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Network efficiency under nonconservative diffusion

Aitor Azemar∗and Ernesto Estrada†

Abstract. The standard definition of network efficiency assumes in an ad hoc way that network navigability
occurs by shortest paths only. This is obviously not the case for the many diffusive processes
occurring in real-world complex systems. Here we propose from first principles a network efficiency
measure that accounts for network navigability in diffusive terms. In particular, we prove that this
efficiency index is based on nonconservative diffusion processes on the network, which are ubiquitous
in the real-world. We then investigate analytically several properties of this efficiency index and
provide computational examples of its effectivity for the analysis of complex systems. In particular,
we show that the new efficiency index of a network does not necessarily change monotonically with
the removal of edges,like it trivially happens with the index based on shortest paths.
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1. Introduction. Networks [14, 26], which mathematically are graphs G = (V,E) , are
natural representations of (complex) systems [17], where the system’s entities are represented
by the vertices v ∈ V of the network and their pairwise relations are captured by means of
the edges (v, w) ∈ E of G. Arguably such networked characteristic of (complex) systems
exists to facilitate the transfer of “information” among the entities of the system [5]. Here,
the term “information” is used in a very general sense to capture the idea of something, from
electrons to news, which is moving across the network. Therefore, a natural question about
networks is: how efficient are they? But, the core of this question is “efficient” for what?
Herbert Simon, who won the Nobel prize in Economics, stressed that [33]: “In its broadest
sense, to be efficient simply means to take the shortest path, the cheapest means, toward the
attainment of the desired goals”. This immediately triggers another question: Shortest paths
for what? In a connected network there is a topological shortest path connecting every pair
of vertices. This would be the motivation of Latora and Marchiori [25] when they “introduce
the concept of efficiency of a network, measuring how efficiently information is exchanged

over the network”, as they defined such quantity by E (G) =
1

n (n− 1)

∑
v ̸=w

1

dv,w
, where

dv,w is the shortest path distance between v and w, and n is the total number of vertices

in G. We note in passing that H (G) =
∑

v ̸=w

1

dv,w
was introduced in 1993 as the Harary

index of a graph [31, 23]. However, the fact that every pair of vertices in G is connected by
a shortest path does not mean that they are used to transmit the information between those
pairs of vertices, or even that they represent the shortest way–in terms of cost, and time–to
do so. It is worth reminding here some guiding words by Kurt Lewin about shortest paths
[27]: “The property which makes one path between two regions of the life space outstanding
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(the ’shortest path’) seems to vary considerably with the situation. Sometimes the fastest
connection is outstanding; at other times it is the cheapest connection’ or the most pleasant,
or the least dangerous. So, all that we would like to assume is that there should be, in the
given case, one outstanding path from a to b.” In fact, as it has been remarked by Goñi et
al. [21] “a routing/navigation process implies that communication flows from a specific source
to a specific target along the fastest or most direct route, which implies global knowledge
about the network topology.” Such global knowledge about the network topology makes the
exclusive use of shortest path an impossible mission in network navigation.

Diffusion is an ubiquitous process in nature where [21] “communication occurs in the
absence of specific targets, or that, even if targets are specified, a lack of knowledge about
global network topology prevents particles or messages from taking shortest paths.” There-
fore, many dynamical processes, ranging from information propagation, synchronization and
epidemic spreading, occurring in networks are diffusive in nature [29]. This diffusive processes,
as commonly considered for the study of networks, is conservative in the sense that the total
amount of diffusive material is constant on the graph at any time [16]. However, in many
physical processes occuring in complex systems: (i) some information is dissipated to or taken
from outside the graph, (ii) part of the information is annihilated/created at the vertices of
the graph, which make the process nonconservative (NC) on the network [16]. Some specific
examples are the traffic in a city where the number of cars flowing through the streets (edges)
of an urban street network. The NC character of urban traffic emerges from the fact that
some cars may “disappear”/”appear” in the street leg between two intersection because they
may park or emerge from parkings in such street leg [3, 4]. Another example of NC diffusion
is the flow of matter and energy in a food web. In this case the nodes represent species
and the directed edges their trophic relations (who eats who), which are the pathways over
which energy and matter can flow. When one species A (predator) predates another species B
(prey), A utilizes only a portion of the material and free energy originally in B, which is then
retained in the predator, giving rise to a non-conservative process [6]. Such mass and energy
can then be diffused across the food web in an NC diffusive way. Another NC diffusion is
the chemical synapses in neuronal systems where the so-called volume transmission (VT) uses
the extracellular fluid filling channels of the extracellular space and the cerebrospinal fluid
filling ventricular space and sub-arachnoidal space [1, 34, 35]. More examples of NC diffusion
include the communication in social media like Twitter where an user can post a message who
can be read by her followers, but also (if not constrained by the user) by non-followers, all
of whom can retweet such information to others [28, 38, 30]. Consequently, here we ask the
question: How efficient a network is in the NC diffusion of information between pairs of its
vertices?

To confront the problem of quantifying the efficiency of a network in the NC diffu-
sion of information we build on the basis of the concept of efficiency used in chemistry
and biology. In a chemical reaction, the “reaction mass efficiency” [9] is defined as the
percentage of actual mass of desire product to the mass of all reactants used. That is,

ER =
actual mass of desired product

mass of reactants
, which is frequently expressed as percentage. On the

other hand, theoretical biologist Michael E. Conrad in his highly influential book “Adaptabil-
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ity” defined organism efficiency as [8]: EO =
Y

I
, where Y is the yield, and I is the food or light

energy absorbed by the organism. Here, we propose to quantify the efficiency of a network by
considering the NC diffusion of information from one vertex v ∈ V to another vertex w ∈ V .
If we allocate the total amount of information at an initial time t = 0 at vertex v, the “actual
mass of desired product” or “yield” is the amount of information transferred to vertex w at
a time t → ∞, i.e., the difference between the amount of information at vertices v and w.
As the process is NC, not all the information allocated at the vertex v is transferred to the
rest of vertices of G. Then, the equivalent to the “mass of reactants” or “food or light energy
absorbed” is given by the sum of the amounts of information at both vertices when t → ∞.
The efficiency measure defined and studied here is therefore different conceptually from the
one proposed by Latora and Marchiori [25] (see also [36]) in the fact that it is based on a
dynamical process taking place on the network without any preliminary assumption about
the paths that information uses to go from one vertex to another. It also differentiates from
the measures proposed by Goñi et al. [21] in which those are either based on conservative
processes or on topological shortest paths. However, it is worth mentioning that these authors
have given an important step forward in the definition of some efficiency measures which does
take into account all the “routes” connecting pairs of vertices in a network instead of specific

paths. Also, two out of three of the efficiency measures can be seen as
(

Desired output
Total output or input

)
,

which is also in the spirit of the current work.

2. Preliminaries.

2.1. Network theory and linear algebra. In this section we fix the notation used thorough
the paper, as well as give a small review of some of the notions we shall use. For an introduction
to network theory and linear algebra we recommend [19]. Thorough this paper, G shall indicate
a graph, with vertices V and edges E. We shall always let the set of vertices be {1, 2, . . . , n}.
Unless mentioned, we shall assume that G is weighted with weights no larger than 1, and
symmetric. A graph G is connected if for any two different nodes there is a sequence of
adjacent edges connecting the two nodes.

We shall denote by A the adjacency matrix of G, defined such that the (i, j)-th component
is equal to the weight of the connection between the node i and the node j. Note that since
the graph is symmetric, so is the matrix A, and hence all the eigenvalues of A are real and A
is diagonalizable. Let λ1 ≤ λ1 ≤ . . . ≤ λn be the eigenvalues. Then, we can write

A = UTΛU,

where U is an orthogonal matrix whose rows are the eigenvectors of A, and Λ is a diagonal
matrix such that the values on its diagonal are λi.

For a square matrix M , the matrix exponential is defined as

exp(M) =
∑
k≥0

Mk

k!
.

Using the diagonalization of A we have

exp(A) = UT exp(Λ)U,
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with exp(Λ) being a diagonal matrix with entries eλi . Note that since all the eigenvalues of
A are real and finite, all the eigenvalues of exp(A) are positive.

The i, j-th component of the matrix Ak is equal to the number of walks of length k between
the nodes i and j. Hence, the components of the exponential matrix are weighted sums of the
number of walks between two nodes, where larger walks are given less weight.

2.2. Pure jump Markov processes. In this section we shall recall some basic definitions
related to pure jump Markov processes, needed for developing the discrete model in section 3.
The rest of the paper does not use the more technical results derived in that section, and does
not require knowledge of Markov jump processes. As such, the reader mainly interested in
the definition of the efficiency index can safely skip this subsection, as well as section 3 on a
first reading. For a general introduction to Markov processes the reader can check [12].

Let (Ω,F ,P) be a probability space and M : (Ω,R+)→ S be a stochastic process adapted
to the filtration Ft. We shall assume that the set of states S is countable. In this setting, we say
that Mt is a Markov process if, for any v ∈ S, s < t we have P[Mt = v|Fs] = P[Mt = v|Ms].
That is, if the conditioning to all the past information from the previous past point s is
equivalent to conditioning to the state of the process at time s. We say that a Markov process
is a pure jump process if for all t ∈ R+ there is almost surely some ε > 0 such that Mt = Ms

for all s ∈ [t, t+ε). That is, if the only changes in the value of Mt are given by jumps. Finally,
we say that a Markov process is time homogeneous if for all s < t, ∆ > 0 and vs, vt ∈ S with
P[Ms = vs] > 0 we have P[Mt = vt|Ms = vs] = P[Mt+∆ = vt|Ms+∆ = vs]. Note that some of
the definitions for the case where S is not countable, or the process is not time homogeneous,
are more technical, and again we refer to [12] if these are needed.

Given s ∈ R+ the stopping time ts(v) = inf{t ≥ s|Mt ̸= Ms}. Then, for v ∈ S we have
ts−s|Ms = v ∼ Exp[λ(v)], where Exp[λ(v)] is an exponential random variable with parameter
λ(v) ≥ 0. Note that by the Markov property and the time homogeneity, λ(v) does not depend
on s. We shall assume that λ(v) < ∞ for all v ∈ S, which is equivalent to requiring that
no instantaneous jumps occur. We might have λ(v) = 0, in which case we have that v is an
attracting point, in which the process stops evolving. Then, for any ṽ ̸= v, the transition
properties are defined by π(v, ṽ) = P[Mts(v) = ṽ|Ms = v]. Note that, again due to the Markov
property and the time homogeneity, π does not depend on s. One defines then the transition-
rate matrix by setting q(v, ṽ) = π(v, ṽ)λ(v) for ṽ ̸= v and q(v, ṽ) = π(v, v) = −λ(v). We have

(2.1) P[Mt+h = ṽ|Mt = v] = q(v, ṽ)h+ o(v)

for all t ≥ 0 and ṽ, v ∈ S with P[Mt = v] > 0.
It is also possible to go the other way. That is, given a transition-rate matrix such that

π(v, ṽ) ≥ 0 for ṽ ̸= v, and with π(v, v) = −
∑

v ̸=ṽ π(v, ṽ) > −∞, one can build a pure jump
Markov process. However, in some cases there might be an infinite amount of jumps in a finite
amount of time with positive probability, and the space of states might need to be expanded
accordingly, to allow one extra point where such event occurs. If such an adjustment is needed,
the resulting Markov process is called explosive.

Chebbi–Toumi prove in [7] the following condition for non-explosiveness for Markov pro-
cesses in Rk

+, but the same proof yelds the analogous result for processes in Nk. Furthermore,
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note that while the paper states more hypotheses, the proof of these results does not use all
of them, and just uses the hypotheses listed here.

Theorem 2.1 ([7, Lemma 2.2 and Corollary 2.3]). Let Xt be a Markov jump process with
sates in Nk with transition matrix given by q(N,S). Then, if

1. λ(N) ≤ Cλ(1 + |N |), ∀N ∈ Nk,
2. max(|Ñ −N | : π(N, Ñ) > 0) ≤ C,∀N ∈ Nk

and X0 is bounded almost surely, the process Xt is non-explosive and

E[sup
s≤t
|Xs|p] <∞]

for all t ≥ 0 and p ≥ 1.

Furthermore, Chebbi–Toumi [7] prove the following equation for the expected value.

Proposition 2.2 ([7, Equation 22]). Let Xt be a Markov jump process with sates in Nk with
transition matrix given by q(N,S). Furthermore, let ϕ : Nk → Nk′ be a function growing at
most polynomially. Then, if the conditions from Theorem 2.1 are satisfied and X0 is bounded,

E[ϕ(Xt)] = E[ϕ(X0)] +

∫ t

0
E[LXs],

where
LXt =

∑
s∈S

q(Xt, S)(S −Xt).

2.3. Communicability distance. In [20], Lerman and Gosh model the spread of informa-
tion as a continuous phenomena resulting, under some simplifications, in the equation

(2.2) u̇ (t) = −γLχu (t) ,

where u(t) is a vector in R|V |
+ representing the amount of information on each node, γ is the

diffusivity coefficient and Lχ := χI −A is the Lerman-Ghosh Laplacian with χ ≥ 0.
The solution to the Cauchy problem (2.2) is given by

(2.3) u (t) = e−tγLχu0 = e−tγχetγAu0.

Here we focus on the part of the solution which depends on the structure of the graph,
namely ũ (t) = etγAu0 and hereafter will consider β = tγ. Let us focus on a couple of vertices
designated by v and w. Then, at a given time the concentration at these nodes are:

(2.4) ũv (t) =
∑
j

(exp (βA))vj u
0
j

and

(2.5) ũw (t) =
∑
j

(exp (βA))wj u
0
j .
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Then, let

(2.6) Fvw|u0
j=δjv

= ũv|u0
j=δjv

(t)− ũw|u0
j=δjv

(t) ,

be the diffusive flow from v to w in the graph G when the initial concentration is totally
located at the vertex v, u0 (j) = δj,v , where δi,j is the Kronecker delta. Let us define the
same in the other direction when the initial concentration is completely located at the vertex
w,

(2.7) Fwv|u0
j=δjw

= ũw|u0=δjw (t)− ũv|u0
j=δjw

(t) .

Now, let us define the sum of the gradients between the two nodes in both directions,
which is given by:

(2.8) Dvw (βA) := Fvw|u0
j=δjv

+Fwv|u0
j=δjw

= (exp (βA))vv+(exp (βA))ww−2 (exp (βA))vw .

The following result was previously proved by Estrada in [13].

Proposition 2.3 ([13, Theorem 1]). Dvw (βA) is a squared Euclidean distance between the
pairs of vertices v and w.

The term Dvw (βA) is then known as the communicability distance between the corre-
sponding vertices.

Remark 2.4. The communicability distance between two vertices in the graph represents
the “traffic” waste between them. That is, if we allocate a concentration of “items” u0v = 1
at the vertex v and wait some time t , then we find some concentration at the vertex w. If
the concentrations are approximately the same, it means that the channels of communication
between the two vertices are very efficient. In this case Fvw|u0

j=δjv
≪ 1. If the efficiency in

the other direction (from w to v) is equally large, we have that Dvw (βA) is very small. On
the contrary, if the efficiency of the communication channels between the two vertices is very
low, the communicability distance is very large.

More precisely, we have the following expression for the communicability distance.

Proposition 2.5. Let

xi =
∑

1≤j≤n

eλjφj ,

where φi are the columns of the diagonalization matrix U such that A = UTΛU , where Λ is
a diagonal matrix, and λi are the eigenvalues of A. Furthermore, let yi be the vectors formed
by the columns of the matrix expβA/2,

Then,

Di,j = ||xi − xj ||2 = ||yi − yj ||2

6



Proof. The first equality has been proven by Estrada in [13]. The second equality is proven
in a similar way than the first one. Let Mi,j be (i, j)-th component of the matrix exp(βA).
Then,

Mi,j = ⟨yi · yj⟩.

Hence,
Di,j = ⟨yi · yi⟩+ ⟨yj · yj⟩ − 2⟨yi · yi⟩ = ⟨yi − yj · yi − yj⟩ = ||yi − yj ||2.

3. Stochastic model of information spread. Here we present an alternative derivation
of the same equation for the spread of information developed by Lerman–Gosh in [20] and
explained briefly in subsection 2.3 as the expected value in an analogous stochastic model.
With this we reiterate that, while originally developed for modelling the spread of information,
the model also can be used for studying discrete phenomena such as the spread of diseases
of a general kind. In fact, the model is a continuous time version of the discrete time model
proposed by Wang–Chakrabarti–Wang–Faloutsos in [37].

Let G be a binary graph. We model the spread of information on G as a time continuous
and homogeneous jump process, with possible states N|V |. Each component of the possible
states represents the number of information packages on each node. The process is defined by
a transition rate matrix q(N, Ñ), which we shall make explicit shortly. Given a unit package
at a node v, for each neighbouring node u ∈ Nv there is at each small increment of time δ, a
chance γδ that the information is replicated there, increasing the number of packages at the
node u. Such replication does not diminish the number of information packages in the node
v. Equivalently, the node u has, at that same small increment of time δ, a γδ probability of
replicating the package from the neighbour v. This chance is repeated for each package in v,
and for each neighbour of u. This part of the process is captured by setting

q(N,N + eu) = γ
∑
v∈Nu

nv = γ⟨eu, AN⟩.

We can allow for different spreading probabilities between nodes by considering a weighted
network, where the weight of an edge represents the factor by which the spread probability is
multiplied. That is, a weight of ωi,j for an edge between i and j represents that the probability
of an information package spreading from i to j in a small time δ is multiplied by ωi,j . That
is, ωi,jγδ. In this way, we get the same formula for q(N,N + eu).

Furthermore, there is also a small chance γχδ that each information package is forgotten
by the node u, resulting in a decrease in the amount of packages on u. We shall assume that
χ is uniform among the network. This second process is captured by setting

q(N,N − eu) = γχnu = γ⟨eu, χN, ⟩.

All the other values of the transition matrix are set to 0, except q(i, i), which is set as
−
∑

j ̸=i q(j, i). For each N , the possible jumps are contained in the set of vectors Ñ such that

Ñ −N = ±eu for some u ∈ G. That is, the possible jumps are finite, so λ(N) <∞ and given
a starting distribution N we can build a generated jump process M t(N). As per usual, the
first property we shall find is that for any starting distribution the process is non explosive.
For this, we check that the conditions of Theorem 2.1 are satisfied,
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Lemma 3.1. Let q(N, Ñ) be defined as above, and λ(N) = −
∑

Ñ ̸=N (q(N, Ñ). Then,

1. λ(N) ≤ Cλ(1 + |N |), ∀N ∈ N|V |,
2. max(|Ñ −N | : π(N, Ñ) > 0) ≤ C,∀N ∈ N|V |

Proof. Checking the two properties is straightforward. Indeed, we have

(3.1) λ(N) =
∑
j∈G

(q(N,N + ej) + q(N,N − ej)) = γ
∑
j∈G
⟨ej , AN⟩+ γ

∑
j∈G
⟨ej , χIN, ⟩

= γ⟨1, χ(I +A)N⟩ ≤ γ(χ|N |+ |E||N |),

where 1 is the vector where each component is 1. Hence, the first property follows for Cλ =
γ(χ+ |E|).

For the second property we have that each possible jump is of the form ±ej , so it is
satisfied for C = 1.

Then, applying Chebbi–Toumi’s [7] results Theorem 2.1 and Proposition 2.2 we get the fol-
lowing.

Corollary 3.2. For any starting finite distribution N0, the process M t(N0) is non-explosive
and its components have finite p-th moments for all p ≥ 1, t ≥ 0.

Theorem 3.3. The expected value of the Markov process M t
N is given by the differential

equation
dE[M t(N)]

dt
= −γLxE[M t(N)].

Proof. Letting ϕ be the identity, by Chebbi–Toumi’s Proposition 2.2 we have

E[M t(N)] = E[M0(N)] +

∫ t

0
E[LM s(N)].

By the definition of L we have

LM t(N) =
∑
i∈G

(q(M t(N),M t(N) + ei)− q(M t(N),M t(N)− ei))ei

= γ
∑
i∈G
⟨ei, (A− χIn)M

t(N)⟩ei = −γ(χIn −A)M t(N).

Hence,
E[LM s(N)] = −γ(χIn −A)E[M s(N)] = −LxE[M s(N)],

and so the result follows.

Note that the only property used is the linearity of the transition probabilities with respect to
the state of the Markov process, so the same proof would apply to similarly defined processes.
Also from the linearity we get the following result

Theorem 3.4. Let N,K ∈ N|V |. Furthermore, let M t(N) and M t(K) be two independent
Markov processes defined as above. Then, the process M t(N+K) has the same law as M t(N)+
M t(K). In particular, M t(N) +M t(K) is a pure jump Markov process.

8



Proof. Fix some N and K, and let Rt = M t(N) +M t(K). For some fixed s, define the
stopping time ts = inf{t ≥ s|Rt ̸= Rs}. Furthermore, let tNs , tKs be the equivalent stopping
times for M t(N) and M t(K). Then since the probability of tNs = tKs is 0, we have almost
surely

ts = min(tNs , tKs ).

By the construction of the pure jump Markov processes, tNs , conditioned to the filtration Fs, is
an exponential random variable with parameter λ(M s(N)), and the analogous for tKs . Recall
that the minimum of two independent exponential random variables is again an exponential
random variable, with its parameter being the sum of the two others. Hence,

ts|Fs ∼ Exp[λ(M t(N)) + λ(Mk(N))].

As seen in the proof of Lemma 3.1 we have λ(V ) = γ⟨1, χ(I + A)V ⟩, so λ(V1) + λ(V2) =
λ(V1 + V2) and we have

ts|Fs ∼ Exp[λ(M s(N) +M s(K))] ∼ ts|Rs.

We shall now observe the probability distribution of Rts conditioned to Fs. For a given V ∈ S,
we have

P[Rts = V |Fs] = P[Rts = V |M s(N),M s(K)]

= P[tNs = ts, R
ts = V |M s(N),M s(K)] + P[tKs = ts, R

ts = V |M s(N),M s(K)],

where the second split follows from the fact that tNs ̸= tKs with probability 1. Let V1, V2 ∈ S
be any possible values for M s(N) and M s(K) respectively. Then,

P[tNs = ts, R
ts = V |M s(N) = V1,M

s(K) = V2]

= P[tNs = ts,M
tNs (N) = V − V2|M s(N) = V1,M

s(K) = V2].

Again, by the construction of pure jump Markov processes, conditioned to M s, the variables
M tNs and tNs are independent. Furthermore, the event tNs = ts is equivalent to t

N
s < tKs , which a

straightforward computation shows that has conditional probability λ(Ms(N))
λ(Ms(N))+λ(Ms(K)) . Hence,

the last probability is equal to

P[tNs < tKs |M s(N) = V1,M
s(K) = V2]P[M tNs (N) = V − V2|M s(N) = V1,M

s(K) = V2]

=
λ(V1)

λ(V1) + λ(V2)
P[M tNs (N) = V − V2|M s(N) = V1]

=
λ(V1)

λ(V1) + λ(V2)

q(V1, V − V2)

λ(V1)
=

q(V1, V − V2)

λ(V1) + λ(V2)
.

Using the same argument for the other process we get

P[Rts = V |M s(N) = V1,M
s(K) = V2] =

q(V1, V − V2) + q(V2, V − V1)

λ(V1) + λ(V2)
.
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We shall now see that the previous is equal to q(V1+V2,V )
λ(V1+V2)

. If V − (V1 +V2) is not equal to ±ej
for some j, or 0, then both sides are 0 and equality follows. If V − (V1 + V2) = ej then

q(V1, V − V2) = q(V1, V1 + ej) = γ⟨ej , AV1⟩,

so q(V1, V − V2) + q(V2, V − V1) = q(V1 + V2, V1 + V2 + ej) = q(V1 + V2, V ). The analogous
computation for when V − (V1 + V2) = −ej gives the same result, and so the general equality
follows. Therefore, the process is indeed a pure jump Markov process, with the same transition
probabilities than M t, and starting value N +K. Hence, the result follows.

This can be interpreted as the spread of each package of information being independent of the
spread of the others. From this, as well as the finite moments, the law of large numbers can
be applied, obtaining the following.

Theorem 3.5. Let u(t, C) be the solution of equation (2.2), imposing the starting condition
u(0, C) = C. Furthermore, let (Nn) ⊂ N|V | be a sequence of starting values with |Nn| → ∞
and limn→∞

Nn

n = C. Then, for any t > 0 the sequence of random variables M
t
n = Mt(Nn)

|Nn|
converges almost surely to u(t, C).

Proof. For each j ∈ G and i ∈ N let M t
i (ej) be an i.i.d. copy of M t(ej). Letting Nn

i be
the i-th component of Nn we have, by Theorem 3.4, that M t(Nn) has the same distribution
as ∑

j∈G

∑
1≤i≤Nn

j

M t
i (ej) =

∑
j∈G

X
n
j .

That is, M t(Nn) can be written as the sum of |V | many independent random variables. Each
of these variables is the sum ofNn

j i.i.d. random variables, each with expected value E[M t(ej)].
Hence, by the strong law of large numbers, if Nn

i →∞,

X
n
j

Nn
j

→ E[M t(ej)]

almost surely. If Nn
i does not go to infinity, then

Nn
i
n → 0, so

X
n
j

n
→ 0.

Then, recalling that if Nn
j = 0 we have X

n
j = 0,∑

j∈GX
n
j

n
=

∑
j∈G|Nn

j ̸=0

Nn
j

n

X
n
j

Nn
j

→
∑

j∈G|Cj ̸=0

CjE[M t(ej)] =
∑

j∈G|Cj ̸=0

Cje
−tγLχ(ej) = e−tγLχC

where the convergence is almost surely.

Note that results similar to the last one can be obtained in some cases without using the
linearity property.
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Using this discrete model and a similar reasoning than the one detailed in subsection 2.3,
the value exp(βA)i,j can be interpreted as the average amount of instances of information that
the node j has at time t, for each original information package in the node i. Consequently
exp(βA)i,i − exp(βA)j,i can also be interpreted as the average balance at the node i between
the number of repetitions of packages originating from the node i and the different packages
originating from the node j, assuming the process started with 1 package on each node.

4. Efficiency index. Following the comment on Remark 2.4 we consider the sum of all
distances as a measure of the total amount of repeated information within a network. Precisely,
we define the following.

Definition 4.1. Let Dvw (βA) be the communicability distance between the vertices v and
w of G. The communicability redundancy the graph is defined as

(4.1) R (G, β) :=
1

2

∑
v,w∈G

D2
vw (βA) .

Remark 4.2. According to Remark 2.4, the communicability redundancy represents a mea-
sure of the global redundancies of the graph to transmit information between every pair of
vertices. A small value of R (G, β) indicates a small total amount of repeated information,
while a large value of the index represents a large amount of redundancies.

To define a notion of efficiency for a graph based on the dynamics of information-like phe-
nomena we now need a notion of total information generated. Similarly to the way the redun-
dant information between two nodes is defined to be exp (βA)i,i + exp (βA)j,j − 2 exp (βA)i,j ,
we define the following.

Definition 4.3. Let G be connected graph, and i, j two nodes in a graph. Then, the
pairwise communication between two nodes is defined as

Ni,j(βA) = exp (βA)i,i + exp (βA)j,j + 2 exp (βA)i,j .

The same proof than in Proposition 2.5 yields the following result.

Lemma 4.4. Let xi and yi be as in Proposition 2.5. Then,

Ni,j(βA) = ||xi + xj ||2 = ||yi + yj ||2.

Now, the total pairwise communication C(G, β) of a graph can be defined as the sum of
all the pairwise communications. That is, C(G) =

∑
i,j Ni,j . Finally, the relative amount of

redundant information can be defined as the quotient between the absolute redundancy, and
the total communication, and the efficiency is then defined as 1 minus the previous amount.
That is, we define the following.

Definition 4.5. Let G be a connected graph. The efficiency of the graph is

E(G, β) = 1− R(G, β)

C(G, β)
= 1−

∑
i,j D2

i,j(βA)∑
i,j Ni,j(βA)

11



Remark 4.6. While it is more practical to omit the parameter χ from the definitions of
R(G, β) and C(G, β), we could have included them, resulting in

R(G, β, χ) = e−βχR(G, β)

and

C(G, β, χ) = e−βχC(G, β).

Following this reasoning, the resulting formula for the efficiency would be

E(G, β, χ) = 1− R(G, β, χ)

C(G, β, χ)
= 1− R(G, β)

C(G, β)
= E(G, β).

That is, the efficiency of the graph is independent of the parameter χ.

4.1. Alternative expressions and rough bounds. We shall first observe the following
straightforward result.

Lemma 4.7. Let G be a graph and β ≥ 0. Then,

0 < E(G, β) < 1.

Proof. Directly from the definitions we have 0 < R(G, β) < C(G, β), so the result follows.

Let Mβ = exp (βA). Then, extending the definition in Benzi and Klymko [2] to consider the
parameter β we define the total communicability of a vertex as:

(4.2) TC (i, β) :=
(
Mβ1T

)
i
.

Also, the so-called Estrada index of a graph is defined as [11, 22, 15]: EE (G, β) :=
tr

(
Mβ

)
, where tr is the trace of a matrix. In [10] the following index was studied: TC (G, β) :=∑

i TC (i, β) with β = 1. Notice that if we define J to be the all ones matrix, then TC (G, β) :=
tr

(
JMβ

)
.

The expressions defined in the previous subsection can be expressed in terms of these two
quantities.

Lemma 4.8. Let G be a graph and β ≥ 0. Then,

R(G, β) = nEE(G, β)− TC(G, β)

and

C(G, β) = nEE(G, β) + TC(G, β).

Proof. The proof is rather straightforward. For a given β ≥ 0, let M = exp(βA) be the
exponential matrix. Then,

R(G, β) =
1

2

∑
i,j∈G

Dij(βA) =
∑
i,j∈G

Mβ
i,i +Mβ

j,j − 2Mβ
i,j .

12



Grouping the positive terms and the negative ones the previous expression is equal to

1

2

∑
i∈G

2nMβ
i,i −

∑
i,j

2Mβ
i,j

 = nEE(G, β)− TC(G, β).

The same proof shows the result for C(G, β).

This allows us to find the following bounds.

Lemma 4.9. Let R (G) and E(G) be the redundancy and the efficiency index as defined
before, and let λ1 ≤ · · · ≤ λn be the eigenvalues of A. Then,

(4.3) n
n∑

j=2

eβλj ≤ R (G) ≤ n
n−1∑
j=1

eβλj

and

(4.4)
2eβλ1

EE(G, β) + eβλn
≤ E(G) ≤ 2eβλn

EE(G, β) + eβλ1
.

Proof. First, we express R (G, β) in terms of the EE (G, β) and TC (G, β) as follows

(4.5) R (G, β) = nEE (G, β)− TC (G, β) .

Then, let us define J to be the all ones matrix,such that TC (G, β) := tr
(
JMβ

)
. Now

because λn (A) tr (B) ≤ tr (AB) ≤ λ1 (A) tr (B) we have that

(4.6) nEE (G, β)− neβλ1 ≤ R (G, β) ≤ nEE (G, β)− neβλn

which proves the first result.
The second result is obtained similarly. We have

E(G, β) = 1− nEE (G, β)− TC (G, β)

nEE (G, β) + TC (G, β)
=

2TC (G, β)

nEE (G, β) + TC (G, β)
,

so using the same inequalities as before the result follows.

4.2. Upper Bound. In this section we prove a precise general lower bound for the com-
municability distance, which results in an upper bound for the efficiency. Recall that we are
denoting as Di,,j the communicability distance.

Lemma 4.10. Let A be a symmetric real n×n matrix with non-negative entries, with ones
on the diagonal and such that each entry outside the diagonal is at most 1. Furthermore, let
xti,j be the i, j − th component of the matrix eAt. Then, for any 0 ≤ i, j ≤ n different we have

xti,i + xtj,j − 2xti,j ≥ 2.

Furthermore, we have equality if and only if the corresponding columns (or rows) of A are
equal.

13



Proof. Let u be the n-th dimensional vector defined by ui = 1, uj = −1 and uk = 0
otherwise. Then we define

f(t) = xti,i + xtj,j − 2xti,j = uT eAtu.

Since e0 = In we have f(0) = ai,i + aj,j = 2. We have

f ′(t) = uTAeAtu.

Hence, for t = 0 we have

f ′(0) = uTAu = ai,i + aj,j − 2ai,j = 2(1− ai,j) ≥ 0.

For the second derivative we have

f ′′(t) = uTA2eAtu = ||AeAt/2u||2 ≥ 0,

where we have used that the matrix A is symmetric and commutes with eAt. Hence, since
f ′(0) ≥ 0 and f ′′(t) ≥ 0 for all t, we have f(t) ≥ f(0) = 2.

If the columns are equal, then uTA = 0, so f ′(t) = 0 for all t, so f(t) = 2 for all t. On the
other hand f ′′(0) = ||Au||2, so f ′′(0) = 0 if and only if Au = 0, that is, if the columns are the
same.

As a corollary of the previous lemma, we get the lower bound for the communicability distance.

Theorem 4.11. Let G be an undirected weighted graph, with weights at most α > 0, and let
i, j ∈ V (G) be two vertices of G. Then, unless i and j have the same neighbourhood and are
connected by an edge of weight α, we have

Di,j(βA) > DS
i,j(αβ) =

√
2/eαβ,

where DS
i,j(αβ) is the communicability distance between the nodes i, j in any unweighted graph

such that they have the same neighbourhood and are connected by an edge of weight α.

Proof. Let A be the adjacency matrix of G. Then, B = A/α+ In satisfies the hypotheses
of Lemma 4.10. Furthermore,

eαβB = eβA+αβIn = eαβ eβA.

Therefore, eαβD2
i,j(βA) = xβi,i + xβj,j − 2xβi,j ≥ 2, where xβi,j are the components of the matrix

exp(βA). Hence, the inequality follows. From the lemma we have equality if and only if the
columns i and j of the matrix B are the same, or, equivalently, if the nodes i and j have the
same neighbourhood and are connected with an edge of weight α.

In particular, for an unweighted undirected graph we have

Di,j(βA) ≥
√
2/eβ.

As a corollary, we get that the the minimum amount of edges needed to minimise the
communicability distance between two nodes is the difference between the neighbourhoods.
Another corollary is the following.
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Corollary 4.12. Let Kn be the complete graph of n nodes, and let G be a non-complete
weighted graph of n nodes with maximum weight α > 0. Then,

R(G, β) > R(Kn, αβ) =
n(n− 1)

eαβ

Proof. In the complete graph all nodes have the same neighbourhoods, so by the previous
theorem we have

1

2

∑
i,j∈G

D2
i,j(βA) ≥

1

2

∑
i ̸=j∈Kn

(DS
i,j)

2(αβ) =

(
n

2

)
2/e =

n(n− 1)

eαβ
.

Furthermore, we have equality if and only if all nodes in G have the same neighbourhood and
are connected between each other with the same weight. This is only true if G is the complete
graph.

The same proof results in the following similar result, which was conjectured by Estrada in
[13, Conjecture 1].

Corollary 4.13. Let G be a non-complete binary graph of n nodes. Then,∑
i,j∈G

Di,j >
∑

i ̸=j∈Kn

DKn
i,j .

By the equality from Lemma 4.8 we get the following result.

Corollary 4.14. Let G be a non-complete binary graph of n nodes and β ≥ 0. Then,

nEE(G, β)− TC(G, β) > nEE(Kn, β)− TC(Kn, β) =
n(n− 1)

eβ
,

Corollary 4.12 can be interpreted as the complete graph being the network with less
redundancy over the networks on n nodes. Furthermore, the total pairwise communication of
the network, C(G, β) is nondecreasing on the components of the adjacency matrix, with the
complete graph having the largest value. Hence, one gets the following result.

Corollary 4.15. Let G be a non-complete graph of n nodes. Then,

E(G, β) < E(Kn, β)

Proof. By Corollary 4.12 we have

E(G, β) = 1− R(G, β)

nEE(G, β) + TC(G, β)
< 1− R(Kn, β)

nEE(G, β) + TC(G, β)
.

Finally, the quantity nEE(G, β)+TC(G, β) is a positive weighted sum of the the elements of
the matrix exp(βA), all of which are non-decreasing on the edges, with at least some increasing.
Hence, nEE(G, β) + TC(G, β) > nEE(Kn, β) + TC(Kn, β), and the result follows.
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4.3. Dependency on β. As we shall explain more in detail in subsection 6.1, the param-
eter β can be interpreted as the reciprocal of the level of external stress to which a network is
submitted (see also [18] where β is interpreted as the inverse temperature of a thermal bath
in which the network is submerged). Hence, there is interest in a study of the dependency of
the network efficiency on this parameter. We shall begin by observing the limits, getting the
following result.

Proposition 4.16. Let G be connected a network. Then,

lim
β→0
E(G, β) =

2

n+ 1

and

lim
β→∞

E(G, β) =
2
∑

i,j∈G vinv
j
n

n+
∑

i,j∈G vinv
j
n

≤ 1,

where the last inequality is an equality if and only if G is a regular graph.

Proof. As β → 0, the matrix exp(βA) converges to the identity, so both EE(G, β) and
TC(G, β) converge to n, and E(G, β) converges to 2

n+1 .
Let Λ be the diagonal matrix formed by the eigenvalues of the adjacency matrix, and λn

be the largest of such eigenvalue. Since G is connected, λn has multiplicity 1, so we have

lim
β→∞

exp(βA)

exp(βλn)
= UT lim

β→∞
exp(β(Λ− λnIn)U = vnv

T
n ,

where vn is the normalized eigenvector with eigenvalue λn. Then,

lim
β→∞

nEE(G, β)

exp(βλn)
= n

∑
i∈G

(vin)
2 = n

and

lim
β→∞

nTC(G, β)

exp(βλn)
=

∑
i,j∈G

vinv
j
n,

and so the limit follows.
To see that the upper limit is only an equality for regular graphs, we write∑

i,j∈G
vinv

j
n = ⟨vn,

∑
vin1⟩.

By Cauchy–Schwartz, the previous is smaller equal than

||vn|| ||
∑

vin1|| = ||
∑

vin1|| =
√
n⟨vn,1⟩.

Applying Cauchy–Schwartz again, the previous is smaller equal than
√
n||vn|| ||1|| = n.

In both cases we have equality if and only if the associated vectors are positive multiples of
each other. In particular, for the second case we get that equality implies that vn is a multiple
of 1. This is true only for regular graphs. Then, if vn is a multiple of 1, the first inequality
also becomes an equality, and so the result follows.
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Both limits have clear physical interpretations. A near 0 value of β implies that the pairs
of vertices are hardly communicating to each other, and so the network is not providing any
work. As a result, almost all information is redundant, and so the efficiency is minimal.
The upper limit corresponds to a large value of β. For such value, all communications are
instantaneous, and so the particular routes provided by the network are not relevant. As such,
the relevant feature becomes the amount of information repeated by each node, and so we get
the maximum efficiency when each node repeats the same amount of information. That is,
when the graph is regular.

We shall see now that the first derivative at 0 is, for large n, close to the edge density.

Lemma 4.17. Let G be a graph and let E be the edges of G. Then,

d

dβ
E(G, β)

∣∣∣∣
β=0+

=
|E|

(1 + n)2
.

Proof. We have

(4.7)
d

dβ
E(G, β)

∣∣∣∣
β=0+

= − d

dβ

R(G, β)

C(G, β)

∣∣∣∣
β=0+

= −R
′(G, 0)C(G, 0)−R(G, 0)C′(G, 0)

C(G, 0)2

Directly from the definition we have

EE(G, 0) = n,

EE(G, 0)′ =
∑

λn = 0.

and
TC(G, 0) = n.

Let 1 be the vector of ones. Then, TC(G, β) = ⟨1 · exp(βA)1⟩. Hence,

TC(G, β)′ = ⟨1 ·A exp(βA)1⟩.

Therefore,

TC(G, 0)′ = ⟨1 ·A1⟩ =
∑
i∈G

di =
|E|
2

.

Subbing these values in (4.7) we get the result.

This result can be used to refine the lower bound in Proposition 4.16. Following the inter-
pretation explained after the result, we get that, for extremely low values of β, the most
important parameter used to increase the efficiency is the number of edges.

While the edge density sets the first derivative at 0, in Figure 1 we compare two graphs
with the same edge density that show drastically different efficiencies at different values of β.
Furthermore, in subsection 5.2 we go over some examples where removing edges increases the
efficiency for β = 1.

Increasing the parameter β translates to lowering the stress of the system, so one would
expect that the efficiency increased. We have observed this increase experimentally in all of
our simulations that this is indeed the case, and hence we pose it here as a conjecture.
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Figure 1: Efficiency value for the renormalized weighted brain coactivation network, and for
an Erdös–Rényi graph with the same number of nodes and edge density than the real-world
brain network.

Conjecture 4.18. Let G be a non edgeless graph. Then, the efficiency index of G is strictly
increasing on β.

Corollary 4.19. Let β > 0. Then, if the previous conjecture is true,

E(G, β) ≥ 2

n+ 1
,

with equality satisfied only for the edgeless graph of n nodes.

5. Efficiency of Networks. Artificial graphs.

5.1. Indexes comparison. In this section we investigate the general relation between the
Wiener Index, the Communicability efficiency (CE) and the standard efficiency (SE) for simple
graphs. In Figure 2 we have plotted the relation obtained for all connected graphs with 8
nodes. As can be seen for these small graphs, all these indices display some correlation among
them. Furthermore, we observe that the relation between the WI and the CE is weaker than
between the WI and the SE, which indicates that the CE is adding

While these kinds of analyses allow one to determine the relation for graphs with a small
number of nodes, it is not computationally feasible to perform the same analysis for graphs
with larger number of vertices. Instead, one must choose a subset of the graphs with such
number of nodes. In Figure 3 we observe the relations obtained for graphs with 100 nodes,
selected via the Erdös–Rényi model with p = 0.1, and with p = 0.25. We observe that the
strong correlation between the Wiener Index and the SE is maintained as expected, while the
relation between them and the CE weakens.
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Figure 2: Relation between Wiener Index, SE and CE on graphs with 8 nodes.

The general relation between the SE and the CE indicates that these two indices observe
similar phenomena. That is, while these indexes have different definitions, on many graphs
they represent similar properties. However, as Figure 3b shows, and as we shall see in section 6,
in some families of networks the relation is broken, and the CE gives different results than the
SE. In particular, we shall see that the indices behave differently on real networks associated
to nonconservative dynamics. Furthermore, as observed in Figure 3, there is a strong relation
betweenWI and the SE for some families of networks, which means that the SE is not providing
additional information for that family. This does not seem to be the case for the CE.
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(a) (b)

Figure 3: Relation between Wiener Index, SE and CE for 100 simulated Erdös–Rényi n = 100
and p = 0.1 (a), and for 100 simulated Erdös—Rényi graphs with n = 100, k = 10 and
p = 0.25 (b).

5.2. Non monotony and maximally efficient subgraphs. Let G be a graph, and G′ be
the subgraph of G obtained by removing precisely one edge. The shortest path distance
within a graph is non-decreasing with respect to edge removal. Therefore, directly from the
definition one obtains that the Wiener Index and the Standard efficiency index are, respec-
tively, increasing and decreasing with respect to edge removal. That is, W (G) ≤ W (G′) and
ES(G) ≥ ES(G′). The same is not necessarily true for the communicability efficiency, and we
shall detail an example below.

Consider the graph G formed by gluing the complete graphs of 4 and 7 vertices at a
common node j. Then, a simple computation shows that removing any edge from the larger
clique, except the edges adjacent to the node j, results in a graph with larger efficiency. This
gives the following result.

Lemma 5.1. The communicability efficiency is not monotonous with respect to edge re-
moval.

In many applications it is more cost-efficient to generate a network with a smaller number
of edges, as each edge represents some form of cost. The communicability efficiency does not
take into account the cost of building the network, and as such it is of interest to obtain
networks with large efficiency, such that the number of edges is minimal. In particular, given
a graph G, one might be interested in the subgraph of G with maximal efficiency. We define
the following.

Definition 5.2. Let G be a graph. Then, we say that H ⊂ G is a maximally efficient
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subgraph if H contains all the nodes of G and

E(H) = max
H′⊂G

E(H ′),

where the maximum is taken over the subgraphs containing all the nodes of G.

The practical applications of finding maximally efficient subgraphs leads to the following
question.

Question 5.3. Let G be a graph. Which subgraphs containing all the nodes of G are the
maximally efficient subgraphs?

We provide here the following partial result.

Lemma 5.4. Let G be a graph with more than one connected component and let v, u be two
vertices on different connected components of G. Furthermore, let Gω be the graph obtained
by adding an edge between v and u with weight ω > 0. Then, for ω small enough,

E(Gω) > E(G)

Proof. We shall first see that, for any two graphs G, G̃,

E(G̃) > E(G) ⇐⇒ TC(G̃)

EE(G̃)
>

TC(G)

EE(G)
.

The previous fact follows from simple algebraic manipulation. Indeed,

E(G̃) >E(G)

⇐⇒ TC(G̃)

nEE(G̃) + TC(G̃)
>

TC(G)

nEE(G) + TC(G)

⇐⇒ nEE(G̃)

TC(G̃)
+ 1 <

nEE(G)

TC(G)
+ 1

⇐⇒ TC(G̃)

EE(G̃)
>
TC(G)

EE(G)
.

Consider then the function f(ω) = TC(Gω)
EE(Gω)

. Since the exponential matrix is differentiable with

respect to the components of the matrix, and EE(G) ≥ 1, the function f is differentiable.
Furthermore, let TC(ω) = TC(Gω) and EE(ω) = EE(Gω). Then,

f ′(ω) =
TC ′(ω)EE(ω)− TC(ω)EE′(ω)

EE2(ω)

Hence, f ′(ω) > 0 if and only if TC ′(ω)EE(ω)−TC(ω)EE′(ω) > 0. The value of EE′(ω) is the
directional derivative of the Estrada index (see [15] for a review) of the adjacency matrix in
the direction defined by the matrix with ones in the position u, v and v, u and zeros everywhere
else. This quantity has been studied by Schweitzer in [32], under the name of sensitivity of
the edge (u, v). In particular, applying [32, Corollary 4.5] to our particular case we get

EE′(ω) = 2[eAω ]u,v,
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where Aω is the adjacency matrix of Gω. For ω = 0 we have that A0 is a block diagonal
matrix with u and v belonging to different blocks, so eA0

u,v = 0 and EE′(0) = 0. On the other

hand, the components of eA are nondecreasing with respect to the components of A. Hence,
the derivative of TC will be larger than the derivative of the u, v component of eAω , which
observing the two first components of the the definition of eA is at least 1. Hence, TC(0) > 0
and f ′(0) > 0. Therefore, f(ω) > f(0) for ω small enough, and the result follows.

We expect that the previous result can be extended to ω = 1 for unweighted graphs, and
so we pose it here as a conjecture.

Conjecture 5.5. Let G be an unweighted graph. Then, Lemma 5.4 is always true for ω = 1.

Proposition 5.6. If Conjecture 5.5 is true then, given a graph G, the connected components
of the maximal efficient subgraphs of G are subgraphs containing the same vertices as the
connected components of G. That is, separating two portions of a graph does not result in an
efficiency increase.

In particular, if Conjecture 5.5 is true, the only maximally efficient subgraph of a forest
T is T itself.

Proof. LetH be a maximally efficient subgraph ofG, and letHc be a connected component
of H. Since H is a subgraph of G, the connected component Hc is a subgraph of a connected
component Gc. Assume Gc has more vertices than Hc and let u ∈ Hc and v ∈ Gc − Hc be
vertices that form an edge in Gc. Then, H∪(u, v) is still a subgraph of G, and if Conjecture 5.5
is true, has higher efficiency than H, giving us a contradiction.

5.3. Efficiency maximizing process. While finding the maximally efficient subgraph is not
computationally feasible for large graphs, here we provide an efficiency maximizing process
that runs on polynomial time, given that the computation of the exponential matrix is done
in polynomial time, and might be useful in some cases.

Given a network, it is possible to discern the contribution to the global efficiency provided
by each edge by comparing the current efficiency with the efficiency of the graph without the
observed edge. Removing the edge that contributes the least, or, in some cases, that hinders
the most, repeating until we reach a totally disconnected tree, and selecting the graph with
maximal efficiency, one obtains an optimising process. The resulting pseudocode is outlined
in Algorithm 5.1.

Here we build the following example. Similarly to the previous case, we shall work with a
graph obtained by contracting two densely connected graphs at one node. This time, instead of
taking complete graphs, we take two Erdös–Rény graphs with n = 15 and p = 0.7 and p = 0.9.
The particular graph obtained by the simulation is shown in Figure 4a. After computing the
change in efficiency after removing each individual edge weobtain the graph illustrated in
Figure 4b, indicating that the edges on the more dense subgraph are hindering the efficiency,
and the edges connecting with the central node are contributing the most. Removing edges
as mentioned we obtain the efficiency graph shown in Figure 5. We observe that a maximal
efficiency plateau is reached after removing a small amount of edges, corresponding to bringing
the densities of the two clusters to similar values. After all edges that hinder efficiency are
removed, the global efficiency starts decreasing with increasing pace. The approximation of
the maximally efficiency graph is shown in Figure 4c. Note that all connections between the
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Algorithm 5.1 Greedy efficiency maximising process

Input Graph G
Output Approximation of maximally eficient subgraph of G

Declare array u containing only G
Declare array v containing only the CE of G
F ← copy(G)
while F has edges do
Declare empty array w
for edge ∈ edges of F do

Append CE of F without edge on array w
end for
Find largest value among values in w
Remove associated edge to previously found largest value to F
Append a copy of F to array u
Append CE of F to array v

end while
Find index of largest value among values in v
return Associated graph in u

(a)
(b)

(c)

Figure 4: Example of efficiency maximizing process of edge removal sequence explained in
subsection 5.2. For this simulation, the maximum is attained after 42 edge removals, shown
in (c). See Figure 5 for the relation between edges removed and the efficiency in this example.

nodes in the sides and the central node are maintained, and that the edge density on both
sides of the graph is similar, even though we have not imposed such restrictions explicitly.

We emphasise that the graph obtained through this process is not necessarily the max-
imally efficient graph. Furthermore, it is not enough to stop at the first local maxima, as
the efficiency curve obtained as we remove the edges might have several local maxima. To
illustrate this point we repeat the process described above with two complete graphs of 15
nodes, glued at a common node. Recording the efficiency of the 100 first steps of the process
we obtain the curve shown in Figure 6.
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Figure 5: Efficiency obtained performing the efficiency optimisation process described in sub-
section 5.2

Figure 6: First 100 efficiency values obtained performing the efficiency optimisation process
described in subsection 5.2 for two complete graphs of 15 nodes glued at a common point.

6. Real Networks. In this section we study a series of networks from a variety of real-
world complex systems. They include: (i) brain networks, (ii) food webs, (iii) online and (iv)
face-to-face social networks. We selected these classes of networks because there is evidence
that such systems are examples in which nonconservative diffusive dynamics take place as
previously described in the Introduction. In total we consider 14 networks in these categories
for which we calculated the communicability efficiency as defined in this work as well the
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Network type Communicability Efficiency Standard Efficiency

Human brain coactivation i 0.6723 0.4949

Macaque Cortex i 0.9329 0.7141

Cat cortext i 0.9238 0.6902

C. elegans neurons i 0.6868 0.4222

Skipwith ii 0.9570 0.7950

St. Martin ii 0.8856 0.5884

Bridge Brook ii 0.8383 0.5426

Ythan ii 0.7113 0.4574

Twitter US Congress iii 0.8562 0.5197

Twitter Russian trolls iii 0.3039 0.2223

social3 iv 0.7412 0.5092

Corporate People iv 0.5722 0.3069

dolphins iv 0.5400 0.3792

Drugs iv 0.2849 0.2293

Table 1: Values of the communicability efficiency defined in this work as well as the standard
one based on shortest path distance for a series of networks representing (i) brain networks,
(ii) food webs, (iii) online and (iv) face-to-face social networks.

standard network efficieny based on the shortest path distance between pairs of vertices. The
results are given in Table 1. The average communicability efficiency of these networks is
of about 71% in contrast with the standard efficiency which is of 49%. As average, these
networks display about 21% more efficiency in the use of nonconservative diffusion than in
using a hypothetical process which occurs through the shortest paths. Although both efficiency
measures are based on very different principles they can be compared quantitatively because
they are both magnitudes bounded between zero and one.

To put more in value the differences observed for these real-world networks in their two
classes of efficiency we consider now another set of 14 networks where NC diffusion is not
expected to be a major driver of their functioning. They represent systems which range from
sexual intercourse networks, the galleries of termite mounds, flip-flop electronic circuits, a
power-grid and several software collaboration graphs. The results are given in Table 2. The
average communicability efficiency of these networks is only of 16%, which is a bit smaller than
the one obtained for the shortest path, which is about 19%. As average, these networks display
about 3% less efficiency in the use of nonconservative diffusion than in using a hypothetical
process which occurs through the shortest paths. Whether shortest paths between pairs
vertices is the way in which “information” is spread through these networks could be debatable,
e.g., it may happen than conservative diffusion would be a better way of doing so in certain
cases. However, what it seems clear is that these networks do not work on the basis of
nonconservative diffusion. For instance, a disease being transmitted through sexual contacts
is not spilled over outside the intercourse interactions, neither electricity is transmitted outside
the wiring connections of the circuits or the power-grid. Termite galleries seem to be prepare

25



Network Communicability Efficiency Standard Efficiency

Heterosexual 0.2400 0.2478

Homosexual 0.0820 0.1605

termite 1 0.0460 0.1493

termite 2 0.0514 0.1451

termite 3 0.1192 0.1759

electronic1 0.1454 0.2480

electronic2 0.0815 0.2041

electronic3 0.0450 0.1693

Power Grid West USA 0.0049 0.0628

Software Abi 0.2806 0.2187

Software Digital 0.2982 0.2495

Software MySQL 0.3431 0.2265

Software VTK 0.3418 0.2445

Software XMMS 0.1707 0.1841

Table 2: Values of the communicability efficiency defined in this work as well as the standard
one based on shortest path distance for a series of networks representing sexual intercourse
networks, the galleries of termite mounds, flip-flop electronic circuits, a power-grid and several
software collaboration graphs.

to evacuate gases possibly in a conservative diffusive way. Finally, software collaboartion
systems represent the way in which software modules call each other to perform tasks, which
is expected to occur in an approximate shortest-path way.

In closing, the previous results may indicate that real-world networks could evolve by opti-
mizing their structures to guarantee the efficiency of the processes to which they have evolved
to perform. Therefore, networks evolved to work under nonconservative diffusive processes
may have optimized their communicability efficiency in the way it is defined here. Other
networks, such as the ones shown in Table 2 may have evolved by optimizing other structural
features not necessarily designed for nonconservative process. The apparent ubiquity of non-
conservative diffusion in complex systems make the current definition of great relevance for
the analysis of realistic complex systems scenarios.

6.1. Dependency on β on real networks. We now briefly consider the effect of changing
the value of β on the efficiency of a network towards NC diffusion. Let us first signify what β
should mean in this context. When the matrix exp (βA) is obtained in reality we are computing
the communicability between every pair of vertices for the matrix W = βA, which is the
adjacency matrix of the graph in which every edge has the weight β. Obviously when β = 1
we have the unweighted graph, and when β → 0 we are reducing the capacity of every edge to
transmit information. For β > 1 we are increasing such capacity of communication between
vertices, think for instance that if β ∈ Z it represents multiple connections between pairs of
vertices. Therefore, as mentioned before β can be though as the external stress to which a
network is submitted to, when β → 0 we increase the stress such that the communication
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(a) Efficiency for some networks as the
value of β changes

(b) Change in efficiency for the binarized
reweigthed brain networks as we remove
edges

Figure 7

between pairs of vertices is almost interrupted.
Here we compare four real-world networks which have similar efficiency for β = 1: human

brain (0.6723), C. elegans neurons (0.6868), the food web of Ythan (0.7113) and the social
network of adolescents, social3 (0.7412). In Figure 7a we illustrate the change in the network
efficiency when β drops. The first interesting observation is the fast drop of the efficiency of
the social network when the external stress increases. For values of 0.2 ≤ β ≤ 0.9 this network
passes from being the most efficient to be the least one. This is intuitive on the basis of the
fact that social networks are not designed to be resilient to external stress and indeed they
are usually very volatile on the change of such external conditions. Think for instance how
political or economical crises alterate the structure of our everyday social networks. On the
other side of the coin it is the network representing the human brain coactivation system. This
network seems extremely robust to the drop of β, and its efficiency only decays significantly
when the external stress is dramatically large. Biological networks in general, and the brain
in particular, are know to display a large adaptability and plasticity [24], allowing them to
work on stressful situations. More investigations on this area are necessary to extract more
generalistic conclusions but the main message of this part of the work is that “efficiency” is
not only a term that needs to be used in the context of the process under consideration but
also on the specific circumstances in which the complex system is operating. This concept of
efficiency under external stress is different from the one typically considered in network theory
where efficiency is considered on the basis of random failures of edges. We notice here (see
Figure 7b) that removing edges of the human brain coactivation network namely diminish
its efficiency under almost all circumstances, with only 0.8% of edge removals resulting in an
efficiency increase. This indicates that the wiring is somehow necessary to keep the level of
robustness and functioning of the brain.

Finally, we would like to call the attention about the following fact. In some occassions
the networks under study are weighted, i.e., some real positive values are assigned to the
edges with different meaning depending on the cases. Then, comparing the efficiency of a
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(a) (b)

Figure 8: Comparison between the efficiencies as functions of the parameter β for the binarized
brain coactivation, the weighted brain coactivation, and the renormalized brain coactivation

weighted network with the one of an unweighted one is not a straighforward task and need
some thoughs. Let us consider a simple but illustrative example. A triangle in which the
three edges are weighted by numbers 1, 2 and 3 have communicabilities, i.e., values of

(
eA

)
vw

with magnitudes of the order of 20. Comparing this network with the unweighted triangle,
which has communicabilities of the order of 3 is not fair. The reason is the average weight of
the edges in the first case is 2, which is similar as considering weights 0.5, 1, and 1.5 and a
value of β = 2 in the first case, while in the second we are using a value of β = 1. Therefore,
we should either normalize the edge weights in the weighted graph to have average equal to
one in the network or find the appropriate value of β to multiply the adjacency matrix of the
unweighted graph. For instance, if we consider

(
e2A

)
vw

for the unweighted graph we obtain
values of the order of 18.1 which are closer to the ones of the weighted graph.

The previously described situation can be seen if we compare the change of the efficiency in
the human brain coactivation network with weights and the corresponding binarized network.
In Figure 8a we illustrate the change of efficiency as a function of β for these two versions of the
human brain network considered here. The results give the false impression of a remarkable
increase of the resilience of the unweighted network relative to the weighted one. However,
the appropriate normalization of the edge weights in the weighted graph makes the results
comparable as seen in Figure 8b where it can be seen that there is a similar pattern in the
change of the efficiency with β in both versions of the same network.
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