rock interface 349 

4.1 Development of a new failure criterion for rough concrete-rock interfaces 350 

The proposed peak shear strength criterion for concrete-rock interfaces under the CNL condition is based on the peak 351 
shear strength criterion for rock joints subjected to the CNL condition developed by Grasselli and Egger (Grasselli 352 
and Egger 2003); see Eq. 10.  353 

τ8 = σ9 tan jϕ: + a
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 354 

where 𝜏" is the peak shear strength. 𝜎- is the normal stress. 𝜙1 is the basic friction angle. 𝜃)*+∗ /𝐶 is the roughness 355 
parameter. 𝐴2 is the maximum contact area during shear. 𝜎3 is the tensile strength of the rock.  356 

The contribution of roughness in this shear strength criterion can be replaced by the updated expression of roughness 357 
presented by Tatone and Grasselli (Bryan S. A. Tatone and Grasselli 2009); this yields Eq. 11.  358 
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 359 

where 𝜃)*+∗ /(𝐶 + 1) is the roughness parameter. 360 

For the case of concrete-rock interfaces under low normal stress, the failure criterion depends on both friction and 361 
cohesion. The cohesion is crucial in the case of low normal stress because its contribution to the shear resistance of 362 
the interface is significant and cannot be ignored. Therefore, the cohesion of the concrete-rock interface is included in 363 
Eq. 11, generating Eq. 12. Eq. 12 is a failure criterion for concrete-rock interfaces.  364 
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 365 

For the synthetic rough rock surfaces generated, 𝜃)*+∗ /(𝐶 + 1) varies between 6⁰ and 24⁰. The normal stress in the 366 
finite element simulations is 0.5 and 1.5 MPa. If one assumes the tensile strength is equivalent to 1 MPa, 367 
𝑒@(L)*+

∗ /(0J())(O,/O-) varies between 0 and 0.08  and can be neglected in Eq. 12. This generates Eq. 13 368 

τ8 = σ9 tan jϕ: + a
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 369 
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Eq. 13 represents the proposed peak shear strength criterion for rough concrete-rock interfaces in the case of low 370 
normal stress. 371 

4.2 Validation of the new failure criterion for rough concrete-rock interfaces 372 

The shear responses obtained in the finite element simulations of direct shear tests using synthetic rough rock surfaces 373 
are used here to assess the capability of the proposed failure criterion to estimate the peak shear strength of the 374 
concrete-rock interface. 375 

For each synthetic rough rock surface virtually tested, its normal stress 𝜎-, basic friction angle 𝜙1 (30°), roughness 376 
parameter 𝜃)*+∗ /(𝐶 + 1) and cohesion are used as input of Eq. 13 to obtain the estimated peak shear strength 𝜏". 377 

The cohesion of concrete-rock interfaces depends on the normal stress, the failure modes, and the strength of the 378 
concrete-rock bonds. The cohesion of the concrete-rock interface is usually determined indirectly using the fitting of 379 
the Mohr-Coulomb failure envelope computed, for example, using the results of direct shear tests. For the cohesion 380 
defined using this approach to be valid, all the shear test results must be within a range of normal stress representing 381 
the same failure mode. 382 

In the specific case of concrete-granite interfaces under low normal stress, as considered in this research, the cohesion 383 
is determined using the results of the direct shear tests of bush-hammered concrete-granite interfaces. The fitting 384 
includes the shear strength of interfaces under three normal stress levels: 0.5 MPa, 1.0 MPa, and 1.5 MPa. Within this 385 
interval of normal stress, two failure modes were identified (El Merabi 2018). The cohesion defined using the data of 386 
the two failure modes is expected to be underestimated in the case of shear strength under 0.5 MPa of normal stress 387 
and overestimated in the case of normal stress between 1 and 1.5 MPa. The computation of the failure envelope yields 388 
a cohesion of 0.83 MPa. Updating this value for the two failure modes produces a 0.99 and 0.69 MPa cohesion.  389 

The peak shear strength of all the synthetic rough rock surfaces simulated using Eq. 13 is presented in Fig. 11 (a) for 390 
the first failure mode and in Fig. 11 (b) for the second failure mode. The correlation coefficient between the estimated 391 
and the simulated peak shear strength is 0.91 for the first failure mode and 0.90 for the second failure mode. These 392 
coefficients show that the proposed peak shear strength criterion can estimate the peak shear strength of concrete-rock 393 
interfaces under low normal stress.  394 

The percent error of the estimated peak shear strength compared with the finite element simulated peak shear strength 395 
is presented in Fig. 12 (a) for the first failure mode and Fig. 12 (b) for the second failure mode. Positive and negative 396 
percent errors are used to indicate underestimation and overestimation. Fig. 12 (a) and Fig. 12 (b) show that the percent 397 
error of the model is within fifteen percent for the first failure mode and twenty percent for the second failure mode. 398 
Furthermore, the shape of these two figures is associated with the inclusion of the roughness value inside a tangential 399 
operation in the proposed failure criterion (Eq. 13). It must be stressed that the two failure modes were defined for 400 
concrete-granite interfaces where shear failure mostly occurs along the interfaces for normal stress below 1.5 MPa. 401 
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(a) (b) 

Fig. 11 Peak shear strength estimated using the analytical model in terms of numerically obtained peak shear 402 
strength: (a) first failure mode (0.5 MPa) and (b) second failure (1.5 MPa) 403 

 404 

  
(a) (b) 

Fig. 12 Error of the estimated peak shear strength in terms of the simulated peak shear strength; (a) first failure 405 
mode (0.5 MPa) and (b) second failure mode (1.5 MPa) 406 

 407 

From Fig. 12, it is clear that Eq. 13 supposes that the relationship between the roughness and the peak shear strength 408 
is one-to-one. Indeed, the local roughness seems to influence the shear resistance of the interface significantly. To 409 
address the limitation of the bijective nature of the relationship roughness-peak shear strength as assumed in Eq. 13 410 
and to take advantage of complex statistical aspects of the database of shear evolutions obtained by finite element 411 
simulation of direct shear tests of synthetic rough rock surfaces, a neural network modeling is investigated as a 412 
complementary alternative to define a failure criterion for concrete-rock interfaces. 413 

5. Peak shear strength of concrete-rock interfaces using neural network modeling 414 

The neural network model is set as a function 𝑓44 that predicts the peak shear strength (𝜏44) of a concrete-rock 415 
interface using the normal stress (𝜎-), the basic friction angle (𝛷1) and the roughness parameter 𝜃)*+∗ /(𝐶 + 1), see 416 
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Eq. 14. This function is very similar to the peak shear strength criterion presented in section 4; they both use the same 417 
input parameters and intend to estimate the same output parameter. 418 

𝑓44 ∶ t𝜎-, 𝛷1 ,
𝜃)*+∗

(𝐶 + 1)u →
{𝜏44}	 (14) 

 419 

5.1 Neural network modeling 420 

5.1.1 Dataset 421 

The data for the neural network modeling is composed of 334 entries (rows). Each entry is composed of four values 422 
(columns). The first value is the normal stress 𝜎- used in the simulation. The second value is the basic friction angle 423 
𝛷1. The third value is the roughness 𝜃)*+∗ /(𝐶 + 1), which represents the roughness of a simulated synthetic rough 424 
rock surface. The last value is the peak shear strength (𝜏PQ), the highest shear stress recorded in the shear response 425 
obtained via finite element simulation of direct shear test. The normal stress 𝜎-, the basic friction angle 𝛷1, and the 426 
roughness 𝜃)*+∗ /(𝐶 + 1) are the input data, while the peak shear strength (𝜏PQ) is the expected output data. The entire 427 
data contains 1336 data points.  428 

The columns of the data are feature-wise normalized to make the training of the neural network easier. The feature-429 
wise normalization consists of subtracting each value from the mean of the column and dividing by the standard 430 
deviation of the column. 431 

The data is randomly separated into two sets to train the model: the training and the validation datasets. The training 432 
dataset is used to train neural network models. The validation dataset is used to test the performance of trained neural 433 
network models.  434 

The proportion of the split is 50% of the data is the training dataset, and 50% is the validation dataset. The division 435 
attempts to maintain the distribution of the data. Fig. 13 illustrates this data separation. 436 

 
Fig. 13 Training and validation datasets 437 

 438 
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Fig. 14 Basic concepts of ANN: Neural network architecture, neurons, training dataset, batches, and batch size and 439 

epoch 440 
 441 

5.1.2 Training of the neural network model 442 

After the preparation of the datasets, a brief insight into how the neural network is trained to receive as input the 443 
normal stress 𝜎-, the basic friction angle	𝛷1, and the roughness	𝜃)*+∗ /(𝐶 + 1)	and	to	produce	as	output	the	peak	444 
shear	strength	𝜏44	is	presented. 445 

A typical neural network architecture comprises an input, hidden, and output layer. The input layer is fed with the 446 
input data, the hidden layers transform the input data into valuable statistical representations, and the output layer 447 
provides the prediction or the output data. Fig. 14 presents an illustration of the architecture of a neural network for 448 
the estimation of the peak shear strength of concrete-rock interfaces 𝜏44 using as inputs the normal stress 𝜎-, the basic 449 
friction angle 𝛷1, and the roughness 𝜃)*+∗ /(𝐶 + 1). 450 

Layers of neural networks are composed of one or multiple neurons (Fig. 14). The neurons carry out the 451 
transformations that layers apply to the input data (𝜎-, 𝛷1, 𝜃)*+∗ /(𝐶 + 1)). A neuron computes the weighted average 452 
of the incoming inputs, uses an activation function, and returns an output value. The weights constitute the parameters 453 
of the neural network model. In most cases, including this study, the activation function adds non-linearity to the 454 
inputs to produce an output.  455 

A detailed representation of a neuron is shown in Fig. 15. In this figure, if the neurons belong to the first layer after 456 
the input layer, 𝑋R is equivalent to (𝜎-, 𝛷1, 𝜃)*+∗ /(𝐶 + 1)). If the neurons belong to the output layer, 𝑌 is equivalent 457 
to the estimated peak shear strength 𝜏44. Otherwise, XS are transformations resulting from the preceding layer, and 𝑌 458 
is a transformation passed on to the next layer. 459 

The training of the neural network is the attempt to find the appropriate values for the weights 𝑤% of the neurons (Fig. 460 
15) to be able to associate inputs (𝜎-, 𝛷1, 𝜃)*+∗ /(𝐶 + 1)). to output (𝜏44) 461 

During one pass of the training of a neural network, the input layer receives one or multiple entries (𝜎-, 𝛷1, 𝜃)*+∗ /(𝐶 +462 
1)). from the training dataset. The hidden layers use operations performed by the neurons to transform the input data 463 
into more valuable representations. The output layers use the generated representations to predict the output values 464 
(𝜏44). The predicted values are then compared to the expected values (𝜏PQ) using the loss function; this generates the 465 
loss score, which is then used by the optimizer to modify the weights 𝑤% using a back-propagation algorithm. Notably, 466 
the parameters of the neural network model are randomly initialized before the first pass. 467 
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It should be noted that the batch size is the number of entries of the training dataset fed to the neural network during 468 
a single pass. A batch size of 8 is used in the training of the ANN in Fig. 14. An epoch is an iteration consisting of 469 
one or multiple passes during the training of the neural network model completed when all the training dataset has 470 
been used to find the best parameters (weights, 𝑤%) of the neural network model (a single epoch “i” is presented in 471 
Fig. 14). 472 

It is important to note that the ANN used in this study can be correctly classified as a Deep neural network (DNN). 473 
However, as considered in this study, the problem of predicting or estimating a value or a series of values constitutes 474 
the regression problem. Since the DNN developed has been learned by exposure to correct mapping (input data – 475 
known output), it can be classified as a supervised learning algorithm. 476 

 
Fig. 15 Neuron of a neural network  477 

 478 

During training, after each epoch, the performance of the updated neural network model is assessed using the 479 
validation dataset. The report of the performance of successive neural network models on the training and validation 480 
dataset is called the learning curve. From the learning curve, the best neural network model can be selected. 481 

During the training of the model to estimate the peak shear strength of concrete-rock interfaces 𝜏44, different 482 
architectures composed of different numbers of layers, different numbers of neurons per layer, and different batch 483 
sizes were assessed. This assessment, called hyperparameters analysis, is important to determine the best architecture. 484 
The report of the hyperparameters analysis is presented in section 5.2. 485 

All the architectures of the neural networks analyzed start with an input layer that receives the input parameters of the 486 
model; this means the normal stress 𝜎-, the basic friction angle 𝛷1 and the roughness 𝜃)*+∗ /(𝐶 + 1). The input layers 487 
are followed by hidden layers, each with a defined number of neurons. The result of each neuron is obtained using the 488 
activation function ReLU (rectified linear unit). This function screens out all the negative values. After the data 489 
contained in each batch has been estimated by the neural network as part of a single step of an epoch, it is important 490 
to assess the quality of the performance of the neural network. This assessment is carried out using a loss function. 491 
The mean squared error (MSE) presented in Eq. 15 is the loss function used in this study. The optimizer uses the 492 
outcome of the loss function to modify the weights of the neural network to improve the performance of the model in 493 
the next step.  494 

MSE =
1
n[(τTT − τUV)6	

9

SW(

	 (15) 

 495 

Where 𝑛 is the number of data, 𝜏44 is the peak shear strength predicted by the neural network, and 𝜏PQ is the peak 496 
shear strength obtained by finite element simulation, 𝜏PQ are part of the datasets. 497 

The optimizer used is ADAM (Adaptive Momentum Estimation) (Kingma and Ba 2015). The mean absolute error 498 
(MAE) is used as a metric to assess the performance of the neural network model trained to estimate the peak shear 499 
strength of the concrete-rock interface after each epoch (see Eq. 16). 500 
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 501 

The output layer is the last layer that predicts the peak shear strength 𝜏44. 502 

Furthermore, all the codes used were developed in Keras. Keras is a deep-learning framework for Python where neural 503 
network models can be set, trained, and assessed (Chollet 2021). TensorFlow backend engine handled tensor 504 
operations and differentiation (Abadi et al. 2016). 505 

5.2 Results of the neural network modeling 506 

This section comprises two parts: the hyperparameters analysis and the presentation of the results of the neural network 507 
model focusing on estimating the peak shear strength.  508 

5.2.1 Hyperparameters analysis 509 

The hyperparameter analysis is carried out to define the best neural network architecture for the estimation of the peak 510 
shear strength 𝜏44 of concrete-rock interfaces. The hyperparameters considered in this analysis are the number of 511 
layers per neural network, the number of neurons per layer, and the batch size. For each hyperparameter, neural 512 
network models with different architectures are assessed regarding the quality of the estimation of the peak shear 513 
strength 𝜏44 when tested using the validation dataset (𝜎-, 𝛷1, 𝜃)*+∗ /(𝐶 + 1), 𝜏PQ). This assessment uses the MAE 514 
(Eq. 16) as a performance indicator.  515 

To consider the oscillations of the performance of models when the training process is repeated, for each neural 516 
network model considered, the training was repeated five times, and only the average performance was reported. 517 

Fig. 16 (a) shows the influence of the number of layers on the performance of the neural network models. Each point 518 
in this figure is equivalent to the best performance obtained after completing training a model. The performance of 519 
the models increases with the increase of the number of layers 𝑚 when 𝑚 is between 2 and 6. It remains constant or 520 
tends to decrease afterward. Therefore, the number of layers of 6 was adopted for subsequent analysis. 521 

  
(a) (b) 
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(c) (d) 

Fig. 16 Results of hyperparameter analysis: (a) influence of the number of layers, (b) influence of the number of 522 
neurons, (c) influence of the batch size, and (d) variation of the ANN model 523 

 524 

Fig. 16 (b) shows the influence of the number of neurons per layer on the performance of the neural network. The 525 
performance of the models increases with the increase of the number of neurons per layer 𝑛 when 𝑛 is below 6. Beyond 526 
this limit, the performance of the model becomes insensitive to the rise of 𝑛. A number of neurons of 10 is adopted 527 
for subsequent analysis. 528 

The last hyperparameter to consider is the batch size. Batch sizes varying from 2 to 64 were investigated. From Fig. 529 
16 (c), it is clear that increasing the batch size reduces the performance of the neural network. Therefore, the batch 530 
size of 8 was adopted.  531 

From this analysis, the architecture of the most suitable model for estimating the peak shear strength of concrete-rock 532 
interfaces contains one input layer, six hidden layers, each composed of ten neurons, and one output layer that predicts 533 
the peak shear strength 𝜏44. 534 

The training of the model to predict the shear strength 𝜏44 using the defined neural network architecture is repeated 535 
100 times to assess the variation in the performance of the model. The results of this analysis are presented in Fig. 16 536 
(d) and show that the variation in the performance of the model is not significant with an MAE (Eq. 16) between 0.10 537 
and 0.15 MPa.  538 

5.2.2 Performance of the neural network model  539 

The history of the performance of the neural network models during training is presented in Fig. 17. The selected 540 
model has a high performance with an MAE of 0.10 MPa in the training data and 0.11 in the validation data. 541 

Fig. 18 (a) presents the estimation of the model when tested with the validation dataset. The correlation between the 542 
finite element obtained peak shear strength and the neural network predicted peak shear strength is 0.96 with an MAE 543 
of 0.11. Fig. 18 (b) shows the error of the neural network model prediction on the validation dataset compared to the 544 
finite element base values. The variation of the prediction error is around 20% and is encouraging.  545 

The two trends observed in Fig. 18 (b) are related to the two normal stresses used in the finite element simulation with 546 
normal stress of  0.5 and 1.5 MPa. See section 3. 547 
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Fig. 17 Performance of the neural network for the estimation of the peak shear strength 548 

 549 

  
(a) (b) 

Fig. 18 (a) Finite elements (FE) obtained peak shear strength in terms of neural network (NN) predicted peak shear 550 
strength (validation dataset), and (b) NN predicted peak shear strength in terms of the roughness and percent error 551 

(validation dataset).  552 
 553 

6. Assessment of the two failure criteria using experimental data  554 

The performance of the two approaches for estimating the peak shear strength of concrete-rock interfaces is assessed 555 
using the experimental results of direct shear tests of rough concrete-granite interfaces submitted to 0.5, 1.0, and 1.5 556 
MPa of normal stress. The results of these tests were briefly discussed in section 3.1 and are fully reported in El 557 
Merabi(El Merabi 2018).  558 

However, before applying the two models, the roughness data of the interface tested was interpolated to generate 559 
gridded data with a point spacing of 1 mm. This interpolation is important to reach the same point spacing of the 560 
synthetic rough rock surfaces used in the finite element simulations and analysis, leading to the two failure criteria. 561 
This pre-processing is inspired by the discussion of the influence of point spacing on the computation of roughness 562 
and failure criteria, presented by Tatone et al. (B. S.A. Tatone, Grasselli, and Cottrell 2010). 563 
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Fig. 19 (a) presents the results of the estimated peak shear strength obtained using the analytical model in terms of the 564 
experimentally obtained peak shear strength. The correlation of the estimated in terms of the experimentally obtained 565 
peak shear strength is 0.20 for the first failure mode (normal stress of 0.5 MPa) and 0.84 for the second failure mode 566 
(normal stress of 1.0 and 1.5 MPa). However, given the low data in each failure mode, it is best to assess the quality 567 
of the estimations in terms of the percent error. Fig. 19 (b) shows the percent error of the estimated peak shear strength 568 
in terms of the experimentally obtained peak shear strength. This figure shows that the errors are within 25% of the 569 
experimental results for most of the estimated peak shear strength. 570 

Fig. 20 (a) shows the variation of the estimated peak shear strength obtained using the neural network model in terms 571 
of the experimentally obtained peak shear strength. Notably, only the experimental rough concrete-granite interfaces 572 
tested under 0.5 and 1.5 MPa of normal stress are considered in this analysis. This selection is due to the limited 573 
variation of data used in the neural network modeling regarding normal stress. Only two levels of normal stress are 574 
used: 0.5 and 1.5 MPa. The correlation coefficient between the estimated and the experimentally obtained peak shear 575 
strength is 0.96 with an MAE of 0.21 MPa. The good capability of the neural network model is evident when the 576 
estimated data is presented in terms of the percentual error, as shown in Fig. 20 (b). This figure shows that the 577 
estimations provided are quite close to the experimentally obtained peak shear strength for most of the results. 578 

This assessment shows that the two approaches proposed for estimating the peak shear strength of concrete-rock 579 
interfaces can be used for the experimental results. The quality of the estimations is interesting and shows the relevance 580 
of the new methodology of investigating the shear behavior of interfaces. 581 

  

(a) (b) 
Fig. 19 Assessment of the analytical model: (a) Experimental vs estimated peak shear strength  and (b) Percent error 582 

between the Experimental and the estimated peak shear strength 583 
 584 
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(a) (b) 

Fig. 20 Assessment of the neural network model: (a) Experimental vs estimated peak shear strength and (b) Percent 585 
error between the Experimental and the estimated peak shear strength 586 

 587 

7. Discussion of the two approaches to estimating the shear strength of concrete-rock 588 
interfaces 589 

Fig. 21 shows the results of estimating the peak shear strength of concrete-rock interfaces using the analytical and 590 
neural network models. The correlation coefficient between the estimated peak shear strength and the finite element 591 
simulated peak shear strength is 0.91 and 0.90 for the analytical model considering the two failure modes and 0.96 for 592 
the neural network model. 593 

From Fig. 21, it is clear that the performance of both the failure criterion and the neural network model is very high 594 
(above 0.85), with the neural network results slightly better than those of the analytical model. 595 

Fig. 22 shows the error in the estimation of the peak shear strength in terms of the roughness parameter 𝜃)*+∗ /(𝐶 +596 
1). This error is approximatively between -20% and 20% for both the analytical and neural network models.  597 

Moreover, Fig. 22 also shows that, unlike the analytical model, the neural network model can reproduce the non-598 
bijective relationship between the roughness and the peak shear strength observed in the results of the finite elements 599 
simulations (section 3.3). 600 

  
(a) (b) 
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Fig. 21 Estimation of the peak shear strength (a) Failure criterion (b) Neural network model 601 
 602 

  
(a) (b) 

Fig. 22 Error of the estimation of the peak shear strength (a) analytical model and (b) Neural network model 603 
 604 

8. Conclusion 605 

In this paper, a study of the influence of roughness on the shear resistance of concrete-rock interfaces was carried out. 606 
This study aimed to reduce the shortcomings of existing failure criteria caused by the challenge of defining a 607 
sufficiently diverse and well-distributed database of rough rock surfaces and performing many virtual shear tests.  608 

Random field simulations were performed using the turning bands method to generate an extensive database of rough 609 
rock surfaces. The inputs of these simulations were obtained using variogram analysis of natural rough granite 610 
surfaces. The results of these simulations led to the selection of 334 synthetic rough rock surfaces with the roughness 611 
parameter 𝜃)*+∗ /(𝐶 + 1) changing between 6°and 24°. This database of synthetic rough rock surfaces is well 612 
distributed and does not present any cluster. 613 

The numerical simulation approach was selected to address the difficulty of performing many tests. The numerical 614 
model used is the cohesive-frictional model. With this model, previously validated using experimental results, 615 
numerical simulations of direct shear tests of concrete-rock interfaces were performed. The concrete and the rock 616 
blocks used in these simulations were created using the generated database of synthetic rough rock surfaces.  617 

The results of the finite elements simulations of direct shear tests were used to generate a database of simulated shear 618 
strengths of concrete-rock interfaces. This database is one of the most extensive in the literature in terms of the number 619 
and the variation of roughness considered. The results of the numerical simulations are restricted to quasi-static direct 620 
shear tests with constant normal loading conditions, and with a relatively low level of normal stress. With the database 621 
generated, two approaches were used to propose failure criteria for concrete-rock interfaces. The first approach is a 622 
conventional Coulomb-like analytical relationship based on the analytical model proposed by Grasselli and Egger 623 
(Grasselli and Egger 2003), and the second approach is a neural network model. Like the analytical model, the neural 624 
network model is defined to estimate the peak shear strength using the same parameter used in the proposed analytical 625 
model. As a result, the new analytical and new neural network models perform well in estimating the peak shear 626 
strength of simulated direct shear tests. These models show promising perspectives in estimating the shear strength of 627 
experimental direct shear tests of concrete-rock interfaces.  628 

However, it is worth stating that the neural network slightly outperforms the analytical model regarding the percent 629 
error. Moreover, the neural network can reproduce the non-bijective nature of the correlation between roughness and 630 
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peak shear strength, which is hypothesized as caused by the limitations of the roughness parameters to capture the 631 
contribution of local roughness. 632 
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10. Appendix: Neural network-based estimation of the shear response of concrete-rock 636 
interfaces 637 

Failure criteria are limited to estimating the peak or the residual shear strength of rock-rock and concrete-rock 638 
interfaces. However, estimating the overall shear responses of these interfaces provides more understanding of the 639 
shear behavior. 640 

Not many works have focused on estimating the overall shear responses of rock-rock and concrete-rock interfaces. 641 
Grasselli and Egger (Grasselli and Egger 2003) proposed a constitutive model to reproduce the evolution of the shear 642 
stress of rock-rock interfaces in terms of the shear displacement (Eq. (17)). However, the proposed relationships 643 
require prior knowledge of the peak and residual shear strength, which affect their relevance since, in most 644 
geotechnical problems, it is more interesting to estimate the peak and the residual shear resistance of interfaces before 645 
failure.  646 
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 647 

where 𝜏 is the shear stress, 𝜏" is the peak shear strength, 𝜏5 is the residual shear strength, 𝜎- is the normal stress, 𝑢 is 648 
the shear displacement or horizontal displacement, 𝑢) is the horizontal displacement to mate the two rock slabs during 649 
a direct shear test, 𝑢" is the peak shear displacement, 𝛥𝑢" is the horizontal displacement before the peak and 𝑘! is the 650 
shear stiffness. 651 

The problem of developing a methodology to estimate the overall shear responses of interfaces is addressed in this 652 
appendix. Differently from the model proposed by Grasselli and Egger (Grasselli and Egger 2003), the possibility of 653 
proposing an alternative constitutive model, which depends on the parameters used in failure criteria, is investigated. 654 
For this reason, a neural network model is evaluated to estimate the shear responses of concrete-rock interfaces 655 
submitted to lower normal loadings (0.5 and 1.5 MPa). The neural network model uses the database of shear responses 656 
of simulations of shear tests of synthetic concrete-rock interfaces (see section 3).  657 

10.1.1 Prediction of the shear response of concrete-rock interfaces 658 

The neural network model is set as a function 𝑓44 which receives as input the normal stress (𝜎-), the basic friction 659 
angle (𝛷1) and the roughness parameter 𝜃)*+∗ /(𝐶 + 1) and predicts the shear stress with the associated shear 660 
displacement �[𝛿!(, … , 𝛿!%], [𝜏!(, … , 𝜏!%]�, see Eq. (18). 661 
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𝑓44 ∶ t𝜎-, 𝛷1 ,
𝜃)*+∗

(𝐶 + 1)u → ��[𝛿!(, … , 𝛿!%], [𝜏!(, … , 𝜏!%]��	 (18) 

 662 

where 𝜏!% is the shear stress at the instant “i” and 𝛿!% is the associated shear displacement.  663 

The dataset comprises 334 entries, each composed of the data relative to a single simulation of a shear test of the 664 
concrete-rock interface. The data of each simulation contains the normal stress (𝜎-), the basic friction angle (𝛷1), the 665 
roughness parameter 𝜃)*+∗ /(𝐶 + 1) and a vector composed of 236 shear displacement values followed by 236 666 
corresponding shear stress values.  667 

The hyperparameter analysis is carried out to determine the suitable neural network architecture of the model. After 668 
hyperparameter analysis, the ideal neural network model for estimating the shear response of concrete-rock interfaces 669 
contains one input layer, six hidden layers, each with 25 neurons, and one output layer that yields a 472-long vector 670 
representing the shear displacement and the shear stress. The batch size of 8 entries is selected, and the neural network 671 
model is trained using 100 epochs.  672 

10.1.2 Results of the neural network modeling to estimate the shear response of concrete-rock interfaces 673 

10.1.2.1 Prediction of the peak shear strength using neural network model 674 

The learning curve of the performance of the neural network model to estimate the shear response of concrete-rock 675 
interfaces is presented in Fig. 23. From this figure, it is clear that the evolution of the performance of the successive 676 
neural network models on the training and the validation dataset decreases with the increase in the number of epochs. 677 

 
Fig. 23 Learning curve of the training of the neural network to estimate the shear response of concrete-rock 678 

interfaces 679 

 680 

Fig. 24 presents the variation of the peak shear strengths extracted from shear responses predicted by the model in 681 
terms of the peak shear strength extracted from the shear response obtained using finite element simulations. A 682 
correlation coefficient of 0.95 and an MAE of 0.13 were obtained between the predicted and the simulated peak shear 683 
strength, proving that the shear response predicted by the neural network model can reproduce the peak shear strength 684 
obtained in the finite element simulation. 685 
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(a) (b) 
Fig. 24 (a) Peak shear strength extracted from the predicted shear response obtained using neural network modeling 686 
(validation dataset) in terms of peak shear strength extracted from the shear response obtained using FE simulations 687 

and (b) percent error of (a) 688 

 689 

10.1.2.2 Prediction of the peak shear strength obtained experimentally using neural network model  690 

The experimental results used in this analysis are parts of the work performed by El Merabi (El Merabi 2018). 691 

Fig. 25 presents the peak shear strength extracted from the shear response predicted by the neural network in terms of 692 
the peak shear strength obtained experimentally. A 0.96 correlation coefficient was obtained between the predicted 693 
and the experimentally obtained peak shear strength. However, this high correlation coefficient should be taken 694 
cautiously, given the size of the dataset. 695 

10.1.2.3 Prediction of the shear response using the validation dataset 696 

Examples of the neural network prediction of the shear responses of the direct shear test of concrete-rock interfaces 697 
using the validation dataset are presented in Fig. 26 and Fig. 27, along with the shear responses obtained using finite 698 
element simulations. From these figures, it is clear that the predicted shear response reproduces the three main stages 699 
of the shear evolution: the shear stress accumulation, the shear slip, and the residual shear stage. Furthermore, the peak 700 
and the residual peak shear strength obtained are close to their counterparts obtained via finite element simulations. 701 

Furthermore, from Fig. 26 and Fig. 27, it is clear that the higher the roughness of the interface (𝜃)*+∗ /(𝐶 + 1)), the 702 
more resistant the interface. This observation highlights the influence of roughness on the shear response of concrete-703 
rock interfaces when the normal stress is low.  704 
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(a) (b) 
Fig. 25 Peak (a) Peak shear strength extracted from the predicted shear response obtained using neural network 705 

modeling (Experimental) in terms of peak shear strength obtained experimental tests (b) percent error of (a) 706 

 707 

  

(a) (b) 
Fig. 26 Comparison between the predicted and the numerically obtained shear responses of concrete-rock interfaces 708 

using NN and FE simulation: (a) T37 and (b) T26 709 

 710 
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(a) (b) 
Fig. 27 Comparison between the predicted and the numerically obtained shear responses of concrete-rock interfaces 711 

using NN and FE simulation: (a) T239 and (b) T261 712 

 713 

10.1.2.4 Prediction of the shear response using the experimental data 714 

The comparison between the shear responses predicted by the neural network and those obtained in experimental tests 715 
are presented in Fig. 28 to Fig. 32. Notably, the results of the experimental studies used in this analysis are part of the 716 
experimental campaign carried out by El Merabi (El Merabi 2018). These figures show that the predicted shear 717 
response captures the three parts of the shear evolutions and presents encouraging results in reproducing the peak and 718 
the residual shear strength of interfaces, which is interesting, given that the peak and the residual shear strength are 719 
predicted as single points of a 472-long vector. 720 

  

(a) (b) 
Fig. 28 Comparison between the predicted and the experimentally obtained shear responses of concrete-rock 721 

interfaces using NN and tests: (a) Block 1 and (b) Block 2 722 

 723 
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(a) (b) 
Fig. 29 Comparison between the predicted and the experimentally obtained shear responses of concrete-rock 724 

interfaces using NN and tests: (a) Block 3 and (b) Block 4 725 

 726 

  

(a) (b) 
Fig. 30 Comparison between the predicted and the experimentally obtained shear responses of concrete-rock 727 

interfaces using NN and tests: (a) Block 5 and (b) Block 6 728 

 729 
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(a) (b) 
Fig. 31 Comparison between the predicted and the experimentally obtained shear responses of concrete-rock 730 

interfaces using NN and tests: (a) Block 12 and (b) Block 13 731 

 732 

  

(a) (b) 
Fig. 32 Comparison between the predicted and the experimentally obtained shear responses of concrete-rock 733 

interfaces using NN and tests: (a) Block 14 and (b) Block 15 734 

 735 

Despite the interesting results obtained in the presented analysis on using neural network modeling to predict the 736 
overall shear response of concrete-rock interfaces, some questions remain. One such question is illustrated in Fig. 33, 737 
where the MAE seems to be very low when the entire shear response is used in the assessment (Fig. 33 legend Model) 738 
and is considerably high when only the peak shear strength extracted from the shear response is considered (Fig. 33 739 
valPeak: validation, ExpPeak: experimental). This discrepancy could be addressed by defining a new evaluation metric 740 
that considers the two comparison scales (overall shear response and only the peak shear strength). 741 
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Fig. 33 Assessment of the MAE: computed using the comparison between the overall shear responses predicted and 742 
the FE shear responses obtained (model), calculated using the peak shear strength extracted from the predicted shear 743 

response and the peak shear strength obtained via FE simulation (validation) and Experimental tests (ExpPeak) 744 

 745 

The result of this assessment sets the neural network modeling as a suitable methodology for estimating the shear 746 
strength and the shear responses of interfaces. However, it is important to highlight that improvement in the finite 747 
element simulations, the number and the variety of interfaces simulated, and the availability of more experimental 748 
results encompassing different types of rocks and different classes of roughness can increase the range of application 749 
of the neural network models. 750 
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